3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Modified by Cort Dougan and Paul Mackerras.
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33 #include <linux/ratelimit.h>
34 #include <linux/context_tracking.h>
35 #include <linux/hugetlb.h>
36 #include <linux/uaccess.h>
38 #include <asm/firmware.h>
40 #include <asm/pgtable.h>
42 #include <asm/mmu_context.h>
43 #include <asm/tlbflush.h>
44 #include <asm/siginfo.h>
45 #include <asm/debug.h>
50 static inline int notify_page_fault(struct pt_regs
*regs
)
54 /* kprobe_running() needs smp_processor_id() */
55 if (!user_mode(regs
)) {
57 if (kprobe_running() && kprobe_fault_handler(regs
, 11))
65 static inline int notify_page_fault(struct pt_regs
*regs
)
72 * Check whether the instruction at regs->nip is a store using
73 * an update addressing form which will update r1.
75 static int store_updates_sp(struct pt_regs
*regs
)
79 if (get_user(inst
, (unsigned int __user
*)regs
->nip
))
81 /* check for 1 in the rA field */
82 if (((inst
>> 16) & 0x1f) != 1)
84 /* check major opcode */
92 case 62: /* std or stdu */
93 return (inst
& 3) == 1;
95 /* check minor opcode */
96 switch ((inst
>> 1) & 0x3ff) {
100 case 439: /* sthux */
101 case 695: /* stfsux */
102 case 759: /* stfdux */
109 * do_page_fault error handling helpers
112 #define MM_FAULT_RETURN 0
113 #define MM_FAULT_CONTINUE -1
114 #define MM_FAULT_ERR(sig) (sig)
116 static int do_sigbus(struct pt_regs
*regs
, unsigned long address
,
120 unsigned int lsb
= 0;
122 up_read(¤t
->mm
->mmap_sem
);
124 if (!user_mode(regs
))
125 return MM_FAULT_ERR(SIGBUS
);
127 current
->thread
.trap_nr
= BUS_ADRERR
;
128 info
.si_signo
= SIGBUS
;
130 info
.si_code
= BUS_ADRERR
;
131 info
.si_addr
= (void __user
*)address
;
132 #ifdef CONFIG_MEMORY_FAILURE
133 if (fault
& (VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
)) {
134 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
135 current
->comm
, current
->pid
, address
);
136 info
.si_code
= BUS_MCEERR_AR
;
139 if (fault
& VM_FAULT_HWPOISON_LARGE
)
140 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
141 if (fault
& VM_FAULT_HWPOISON
)
144 info
.si_addr_lsb
= lsb
;
145 force_sig_info(SIGBUS
, &info
, current
);
146 return MM_FAULT_RETURN
;
149 static int mm_fault_error(struct pt_regs
*regs
, unsigned long addr
, int fault
)
152 * Pagefault was interrupted by SIGKILL. We have no reason to
153 * continue the pagefault.
155 if (fatal_signal_pending(current
)) {
157 * If we have retry set, the mmap semaphore will have
158 * alrady been released in __lock_page_or_retry(). Else
161 if (!(fault
& VM_FAULT_RETRY
))
162 up_read(¤t
->mm
->mmap_sem
);
163 /* Coming from kernel, we need to deal with uaccess fixups */
165 return MM_FAULT_RETURN
;
166 return MM_FAULT_ERR(SIGKILL
);
169 /* No fault: be happy */
170 if (!(fault
& VM_FAULT_ERROR
))
171 return MM_FAULT_CONTINUE
;
174 if (fault
& VM_FAULT_OOM
) {
175 up_read(¤t
->mm
->mmap_sem
);
178 * We ran out of memory, or some other thing happened to us that
179 * made us unable to handle the page fault gracefully.
181 if (!user_mode(regs
))
182 return MM_FAULT_ERR(SIGKILL
);
183 pagefault_out_of_memory();
184 return MM_FAULT_RETURN
;
187 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
))
188 return do_sigbus(regs
, addr
, fault
);
190 /* We don't understand the fault code, this is fatal */
192 return MM_FAULT_CONTINUE
;
196 * For 600- and 800-family processors, the error_code parameter is DSISR
197 * for a data fault, SRR1 for an instruction fault. For 400-family processors
198 * the error_code parameter is ESR for a data fault, 0 for an instruction
200 * For 64-bit processors, the error_code parameter is
201 * - DSISR for a non-SLB data access fault,
202 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
205 * The return value is 0 if the fault was handled, or the signal
206 * number if this is a kernel fault that can't be handled here.
