2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
27 #include <net/inet_common.h>
29 #include <net/busy_poll.h>
31 int sysctl_tcp_abort_on_overflow __read_mostly
;
33 static bool tcp_in_window(u32 seq
, u32 end_seq
, u32 s_win
, u32 e_win
)
37 if (after(end_seq
, s_win
) && before(seq
, e_win
))
39 return seq
== e_win
&& seq
== end_seq
;
42 static enum tcp_tw_status
43 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock
*tw
,
44 const struct sk_buff
*skb
, int mib_idx
)
46 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
48 if (!tcp_oow_rate_limited(twsk_net(tw
), skb
, mib_idx
,
49 &tcptw
->tw_last_oow_ack_time
)) {
50 /* Send ACK. Note, we do not put the bucket,
51 * it will be released by caller.
56 /* We are rate-limiting, so just release the tw sock and drop skb. */
58 return TCP_TW_SUCCESS
;
62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
63 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64 * (and, probably, tail of data) and one or more our ACKs are lost.
65 * * What is TIME-WAIT timeout? It is associated with maximal packet
66 * lifetime in the internet, which results in wrong conclusion, that
67 * it is set to catch "old duplicate segments" wandering out of their path.
68 * It is not quite correct. This timeout is calculated so that it exceeds
69 * maximal retransmission timeout enough to allow to lose one (or more)
70 * segments sent by peer and our ACKs. This time may be calculated from RTO.
71 * * When TIME-WAIT socket receives RST, it means that another end
72 * finally closed and we are allowed to kill TIME-WAIT too.
73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
74 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
75 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76 * * If we invented some more clever way to catch duplicates
77 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81 * from the very beginning.
83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
84 * is _not_ stateless. It means, that strictly speaking we must
85 * spinlock it. I do not want! Well, probability of misbehaviour
86 * is ridiculously low and, seems, we could use some mb() tricks
87 * to avoid misread sequence numbers, states etc. --ANK
89 * We don't need to initialize tmp_out.sack_ok as we don't use the results
92 tcp_timewait_state_process(struct inet_timewait_sock
*tw
, struct sk_buff
*skb
,
93 const struct tcphdr
*th
)
95 struct tcp_options_received tmp_opt
;
96 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
97 bool paws_reject
= false;
99 tmp_opt
.saw_tstamp
= 0;
100 if (th
->doff
> (sizeof(*th
) >> 2) && tcptw
->tw_ts_recent_stamp
) {
101 tcp_parse_options(skb
, &tmp_opt
, 0, NULL
);
103 if (tmp_opt
.saw_tstamp
) {
104 if (tmp_opt
.rcv_tsecr
)
105 tmp_opt
.rcv_tsecr
-= tcptw
->tw_ts_offset
;
106 tmp_opt
.ts_recent
= tcptw
->tw_ts_recent
;
107 tmp_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
108 paws_reject
= tcp_paws_reject(&tmp_opt
, th
->rst
);
112 if (tw
->tw_substate
== TCP_FIN_WAIT2
) {
113 /* Just repeat all the checks of tcp_rcv_state_process() */
115 /* Out of window, send ACK */
117 !tcp_in_window(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
,
119 tcptw
->tw_rcv_nxt
+ tcptw
->tw_rcv_wnd
))
120 return tcp_timewait_check_oow_rate_limit(
121 tw
, skb
, LINUX_MIB_TCPACKSKIPPEDFINWAIT2
);
126 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tcptw
->tw_rcv_nxt
))
131 !after(TCP_SKB_CB(skb
)->end_seq
, tcptw
->tw_rcv_nxt
) ||
132 TCP_SKB_CB(skb
)->end_seq
== TCP_SKB_CB(skb
)->seq
) {
134 return TCP_TW_SUCCESS
;
137 /* New data or FIN. If new data arrive after half-duplex close,
141 TCP_SKB_CB(skb
)->end_seq
!= tcptw
->tw_rcv_nxt
+ 1)
144 /* FIN arrived, enter true time-wait state. */
145 tw
->tw_substate
= TCP_TIME_WAIT
;
146 tcptw
->tw_rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
147 if (tmp_opt
.saw_tstamp
) {
148 tcptw
->tw_ts_recent_stamp
= get_seconds();
149 tcptw
->tw_ts_recent
= tmp_opt
.rcv_tsval
;
152 inet_twsk_reschedule(tw
, TCP_TIMEWAIT_LEN
);
157 * Now real TIME-WAIT state.
