2 * This file contains ioremap and related functions for 64-bit machines.
4 * Derived from arch/ppc64/mm/init.c
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7 * Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
8 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
9 * Copyright (C) 1996 Paul Mackerras
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
14 * Dave Engebretsen <engebret@us.ibm.com>
15 * Rework for PPC64 port.
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License
19 * as published by the Free Software Foundation; either version
20 * 2 of the License, or (at your option) any later version.
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/export.h>
30 #include <linux/types.h>
31 #include <linux/mman.h>
33 #include <linux/swap.h>
34 #include <linux/stddef.h>
35 #include <linux/vmalloc.h>
36 #include <linux/memblock.h>
37 #include <linux/slab.h>
38 #include <linux/hugetlb.h>
40 #include <asm/pgalloc.h>
44 #include <asm/mmu_context.h>
45 #include <asm/pgtable.h>
48 #include <asm/machdep.h>
50 #include <asm/processor.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/firmware.h>
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/thp.h>
61 /* Some sanity checking */
62 #if TASK_SIZE_USER64 > PGTABLE_RANGE
63 #error TASK_SIZE_USER64 exceeds pagetable range
66 #ifdef CONFIG_PPC_STD_MMU_64
67 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
68 #error TASK_SIZE_USER64 exceeds user VSID range
72 unsigned long ioremap_bot
= IOREMAP_BASE
;
74 #ifdef CONFIG_PPC_MMU_NOHASH
75 static __ref
void *early_alloc_pgtable(unsigned long size
)
79 pt
= __va(memblock_alloc_base(size
, size
, __pa(MAX_DMA_ADDRESS
)));
84 #endif /* CONFIG_PPC_MMU_NOHASH */
87 * map_kernel_page currently only called by __ioremap
88 * map_kernel_page adds an entry to the ioremap page table
89 * and adds an entry to the HPT, possibly bolting it
91 int map_kernel_page(unsigned long ea
, unsigned long pa
, unsigned long flags
)
98 if (slab_is_available()) {
99 pgdp
= pgd_offset_k(ea
);
100 pudp
= pud_alloc(&init_mm
, pgdp
, ea
);
103 pmdp
= pmd_alloc(&init_mm
, pudp
, ea
);
106 ptep
= pte_alloc_kernel(pmdp
, ea
);
109 set_pte_at(&init_mm
, ea
, ptep
, pfn_pte(pa
>> PAGE_SHIFT
,
112 #ifdef CONFIG_PPC_MMU_NOHASH
113 pgdp
= pgd_offset_k(ea
);
114 #ifdef PUD_TABLE_SIZE
115 if (pgd_none(*pgdp
)) {
116 pudp
= early_alloc_pgtable(PUD_TABLE_SIZE
);
117 BUG_ON(pudp
== NULL
);
118 pgd_populate(&init_mm
, pgdp
, pudp
);
120 #endif /* PUD_TABLE_SIZE */
121 pudp
= pud_offset(pgdp
, ea
);
122 if (pud_none(*pudp
)) {
123 pmdp
= early_alloc_pgtable(PMD_TABLE_SIZE
);
124 BUG_ON(pmdp
== NULL
);
125 pud_populate(&init_mm
, pudp
, pmdp
);
127 pmdp
= pmd_offset(pudp
, ea
);
128 if (!pmd_present(*pmdp
)) {
129 ptep
= early_alloc_pgtable(PAGE_SIZE
);
130 BUG_ON(ptep
== NULL
);
131 pmd_populate_kernel(&init_mm
, pmdp
, ptep
);
133 ptep
= pte_offset_kernel(pmdp
, ea
);
134 set_pte_at(&init_mm
, ea
, ptep
, pfn_pte(pa
>> PAGE_SHIFT
,
136 #else /* CONFIG_PPC_MMU_NOHASH */
138 * If the mm subsystem is not fully up, we cannot create a
139 * linux page table entry for this mapping. Simply bolt an
140 * entry in the hardware page table.
