2 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
4 * Author: Yu Liu, yu.liu@freescale.com
5 * Scott Wood, scottwood@freescale.com
6 * Ashish Kalra, ashish.kalra@freescale.com
7 * Varun Sethi, varun.sethi@freescale.com
8 * Alexander Graf, agraf@suse.de
11 * This file is based on arch/powerpc/kvm/44x_tlb.c,
12 * by Hollis Blanchard <hollisb@us.ibm.com>.
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License, version 2, as
16 * published by the Free Software Foundation.
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/kvm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/highmem.h>
26 #include <linux/log2.h>
27 #include <linux/uaccess.h>
28 #include <linux/sched.h>
29 #include <linux/rwsem.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hugetlb.h>
32 #include <asm/kvm_ppc.h>
36 #include "e500_mmu_host.h"
38 #include "trace_booke.h"
40 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
42 static struct kvmppc_e500_tlb_params host_tlb_params
[E500_TLB_NUM
];
44 static inline unsigned int tlb1_max_shadow_size(void)
46 /* reserve one entry for magic page */
47 return host_tlb_params
[1].entries
- tlbcam_index
- 1;
50 static inline u32
e500_shadow_mas3_attrib(u32 mas3
, int usermode
)
52 /* Mask off reserved bits. */
53 mas3
&= MAS3_ATTRIB_MASK
;
55 #ifndef CONFIG_KVM_BOOKE_HV
57 /* Guest is in supervisor mode,
58 * so we need to translate guest
59 * supervisor permissions into user permissions. */
60 mas3
&= ~E500_TLB_USER_PERM_MASK
;
61 mas3
|= (mas3
& E500_TLB_SUPER_PERM_MASK
) << 1;
63 mas3
|= E500_TLB_SUPER_PERM_MASK
;
69 * writing shadow tlb entry to host TLB
71 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry
*stlbe
,
77 local_irq_save(flags
);
78 mtspr(SPRN_MAS0
, mas0
);
79 mtspr(SPRN_MAS1
, stlbe
->mas1
);
80 mtspr(SPRN_MAS2
, (unsigned long)stlbe
->mas2
);
81 mtspr(SPRN_MAS3
, (u32
)stlbe
->mas7_3
);
82 mtspr(SPRN_MAS7
, (u32
)(stlbe
->mas7_3
>> 32));
83 #ifdef CONFIG_KVM_BOOKE_HV
84 mtspr(SPRN_MAS8
, MAS8_TGS
| get_thread_specific_lpid(lpid
));
86 asm volatile("isync; tlbwe" : : : "memory");
88 #ifdef CONFIG_KVM_BOOKE_HV
89 /* Must clear mas8 for other host tlbwe's */
93 local_irq_restore(flags
);
95 trace_kvm_booke206_stlb_write(mas0
, stlbe
->mas8
, stlbe
->mas1
,
96 stlbe
->mas2
, stlbe
->mas7_3
);
100 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
102 * We don't care about the address we're searching for, other than that it's
103 * in the right set and is not present in the TLB. Using a zero PID and a
104 * userspace address means we don't have to set and then restore MAS5, or
105 * calculate a proper MAS6 value.