160 * "When a connection is [...] on TIME-WAIT state [...]
161 * [a TCP] MAY accept a new SYN from the remote TCP to
162 * reopen the connection directly, if it:
164 * (1) assigns its initial sequence number for the new
165 * connection to be larger than the largest sequence
166 * number it used on the previous connection incarnation,
169 * (2) returns to TIME-WAIT state if the SYN turns out
170 * to be an old duplicate".
174 (TCP_SKB_CB(skb
)->seq
== tcptw
->tw_rcv_nxt
&&
175 (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
|| th
->rst
))) {
176 /* In window segment, it may be only reset or bare ack. */
179 /* This is TIME_WAIT assassination, in two flavors.
180 * Oh well... nobody has a sufficient solution to this
183 if (sysctl_tcp_rfc1337
== 0) {
185 inet_twsk_deschedule_put(tw
);
186 return TCP_TW_SUCCESS
;
189 inet_twsk_reschedule(tw
, TCP_TIMEWAIT_LEN
);
191 if (tmp_opt
.saw_tstamp
) {
192 tcptw
->tw_ts_recent
= tmp_opt
.rcv_tsval
;
193 tcptw
->tw_ts_recent_stamp
= get_seconds();
197 return TCP_TW_SUCCESS
;
200 /* Out of window segment.
202 All the segments are ACKed immediately.
204 The only exception is new SYN. We accept it, if it is
205 not old duplicate and we are not in danger to be killed
206 by delayed old duplicates. RFC check is that it has
207 newer sequence number works at rates <40Mbit/sec.
208 However, if paws works, it is reliable AND even more,
209 we even may relax silly seq space cutoff.
211 RED-PEN: we violate main RFC requirement, if this SYN will appear
212 old duplicate (i.e. we receive RST in reply to SYN-ACK),
213 we must return socket to time-wait state. It is not good,
217 if (th
->syn
&& !th
->rst
&& !th
->ack
&& !paws_reject
&&
218 (after(TCP_SKB_CB(skb
)->seq
, tcptw
->tw_rcv_nxt
) ||
219 (tmp_opt
.saw_tstamp
&&
220 (s32
)(tcptw
->tw_ts_recent
- tmp_opt
.rcv_tsval
) < 0))) {
221 u32 isn
= tcptw
->tw_snd_nxt
+ 65535 + 2;
224 TCP_SKB_CB(skb
)->tcp_tw_isn
= isn
;
229 __NET_INC_STATS(twsk_net(tw
), LINUX_MIB_PAWSESTABREJECTED
);
232 /* In this case we must reset the TIMEWAIT timer.
234 * If it is ACKless SYN it may be both old duplicate
235 * and new good SYN with random sequence number <rcv_nxt.
236 * Do not reschedule in the last case.
238 if (paws_reject
|| th
->ack
)
239 inet_twsk_reschedule(tw
, TCP_TIMEWAIT_LEN
);
241 return tcp_timewait_check_oow_rate_limit(
242 tw
, skb
, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT
);
245 return TCP_TW_SUCCESS
;
247 EXPORT_SYMBOL(tcp_timewait_state_process
);
250 * Move a socket to time-wait or dead fin-wait-2 state.
