Linux 4.6-rc6
[linux/fpc-iii.git] / arch / powerpc / mm / hash_utils_64.c
blob7635b1c6b5dacfd04793315c31069a42a425e402
1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
12 * Description:
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
21 #undef DEBUG
22 #undef DEBUG_LOW
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/mmu_context.h>
42 #include <asm/page.h>
43 #include <asm/types.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
46 #include <asm/prom.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/copro.h>
55 #include <asm/udbg.h>
56 #include <asm/code-patching.h>
57 #include <asm/fadump.h>
58 #include <asm/firmware.h>
59 #include <asm/tm.h>
60 #include <asm/trace.h>
62 #ifdef DEBUG
63 #define DBG(fmt...) udbg_printf(fmt)
64 #else
65 #define DBG(fmt...)
66 #endif
68 #ifdef DEBUG_LOW
69 #define DBG_LOW(fmt...) udbg_printf(fmt)
70 #else
71 #define DBG_LOW(fmt...)
72 #endif
74 #define KB (1024)
75 #define MB (1024*KB)
76 #define GB (1024L*MB)
79 * Note: pte --> Linux PTE
80 * HPTE --> PowerPC Hashed Page Table Entry
82 * Execution context:
83 * htab_initialize is called with the MMU off (of course), but
84 * the kernel has been copied down to zero so it can directly
85 * reference global data. At this point it is very difficult
86 * to print debug info.
90 #ifdef CONFIG_U3_DART
91 extern unsigned long dart_tablebase;
92 #endif /* CONFIG_U3_DART */
94 static unsigned long _SDR1;
95 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
96 EXPORT_SYMBOL_GPL(mmu_psize_defs);
98 struct hash_pte *htab_address;
99 unsigned long htab_size_bytes;
100 unsigned long htab_hash_mask;
101 EXPORT_SYMBOL_GPL(htab_hash_mask);
102 int mmu_linear_psize = MMU_PAGE_4K;
103 EXPORT_SYMBOL_GPL(mmu_linear_psize);
104 int mmu_virtual_psize = MMU_PAGE_4K;
105 int mmu_vmalloc_psize = MMU_PAGE_4K;
106 #ifdef CONFIG_SPARSEMEM_VMEMMAP
107 int mmu_vmemmap_psize = MMU_PAGE_4K;
108 #endif
109 int mmu_io_psize = MMU_PAGE_4K;
110 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
111 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
112 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
113 u16 mmu_slb_size = 64;
114 EXPORT_SYMBOL_GPL(mmu_slb_size);
115 #ifdef CONFIG_PPC_64K_PAGES
116 int mmu_ci_restrictions;
117 #endif
118 #ifdef CONFIG_DEBUG_PAGEALLOC
119 static u8 *linear_map_hash_slots;
120 static unsigned long linear_map_hash_count;
121 static DEFINE_SPINLOCK(linear_map_hash_lock);
122 #endif /* CONFIG_DEBUG_PAGEALLOC */
124 /* There are definitions of page sizes arrays to be used when none
125 * is provided by the firmware.
128 /* Pre-POWER4 CPUs (4k pages only)
130 static struct mmu_psize_def mmu_psize_defaults_old[] = {
131 [MMU_PAGE_4K] = {
132 .shift = 12,
133 .sllp = 0,
134 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
135 .avpnm = 0,
136 .tlbiel = 0,
140 /* POWER4, GPUL, POWER5
142 * Support for 16Mb large pages
144 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
145 [MMU_PAGE_4K] = {
146 .shift = 12,
147 .sllp = 0,
148 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
149 .avpnm = 0,
150 .tlbiel = 1,
152 [MMU_PAGE_16M] = {
153 .shift = 24,
154 .sllp = SLB_VSID_L,
155 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
156 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
157 .avpnm = 0x1UL,
158 .tlbiel = 0,
162 unsigned long htab_convert_pte_flags(unsigned long pteflags)
164 unsigned long rflags = 0;
166 /* _PAGE_EXEC -> NOEXEC */
167 if ((pteflags & _PAGE_EXEC) == 0)
168 rflags |= HPTE_R_N;
170 * PP bits:
171 * Linux uses slb key 0 for kernel and 1 for user.
172 * kernel areas are mapped with PP=00
173 * and there is no kernel RO (_PAGE_KERNEL_RO).
174 * User area is mapped with PP=0x2 for read/write
175 * or PP=0x3 for read-only (including writeable but clean pages).
177 if (pteflags & _PAGE_USER) {
178 rflags |= 0x2;
179 if (!((pteflags & _PAGE_RW) && (pteflags & _PAGE_DIRTY)))
180 rflags |= 0x1;
183 * Always add "C" bit for perf. Memory coherence is always enabled
185 rflags |= HPTE_R_C | HPTE_R_M;
187 * Add in WIG bits
189 if (pteflags & _PAGE_WRITETHRU)
190 rflags |= HPTE_R_W;
191 if (pteflags & _PAGE_NO_CACHE)
192 rflags |= HPTE_R_I;
193 if (pteflags & _PAGE_GUARDED)
194 rflags |= HPTE_R_G;
196 return rflags;
199 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
200 unsigned long pstart, unsigned long prot,
201 int psize, int ssize)
203 unsigned long vaddr, paddr;
204 unsigned int step, shift;
205 int ret = 0;
207 shift = mmu_psize_defs[psize].shift;
208 step = 1 << shift;
210 prot = htab_convert_pte_flags(prot);
212 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
213 vstart, vend, pstart, prot, psize, ssize);
215 for (vaddr = vstart, paddr = pstart; vaddr < vend;
216 vaddr += step, paddr += step) {
217 unsigned long hash, hpteg;
218 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
219 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
220 unsigned long tprot = prot;
223 * If we hit a bad address return error.