107 static u32
get_host_mas0(unsigned long eaddr
)
113 local_irq_save(flags
);
115 mas4
= mfspr(SPRN_MAS4
);
116 mtspr(SPRN_MAS4
, mas4
& ~MAS4_TLBSEL_MASK
);
117 asm volatile("tlbsx 0, %0" : : "b" (eaddr
& ~CONFIG_PAGE_OFFSET
));
118 mas0
= mfspr(SPRN_MAS0
);
119 mtspr(SPRN_MAS4
, mas4
);
120 local_irq_restore(flags
);
125 /* sesel is for tlb1 only */
126 static inline void write_host_tlbe(struct kvmppc_vcpu_e500
*vcpu_e500
,
127 int tlbsel
, int sesel
, struct kvm_book3e_206_tlb_entry
*stlbe
)
132 mas0
= get_host_mas0(stlbe
->mas2
);
133 __write_host_tlbe(stlbe
, mas0
, vcpu_e500
->vcpu
.kvm
->arch
.lpid
);
135 __write_host_tlbe(stlbe
,
137 MAS0_ESEL(to_htlb1_esel(sesel
)),
138 vcpu_e500
->vcpu
.kvm
->arch
.lpid
);
142 /* sesel is for tlb1 only */
143 static void write_stlbe(struct kvmppc_vcpu_e500
*vcpu_e500
,
144 struct kvm_book3e_206_tlb_entry
*gtlbe
,
145 struct kvm_book3e_206_tlb_entry
*stlbe
,
146 int stlbsel
, int sesel
)
151 stid
= kvmppc_e500_get_tlb_stid(&vcpu_e500
->vcpu
, gtlbe
);
153 stlbe
->mas1
|= MAS1_TID(stid
);
154 write_host_tlbe(vcpu_e500
, stlbsel
, sesel
, stlbe
);
158 #ifdef CONFIG_KVM_E500V2
159 /* XXX should be a hook in the gva2hpa translation */
160 void kvmppc_map_magic(struct kvm_vcpu
*vcpu
)
162 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
163 struct kvm_book3e_206_tlb_entry magic
;
164 ulong shared_page
= ((ulong
)vcpu
->arch
.shared
) & PAGE_MASK
;
168 pfn
= (kvm_pfn_t
)virt_to_phys((void *)shared_page
) >> PAGE_SHIFT
;
169 get_page(pfn_to_page(pfn
));
172 stid
= kvmppc_e500_get_sid(vcpu_e500
, 0, 0, 0, 0);
174 magic
.mas1
= MAS1_VALID
| MAS1_TS
| MAS1_TID(stid
) |
175 MAS1_TSIZE(BOOK3E_PAGESZ_4K
);
176 magic
.mas2
= vcpu
->arch
.magic_page_ea
| MAS2_M
;
177 magic
.mas7_3
= ((u64
)pfn
<< PAGE_SHIFT
) |
178 MAS3_SW
| MAS3_SR
| MAS3_UW
| MAS3_UR
;
181 __write_host_tlbe(&magic
, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index
), 0);
186 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500
*vcpu_e500
, int tlbsel
,
189 struct kvm_book3e_206_tlb_entry
*gtlbe
=
190 get_entry(vcpu_e500
, tlbsel
, esel
);
191 struct tlbe_ref
*ref
= &vcpu_e500
->gtlb_priv
[tlbsel
][esel
].ref
;
193 /* Don't bother with unmapped entries */
194 if (!(ref
->flags
& E500_TLB_VALID
)) {
195 WARN(ref
->flags
& (E500_TLB_BITMAP
| E500_TLB_TLB0
),
196 "%s: flags %x\n", __func__
, ref
->flags
);
197 WARN_ON(tlbsel
== 1 && vcpu_e500
->g2h_tlb1_map
[esel
]);
200 if (tlbsel
== 1 && ref
->flags
& E500_TLB_BITMAP
) {
201 u64 tmp
= vcpu_e500
->g2h_tlb1_map
[esel
];
205 local_irq_save(flags
);
207 hw_tlb_indx
= __ilog2_u64(tmp
& -tmp
);
210 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx
)));
212 asm volatile("tlbwe");
213 vcpu_e500
->h2g_tlb1_rmap
[hw_tlb_indx
] = 0;
217 vcpu_e500
->g2h_tlb1_map
[esel
] = 0;
218 ref
->flags
&= ~(E500_TLB_BITMAP
| E500_TLB_VALID
);
219 local_irq_restore(flags
);
222 if (tlbsel
== 1 && ref
->flags
& E500_TLB_TLB0
) {
224 * TLB1 entry is backed by 4k pages. This should happen
225 * rarely and is not worth optimizing. Invalidate everything.