252 void tcp_time_wait(struct sock
*sk
, int state
, int timeo
)
254 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
255 const struct tcp_sock
*tp
= tcp_sk(sk
);
256 struct inet_timewait_sock
*tw
;
257 struct inet_timewait_death_row
*tcp_death_row
= &sock_net(sk
)->ipv4
.tcp_death_row
;
259 tw
= inet_twsk_alloc(sk
, tcp_death_row
, state
);
262 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
263 const int rto
= (icsk
->icsk_rto
<< 2) - (icsk
->icsk_rto
>> 1);
264 struct inet_sock
*inet
= inet_sk(sk
);
266 tw
->tw_transparent
= inet
->transparent
;
267 tw
->tw_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
268 tcptw
->tw_rcv_nxt
= tp
->rcv_nxt
;
269 tcptw
->tw_snd_nxt
= tp
->snd_nxt
;
270 tcptw
->tw_rcv_wnd
= tcp_receive_window(tp
);
271 tcptw
->tw_ts_recent
= tp
->rx_opt
.ts_recent
;
272 tcptw
->tw_ts_recent_stamp
= tp
->rx_opt
.ts_recent_stamp
;
273 tcptw
->tw_ts_offset
= tp
->tsoffset
;
274 tcptw
->tw_last_oow_ack_time
= 0;
276 #if IS_ENABLED(CONFIG_IPV6)
277 if (tw
->tw_family
== PF_INET6
) {
278 struct ipv6_pinfo
*np
= inet6_sk(sk
);
280 tw
->tw_v6_daddr
= sk
->sk_v6_daddr
;
281 tw
->tw_v6_rcv_saddr
= sk
->sk_v6_rcv_saddr
;
282 tw
->tw_tclass
= np
->tclass
;
283 tw
->tw_flowlabel
= be32_to_cpu(np
->flow_label
& IPV6_FLOWLABEL_MASK
);
284 tw
->tw_ipv6only
= sk
->sk_ipv6only
;
288 #ifdef CONFIG_TCP_MD5SIG
290 * The timewait bucket does not have the key DB from the
291 * sock structure. We just make a quick copy of the
292 * md5 key being used (if indeed we are using one)
293 * so the timewait ack generating code has the key.
296 struct tcp_md5sig_key
*key
;
297 tcptw
->tw_md5_key
= NULL
;
298 key
= tp
->af_specific
->md5_lookup(sk
, sk
);
300 tcptw
->tw_md5_key
= kmemdup(key
, sizeof(*key
), GFP_ATOMIC
);
301 if (tcptw
->tw_md5_key
&& !tcp_alloc_md5sig_pool())
307 /* Get the TIME_WAIT timeout firing. */
311 tw
->tw_timeout
= TCP_TIMEWAIT_LEN
;
312 if (state
== TCP_TIME_WAIT
)
313 timeo
= TCP_TIMEWAIT_LEN
;
315 inet_twsk_schedule(tw
, timeo
);
316 /* Linkage updates. */
317 __inet_twsk_hashdance(tw
, sk
, &tcp_hashinfo
);
320 /* Sorry, if we're out of memory, just CLOSE this
321 * socket up. We've got bigger problems than
322 * non-graceful socket closings.
324 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPTIMEWAITOVERFLOW
);
327 tcp_update_metrics(sk
);
331 void tcp_twsk_destructor(struct sock
*sk
)
333 #ifdef CONFIG_TCP_MD5SIG
334 struct tcp_timewait_sock
*twsk
= tcp_twsk(sk
);
336 if (twsk
->tw_md5_key
)
337 kfree_rcu(twsk
->tw_md5_key
, rcu
);
340 EXPORT_SYMBOL_GPL(tcp_twsk_destructor
);
342 /* Warning : This function is called without sk_listener being locked.
343 * Be sure to read socket fields once, as their value could change under us.
345 void tcp_openreq_init_rwin(struct request_sock
*req
,
346 const struct sock
*sk_listener
,
347 const struct dst_entry
*dst
)
349 struct inet_request_sock
*ireq
= inet_rsk(req
);
350 const struct tcp_sock
*tp
= tcp_sk(sk_listener
);
351 int full_space
= tcp_full_space(sk_listener
);
356 mss
= tcp_mss_clamp(tp
, dst_metric_advmss(dst
));
357 window_clamp
= READ_ONCE(tp
->window_clamp
);
358 /* Set this up on the first call only */
359 req
->rsk_window_clamp
= window_clamp
? : dst_metric(dst
, RTAX_WINDOW
);
361 /* limit the window selection if the user enforce a smaller rx buffer */
362 if (sk_listener
->sk_userlocks
& SOCK_RCVBUF_LOCK
&&
363 (req
->rsk_window_clamp
> full_space
|| req
->rsk_window_clamp
== 0))
364 req