143 if (htab_bolt_mapping(ea
, ea
+ PAGE_SIZE
, pa
, flags
,
144 mmu_io_psize
, mmu_kernel_ssize
)) {
145 printk(KERN_ERR
"Failed to do bolted mapping IO "
146 "memory at %016lx !\n", pa
);
149 #endif /* !CONFIG_PPC_MMU_NOHASH */
158 * __ioremap_at - Low level function to establish the page tables
161 void __iomem
* __ioremap_at(phys_addr_t pa
, void *ea
, unsigned long size
,
166 /* Make sure we have the base flags */
167 if ((flags
& _PAGE_PRESENT
) == 0)
168 flags
|= pgprot_val(PAGE_KERNEL
);
170 /* Non-cacheable page cannot be coherent */
171 if (flags
& _PAGE_NO_CACHE
)
172 flags
&= ~_PAGE_COHERENT
;
174 /* We don't support the 4K PFN hack with ioremap */
175 if (flags
& _PAGE_4K_PFN
)
178 WARN_ON(pa
& ~PAGE_MASK
);
179 WARN_ON(((unsigned long)ea
) & ~PAGE_MASK
);
180 WARN_ON(size
& ~PAGE_MASK
);
182 for (i
= 0; i
< size
; i
+= PAGE_SIZE
)
183 if (map_kernel_page((unsigned long)ea
+i
, pa
+i
, flags
))
186 return (void __iomem
*)ea
;
190 * __iounmap_from - Low level function to tear down the page tables
191 * for an IO mapping. This is used for mappings that
192 * are manipulated manually, like partial unmapping of
193 * PCI IOs or ISA space.
195 void __iounmap_at(void *ea
, unsigned long size
)
197 WARN_ON(((unsigned long)ea
) & ~PAGE_MASK
);
198 WARN_ON(size
& ~PAGE_MASK
);
200 unmap_kernel_range((unsigned long)ea
, size
);
203 void __iomem
* __ioremap_caller(phys_addr_t addr
, unsigned long size
,
204 unsigned long flags
, void *caller
)
206 phys_addr_t paligned
;
210 * Choose an address to map it to.
211 * Once the imalloc system is running, we use it.
212 * Before that, we map using addresses going
213 * up from ioremap_bot. imalloc will use
214 * the addresses from ioremap_bot through
218 paligned
= addr
& PAGE_MASK
;
219 size
= PAGE_ALIGN(addr
+ size
) - paligned
;
221 if ((size
== 0) || (paligned
== 0))
224 if (slab_is_available()) {
225 struct vm_struct
*area
;
227 area
= __get_vm_area_caller(size
, VM_IOREMAP
,
228 ioremap_bot
, IOREMAP_END
,
233 area
->phys_addr
= paligned
;
234 ret
= __ioremap_at(paligned
, area
->addr
, size
, flags
);
238 ret
= __ioremap_at(paligned
, (void *)ioremap_bot
, size
, flags
);
244 ret
+= addr
& ~PAGE_MASK
;
248 void __iomem
* __ioremap(phys_addr_t addr
, unsigned long size
,
251 return __ioremap_caller(addr
, size
, flags
, __builtin_return_address(0));
254 void __iomem
* ioremap(phys_addr_t addr
, unsigned long size
)
256 unsigned long flags
= _PAGE_NO_CACHE
| _PAGE_GUARDED
;
257 void *caller
= __builtin_return_address(0);
260 return ppc_md
.ioremap(addr
, size
, flags
, caller
);
261 return __ioremap_caller(addr
, size
, flags
, caller
);
264 void __iomem
* ioremap_wc(phys_addr_t addr
, unsigned long size
)
266 unsigned long flags
= _PAGE_NO_CACHE
;
267 void *caller
= __builtin_return_address(0);
270 return ppc_md
.ioremap(addr
, size
, flags
, caller
);
271 return __ioremap_caller(addr
, size
, flags
, caller
);
274 void __iomem
* ioremap_prot(phys_addr_t addr
, unsigned long size
,
277 void *caller
= __builtin_return_address(0);
279 /* writeable implies dirty for kernel addresses */
280 if (flags
& _PAGE_RW
)
281 flags
|= _PAGE_DIRTY
;
283 /* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
284 flags
&= ~(_PAGE_USER
| _PAGE_EXEC
);
287 /* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
288 * which means that we just cleared supervisor access... oops ;-) This
291 flags
|= _PAGE_BAP_SR
;
295 return ppc_md
.ioremap(addr
, size
, flags
, caller
);
296 return __ioremap_caller(addr
, size
, flags
, caller
);
301 * Unmap an IO region and remove it from imalloc'd list.
302 * Access to IO memory should be serialized by driver.