227 kvmppc_e500_tlbil_all(vcpu_e500
);
228 ref
->flags
&= ~(E500_TLB_TLB0
| E500_TLB_VALID
);
232 * If TLB entry is still valid then it's a TLB0 entry, and thus
233 * backed by at most one host tlbe per shadow pid
235 if (ref
->flags
& E500_TLB_VALID
)
236 kvmppc_e500_tlbil_one(vcpu_e500
, gtlbe
);
238 /* Mark the TLB as not backed by the host anymore */
242 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry
*tlbe
)
244 return tlbe
->mas7_3
& (MAS3_SW
|MAS3_UW
);
247 static inline void kvmppc_e500_ref_setup(struct tlbe_ref
*ref
,
248 struct kvm_book3e_206_tlb_entry
*gtlbe
,
249 kvm_pfn_t pfn
, unsigned int wimg
)
252 ref
->flags
= E500_TLB_VALID
;
254 /* Use guest supplied MAS2_G and MAS2_E */
255 ref
->flags
|= (gtlbe
->mas2
& MAS2_ATTRIB_MASK
) | wimg
;
257 /* Mark the page accessed */
258 kvm_set_pfn_accessed(pfn
);
260 if (tlbe_is_writable(gtlbe
))
261 kvm_set_pfn_dirty(pfn
);
264 static inline void kvmppc_e500_ref_release(struct tlbe_ref
*ref
)
266 if (ref
->flags
& E500_TLB_VALID
) {
267 /* FIXME: don't log bogus pfn for TLB1 */
268 trace_kvm_booke206_ref_release(ref
->pfn
, ref
->flags
);
273 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500
*vcpu_e500
)
275 if (vcpu_e500
->g2h_tlb1_map
)
276 memset(vcpu_e500
->g2h_tlb1_map
, 0,
277 sizeof(u64
) * vcpu_e500
->gtlb_params
[1].entries
);
278 if (vcpu_e500
->h2g_tlb1_rmap
)
279 memset(vcpu_e500
->h2g_tlb1_rmap
, 0,
280 sizeof(unsigned int) * host_tlb_params
[1].entries
);
283 static void clear_tlb_privs(struct kvmppc_vcpu_e500
*vcpu_e500
)
288 for (tlbsel
= 0; tlbsel
<= 1; tlbsel
++) {
289 for (i
= 0; i
< vcpu_e500
->gtlb_params
[tlbsel
].entries
; i
++) {
290 struct tlbe_ref
*ref
=
291 &vcpu_e500
->gtlb_priv
[tlbsel
][i
].ref
;
292 kvmppc_e500_ref_release(ref
);
297 void kvmppc_core_flush_tlb(struct kvm_vcpu
*vcpu
)
299 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
300 kvmppc_e500_tlbil_all(vcpu_e500
);
301 clear_tlb_privs(vcpu_e500
);
302 clear_tlb1_bitmap(vcpu_e500
);
305 /* TID must be supplied by the caller */
306 static void kvmppc_e500_setup_stlbe(
307 struct kvm_vcpu
*vcpu
,
308 struct kvm_book3e_206_tlb_entry
*gtlbe
,
309 int tsize
, struct tlbe_ref
*ref
, u64 gvaddr
,
310 struct kvm_book3e_206_tlb_entry
*stlbe
)
312 kvm_pfn_t pfn
= ref
->pfn
;
313 u32 pr
= vcpu
->arch
.shared
->msr
& MSR_PR
;
315 BUG_ON(!(ref
->flags
& E500_TLB_VALID
));
317 /* Force IPROT=0 for all guest mappings. */
318 stlbe
->mas1
= MAS1_TSIZE(tsize
) | get_tlb_sts(gtlbe
) | MAS1_VALID
;
319 stlbe
->mas2
= (gvaddr
& MAS2_EPN
) | (ref
->flags
& E500_TLB_MAS2_ATTR
);
320 stlbe
->mas7_3
= ((u64
)pfn
<< PAGE_SHIFT
) |
321 e500_shadow_mas3_attrib(gtlbe
->mas7_3
, pr
);
324 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500
*vcpu_e500
,
325 u64 gvaddr
, gfn_t gfn
, struct kvm_book3e_206_tlb_entry
*gtlbe
,
326 int tlbsel
, struct kvm_book3e_206_tlb_entry
*stlbe
,
327 struct tlbe_ref
*ref
)
329 struct kvm_memory_slot
*slot
;
330 unsigned long pfn
= 0; /* silence GCC warning */
333 int tsize
= BOOK3E_PAGESZ_4K
;
335 unsigned long mmu_seq
;
336 struct kvm
*kvm
= vcpu_e500
->vcpu
.kvm
;
337 unsigned long tsize_pages
= 0;
339 unsigned int wimg
= 0;
343 /* used to check for invalidations in progress */
344 mmu_seq
= kvm
->mmu_notifier_seq
;
348 * Translate guest physical to true physical, acquiring
349 * a page reference if it is normal, non-reserved memory.