->rsk_window_clamp
= full_space
;
366 /* tcp_full_space because it is guaranteed to be the first packet */
367 tcp_select_initial_window(full_space
,
368 mss
- (ireq
->tstamp_ok
? TCPOLEN_TSTAMP_ALIGNED
: 0),
370 &req
->rsk_window_clamp
,
373 dst_metric(dst
, RTAX_INITRWND
));
374 ireq
->rcv_wscale
= rcv_wscale
;
376 EXPORT_SYMBOL(tcp_openreq_init_rwin
);
378 static void tcp_ecn_openreq_child(struct tcp_sock
*tp
,
379 const struct request_sock
*req
)
381 tp
->ecn_flags
= inet_rsk(req
)->ecn_ok
? TCP_ECN_OK
: 0;
384 void tcp_ca_openreq_child(struct sock
*sk
, const struct dst_entry
*dst
)
386 struct inet_connection_sock
*icsk
= inet_csk(sk
);
387 u32 ca_key
= dst_metric(dst
, RTAX_CC_ALGO
);
388 bool ca_got_dst
= false;
390 if (ca_key
!= TCP_CA_UNSPEC
) {
391 const struct tcp_congestion_ops
*ca
;
394 ca
= tcp_ca_find_key(ca_key
);
395 if (likely(ca
&& try_module_get(ca
->owner
))) {
396 icsk
->icsk_ca_dst_locked
= tcp_ca_dst_locked(dst
);
397 icsk
->icsk_ca_ops
= ca
;
403 /* If no valid choice made yet, assign current system default ca. */
405 (!icsk
->icsk_ca_setsockopt
||
406 !try_module_get(icsk
->icsk_ca_ops
->owner
)))
407 tcp_assign_congestion_control(sk
);
409 tcp_set_ca_state(sk
, TCP_CA_Open
);
411 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child
);
413 /* This is not only more efficient than what we used to do, it eliminates
414 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
416 * Actually, we could lots of memory writes here. tp of listening
417 * socket contains all necessary default parameters.
419 struct sock
*tcp_create_openreq_child(const struct sock
*sk
,
420 struct request_sock
*req
,
423 struct sock
*newsk
= inet_csk_clone_lock(sk
, req
, GFP_ATOMIC
);
426 const struct inet_request_sock
*ireq
= inet_rsk(req
);
427 struct tcp_request_sock
*treq
= tcp_rsk(req
);
428 struct inet_connection_sock
*newicsk
= inet_csk(newsk
);
429 struct tcp_sock
*newtp
= tcp_sk(newsk
);
431 /* Now setup tcp_sock */
432 newtp
->pred_flags
= 0;
434 newtp
->rcv_wup
= newtp
->copied_seq
=
435 newtp
->rcv_nxt
= treq
->rcv_isn
+ 1;
438 newtp
->snd_sml
= newtp
->snd_una
=
439 newtp
->snd_nxt
= newtp
->snd_up
= treq
->snt_isn
+ 1;
441 tcp_prequeue_init(newtp
);
442 INIT_LIST_HEAD(&newtp
->tsq_node
);
444 tcp_init_wl(newtp
, treq
->rcv_isn
);
447 newtp
->mdev_us
= jiffies_to_usecs(TCP_TIMEOUT_INIT
);
448 minmax_reset(&newtp
->rtt_min
, tcp_time_stamp
, ~0U);
449 newicsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
450 newicsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
452 newtp
->packets_out
= 0;
453 newtp
->retrans_out
= 0;
454 newtp
->sacked_out
= 0;
455 newtp
->fackets_out
= 0;
456 newtp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
457 newtp
->tlp_high_seq
= 0;
458 newtp
->lsndtime
= treq
->snt_synack
.stamp_jiffies
;
459 newsk
->sk_txhash
= treq
->txhash
;
460 newtp
->last_oow_ack_time
= 0;
461 newtp
->total_retrans
= req
->num_retrans
;
463 /* So many TCP implementations out there (incorrectly) count the
464 * initial SYN frame in their delayed-ACK and congestion control
465 * algorithms that we must have the following bandaid to talk
466 * efficiently to them. -DaveM
468 newtp
->snd_cwnd
= TCP_INIT_CWND
;
469 newtp
->snd_cwnd_cnt
= 0;
471 /* There's a bubble in the pipe until at least the first ACK. */
472 newtp
->app_limited
= ~0U;
474 tcp_init_xmit_timers(newsk
);
475 newtp
->write_seq
= newtp
->pushed_seq
= treq
->snt_isn
+ 1;
477 newtp
->rx_opt
.saw_tstamp
= 0;