225 if (!vsid)
226 return -1;
227 /* Make kernel text executable */
228 if (overlaps_kernel_text(vaddr, vaddr + step))
229 tprot &= ~HPTE_R_N;
231 /* Make kvm guest trampolines executable */
232 if (overlaps_kvm_tmp(vaddr, vaddr + step))
233 tprot &= ~HPTE_R_N;
236 * If relocatable, check if it overlaps interrupt vectors that
237 * are copied down to real 0. For relocatable kernel
238 * (e.g. kdump case) we copy interrupt vectors down to real
239 * address 0. Mark that region as executable. This is
240 * because on p8 system with relocation on exception feature
241 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
242 * in order to execute the interrupt handlers in virtual
243 * mode the vector region need to be marked as executable.
245 if ((PHYSICAL_START > MEMORY_START) &&
246 overlaps_interrupt_vector_text(vaddr, vaddr + step))
247 tprot &= ~HPTE_R_N;
249 hash = hpt_hash(vpn, shift, ssize);
250 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
252 BUG_ON(!ppc_md.hpte_insert);
253 ret = ppc_md.hpte_insert(hpteg, vpn, paddr, tprot,
254 HPTE_V_BOLTED, psize, psize, ssize);
256 if (ret < 0)
257 break;
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 if (debug_pagealloc_enabled() &&
261 (paddr >> PAGE_SHIFT) < linear_map_hash_count)
262 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
263 #endif /* CONFIG_DEBUG_PAGEALLOC */
265 return ret < 0 ? ret : 0;
268 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
269 int psize, int ssize)
271 unsigned long vaddr;
272 unsigned int step, shift;
273 int rc;
274 int ret = 0;
276 shift = mmu_psize_defs[psize].shift;
277 step = 1 << shift;
279 if (!ppc_md.hpte_removebolted)
280 return -ENODEV;
282 for (vaddr = vstart; vaddr < vend; vaddr += step) {
283 rc = ppc_md.hpte_removebolted(vaddr, psize, ssize);
284 if (rc == -ENOENT) {
285 ret = -ENOENT;
286 continue;
288 if (rc < 0)
289 return rc;
292 return ret;
295 static int __init htab_dt_scan_seg_sizes(unsigned long node,
296 const char *uname, int depth,
297 void *data)
299 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
300 const __be32 *prop;
301 int size = 0;
303 /* We are scanning "cpu" nodes only */
304 if (type == NULL || strcmp(type, "cpu") != 0)
305 return 0;
307 prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
308 if (prop == NULL)
309 return 0;
310 for (; size >= 4; size -= 4, ++prop) {
311 if (be32_to_cpu(prop[0]) == 40) {
312 DBG("1T segment support detected\n");
313 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
314 return 1;
317 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
318 return 0;
321 static void __init htab_init_seg_sizes(void)
323 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
326 static int __init get_idx_from_shift(unsigned int shift)
328 int idx = -1;
330 switch (shift) {
331 case 0xc:
332 idx = MMU_PAGE_4K;
333 break;
334 case 0x10:
335 idx = MMU_PAGE_64K;
336 break;
337 case 0x14:
338 idx = MMU_PAGE_1M;
339 break;
340 case 0x18:
341 idx = MMU_PAGE_16M;
342 break;
343 case 0x22:
344 idx = MMU_PAGE_16G;
345 break;
347 return idx;
350 static int __init htab_dt_scan_page_sizes(unsigned long node,
351 const char *uname, int depth,
352 void *data)
354 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
355 const __be32 *prop;
356 int size = 0;
358 /* We are scanning "cpu" nodes only */
359 if (type == NULL || strcmp(type, "cpu") != 0)
360 return 0;
362 prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
363 if (!prop)
364 return 0;
366 pr_info("Page sizes from device-tree:\n");
367 size /= 4;
368 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
369 while(size > 0) {
370 unsigned int base_shift = be32_to_cpu(prop[0]);
371 unsigned int slbenc = be32_to_cpu(prop[1]);
372 unsigned int lpnum = be32_to_cpu(prop[2]);
373 struct mmu_psize_def *def;
374 int idx, base_idx;
376 size -= 3; prop += 3;
377 base_idx = get_idx_from_shift(base_shift);
378 if (base_idx < 0) {
379 /* skip the pte encoding also */
380 prop += lpnum * 2; size -= lpnum * 2;
381 continue;
383 def = &mmu_psize_defs[base_idx];
384 if (base_idx == MMU_PAGE_16M)
385 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
387 def->shift = base_shift;
388 if (base_shift <= 23)
389 def->avpnm = 0;
390 else
391 def->avpnm = (1 << (base_shift - 23)) - 1;
392 def->sllp = slbenc;
394 * We don't know for sure what's up with tlbiel, so
395 * for now we only set it for 4K and 64K pages
397 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
398 def->tlbiel = 1;
399 else
400 def->tlbiel = 0;
402 while (size > 0 && lpnum) {
403 unsigned int shift = be32_to_cpu(prop[0]);
404 int penc = be32_to_cpu(prop[1]);
406 prop += 2; size -= 2;
407 lpnum--;
409 idx = get_idx_from_shift(shift);
410 if (idx < 0)
411 continue;
413 if (penc == -1)
414 pr_err("Invalid penc for base_shift=%d "
415 "shift=%d\n", base_shift, shift);
417 def->penc[idx] = penc;
418 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
419 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
420 base_shift, shift, def->sllp,
421 def->avpnm, def->tlbiel, def->penc[idx]);
425 return 1;
428 #ifdef CONFIG_HUGETLB_PAGE
429 /* Scan for 16G memory blocks that have been set aside for huge pages
430 * and reserve those blocks for 16G huge pages.