351 * gfn_to_memslot() must succeed because otherwise we wouldn't
352 * have gotten this far. Eventually we should just pass the slot
353 * pointer through from the first lookup.
355 slot
= gfn_to_memslot(vcpu_e500
->vcpu
.kvm
, gfn
);
356 hva
= gfn_to_hva_memslot(slot
, gfn
);
359 struct vm_area_struct
*vma
;
360 down_read(¤t
->mm
->mmap_sem
);
362 vma
= find_vma(current
->mm
, hva
);
363 if (vma
&& hva
>= vma
->vm_start
&&
364 (vma
->vm_flags
& VM_PFNMAP
)) {
366 * This VMA is a physically contiguous region (e.g.
367 * /dev/mem) that bypasses normal Linux page
368 * management. Find the overlap between the
369 * vma and the memslot.
372 unsigned long start
, end
;
373 unsigned long slot_start
, slot_end
;
377 start
= vma
->vm_pgoff
;
379 ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
);
381 pfn
= start
+ ((hva
- vma
->vm_start
) >> PAGE_SHIFT
);
383 slot_start
= pfn
- (gfn
- slot
->base_gfn
);
384 slot_end
= slot_start
+ slot
->npages
;
386 if (start
< slot_start
)
391 tsize
= (gtlbe
->mas1
& MAS1_TSIZE_MASK
) >>
395 * e500 doesn't implement the lowest tsize bit,
398 tsize
= max(BOOK3E_PAGESZ_4K
, tsize
& ~1);
401 * Now find the largest tsize (up to what the guest
402 * requested) that will cover gfn, stay within the
403 * range, and for which gfn and pfn are mutually
407 for (; tsize
> BOOK3E_PAGESZ_4K
; tsize
-= 2) {
408 unsigned long gfn_start
, gfn_end
;
409 tsize_pages
= 1UL << (tsize
- 2);
411 gfn_start
= gfn
& ~(tsize_pages
- 1);
412 gfn_end
= gfn_start
+ tsize_pages
;
414 if (gfn_start
+ pfn
- gfn
< start
)
416 if (gfn_end
+ pfn
- gfn
> end
)
418 if ((gfn
& (tsize_pages
- 1)) !=
419 (pfn
& (tsize_pages
- 1)))
422 gvaddr
&= ~((tsize_pages
<< PAGE_SHIFT
) - 1);
423 pfn
&= ~(tsize_pages
- 1);
426 } else if (vma
&& hva
>= vma
->vm_start
&&
427 (vma
->vm_flags
& VM_HUGETLB
)) {
428 unsigned long psize
= vma_kernel_pagesize(vma
);
430 tsize
= (gtlbe
->mas1
& MAS1_TSIZE_MASK
) >>
434 * Take the largest page size that satisfies both host
437 tsize
= min(__ilog2(psize
) - 10, tsize
);
440 * e500 doesn't implement the lowest tsize bit,
443 tsize
= max(BOOK3E_PAGESZ_4K
, tsize
& ~1);
446 up_read(¤t
->mm
->mmap_sem
);
449 if (likely(!pfnmap
)) {
450 tsize_pages
= 1UL << (tsize
+ 10 - PAGE_SHIFT
);
451 pfn
= gfn_to_pfn_memslot(slot
, gfn
);
452 if (is_error_noslot_pfn(pfn
)) {
453 if (printk_ratelimit())
454 pr_err("%s: real page not found for gfn %lx\n",
455 __func__
, (long)gfn
);
459 /* Align guest and physical address to page map boundaries */
460 pfn
&= ~(tsize_pages
- 1);
461 gvaddr
&= ~((tsize_pages
<< PAGE_SHIFT
) - 1);
464 spin_lock(&kvm
->mmu_lock
);
465 if (mmu_notifier_retry(kvm
, mmu_seq
)) {
471 pgdir
= vcpu_e500
->vcpu
.arch
.pgdir
;
473 * We are just looking at the wimg bits, so we don't
474 * care much about the trans splitting bit.