304 void __iounmap(volatile void __iomem
*token
)
308 if (!slab_is_available())
311 addr
= (void *) ((unsigned long __force
)
312 PCI_FIX_ADDR(token
) & PAGE_MASK
);
313 if ((unsigned long)addr
< ioremap_bot
) {
314 printk(KERN_WARNING
"Attempt to iounmap early bolted mapping"
321 void iounmap(volatile void __iomem
*token
)
324 ppc_md
.iounmap(token
);
329 EXPORT_SYMBOL(ioremap
);
330 EXPORT_SYMBOL(ioremap_wc
);
331 EXPORT_SYMBOL(ioremap_prot
);
332 EXPORT_SYMBOL(__ioremap
);
333 EXPORT_SYMBOL(__ioremap_at
);
334 EXPORT_SYMBOL(iounmap
);
335 EXPORT_SYMBOL(__iounmap
);
336 EXPORT_SYMBOL(__iounmap_at
);
338 #ifndef __PAGETABLE_PUD_FOLDED
339 /* 4 level page table */
340 struct page
*pgd_page(pgd_t pgd
)
343 return pte_page(pgd_pte(pgd
));
344 return virt_to_page(pgd_page_vaddr(pgd
));
348 struct page
*pud_page(pud_t pud
)
351 return pte_page(pud_pte(pud
));
352 return virt_to_page(pud_page_vaddr(pud
));
356 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
357 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
359 struct page
*pmd_page(pmd_t pmd
)
361 if (pmd_trans_huge(pmd
) || pmd_huge(pmd
))
362 return pte_page(pmd_pte(pmd
));
363 return virt_to_page(pmd_page_vaddr(pmd
));
366 #ifdef CONFIG_PPC_64K_PAGES
367 static pte_t
*get_from_cache(struct mm_struct
*mm
)
369 void *pte_frag
, *ret
;
371 spin_lock(&mm
->page_table_lock
);
372 ret
= mm
->context
.pte_frag
;
374 pte_frag
= ret
+ PTE_FRAG_SIZE
;
376 * If we have taken up all the fragments mark PTE page NULL
378 if (((unsigned long)pte_frag
& ~PAGE_MASK
) == 0)
380 mm
->context
.pte_frag
= pte_frag
;
382 spin_unlock(&mm
->page_table_lock
);
386 static pte_t
*__alloc_for_cache(struct mm_struct
*mm
, int kernel
)
389 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_NOTRACK
|
390 __GFP_REPEAT
| __GFP_ZERO
);
393 if (!kernel
&& !pgtable_page_ctor(page
)) {
398 ret
= page_address(page
);
399 spin_lock(&mm
->page_table_lock
);
401 * If we find pgtable_page set, we return
402 * the allocated page with single fragement
405 if (likely(!mm
->context
.pte_frag
)) {
406 set_page_count(page
, PTE_FRAG_NR
);
407 mm
->context
.pte_frag
= ret
+ PTE_FRAG_SIZE
;
409 spin_unlock(&mm
->page_table_lock
);
414 pte_t
*page_table_alloc(struct mm_struct
*mm
, unsigned long vmaddr
, int kernel
)
418 pte
= get_from_cache(mm
);
422 return __alloc_for_cache(mm
, kernel
);
425 void page_table_free(struct mm_struct
*mm
, unsigned long *table
, int kernel
)
427 struct page
*page
= virt_to_page(table
);
428 if (put_page_testzero(page
)) {
430 pgtable_page_dtor(page
);
431 free_hot_cold_page(page
, 0);
436 static void page_table_free_rcu(void *table
)
438 struct page
*page
= virt_to_page(table
);
439 if (put_page_testzero(page
)) {
440 pgtable_page_dtor(page
);
441 free_hot_cold_page(page
, 0);
445 void pgtable_free_tlb(struct mmu_gather
*tlb
, void *table
, int shift
)
447 unsigned long pgf
= (unsigned long)table
;
449 BUG_ON(shift
> MAX_PGTABLE_INDEX_SIZE
);
451 tlb_remove_table(tlb
, (void *)pgf
);
454 void __tlb_remove_table(void *_table
)
456 void *table
= (void *)((unsigned long)_table
& ~MAX_PGTABLE_INDEX_SIZE
);
457 unsigned shift
= (unsigned long)_table
& MAX_PGTABLE_INDEX_SIZE
;
460 /* PTE page needs special handling */
461 page_table_free_rcu(table
);
463 BUG_ON(shift
> MAX_PGTABLE_INDEX_SIZE
);
464 kmem_cache_free(PGT_CACHE(shift
), table
);
468 void pgtable_free_tlb(struct mmu_gather
*tlb
, void *table
, int shift
)
471 /* PTE page needs special handling */
472 struct page
*page