432 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
433 const char *uname, int depth,
434 void *data) {
435 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
436 const __be64 *addr_prop;
437 const __be32 *page_count_prop;
438 unsigned int expected_pages;
439 long unsigned int phys_addr;
440 long unsigned int block_size;
442 /* We are scanning "memory" nodes only */
443 if (type == NULL || strcmp(type, "memory") != 0)
444 return 0;
446 /* This property is the log base 2 of the number of virtual pages that
447 * will represent this memory block. */
448 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
449 if (page_count_prop == NULL)
450 return 0;
451 expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
452 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
453 if (addr_prop == NULL)
454 return 0;
455 phys_addr = be64_to_cpu(addr_prop[0]);
456 block_size = be64_to_cpu(addr_prop[1]);
457 if (block_size != (16 * GB))
458 return 0;
459 printk(KERN_INFO "Huge page(16GB) memory: "
460 "addr = 0x%lX size = 0x%lX pages = %d\n",
461 phys_addr, block_size, expected_pages);
462 if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
463 memblock_reserve(phys_addr, block_size * expected_pages);
464 add_gpage(phys_addr, block_size, expected_pages);
466 return 0;
468 #endif /* CONFIG_HUGETLB_PAGE */
470 static void mmu_psize_set_default_penc(void)
472 int bpsize, apsize;
473 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
474 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
475 mmu_psize_defs[bpsize].penc[apsize] = -1;
478 #ifdef CONFIG_PPC_64K_PAGES
480 static bool might_have_hea(void)
483 * The HEA ethernet adapter requires awareness of the
484 * GX bus. Without that awareness we can easily assume
485 * we will never see an HEA ethernet device.
487 #ifdef CONFIG_IBMEBUS
488 return !cpu_has_feature(CPU_FTR_ARCH_207S);
489 #else
490 return false;
491 #endif
494 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
496 static void __init htab_init_page_sizes(void)
498 int rc;
500 /* se the invalid penc to -1 */
501 mmu_psize_set_default_penc();
503 /* Default to 4K pages only */
504 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
505 sizeof(mmu_psize_defaults_old));
508 * Try to find the available page sizes in the device-tree
510 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
511 if (rc != 0) /* Found */
512 goto found;
515 * Not in the device-tree, let's fallback on known size
516 * list for 16M capable GP & GR
518 if (mmu_has_feature(MMU_FTR_16M_PAGE))
519 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
520 sizeof(mmu_psize_defaults_gp));
521 found:
522 if (!debug_pagealloc_enabled()) {
524 * Pick a size for the linear mapping. Currently, we only
525 * support 16M, 1M and 4K which is the default
527 if (mmu_psize_defs[MMU_PAGE_16M].shift)
528 mmu_linear_psize = MMU_PAGE_16M;
529 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
530 mmu_linear_psize = MMU_PAGE_1M;
533 #ifdef CONFIG_PPC_64K_PAGES
535 * Pick a size for the ordinary pages. Default is 4K, we support
536 * 64K for user mappings and vmalloc if supported by the processor.
537 * We only use 64k for ioremap if the processor
538 * (and firmware) support cache-inhibited large pages.
539 * If not, we use 4k and set mmu_ci_restrictions so that
540 * hash_page knows to switch processes that use cache-inhibited
541 * mappings to 4k pages.
543 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
544 mmu_virtual_psize = MMU_PAGE_64K;
545 mmu_vmalloc_psize = MMU_PAGE_64K;
546 if (mmu_linear_psize == MMU_PAGE_4K)
547 mmu_linear_psize = MMU_PAGE_64K;
548 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
550 * When running on pSeries using 64k pages for ioremap
551 * would stop us accessing the HEA ethernet. So if we
552 * have the chance of ever seeing one, stay at 4k.
554 if (!might_have_hea() || !machine_is(pseries))
555 mmu_io_psize = MMU_PAGE_64K;
556 } else
557 mmu_ci_restrictions = 1;
559 #endif /* CONFIG_PPC_64K_PAGES */
561 #ifdef CONFIG_SPARSEMEM_VMEMMAP
562 /* We try to use 16M pages for vmemmap if that is supported
563 * and we have at least 1G of RAM at boot
565 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
566 memblock_phys_mem_size() >= 0x40000000)
567 mmu_vmemmap_psize = MMU_PAGE_16M;
568 else if (mmu_psize_defs[MMU_PAGE_64K].shift)
569 mmu_vmemmap_psize = MMU_PAGE_64K;
570 else
571 mmu_vmemmap_psize = MMU_PAGE_4K;
572 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
574 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
575 "virtual = %d, io = %d"
576 #ifdef CONFIG_SPARSEMEM_VMEMMAP
577 ", vmemmap = %d"
578 #endif
579 "\n",
580 mmu_psize_defs[mmu_linear_psize].shift,
581 mmu_psize_defs[mmu_virtual_psize].shift,
582 mmu_psize_defs[mmu_io_psize].shift
583 #ifdef CONFIG_SPARSEMEM_VMEMMAP
584 ,mmu_psize_defs[mmu_vmemmap_psize].shift
585 #endif
588 #ifdef CONFIG_HUGETLB_PAGE
589 /* Reserve 16G huge page memory sections for huge pages */
590 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
591 #endif /* CONFIG_HUGETLB_PAGE */
594 static int __init htab_dt_scan_pftsize(unsigned long node,
595 const char *uname, int depth,
596 void *data)
598 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
599 const __be32 *prop;
601 /* We are scanning "cpu" nodes only */
602 if (type == NULL || strcmp(type, "cpu") != 0)
603 return 0;
605 prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
606 if (prop != NULL) {
607 /* pft_size[0] is the NUMA CEC cookie */
608 ppc64_pft_size = be32_to_cpu(prop[1]);
609 return 1;
611 return 0;
614 unsigned htab_shift_for_mem_size(unsigned long mem_size)
616 unsigned memshift = __ilog2(mem_size);
617 unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
618 unsigned pteg_shift;
620 /* round mem_size up to next power of 2 */
621 if ((1UL << memshift) < mem_size)
622 memshift += 1;
624 /* aim for 2 pages / pteg */
625 pteg_shift = memshift - (pshift + 1);
628 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
629 * size permitted by the architecture.