479 newtp
->rx_opt
.dsack
= 0;
480 newtp
->rx_opt
.num_sacks
= 0;
484 if (sock_flag(newsk
, SOCK_KEEPOPEN
))
485 inet_csk_reset_keepalive_timer(newsk
,
486 keepalive_time_when(newtp
));
488 newtp
->rx_opt
.tstamp_ok
= ireq
->tstamp_ok
;
489 if ((newtp
->rx_opt
.sack_ok
= ireq
->sack_ok
) != 0) {
491 tcp_enable_fack(newtp
);
493 newtp
->window_clamp
= req
->rsk_window_clamp
;
494 newtp
->rcv_ssthresh
= req
->rsk_rcv_wnd
;
495 newtp
->rcv_wnd
= req
->rsk_rcv_wnd
;
496 newtp
->rx_opt
.wscale_ok
= ireq
->wscale_ok
;
497 if (newtp
->rx_opt
.wscale_ok
) {
498 newtp
->rx_opt
.snd_wscale
= ireq
->snd_wscale
;
499 newtp
->rx_opt
.rcv_wscale
= ireq
->rcv_wscale
;
501 newtp
->rx_opt
.snd_wscale
= newtp
->rx_opt
.rcv_wscale
= 0;
502 newtp
->window_clamp
= min(newtp
->window_clamp
, 65535U);
504 newtp
->snd_wnd
= (ntohs(tcp_hdr(skb
)->window
) <<
505 newtp
->rx_opt
.snd_wscale
);
506 newtp
->max_window
= newtp
->snd_wnd
;
508 if (newtp
->rx_opt
.tstamp_ok
) {
509 newtp
->rx_opt
.ts_recent
= req
->ts_recent
;
510 newtp
->rx_opt
.ts_recent_stamp
= get_seconds();
511 newtp
->tcp_header_len
= sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
513 newtp
->rx_opt
.ts_recent_stamp
= 0;
514 newtp
->tcp_header_len
= sizeof(struct tcphdr
);
516 newtp
->tsoffset
= treq
->ts_off
;
517 #ifdef CONFIG_TCP_MD5SIG
518 newtp
->md5sig_info
= NULL
; /*XXX*/
519 if (newtp
->af_specific
->md5_lookup(sk
, newsk
))
520 newtp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
522 if (skb
->len
>= TCP_MSS_DEFAULT
+ newtp
->tcp_header_len
)
523 newicsk
->icsk_ack
.last_seg_size
= skb
->len
- newtp
->tcp_header_len
;
524 newtp
->rx_opt
.mss_clamp
= req
->mss
;
525 tcp_ecn_openreq_child(newtp
, req
);
526 newtp
->fastopen_req
= NULL
;
527 newtp
->fastopen_rsk
= NULL
;
528 newtp
->syn_data_acked
= 0;
529 newtp
->rack
.mstamp
.v64
= 0;
530 newtp
->rack
.advanced
= 0;
532 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_PASSIVEOPENS
);
536 EXPORT_SYMBOL(tcp_create_openreq_child
);
539 * Process an incoming packet for SYN_RECV sockets represented as a
540 * request_sock. Normally sk is the listener socket but for TFO it
541 * points to the child socket.
543 * XXX (TFO) - The current impl contains a special check for ack
544 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
546 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
549 struct sock
*tcp_check_req(struct sock
*sk
, struct sk_buff
*skb
,
550 struct request_sock
*req
,
553 struct tcp_options_received tmp_opt
;
555 const struct tcphdr
*th
= tcp_hdr(skb
);
556 __be32 flg
= tcp_flag_word(th
) & (TCP_FLAG_RST
|TCP_FLAG_SYN
|TCP_FLAG_ACK
);
557 bool paws_reject
= false;
560 tmp_opt
.saw_tstamp
= 0;
561 if (th
->doff
> (sizeof(struct tcphdr
)>>2)) {
562 tcp_parse_options(skb
, &tmp_opt
, 0, NULL
);
564 if (tmp_opt
.saw_tstamp
) {
565 tmp_opt
.ts_recent
= req
->ts_recent
;
566 if (tmp_opt
.rcv_tsecr
)
567 tmp_opt
.rcv_tsecr
-= tcp_rsk(req
)->ts_off
;
568 /* We do not store true stamp, but it is not required,
569 * it can be estimated (approximately)
572 tmp_opt
.ts_recent_stamp
= get_seconds() - ((TCP_TIMEOUT_INIT
/HZ
)<<req
->num_timeout
);
573 paws_reject
= tcp_paws_reject(&tmp_opt
, th
->rst
);
577 /* Check for pure retransmitted SYN. */
578 if (TCP_SKB_CB(skb
)->seq
== tcp_rsk(req
)->rcv_isn
&&
579 flg
== TCP_FLAG_SYN
&&
582 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
583 * this case on figure 6 and figure 8, but formal
584 * protocol description says NOTHING.