= virt_to_page(table
);
473 if (put_page_testzero(page
)) {
474 pgtable_page_dtor(page
);
475 free_hot_cold_page(page
, 0);
478 BUG_ON(shift
> MAX_PGTABLE_INDEX_SIZE
);
479 kmem_cache_free(PGT_CACHE(shift
), table
);
483 #endif /* CONFIG_PPC_64K_PAGES */
485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
488 * This is called when relaxing access to a hugepage. It's also called in the page
489 * fault path when we don't hit any of the major fault cases, ie, a minor
490 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
491 * handled those two for us, we additionally deal with missing execute
492 * permission here on some processors
494 int pmdp_set_access_flags(struct vm_area_struct
*vma
, unsigned long address
,
495 pmd_t
*pmdp
, pmd_t entry
, int dirty
)
498 #ifdef CONFIG_DEBUG_VM
499 WARN_ON(!pmd_trans_huge(*pmdp
));
500 assert_spin_locked(&vma
->vm_mm
->page_table_lock
);
502 changed
= !pmd_same(*(pmdp
), entry
);
504 __ptep_set_access_flags(pmdp_ptep(pmdp
), pmd_pte(entry
));
506 * Since we are not supporting SW TLB systems, we don't
507 * have any thing similar to flush_tlb_page_nohash()
513 unsigned long pmd_hugepage_update(struct mm_struct
*mm
, unsigned long addr
,
514 pmd_t
*pmdp
, unsigned long clr
,
518 unsigned long old
, tmp
;
520 #ifdef CONFIG_DEBUG_VM
521 WARN_ON(!pmd_trans_huge(*pmdp
));
522 assert_spin_locked(&mm
->page_table_lock
);
525 #ifdef PTE_ATOMIC_UPDATES
526 __asm__
__volatile__(
534 : "=&r" (old
), "=&r" (tmp
), "=m" (*pmdp
)
535 : "r" (pmdp
), "r" (clr
), "m" (*pmdp
), "i" (_PAGE_BUSY
), "r" (set
)
538 old
= pmd_val(*pmdp
);
539 *pmdp
= __pmd((old
& ~clr
) | set
);
541 trace_hugepage_update(addr
, old
, clr
, set
);
542 if (old
& _PAGE_HASHPTE
)
543 hpte_do_hugepage_flush(mm
, addr
, pmdp
, old
);
547 pmd_t
pmdp_collapse_flush(struct vm_area_struct
*vma
, unsigned long address
,
552 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
553 VM_BUG_ON(pmd_trans_huge(*pmdp
));
558 * Wait for all pending hash_page to finish. This is needed
559 * in case of subpage collapse. When we collapse normal pages
560 * to hugepage, we first clear the pmd, then invalidate all
561 * the PTE entries. The assumption here is that any low level
562 * page fault will see a none pmd and take the slow path that
563 * will wait on mmap_sem. But we could very well be in a
564 * hash_page with local ptep pointer value. Such a hash page
565 * can result in adding new HPTE entries for normal subpages.
566 * That means we could be modifying the page content as we
567 * copy them to a huge page. So wait for parallel hash_page
568 * to finish before invalidating HPTE entries. We can do this
569 * by sending an IPI to all the cpus and executing a dummy
572 kick_all_cpus_sync();
574 * Now invalidate the hpte entries in the range
575 * covered by pmd. This make sure we take a
576 * fault and will find the pmd as none, which will
577 * result in a major fault which takes mmap_sem and
578 * hence wait for collapse to complete. Without this
579 * the __collapse_huge_page_copy can result in copying
582 flush_tlb_pmd_range(vma
->vm_mm
, &pmd
, address
);
586 int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
587 unsigned long address
, pmd_t
*pmdp
)
589 return __pmdp_test_and_clear_young(vma
->vm_mm
, address
, pmdp
);
593 * We currently remove entries from the hashtable regardless of whether
594 * the entry was young or dirty. The generic routines only flush if the
595 * entry was young or dirty which is not good enough.