631 return max(pteg_shift + 7, 18U);
634 static unsigned long __init htab_get_table_size(void)
636 /* If hash size isn't already provided by the platform, we try to
637 * retrieve it from the device-tree. If it's not there neither, we
638 * calculate it now based on the total RAM size
640 if (ppc64_pft_size == 0)
641 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
642 if (ppc64_pft_size)
643 return 1UL << ppc64_pft_size;
645 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
648 #ifdef CONFIG_MEMORY_HOTPLUG
649 int create_section_mapping(unsigned long start, unsigned long end)
651 int rc = htab_bolt_mapping(start, end, __pa(start),
652 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
653 mmu_kernel_ssize);
655 if (rc < 0) {
656 int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
657 mmu_kernel_ssize);
658 BUG_ON(rc2 && (rc2 != -ENOENT));
660 return rc;
663 int remove_section_mapping(unsigned long start, unsigned long end)
665 int rc = htab_remove_mapping(start, end, mmu_linear_psize,
666 mmu_kernel_ssize);
667 WARN_ON(rc < 0);
668 return rc;
670 #endif /* CONFIG_MEMORY_HOTPLUG */
672 static void __init htab_initialize(void)
674 unsigned long table;
675 unsigned long pteg_count;
676 unsigned long prot;
677 unsigned long base = 0, size = 0, limit;
678 struct memblock_region *reg;
680 DBG(" -> htab_initialize()\n");
682 /* Initialize segment sizes */
683 htab_init_seg_sizes();
685 /* Initialize page sizes */
686 htab_init_page_sizes();
688 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
689 mmu_kernel_ssize = MMU_SEGSIZE_1T;
690 mmu_highuser_ssize = MMU_SEGSIZE_1T;
691 printk(KERN_INFO "Using 1TB segments\n");
695 * Calculate the required size of the htab. We want the number of
696 * PTEGs to equal one half the number of real pages.
698 htab_size_bytes = htab_get_table_size();
699 pteg_count = htab_size_bytes >> 7;
701 htab_hash_mask = pteg_count - 1;
703 if (firmware_has_feature(FW_FEATURE_LPAR)) {
704 /* Using a hypervisor which owns the htab */
705 htab_address = NULL;
706 _SDR1 = 0;
707 #ifdef CONFIG_FA_DUMP
709 * If firmware assisted dump is active firmware preserves
710 * the contents of htab along with entire partition memory.
711 * Clear the htab if firmware assisted dump is active so
712 * that we dont end up using old mappings.
714 if (is_fadump_active() && ppc_md.hpte_clear_all)
715 ppc_md.hpte_clear_all();
716 #endif
717 } else {
718 /* Find storage for the HPT. Must be contiguous in
719 * the absolute address space. On cell we want it to be
720 * in the first 2 Gig so we can use it for IOMMU hacks.
722 if (machine_is(cell))
723 limit = 0x80000000;
724 else
725 limit = MEMBLOCK_ALLOC_ANYWHERE;
727 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
729 DBG("Hash table allocated at %lx, size: %lx\n", table,
730 htab_size_bytes);
732 htab_address = __va(table);
734 /* htab absolute addr + encoded htabsize */
735 _SDR1 = table + __ilog2(pteg_count) - 11;
737 /* Initialize the HPT with no entries */
738 memset((void *)table, 0, htab_size_bytes);
740 /* Set SDR1 */
741 mtspr(SPRN_SDR1, _SDR1);
744 prot = pgprot_val(PAGE_KERNEL);
746 #ifdef CONFIG_DEBUG_PAGEALLOC
747 if (debug_pagealloc_enabled()) {
748 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
749 linear_map_hash_slots = __va(memblock_alloc_base(
750 linear_map_hash_count, 1, ppc64_rma_size));
751 memset(linear_map_hash_slots, 0, linear_map_hash_count);
753 #endif /* CONFIG_DEBUG_PAGEALLOC */
755 /* On U3 based machines, we need to reserve the DART area and
756 * _NOT_ map it to avoid cache paradoxes as it's remapped non
757 * cacheable later on
760 /* create bolted the linear mapping in the hash table */
761 for_each_memblock(memory, reg) {
762 base = (unsigned long)__va(reg->base);
763 size = reg->size;
765 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
766 base, size, prot);
768 #ifdef CONFIG_U3_DART
769 /* Do not map the DART space. Fortunately, it will be aligned
770 * in such a way that it will not cross two memblock regions and
771 * will fit within a single 16Mb page.
772 * The DART space is assumed to be a full 16Mb region even if
773 * we only use 2Mb of that space. We will use more of it later
774 * for AGP GART. We have to use a full 16Mb large page.
776 DBG("DART base: %lx\n", dart_tablebase);
778 if (dart_tablebase != 0 && dart_tablebase >= base
779 && dart_tablebase < (base + size)) {
780 unsigned long dart_table_end = dart_tablebase + 16 * MB;
781 if (base != dart_tablebase)
782 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
783 __pa(base), prot,
784 mmu_linear_psize,
785 mmu_kernel_ssize));
786 if ((base + size) > dart_table_end)
787 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
788 base + size,
789 __pa(dart_table_end),
790 prot,
791 mmu_linear_psize,
792 mmu_kernel_ssize));
793 continue;
795 #endif /* CONFIG_U3_DART */
796 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
797 prot, mmu_linear_psize, mmu_kernel_ssize));
799 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
802 * If we have a memory_limit and we've allocated TCEs then we need to
803 * explicitly map the TCE area at the top of RAM. We also cope with the
804 * case that the TCEs start below memory_limit.