475 * We are holding kvm->mmu_lock so a notifier invalidate
476 * can't run hence pfn won't change.
478 local_irq_save(flags
);
479 ptep
= find_linux_pte_or_hugepte(pgdir
, hva
, NULL
, NULL
);
481 pte_t pte
= READ_ONCE(*ptep
);
483 if (pte_present(pte
)) {
484 wimg
= (pte_val(pte
) >> PTE_WIMGE_SHIFT
) &
486 local_irq_restore(flags
);
488 local_irq_restore(flags
);
489 pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n",
490 __func__
, (long)gfn
, pfn
);
495 kvmppc_e500_ref_setup(ref
, gtlbe
, pfn
, wimg
);
497 kvmppc_e500_setup_stlbe(&vcpu_e500
->vcpu
, gtlbe
, tsize
,
500 /* Clear i-cache for new pages */
501 kvmppc_mmu_flush_icache(pfn
);
504 spin_unlock(&kvm
->mmu_lock
);
506 /* Drop refcount on page, so that mmu notifiers can clear it */
507 kvm_release_pfn_clean(pfn
);
512 /* XXX only map the one-one case, for now use TLB0 */
513 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500
*vcpu_e500
, int esel
,
514 struct kvm_book3e_206_tlb_entry
*stlbe
)
516 struct kvm_book3e_206_tlb_entry
*gtlbe
;
517 struct tlbe_ref
*ref
;
522 gtlbe
= get_entry(vcpu_e500
, 0, esel
);
523 ref
= &vcpu_e500
->gtlb_priv
[0][esel
].ref
;
525 r
= kvmppc_e500_shadow_map(vcpu_e500
, get_tlb_eaddr(gtlbe
),
526 get_tlb_raddr(gtlbe
) >> PAGE_SHIFT
,
527 gtlbe
, 0, stlbe
, ref
);
531 write_stlbe(vcpu_e500
, gtlbe
, stlbe
, stlbsel
, sesel
);
536 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500
*vcpu_e500
,
537 struct tlbe_ref
*ref
,
540 unsigned int sesel
= vcpu_e500
->host_tlb1_nv
++;
542 if (unlikely(vcpu_e500
->host_tlb1_nv
>= tlb1_max_shadow_size()))
543 vcpu_e500
->host_tlb1_nv
= 0;
545 if (vcpu_e500
->h2g_tlb1_rmap
[sesel
]) {
546 unsigned int idx
= vcpu_e500
->h2g_tlb1_rmap
[sesel
] - 1;
547 vcpu_e500
->g2h_tlb1_map
[idx
] &= ~(1ULL << sesel
);
550 vcpu_e500
->gtlb_priv
[1][esel
].ref
.flags
|= E500_TLB_BITMAP
;
551 vcpu_e500
->g2h_tlb1_map
[esel
] |= (u64
)1 << sesel
;
552 vcpu_e500
->h2g_tlb1_rmap
[sesel
] = esel
+ 1;
553 WARN_ON(!(ref
->flags
& E500_TLB_VALID
));
558 /* Caller must ensure that the specified guest TLB entry is safe to insert into
560 /* For both one-one and one-to-many */
561 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500
*vcpu_e500
,
562 u64 gvaddr
, gfn_t gfn
, struct kvm_book3e_206_tlb_entry
*gtlbe
,
563 struct kvm_book3e_206_tlb_entry
*stlbe
, int esel
)
565 struct tlbe_ref
*ref
= &vcpu_e500
->gtlb_priv
[1][esel
].ref
;
569 r
= kvmppc_e500_shadow_map(vcpu_e500
, gvaddr
, gfn
, gtlbe
, 1, stlbe
,
574 /* Use TLB0 when we can only map a page with 4k */
575 if (get_tlb_tsize(stlbe
) == BOOK3E_PAGESZ_4K
) {