585 * To be more exact, it says that we should send ACK,
586 * because this segment (at least, if it has no data)
589 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
590 * describe SYN-RECV state. All the description
591 * is wrong, we cannot believe to it and should
592 * rely only on common sense and implementation
595 * Enforce "SYN-ACK" according to figure 8, figure 6
596 * of RFC793, fixed by RFC1122.
598 * Note that even if there is new data in the SYN packet
599 * they will be thrown away too.
601 * Reset timer after retransmitting SYNACK, similar to
602 * the idea of fast retransmit in recovery.
604 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
605 LINUX_MIB_TCPACKSKIPPEDSYNRECV
,
606 &tcp_rsk(req
)->last_oow_ack_time
) &&
608 !inet_rtx_syn_ack(sk
, req
)) {
609 unsigned long expires
= jiffies
;
611 expires
+= min(TCP_TIMEOUT_INIT
<< req
->num_timeout
,
614 mod_timer_pending(&req
->rsk_timer
, expires
);
616 req
->rsk_timer
.expires
= expires
;
621 /* Further reproduces section "SEGMENT ARRIVES"
622 for state SYN-RECEIVED of RFC793.
623 It is broken, however, it does not work only
624 when SYNs are crossed.
626 You would think that SYN crossing is impossible here, since
627 we should have a SYN_SENT socket (from connect()) on our end,
628 but this is not true if the crossed SYNs were sent to both
629 ends by a malicious third party. We must defend against this,
630 and to do that we first verify the ACK (as per RFC793, page
631 36) and reset if it is invalid. Is this a true full defense?
632 To convince ourselves, let us consider a way in which the ACK
633 test can still pass in this 'malicious crossed SYNs' case.
634 Malicious sender sends identical SYNs (and thus identical sequence
635 numbers) to both A and B:
640 By our good fortune, both A and B select the same initial
641 send sequence number of seven :-)
643 A: sends SYN|ACK, seq=7, ack_seq=8
644 B: sends SYN|ACK, seq=7, ack_seq=8
646 So we are now A eating this SYN|ACK, ACK test passes. So
647 does sequence test, SYN is truncated, and thus we consider
650 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
651 bare ACK. Otherwise, we create an established connection. Both
652 ends (listening sockets) accept the new incoming connection and try
653 to talk to each other. 8-)
655 Note: This case is both harmless, and rare. Possibility is about the
656 same as us discovering intelligent life on another plant tomorrow.
658 But generally, we should (RFC lies!) to accept ACK
659 from SYNACK both here and in tcp_rcv_state_process().
660 tcp_rcv_state_process() does not, hence, we do not too.
662 Note that the case is absolutely generic:
663 we cannot optimize anything here without
664 violating protocol. All the checks must be made
665 before attempt to create socket.
668 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
669 * and the incoming segment acknowledges something not yet
670 * sent (the segment carries an unacceptable ACK) ...
673 * Invalid ACK: reset will be sent by listening socket.
674 * Note that the ACK validity check for a Fast Open socket is done
675 * elsewhere and is checked directly against the child socket rather
676 * than req because user data may have been sent out.
678 if ((flg
& TCP_FLAG_ACK
) && !fastopen
&&
679 (TCP_SKB_CB(skb
)->ack_seq
!=
680 tcp_rsk(req
)->snt_isn
+ 1))
683 /* Also, it would be not so bad idea to check rcv_tsecr, which
684 * is essentially ACK extension and too early or too late values
685 * should cause reset in unsynchronized states.