805 * tce_alloc_start/end are 16MB aligned so the mapping should work
806 * for either 4K or 16MB pages.
808 if (tce_alloc_start) {
809 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
810 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
812 if (base + size >= tce_alloc_start)
813 tce_alloc_start = base + size + 1;
815 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
816 __pa(tce_alloc_start), prot,
817 mmu_linear_psize, mmu_kernel_ssize));
821 DBG(" <- htab_initialize()\n");
823 #undef KB
824 #undef MB
826 void __init early_init_mmu(void)
828 /* Initialize the MMU Hash table and create the linear mapping
829 * of memory. Has to be done before SLB initialization as this is
830 * currently where the page size encoding is obtained.
832 htab_initialize();
834 /* Initialize SLB management */
835 slb_initialize();
838 #ifdef CONFIG_SMP
839 void early_init_mmu_secondary(void)
841 /* Initialize hash table for that CPU */
842 if (!firmware_has_feature(FW_FEATURE_LPAR))
843 mtspr(SPRN_SDR1, _SDR1);
845 /* Initialize SLB */
846 slb_initialize();
848 #endif /* CONFIG_SMP */
851 * Called by asm hashtable.S for doing lazy icache flush
853 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
855 struct page *page;
857 if (!pfn_valid(pte_pfn(pte)))
858 return pp;
860 page = pte_page(pte);
862 /* page is dirty */
863 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
864 if (trap == 0x400) {
865 flush_dcache_icache_page(page);
866 set_bit(PG_arch_1, &page->flags);
867 } else
868 pp |= HPTE_R_N;
870 return pp;
873 #ifdef CONFIG_PPC_MM_SLICES
874 static unsigned int get_paca_psize(unsigned long addr)
876 u64 lpsizes;
877 unsigned char *hpsizes;
878 unsigned long index, mask_index;
880 if (addr < SLICE_LOW_TOP) {
881 lpsizes = get_paca()->mm_ctx_low_slices_psize;
882 index = GET_LOW_SLICE_INDEX(addr);
883 return (lpsizes >> (index * 4)) & 0xF;
885 hpsizes = get_paca()->mm_ctx_high_slices_psize;
886 index = GET_HIGH_SLICE_INDEX(addr);
887 mask_index = index & 0x1;
888 return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
891 #else
892 unsigned int get_paca_psize(unsigned long addr)
894 return get_paca()->mm_ctx_user_psize;
896 #endif
899 * Demote a segment to using 4k pages.
900 * For now this makes the whole process use 4k pages.
902 #ifdef CONFIG_PPC_64K_PAGES
903 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
905 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
906 return;
907 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
908 copro_flush_all_slbs(mm);
909 if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
911 copy_mm_to_paca(&mm->context);
912 slb_flush_and_rebolt();
915 #endif /* CONFIG_PPC_64K_PAGES */
917 #ifdef CONFIG_PPC_SUBPAGE_PROT
919 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
920 * Userspace sets the subpage permissions using the subpage_prot system call.
922 * Result is 0: full permissions, _PAGE_RW: read-only,
923 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
925 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
927 struct subpage_prot_table *spt = &mm->context.spt;
928 u32 spp = 0;
929 u32 **sbpm, *sbpp;
931 if (ea >= spt->maxaddr)
932 return 0;
933 if (ea < 0x100000000UL) {
934 /* addresses below 4GB use spt->low_prot */
935 sbpm = spt->low_prot;
936 } else {
937 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
938 if (!sbpm)
939 return 0;
941 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
942 if (!sbpp)
943 return 0;
944 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
946 /* extract 2-bit bitfield for this 4k subpage */
947 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
949 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
950 spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
951 return spp;
954 #else /* CONFIG_PPC_SUBPAGE_PROT */
955 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
957 return 0;
959 #endif
961 void hash_failure_debug(unsigned long ea, unsigned long access,
962 unsigned long vsid, unsigned long trap,
963 int ssize, int psize, int lpsize, unsigned long pte)
965 if (!printk_ratelimit())
966 return;
967 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
968 ea, access, current->comm);
969 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
970 trap, vsid, ssize, psize, lpsize, pte);
973 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
974 int psize, bool user_region)
976 if (user_region) {
977 if (psize != get_paca_psize(ea)) {
978 copy_mm_to_paca(&mm->context);
979 slb_flush_and_rebolt();
981 } else if (get_paca()->vmalloc_sllp !=
982 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
983 get_paca()->vmalloc_sllp =
984 mmu_psize_defs[mmu_vmalloc_psize].sllp;
985 slb_vmalloc_update();
989 /* Result code is:
990 * 0 - handled
991 * 1 - normal page fault
992 * -1 - critical hash insertion error
993 * -2 - access not permitted by subpage protection mechanism
995 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
996 unsigned long access, unsigned long trap,
997 unsigned long flags)
999 bool is_thp;
1000 enum ctx_state prev_state = exception_enter();
1001 pgd_t *pgdir;
1002 unsigned long vsid;
1003 pte_t *ptep;
1004 unsigned hugeshift;
1005 const struct cpumask *tmp;
1006 int rc, user_region = 0;
1007 int psize, ssize;
1009 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1010 ea, access, trap);
1011 trace_hash_fault(ea, access, trap);
1013 /* Get region & vsid */
1014 switch (REGION_ID(ea)) {
1015 case USER_REGION_ID:
1016 user_region = 1;
1017 if (! mm) {
1018 DBG_LOW(" user region with no mm !\n");
1019 rc = 1;
1020 goto bail;
1022 psize = get_slice_psize(mm, ea);
1023 ssize = user_segment_size(ea);
1024 vsid = get_vsid(mm->context.id, ea, ssize);
1025 break;
1026 case VMALLOC_REGION_ID:
1027 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1028 if (ea < VMALLOC_END)
1029 psize = mmu_vmalloc_psize;
1030 else
1031 psize = mmu_io_psize;
1032 ssize = mmu_kernel_ssize;
1033 break;
1034 default:
1035 /* Not a valid range
1036 * Send the problem up to do_page_fault
1038 rc = 1;
1039 goto bail;
1041 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1043 /* Bad address. */
1044 if (!vsid) {
1045 DBG_LOW("Bad address!\n");
1046 rc = 1;
1047 goto bail;
1049 /* Get pgdir */
1050 pgdir = mm->pgd;
1051 if (pgdir == NULL) {
1052 rc = 1;
1053 goto bail;
1056 /* Check CPU locality */
1057 tmp = cpumask_of(smp_processor_id());
1058 if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
1059 flags |= HPTE_LOCAL_UPDATE;
1061 #ifndef CONFIG_PPC_64K_PAGES
1062 /* If we use 4K pages and our psize is not 4K, then we might
1063 * be hitting a special driver mapping, and need to align the
1064 * address before we fetch the PTE.