576 vcpu_e500
->gtlb_priv
[1][esel
].ref
.flags
|= E500_TLB_TLB0
;
577 write_stlbe(vcpu_e500
, gtlbe
, stlbe
, 0, 0);
581 /* Otherwise map into TLB1 */
582 sesel
= kvmppc_e500_tlb1_map_tlb1(vcpu_e500
, ref
, esel
);
583 write_stlbe(vcpu_e500
, gtlbe
, stlbe
, 1, sesel
);
588 void kvmppc_mmu_map(struct kvm_vcpu
*vcpu
, u64 eaddr
, gpa_t gpaddr
,
591 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
592 struct tlbe_priv
*priv
;
593 struct kvm_book3e_206_tlb_entry
*gtlbe
, stlbe
;
594 int tlbsel
= tlbsel_of(index
);
595 int esel
= esel_of(index
);
597 gtlbe
= get_entry(vcpu_e500
, tlbsel
, esel
);
601 priv
= &vcpu_e500
->gtlb_priv
[tlbsel
][esel
];
603 /* Triggers after clear_tlb_privs or on initial mapping */
604 if (!(priv
->ref
.flags
& E500_TLB_VALID
)) {
605 kvmppc_e500_tlb0_map(vcpu_e500
, esel
, &stlbe
);
607 kvmppc_e500_setup_stlbe(vcpu
, gtlbe
, BOOK3E_PAGESZ_4K
,
608 &priv
->ref
, eaddr
, &stlbe
);
609 write_stlbe(vcpu_e500
, gtlbe
, &stlbe
, 0, 0);
614 gfn_t gfn
= gpaddr
>> PAGE_SHIFT
;
615 kvmppc_e500_tlb1_map(vcpu_e500
, eaddr
, gfn
, gtlbe
, &stlbe
,
626 #ifdef CONFIG_KVM_BOOKE_HV
627 int kvmppc_load_last_inst(struct kvm_vcpu
*vcpu
, enum instruction_type type
,
634 u32 mas1
, mas2
, mas3
;
637 unsigned int addr_space
, psize_shift
;
641 /* Search TLB for guest pc to get the real address */
642 geaddr
= kvmppc_get_pc(vcpu
);
644 addr_space
= (vcpu
->arch
.shared
->msr
& MSR_IS
) >> MSR_IR_LG
;
646 local_irq_save(flags
);
647 mtspr(SPRN_MAS6
, (vcpu
->arch
.pid
<< MAS6_SPID_SHIFT
) | addr_space
);
648 mtspr(SPRN_MAS5
, MAS5_SGS
| get_lpid(vcpu
));
649 asm volatile("tlbsx 0, %[geaddr]\n" : :
650 [geaddr
] "r" (geaddr
));
653 mas1
= mfspr(SPRN_MAS1
);
654 mas2
= mfspr(SPRN_MAS2
);
655 mas3
= mfspr(SPRN_MAS3
);
657 mas7_mas3
= mfspr(SPRN_MAS7_MAS3
);
659 mas7_mas3
= ((u64
)mfspr(SPRN_MAS7
) << 32) | mas3
;
661 local_irq_restore(flags
);
664 * If the TLB entry for guest pc was evicted, return to the guest.
665 * There are high chances to find a valid TLB entry next time.
667 if (!(mas1
& MAS1_VALID
))
668 return EMULATE_AGAIN
;
671 * Another thread may rewrite the TLB entry in parallel, don't
672 * execute from the address if the execute permission is not set
674 pr
= vcpu
->arch
.shared
->msr
& MSR_PR
;
675 if (unlikely((pr
&& !(mas3
& MAS3_UX
)) ||
676 (!pr
&& !(mas3
& MAS3_SX
)))) {
678 "%s: Instruction emulation from guest address %08lx without execute permission\n",
680 return EMULATE_AGAIN
;
684 * The real address will be mapped by a cacheable, memory coherent,
685 * write-back page. Check for mismatches when LRAT is used.