688 /* RFC793: "first check sequence number". */
690 if (paws_reject
|| !tcp_in_window(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
,
691 tcp_rsk(req
)->rcv_nxt
, tcp_rsk(req
)->rcv_nxt
+ req
->rsk_rcv_wnd
)) {
692 /* Out of window: send ACK and drop. */
693 if (!(flg
& TCP_FLAG_RST
) &&
694 !tcp_oow_rate_limited(sock_net(sk
), skb
,
695 LINUX_MIB_TCPACKSKIPPEDSYNRECV
,
696 &tcp_rsk(req
)->last_oow_ack_time
))
697 req
->rsk_ops
->send_ack(sk
, skb
, req
);
699 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
703 /* In sequence, PAWS is OK. */
705 if (tmp_opt
.saw_tstamp
&& !after(TCP_SKB_CB(skb
)->seq
, tcp_rsk(req
)->rcv_nxt
))
706 req
->ts_recent
= tmp_opt
.rcv_tsval
;
708 if (TCP_SKB_CB(skb
)->seq
== tcp_rsk(req
)->rcv_isn
) {
709 /* Truncate SYN, it is out of window starting
710 at tcp_rsk(req)->rcv_isn + 1. */
711 flg
&= ~TCP_FLAG_SYN
;
714 /* RFC793: "second check the RST bit" and
715 * "fourth, check the SYN bit"
717 if (flg
& (TCP_FLAG_RST
|TCP_FLAG_SYN
)) {
718 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
719 goto embryonic_reset
;
722 /* ACK sequence verified above, just make sure ACK is
723 * set. If ACK not set, just silently drop the packet.
725 * XXX (TFO) - if we ever allow "data after SYN", the
726 * following check needs to be removed.
728 if (!(flg
& TCP_FLAG_ACK
))
731 /* For Fast Open no more processing is needed (sk is the
737 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
738 if (req
->num_timeout
< inet_csk(sk
)->icsk_accept_queue
.rskq_defer_accept
&&
739 TCP_SKB_CB(skb
)->end_seq
== tcp_rsk(req
)->rcv_isn
+ 1) {
740 inet_rsk(req
)->acked
= 1;
741 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDEFERACCEPTDROP
);
745 /* OK, ACK is valid, create big socket and
746 * feed this segment to it. It will repeat all
747 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
748 * ESTABLISHED STATE. If it will be dropped after
749 * socket is created, wait for troubles.
751 child
= inet_csk(sk
)->icsk_af_ops
->syn_recv_sock(sk
, skb
, req
, NULL
,
754 goto listen_overflow
;
756 sock_rps_save_rxhash(child
, skb
);
757 tcp_synack_rtt_meas(child
, req
);
758 return inet_csk_complete_hashdance(sk
, child
, req
, own_req
);
761 if (!sysctl_tcp_abort_on_overflow
) {
762 inet_rsk(req
)->acked
= 1;
767 if (!(flg
& TCP_FLAG_RST
)) {
768 /* Received a bad SYN pkt - for TFO We try not to reset
769 * the local connection unless it's really necessary to
770 * avoid becoming vulnerable to outside attack aiming at
771 * resetting legit local connections.
773 req
->rsk_ops
->send_reset(sk
, skb
);
774 } else if (fastopen
) { /* received a valid RST pkt */
775 reqsk_fastopen_remove(sk
, req
, true);
779 inet_csk_reqsk_queue_drop(sk
, req
);
780 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_EMBRYONICRSTS
);
784 EXPORT_SYMBOL(tcp_check_req
);
787 * Queue segment on the new socket if the new socket is active,
788 * otherwise we just shortcircuit this and continue with
791 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
792 * when entering. But other states are possible due to a race condition
793 * where after __inet_lookup_established() fails but before the listener
794 * locked is obtained, other packets cause the same connection to
798 int tcp_child_process(struct sock
*parent
, struct sock
*child
,
802 int state
= child
->sk_state
;
804 /* record NAPI ID of child */
805 sk_mark_napi_id(child
, skb
);
807 tcp_segs_in(tcp_sk(child
), skb
);
808 if (!sock_owned_by_user(child
)) {
809 ret
= tcp_rcv_state_process(child
, skb
);
810 /* Wakeup parent, send SIGIO */
811 if (state
== TCP_SYN_RECV
&& child
->sk_state
!= state
)
812 parent
->sk_data_ready(parent
);
814 /* Alas, it is possible again, because we do lookup
815 * in main socket hash table and lock on listening
816 * socket does not protect us more.
818 __sk_add_backlog(child
, skb
);
821 bh_unlock_sock(child
);
825 EXPORT_SYMBOL(tcp_child_process
);