1066 * It could also be a hugepage mapping, in which case this is
1067 * not necessary, but it's not harmful, either.
1069 if (psize != MMU_PAGE_4K)
1070 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1071 #endif /* CONFIG_PPC_64K_PAGES */
1073 /* Get PTE and page size from page tables */
1074 ptep = __find_linux_pte_or_hugepte(pgdir, ea, &is_thp, &hugeshift);
1075 if (ptep == NULL || !pte_present(*ptep)) {
1076 DBG_LOW(" no PTE !\n");
1077 rc = 1;
1078 goto bail;
1081 /* Add _PAGE_PRESENT to the required access perm */
1082 access |= _PAGE_PRESENT;
1084 /* Pre-check access permissions (will be re-checked atomically
1085 * in __hash_page_XX but this pre-check is a fast path
1087 if (access & ~pte_val(*ptep)) {
1088 DBG_LOW(" no access !\n");
1089 rc = 1;
1090 goto bail;
1093 if (hugeshift) {
1094 if (is_thp)
1095 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1096 trap, flags, ssize, psize);
1097 #ifdef CONFIG_HUGETLB_PAGE
1098 else
1099 rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1100 flags, ssize, hugeshift, psize);
1101 #else
1102 else {
1104 * if we have hugeshift, and is not transhuge with
1105 * hugetlb disabled, something is really wrong.
1107 rc = 1;
1108 WARN_ON(1);
1110 #endif
1111 if (current->mm == mm)
1112 check_paca_psize(ea, mm, psize, user_region);
1114 goto bail;
1117 #ifndef CONFIG_PPC_64K_PAGES
1118 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1119 #else
1120 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1121 pte_val(*(ptep + PTRS_PER_PTE)));
1122 #endif
1123 /* Do actual hashing */
1124 #ifdef CONFIG_PPC_64K_PAGES
1125 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1126 if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1127 demote_segment_4k(mm, ea);
1128 psize = MMU_PAGE_4K;
1131 /* If this PTE is non-cacheable and we have restrictions on
1132 * using non cacheable large pages, then we switch to 4k
1134 if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1135 (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1136 if (user_region) {
1137 demote_segment_4k(mm, ea);
1138 psize = MMU_PAGE_4K;
1139 } else if (ea < VMALLOC_END) {
1141 * some driver did a non-cacheable mapping
1142 * in vmalloc space, so switch vmalloc
1143 * to 4k pages
1145 printk(KERN_ALERT "Reducing vmalloc segment "
1146 "to 4kB pages because of "
1147 "non-cacheable mapping\n");
1148 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1149 copro_flush_all_slbs(mm);
1153 #endif /* CONFIG_PPC_64K_PAGES */
1155 if (current->mm == mm)
1156 check_paca_psize(ea, mm, psize, user_region);
1158 #ifdef CONFIG_PPC_64K_PAGES
1159 if (psize == MMU_PAGE_64K)
1160 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1161 flags, ssize);
1162 else
1163 #endif /* CONFIG_PPC_64K_PAGES */
1165 int spp = subpage_protection(mm, ea);
1166 if (access & spp)
1167 rc = -2;
1168 else
1169 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1170 flags, ssize, spp);
1173 /* Dump some info in case of hash insertion failure, they should
1174 * never happen so it is really useful to know if/when they do
1176 if (rc == -1)
1177 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1178 psize, pte_val(*ptep));
1179 #ifndef CONFIG_PPC_64K_PAGES
1180 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1181 #else
1182 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1183 pte_val(*(ptep + PTRS_PER_PTE)));
1184 #endif
1185 DBG_LOW(" -> rc=%d\n", rc);
1187 bail:
1188 exception_exit(prev_state);
1189 return rc;
1191 EXPORT_SYMBOL_GPL(hash_page_mm);
1193 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1194 unsigned long dsisr)
1196 unsigned long flags = 0;
1197 struct mm_struct *mm = current->mm;
1199 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1200 mm = &init_mm;
1202 if (dsisr & DSISR_NOHPTE)
1203 flags |= HPTE_NOHPTE_UPDATE;
1205 return hash_page_mm(mm, ea, access, trap, flags);
1207 EXPORT_SYMBOL_GPL(hash_page);
1209 int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
1210 unsigned long dsisr)
1212 unsigned long access = _PAGE_PRESENT;
1213 unsigned long flags = 0;
1214 struct mm_struct *mm = current->mm;
1216 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1217 mm = &init_mm;
1219 if (dsisr & DSISR_NOHPTE)
1220 flags |= HPTE_NOHPTE_UPDATE;
1222 if (dsisr & DSISR_ISSTORE)
1223 access |= _PAGE_RW;
1225 * We need to set the _PAGE_USER bit if MSR_PR is set or if we are
1226 * accessing a userspace segment (even from the kernel). We assume
1227 * kernel addresses always have the high bit set.