687 if (has_feature(vcpu
, VCPU_FTR_MMU_V2
) &&
688 unlikely((mas2
& MAS2_I
) || (mas2
& MAS2_W
) || !(mas2
& MAS2_M
))) {
690 "%s: Instruction emulation from guest address %08lx mismatches storage attributes\n",
692 return EMULATE_AGAIN
;
696 psize_shift
= MAS1_GET_TSIZE(mas1
) + 10;
697 addr
= (mas7_mas3
& (~0ULL << psize_shift
)) |
698 (geaddr
& ((1ULL << psize_shift
) - 1ULL));
699 pfn
= addr
>> PAGE_SHIFT
;
701 /* Guard against emulation from devices area */
702 if (unlikely(!page_is_ram(pfn
))) {
703 pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n",
705 return EMULATE_AGAIN
;
708 /* Map a page and get guest's instruction */
709 page
= pfn_to_page(pfn
);
710 eaddr
= (unsigned long)kmap_atomic(page
);
711 *instr
= *(u32
*)(eaddr
| (unsigned long)(addr
& ~PAGE_MASK
));
712 kunmap_atomic((u32
*)eaddr
);
717 int kvmppc_load_last_inst(struct kvm_vcpu
*vcpu
, enum instruction_type type
,
720 return EMULATE_AGAIN
;
724 /************* MMU Notifiers *************/
726 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
728 trace_kvm_unmap_hva(hva
);
731 * Flush all shadow tlb entries everywhere. This is slow, but
732 * we are 100% sure that we catch the to be unmapped page
734 kvm_flush_remote_tlbs(kvm
);
739 int kvm_unmap_hva_range(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
741 /* kvm_unmap_hva flushes everything anyways */
742 kvm_unmap_hva(kvm
, start
);
747 int kvm_age_hva(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
749 /* XXX could be more clever ;) */
753 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
755 /* XXX could be more clever ;) */
759 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
761 /* The page will get remapped properly on its next fault */
762 kvm_unmap_hva(kvm
, hva
);
765 /*****************************************/
767 int e500_mmu_host_init(struct kvmppc_vcpu_e500
*vcpu_e500
)
769 host_tlb_params
[0].entries
= mfspr(SPRN_TLB0CFG
) & TLBnCFG_N_ENTRY
;
770 host_tlb_params
[1].entries
= mfspr(SPRN_TLB1CFG
) & TLBnCFG_N_ENTRY
;
773 * This should never happen on real e500 hardware, but is
774 * architecturally possible -- e.g. in some weird nested
775 * virtualization case.
777 if (host_tlb_params
[0].entries
== 0 ||
778 host_tlb_params
[1].entries
== 0) {
779 pr_err("%s: need to know host tlb size\n", __func__
);
783 host_tlb_params
[0].ways
= (mfspr(SPRN_TLB0CFG
) & TLBnCFG_ASSOC
) >>
785 host_tlb_params
[1].ways
= host_tlb_params
[1].entries
;
787 if (!is_power_of_2(host_tlb_params
[0].entries
) ||
788 !is_power_of_2(host_tlb_params
[0].ways
) ||
789 host_tlb_params
[0].entries
< host_tlb_params
[0].ways
||
790 host_tlb_params
[0].ways
== 0) {
791 pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
792 __func__
, host_tlb_params
[0].entries
,
793 host_tlb_params
[0].ways
);
797 host_tlb_params
[0].sets
=
798 host_tlb_params
[0].entries
/ host_tlb_params
[0].ways
;
799 host_tlb_params
[1].sets
= 1;
801 vcpu_e500
->h2g_tlb1_rmap
= kzalloc(sizeof(unsigned int) *
802 host_tlb_params
[1].entries
,
804 if (!vcpu_e500
->h2g_tlb1_rmap
)
810 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500
*vcpu_e500
)
812 kfree(vcpu_e500
->h2g_tlb1_rmap
);