208 int __kprobes
do_page_fault(struct pt_regs
*regs
, unsigned long address
,
209 unsigned long error_code
)
211 enum ctx_state prev_state
= exception_enter();
212 struct vm_area_struct
* vma
;
213 struct mm_struct
*mm
= current
->mm
;
214 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
215 int code
= SEGV_MAPERR
;
217 int trap
= TRAP(regs
);
218 int is_exec
= trap
== 0x400;
220 int rc
= 0, store_update_sp
= 0;
222 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
224 * Fortunately the bit assignments in SRR1 for an instruction
225 * fault and DSISR for a data fault are mostly the same for the
226 * bits we are interested in. But there are some bits which
227 * indicate errors in DSISR but can validly be set in SRR1.
230 error_code
&= 0x48200000;
232 is_write
= error_code
& DSISR_ISSTORE
;
234 is_write
= error_code
& ESR_DST
;
235 #endif /* CONFIG_4xx || CONFIG_BOOKE */
237 #ifdef CONFIG_PPC_ICSWX
239 * we need to do this early because this "data storage
240 * interrupt" does not update the DAR/DEAR so we don't want to
243 if (error_code
& ICSWX_DSI_UCT
) {
244 rc
= acop_handle_fault(regs
, address
, error_code
);
248 #endif /* CONFIG_PPC_ICSWX */
250 if (notify_page_fault(regs
))
253 if (unlikely(debugger_fault_handler(regs
)))
256 /* On a kernel SLB miss we can only check for a valid exception entry */
257 if (!user_mode(regs
) && (address
>= TASK_SIZE
)) {
262 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
263 defined(CONFIG_PPC_BOOK3S_64))
264 if (error_code
& DSISR_DABRMATCH
) {
265 /* breakpoint match */
266 do_break(regs
, address
, error_code
);
271 /* We restore the interrupt state now */
272 if (!arch_irq_disabled_regs(regs
))
275 if (faulthandler_disabled() || mm
== NULL
) {
276 if (!user_mode(regs
)) {
280 /* faulthandler_disabled() in user mode is really bad,
281 as is current->mm == NULL. */
282 printk(KERN_EMERG
"Page fault in user mode with "
283 "faulthandler_disabled() = %d mm = %p\n",
284 faulthandler_disabled(), mm
);
285 printk(KERN_EMERG
"NIP = %lx MSR = %lx\n",
286 regs
->nip
, regs
->msr
);
287 die("Weird page fault", regs
, SIGSEGV
);
290 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
293 * We want to do this outside mmap_sem, because reading code around nip
294 * can result in fault, which will cause a deadlock when called with
298 store_update_sp
= store_updates_sp(regs
);
301 flags
|= FAULT_FLAG_USER
;
303 /* When running in the kernel we expect faults to occur only to
304 * addresses in user space. All other faults represent errors in the
305 * kernel and should generate an OOPS. Unfortunately, in the case of an
306 * erroneous fault occurring in a code path which already holds mmap_sem
307 * we will deadlock attempting to validate the fault against the
308 * address space. Luckily the kernel only validly references user
309 * space from well defined areas of code, which are listed in the
312 * As the vast majority of faults will be valid we will only perform
313 * the source reference check when there is a possibility of a deadlock.
314 * Attempt to lock the address space, if we cannot we then validate the
315 * source. If this is invalid we can skip the address space check,
316 * thus avoiding the deadlock.
318 if (!down_read_trylock(&mm
->mmap_sem
)) {
319 if (!user_mode(regs
) && !search_exception_tables(regs
->nip
))
320 goto bad_area_nosemaphore
;
323 down_read(&mm
->mmap_sem
);
326 * The above down_read_trylock() might have succeeded in
327 * which case we'll have missed the might_sleep() from
333 vma
= find_vma(mm
, address
);
336 if (vma
->vm_start
<= address
)
338 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
342 * N.B. The POWER/Open ABI allows programs to access up to
343 * 288 bytes below the stack pointer.
344 * The kernel signal delivery code writes up to about 1.5kB
345 * below the stack pointer (r1) before decrementing it.
346 * The exec code can write slightly over 640kB to the stack
347 * before setting the user r1. Thus we allow the stack to
348 * expand to 1MB without further checks.
350 if (address
+ 0x100000 < vma
->vm_end
) {
351 /* get user regs even if this fault is in kernel mode */
352 struct pt_regs
*uregs
= current
->thread
.regs
;
357 * A user-mode access to an address a long way below
358 * the stack pointer is only valid if the instruction
359 * is one which would update the stack pointer to the
360 * address accessed if the instruction completed,
361 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
362 * (or the byte, halfword, float or double forms).
364 * If we don't check this then any write to the area
365 * between the last mapped region and the stack will
366 * expand the stack rather than segfaulting.
368 if (address
+ 2048 < uregs
->gpr
[1] && !store_update_sp
)
371 if (expand_stack(vma
, address
))
376 #if defined(CONFIG_6xx)
377 if (error_code
& 0x95700000)
378 /* an error such as lwarx to I/O controller space,
379 address matching DABR, eciwx, etc. */
381 #endif /* CONFIG_6xx */
382 #if defined(CONFIG_8xx)
383 /* The MPC8xx seems to always set 0x80000000, which is
384 * "undefined". Of those that can be set, this is the only
385 * one which seems bad.