1229 if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID))
1230 access |= _PAGE_USER;
1232 if (trap == 0x400)
1233 access |= _PAGE_EXEC;
1235 return hash_page_mm(mm, ea, access, trap, flags);
1238 void hash_preload(struct mm_struct *mm, unsigned long ea,
1239 unsigned long access, unsigned long trap)
1241 int hugepage_shift;
1242 unsigned long vsid;
1243 pgd_t *pgdir;
1244 pte_t *ptep;
1245 unsigned long flags;
1246 int rc, ssize, update_flags = 0;
1248 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1250 #ifdef CONFIG_PPC_MM_SLICES
1251 /* We only prefault standard pages for now */
1252 if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1253 return;
1254 #endif
1256 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1257 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1259 /* Get Linux PTE if available */
1260 pgdir = mm->pgd;
1261 if (pgdir == NULL)
1262 return;
1264 /* Get VSID */
1265 ssize = user_segment_size(ea);
1266 vsid = get_vsid(mm->context.id, ea, ssize);
1267 if (!vsid)
1268 return;
1270 * Hash doesn't like irqs. Walking linux page table with irq disabled
1271 * saves us from holding multiple locks.
1273 local_irq_save(flags);
1276 * THP pages use update_mmu_cache_pmd. We don't do
1277 * hash preload there. Hence can ignore THP here
1279 ptep = find_linux_pte_or_hugepte(pgdir, ea, NULL, &hugepage_shift);
1280 if (!ptep)
1281 goto out_exit;
1283 WARN_ON(hugepage_shift);
1284 #ifdef CONFIG_PPC_64K_PAGES
1285 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1286 * a 64K kernel), then we don't preload, hash_page() will take
1287 * care of it once we actually try to access the page.
1288 * That way we don't have to duplicate all of the logic for segment
1289 * page size demotion here
1291 if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1292 goto out_exit;
1293 #endif /* CONFIG_PPC_64K_PAGES */
1295 /* Is that local to this CPU ? */
1296 if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1297 update_flags |= HPTE_LOCAL_UPDATE;
1299 /* Hash it in */
1300 #ifdef CONFIG_PPC_64K_PAGES
1301 if (mm->context.user_psize == MMU_PAGE_64K)
1302 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1303 update_flags, ssize);
1304 else
1305 #endif /* CONFIG_PPC_64K_PAGES */
1306 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1307 ssize, subpage_protection(mm, ea));
1309 /* Dump some info in case of hash insertion failure, they should
1310 * never happen so it is really useful to know if/when they do
1312 if (rc == -1)
1313 hash_failure_debug(ea, access, vsid, trap, ssize,
1314 mm->context.user_psize,
1315 mm->context.user_psize,
1316 pte_val(*ptep));
1317 out_exit:
1318 local_irq_restore(flags);
1321 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1322 * do not forget to update the assembly call site !
1324 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1325 unsigned long flags)
1327 unsigned long hash, index, shift, hidx, slot;
1328 int local = flags & HPTE_LOCAL_UPDATE;
1330 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1331 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1332 hash = hpt_hash(vpn, shift, ssize);
1333 hidx = __rpte_to_hidx(pte, index);
1334 if (hidx & _PTEIDX_SECONDARY)
1335 hash = ~hash;
1336 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1337 slot += hidx & _PTEIDX_GROUP_IX;
1338 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1340 * We use same base page size and actual psize, because we don't
1341 * use these functions for hugepage
1343 ppc_md.hpte_invalidate(slot, vpn, psize, psize, ssize, local);
1344 } pte_iterate_hashed_end();
1346 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1347 /* Transactions are not aborted by tlbiel, only tlbie.
1348 * Without, syncing a page back to a block device w/ PIO could pick up
1349 * transactional data (bad!) so we force an abort here. Before the
1350 * sync the page will be made read-only, which will flush_hash_page.
1351 * BIG ISSUE here: if the kernel uses a page from userspace without
1352 * unmapping it first, it may see the speculated version.
1354 if (local && cpu_has_feature(CPU_FTR_TM) &&
1355 current->thread.regs &&
1356 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1357 tm_enable();
1358 tm_abort(TM_CAUSE_TLBI);
1360 #endif
1363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1364 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1365 pmd_t *pmdp, unsigned int psize, int ssize,
1366 unsigned long flags)
1368 int i, max_hpte_count, valid;
1369 unsigned long s_addr;
1370 unsigned char *hpte_slot_array;
1371 unsigned long hidx, shift, vpn, hash, slot;
1372 int local = flags & HPTE_LOCAL_UPDATE;
1374 s_addr = addr & HPAGE_PMD_MASK;
1375 hpte_slot_array = get_hpte_slot_array(pmdp);
1377 * IF we try to do a HUGE PTE update after a withdraw is done.
1378 * we will find the below NULL. This happens when we do
1379 * split_huge_page_pmd
1381 if (!hpte_slot_array)
1382 return;
1384 if (ppc_md.hugepage_invalidate) {
1385 ppc_md.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1386 psize, ssize, local);
1387 goto tm_abort;
1390 * No bluk hpte removal support, invalidate each entry
1392 shift = mmu_psize_defs[psize].shift;
1393 max_hpte_count = HPAGE_PMD_SIZE >> shift;
1394 for (i = 0; i < max_hpte_count; i++) {
1396 * 8 bits per each hpte entries
1397 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1399 valid = hpte_valid(hpte_slot_array, i);
1400 if (!valid)
1401 continue;
1402 hidx = hpte_hash_index(hpte_slot_array, i);
1404 /* get the vpn */
1405 addr = s_addr + (i * (1ul << shift));
1406 vpn = hpt_vpn(addr, vsid, ssize);
1407 hash = hpt_hash(vpn, shift, ssize);
1408 if (hidx & _PTEIDX_SECONDARY)
1409 hash = ~hash;
1411 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1412 slot += hidx & _PTEIDX_GROUP_IX;
1413 ppc_md.hpte_invalidate(slot, vpn, psize,
1414 MMU_PAGE_16M, ssize, local);
1416 tm_abort:
1417 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1418 /* Transactions are not aborted by tlbiel, only tlbie.