597 * We should be more intelligent about this but for the moment we override
598 * these functions and force a tlb flush unconditionally
600 int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
601 unsigned long address
, pmd_t
*pmdp
)
603 return __pmdp_test_and_clear_young(vma
->vm_mm
, address
, pmdp
);
607 * We want to put the pgtable in pmd and use pgtable for tracking
608 * the base page size hptes
610 void pgtable_trans_huge_deposit(struct mm_struct
*mm
, pmd_t
*pmdp
,
613 pgtable_t
*pgtable_slot
;
614 assert_spin_locked(&mm
->page_table_lock
);
616 * we store the pgtable in the second half of PMD
618 pgtable_slot
= (pgtable_t
*)pmdp
+ PTRS_PER_PMD
;
619 *pgtable_slot
= pgtable
;
621 * expose the deposited pgtable to other cpus.
622 * before we set the hugepage PTE at pmd level
623 * hash fault code looks at the deposted pgtable
624 * to store hash index values.
629 pgtable_t
pgtable_trans_huge_withdraw(struct mm_struct
*mm
, pmd_t
*pmdp
)
632 pgtable_t
*pgtable_slot
;
634 assert_spin_locked(&mm
->page_table_lock
);
635 pgtable_slot
= (pgtable_t
*)pmdp
+ PTRS_PER_PMD
;
636 pgtable
= *pgtable_slot
;
638 * Once we withdraw, mark the entry NULL.
640 *pgtable_slot
= NULL
;
642 * We store HPTE information in the deposited PTE fragment.
643 * zero out the content on withdraw.
645 memset(pgtable
, 0, PTE_FRAG_SIZE
);
649 void pmdp_huge_split_prepare(struct vm_area_struct
*vma
,
650 unsigned long address
, pmd_t
*pmdp
)
652 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
653 VM_BUG_ON(REGION_ID(address
) != USER_REGION_ID
);
656 * We can't mark the pmd none here, because that will cause a race
657 * against exit_mmap. We need to continue mark pmd TRANS HUGE, while
658 * we spilt, but at the same time we wan't rest of the ppc64 code
659 * not to insert hash pte on this, because we will be modifying
660 * the deposited pgtable in the caller of this function. Hence
661 * clear the _PAGE_USER so that we move the fault handling to
662 * higher level function and that will serialize against ptl.
663 * We need to flush existing hash pte entries here even though,
664 * the translation is still valid, because we will withdraw
665 * pgtable_t after this.
667 pmd_hugepage_update(vma
->vm_mm
, address
, pmdp
, _PAGE_USER
, 0);
672 * set a new huge pmd. We should not be called for updating
673 * an existing pmd entry. That should go via pmd_hugepage_update.
675 void set_pmd_at(struct mm_struct
*mm
, unsigned long addr
,
676 pmd_t
*pmdp
, pmd_t pmd
)
678 #ifdef CONFIG_DEBUG_VM
679 WARN_ON((pmd_val(*pmdp
) & (_PAGE_PRESENT
| _PAGE_USER
)) ==
680 (_PAGE_PRESENT
| _PAGE_USER
));
681 assert_spin_locked(&mm
->page_table_lock
);
682 WARN_ON(!pmd_trans_huge(pmd
));
684 trace_hugepage_set_pmd(addr
, pmd_val(pmd
));
685 return set_pte_at(mm
, addr
, pmdp_ptep(pmdp
), pmd_pte(pmd
));
689 * We use this to invalidate a pmdp entry before switching from a
690 * hugepte to regular pmd entry.
692 void pmdp_invalidate(struct vm_area_struct
*vma
, unsigned long address
,
695 pmd_hugepage_update(vma
->vm_mm
, address
, pmdp
, _PAGE_PRESENT
, 0);
698 * This ensures that generic code that rely on IRQ disabling
699 * to prevent a parallel THP split work as expected.
701 kick_all_cpus_sync();
705 * A linux hugepage PMD was changed and the corresponding hash table entries
706 * neesd to be flushed.