387 if (error_code
& 0x10000000)
388 /* Guarded storage error. */
390 #endif /* CONFIG_8xx */
394 * Allow execution from readable areas if the MMU does not
395 * provide separate controls over reading and executing.
397 * Note: That code used to not be enabled for 4xx/BookE.
398 * It is now as I/D cache coherency for these is done at
399 * set_pte_at() time and I see no reason why the test
400 * below wouldn't be valid on those processors. This -may-
401 * break programs compiled with a really old ABI though.
403 if (!(vma
->vm_flags
& VM_EXEC
) &&
404 (cpu_has_feature(CPU_FTR_NOEXECUTE
) ||
405 !(vma
->vm_flags
& (VM_READ
| VM_WRITE
))))
407 #ifdef CONFIG_PPC_STD_MMU
409 * protfault should only happen due to us
410 * mapping a region readonly temporarily. PROT_NONE
411 * is also covered by the VMA check above.
413 WARN_ON_ONCE(error_code
& DSISR_PROTFAULT
);
414 #endif /* CONFIG_PPC_STD_MMU */
416 } else if (is_write
) {
417 if (!(vma
->vm_flags
& VM_WRITE
))
419 flags
|= FAULT_FLAG_WRITE
;
422 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
424 WARN_ON_ONCE(error_code
& DSISR_PROTFAULT
);
428 * If for any reason at all we couldn't handle the fault,
429 * make sure we exit gracefully rather than endlessly redo
432 fault
= handle_mm_fault(mm
, vma
, address
, flags
);
433 if (unlikely(fault
& (VM_FAULT_RETRY
|VM_FAULT_ERROR
))) {
434 if (fault
& VM_FAULT_SIGSEGV
)
436 rc
= mm_fault_error(regs
, address
, fault
);
437 if (rc
>= MM_FAULT_RETURN
)
444 * Major/minor page fault accounting is only done on the
445 * initial attempt. If we go through a retry, it is extremely
446 * likely that the page will be found in page cache at that point.
448 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
449 if (fault
& VM_FAULT_MAJOR
) {
451 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1,
453 #ifdef CONFIG_PPC_SMLPAR
454 if (firmware_has_feature(FW_FEATURE_CMO
)) {
458 page_ins
= be32_to_cpu(get_lppaca()->page_ins
);
459 page_ins
+= 1 << PAGE_FACTOR
;
460 get_lppaca()->page_ins
= cpu_to_be32(page_ins
);
463 #endif /* CONFIG_PPC_SMLPAR */
466 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1,
469 if (fault
& VM_FAULT_RETRY
) {
470 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
472 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
473 flags
|= FAULT_FLAG_TRIED
;
478 up_read(&mm
->mmap_sem
);
482 up_read(&mm
->mmap_sem
);
484 bad_area_nosemaphore
:
485 /* User mode accesses cause a SIGSEGV */
486 if (user_mode(regs
)) {
487 _exception(SIGSEGV
, regs
, code
, address
);
491 if (is_exec
&& (error_code
& DSISR_PROTFAULT
))
492 printk_ratelimited(KERN_CRIT
"kernel tried to execute NX-protected"
493 " page (%lx) - exploit attempt? (uid: %d)\n",
494 address
, from_kuid(&init_user_ns
, current_uid()));
499 exception_exit(prev_state
);
505 * bad_page_fault is called when we have a bad access from the kernel.
506 * It is called from the DSI and ISI handlers in head.S and from some
507 * of the procedures in traps.c.
509 void bad_page_fault(struct pt_regs
*regs
, unsigned long address
, int sig
)
511 const struct exception_table_entry
*entry
;
513 /* Are we prepared to handle this fault? */
514 if ((entry
= search_exception_tables(regs
->nip
)) != NULL
) {
515 regs
->nip
= entry
->fixup
;
519 /* kernel has accessed a bad area */
521 switch (regs
->trap
) {
524 printk(KERN_ALERT
"Unable to handle kernel paging request for "
525 "data at address 0x%08lx\n", regs
->dar
);
529 printk(KERN_ALERT
"Unable to handle kernel paging request for "
530 "instruction fetch\n");
533 printk(KERN_ALERT
"Unable to handle kernel paging request for "
534 "unaligned access at address 0x%08lx\n", regs
->dar
);
537 printk(KERN_ALERT
"Unable to handle kernel paging request for "
541 printk(KERN_ALERT
"Faulting instruction address: 0x%08lx\n",
544 if (task_stack_end_corrupted(current
))
545 printk(KERN_ALERT
"Thread overran stack, or stack corrupted\n");
547 die("Kernel access of bad area", regs
, sig
);