1419 * Without, syncing a page back to a block device w/ PIO could pick up
1420 * transactional data (bad!) so we force an abort here. Before the
1421 * sync the page will be made read-only, which will flush_hash_page.
1422 * BIG ISSUE here: if the kernel uses a page from userspace without
1423 * unmapping it first, it may see the speculated version.
1425 if (local && cpu_has_feature(CPU_FTR_TM) &&
1426 current->thread.regs &&
1427 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1428 tm_enable();
1429 tm_abort(TM_CAUSE_TLBI);
1431 #endif
1432 return;
1434 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1436 void flush_hash_range(unsigned long number, int local)
1438 if (ppc_md.flush_hash_range)
1439 ppc_md.flush_hash_range(number, local);
1440 else {
1441 int i;
1442 struct ppc64_tlb_batch *batch =
1443 this_cpu_ptr(&ppc64_tlb_batch);
1445 for (i = 0; i < number; i++)
1446 flush_hash_page(batch->vpn[i], batch->pte[i],
1447 batch->psize, batch->ssize, local);
1452 * low_hash_fault is called when we the low level hash code failed
1453 * to instert a PTE due to an hypervisor error
1455 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1457 enum ctx_state prev_state = exception_enter();
1459 if (user_mode(regs)) {
1460 #ifdef CONFIG_PPC_SUBPAGE_PROT
1461 if (rc == -2)
1462 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1463 else
1464 #endif
1465 _exception(SIGBUS, regs, BUS_ADRERR, address);
1466 } else
1467 bad_page_fault(regs, address, SIGBUS);
1469 exception_exit(prev_state);
1472 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1473 unsigned long pa, unsigned long rflags,
1474 unsigned long vflags, int psize, int ssize)
1476 unsigned long hpte_group;
1477 long slot;
1479 repeat:
1480 hpte_group = ((hash & htab_hash_mask) *
1481 HPTES_PER_GROUP) & ~0x7UL;
1483 /* Insert into the hash table, primary slot */
1484 slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1485 psize, psize, ssize);
1487 /* Primary is full, try the secondary */
1488 if (unlikely(slot == -1)) {
1489 hpte_group = ((~hash & htab_hash_mask) *
1490 HPTES_PER_GROUP) & ~0x7UL;
1491 slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags,
1492 vflags | HPTE_V_SECONDARY,
1493 psize, psize, ssize);
1494 if (slot == -1) {
1495 if (mftb() & 0x1)
1496 hpte_group = ((hash & htab_hash_mask) *
1497 HPTES_PER_GROUP)&~0x7UL;
1499 ppc_md.hpte_remove(hpte_group);
1500 goto repeat;
1504 return slot;
1507 #ifdef CONFIG_DEBUG_PAGEALLOC
1508 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1510 unsigned long hash;
1511 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1512 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1513 unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1514 long ret;
1516 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1518 /* Don't create HPTE entries for bad address */
1519 if (!vsid)
1520 return;
1522 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1523 HPTE_V_BOLTED,
1524 mmu_linear_psize, mmu_kernel_ssize);
1526 BUG_ON (ret < 0);
1527 spin_lock(&linear_map_hash_lock);
1528 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1529 linear_map_hash_slots[lmi] = ret | 0x80;
1530 spin_unlock(&linear_map_hash_lock);
1533 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1535 unsigned long hash, hidx, slot;
1536 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1537 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1539 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1540 spin_lock(&linear_map_hash_lock);
1541 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1542 hidx = linear_map_hash_slots[lmi] & 0x7f;
1543 linear_map_hash_slots[lmi] = 0;
1544 spin_unlock(&linear_map_hash_lock);
1545 if (hidx & _PTEIDX_SECONDARY)
1546 hash = ~hash;
1547 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1548 slot += hidx & _PTEIDX_GROUP_IX;
1549 ppc_md.hpte_invalidate(slot, vpn, mmu_linear_psize, mmu_linear_psize,
1550 mmu_kernel_ssize, 0);
1553 void __kernel_map_pages(struct page *page, int numpages, int enable)
1555 unsigned long flags, vaddr, lmi;
1556 int i;
1558 local_irq_save(flags);
1559 for (i = 0; i < numpages; i++, page++) {
1560 vaddr = (unsigned long)page_address(page);
1561 lmi = __pa(vaddr) >> PAGE_SHIFT;
1562 if (lmi >= linear_map_hash_count)
1563 continue;
1564 if (enable)
1565 kernel_map_linear_page(vaddr, lmi);
1566 else
1567 kernel_unmap_linear_page(vaddr, lmi);
1569 local_irq_restore(flags);
1571 #endif /* CONFIG_DEBUG_PAGEALLOC */
1573 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1574 phys_addr_t first_memblock_size)
1576 /* We don't currently support the first MEMBLOCK not mapping 0
1577 * physical on those processors
1579 BUG_ON(first_memblock_base != 0);
1581 /* On LPAR systems, the first entry is our RMA region,
1582 * non-LPAR 64-bit hash MMU systems don't have a limitation
1583 * on real mode access, but using the first entry works well
1584 * enough. We also clamp it to 1G to avoid some funky things
1585 * such as RTAS bugs etc...
1587 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1589 /* Finally limit subsequent allocations */
1590 memblock_set_current_limit(ppc64_rma_size);