708 void hpte_do_hugepage_flush(struct mm_struct
*mm
, unsigned long addr
,
709 pmd_t
*pmdp
, unsigned long old_pmd
)
714 unsigned long flags
= 0;
715 const struct cpumask
*tmp
;
717 /* get the base page size,vsid and segment size */
718 #ifdef CONFIG_DEBUG_VM
719 psize
= get_slice_psize(mm
, addr
);
720 BUG_ON(psize
== MMU_PAGE_16M
);
722 if (old_pmd
& _PAGE_COMBO
)
725 psize
= MMU_PAGE_64K
;
727 if (!is_kernel_addr(addr
)) {
728 ssize
= user_segment_size(addr
);
729 vsid
= get_vsid(mm
->context
.id
, addr
, ssize
);
732 vsid
= get_kernel_vsid(addr
, mmu_kernel_ssize
);
733 ssize
= mmu_kernel_ssize
;
736 tmp
= cpumask_of(smp_processor_id());
737 if (cpumask_equal(mm_cpumask(mm
), tmp
))
738 flags
|= HPTE_LOCAL_UPDATE
;
740 return flush_hash_hugepage(vsid
, addr
, pmdp
, psize
, ssize
, flags
);
743 static pmd_t
pmd_set_protbits(pmd_t pmd
, pgprot_t pgprot
)
745 return __pmd(pmd_val(pmd
) | pgprot_val(pgprot
));
748 pmd_t
pfn_pmd(unsigned long pfn
, pgprot_t pgprot
)
752 pmdv
= (pfn
<< PTE_RPN_SHIFT
) & PTE_RPN_MASK
;
753 return pmd_set_protbits(__pmd(pmdv
), pgprot
);
756 pmd_t
mk_pmd(struct page
*page
, pgprot_t pgprot
)
758 return pfn_pmd(page_to_pfn(page
), pgprot
);
761 pmd_t
pmd_modify(pmd_t pmd
, pgprot_t newprot
)
766 pmdv
&= _HPAGE_CHG_MASK
;
767 return pmd_set_protbits(__pmd(pmdv
), newprot
);
771 * This is called at the end of handling a user page fault, when the
772 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
773 * We use it to preload an HPTE into the hash table corresponding to
774 * the updated linux HUGE PMD entry.
776 void update_mmu_cache_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
782 pmd_t
pmdp_huge_get_and_clear(struct mm_struct
*mm
,
783 unsigned long addr
, pmd_t
*pmdp
)
788 pgtable_t
*pgtable_slot
;
790 old
= pmd_hugepage_update(mm
, addr
, pmdp
, ~0UL, 0);
791 old_pmd
= __pmd(old
);
793 * We have pmd == none and we are holding page_table_lock.
794 * So we can safely go and clear the pgtable hash
797 pgtable_slot
= (pgtable_t
*)pmdp
+ PTRS_PER_PMD
;
798 pgtable
= *pgtable_slot
;
800 * Let's zero out old valid and hash index details
801 * hash fault look at them.
803 memset(pgtable
, 0, PTE_FRAG_SIZE
);
805 * Serialize against find_linux_pte_or_hugepte which does lock-less
806 * lookup in page tables with local interrupts disabled. For huge pages
807 * it casts pmd_t to pte_t. Since format of pte_t is different from
808 * pmd_t we want to prevent transit from pmd pointing to page table
809 * to pmd pointing to huge page (and back) while interrupts are disabled.
810 * We clear pmd to possibly replace it with page table pointer in
811 * different code paths. So make sure we wait for the parallel
812 * find_linux_pte_or_hugepage to finish.
814 kick_all_cpus_sync();
818 int has_transparent_hugepage(void)
821 BUILD_BUG_ON_MSG((PMD_SHIFT
- PAGE_SHIFT
) >= MAX_ORDER
,
822 "hugepages can't be allocated by the buddy allocator");
824 BUILD_BUG_ON_MSG((PMD_SHIFT
- PAGE_SHIFT
) < 2,
825 "We need more than 2 pages to do deferred thp split");
827 if (!mmu_has_feature(MMU_FTR_16M_PAGE
))
830 * We support THP only if PMD_SIZE is 16MB.
832 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
!= PMD_SHIFT
)
835 * We need to make sure that we support 16MB hugepage in a segement
836 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
840 * If we have 64K HPTE, we will be using that by default
842 if (mmu_psize_defs
[MMU_PAGE_64K
].shift
&&
843 (mmu_psize_defs
[MMU_PAGE_64K
].penc
[MMU_PAGE_16M
] == -1))
846 * Ok we only have 4K HPTE
848 if (mmu_psize_defs
[MMU_PAGE_4K
].penc
[MMU_PAGE_16M
] == -1)
853 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */