Linux 4.6-rc6
[linux/fpc-iii.git] / arch / x86 / mm / pgtable.c
blob4eb287e25043ed17639832a1d6b3f71b528ab69e
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7 #include <asm/mtrr.h>
9 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
11 #ifdef CONFIG_HIGHPTE
12 #define PGALLOC_USER_GFP __GFP_HIGHMEM
13 #else
14 #define PGALLOC_USER_GFP 0
15 #endif
17 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
19 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
21 return (pte_t *)__get_free_page(PGALLOC_GFP);
24 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
26 struct page *pte;
28 pte = alloc_pages(__userpte_alloc_gfp, 0);
29 if (!pte)
30 return NULL;
31 if (!pgtable_page_ctor(pte)) {
32 __free_page(pte);
33 return NULL;
35 return pte;
38 static int __init setup_userpte(char *arg)
40 if (!arg)
41 return -EINVAL;
44 * "userpte=nohigh" disables allocation of user pagetables in
45 * high memory.
47 if (strcmp(arg, "nohigh") == 0)
48 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
49 else
50 return -EINVAL;
51 return 0;
53 early_param("userpte", setup_userpte);
55 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
57 pgtable_page_dtor(pte);
58 paravirt_release_pte(page_to_pfn(pte));
59 tlb_remove_page(tlb, pte);
62 #if CONFIG_PGTABLE_LEVELS > 2
63 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
65 struct page *page = virt_to_page(pmd);
66 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
68 * NOTE! For PAE, any changes to the top page-directory-pointer-table
69 * entries need a full cr3 reload to flush.
71 #ifdef CONFIG_X86_PAE
72 tlb->need_flush_all = 1;
73 #endif
74 pgtable_pmd_page_dtor(page);
75 tlb_remove_page(tlb, page);
78 #if CONFIG_PGTABLE_LEVELS > 3
79 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
81 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
82 tlb_remove_page(tlb, virt_to_page(pud));
84 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
85 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
87 static inline void pgd_list_add(pgd_t *pgd)
89 struct page *page = virt_to_page(pgd);
91 list_add(&page->lru, &pgd_list);
94 static inline void pgd_list_del(pgd_t *pgd)
96 struct page *page = virt_to_page(pgd);
98 list_del(&page->lru);
101 #define UNSHARED_PTRS_PER_PGD \
102 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
105 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
107 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
108 virt_to_page(pgd)->index = (pgoff_t)mm;
111 struct mm_struct *pgd_page_get_mm(struct page *page)
113 return (struct mm_struct *)page->index;
116 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
118 /* If the pgd points to a shared pagetable level (either the
119 ptes in non-PAE, or shared PMD in PAE), then just copy the
120 references from swapper_pg_dir. */
121 if (CONFIG_PGTABLE_LEVELS == 2 ||
122 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
123 CONFIG_PGTABLE_LEVELS == 4) {
124 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
125 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
126 KERNEL_PGD_PTRS);
129 /* list required to sync kernel mapping updates */
130 if (!SHARED_KERNEL_PMD) {
131 pgd_set_mm(pgd, mm);
132 pgd_list_add(pgd);
136 static void pgd_dtor(pgd_t *pgd)
138 if (SHARED_KERNEL_PMD)
139 return;
141 spin_lock(&pgd_lock);
142 pgd_list_del(pgd);
143 spin_unlock(&pgd_lock);
147 * List of all pgd's needed for non-PAE so it can invalidate entries
148 * in both cached and uncached pgd's; not needed for PAE since the
149 * kernel pmd is shared. If PAE were not to share the pmd a similar
150 * tactic would be needed. This is essentially codepath-based locking
151 * against pageattr.c; it is the unique case in which a valid change
152 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
153 * vmalloc faults work because attached pagetables are never freed.
154 * -- nyc
157 #ifdef CONFIG_X86_PAE
159 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
160 * updating the top-level pagetable entries to guarantee the
161 * processor notices the update. Since this is expensive, and
162 * all 4 top-level entries are used almost immediately in a
163 * new process's life, we just pre-populate them here.
165 * Also, if we're in a paravirt environment where the kernel pmd is
166 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
167 * and initialize the kernel pmds here.
169 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
171 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
173 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
175 /* Note: almost everything apart from _PAGE_PRESENT is
176 reserved at the pmd (PDPT) level. */
177 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
180 * According to Intel App note "TLBs, Paging-Structure Caches,
181 * and Their Invalidation", April 2007, document 317080-001,
182 * section 8.1: in PAE mode we explicitly have to flush the
183 * TLB via cr3 if the top-level pgd is changed...
185 flush_tlb_mm(mm);
187 #else /* !CONFIG_X86_PAE */
189 /* No need to prepopulate any pagetable entries in non-PAE modes. */
190 #define PREALLOCATED_PMDS 0
192 #endif /* CONFIG_X86_PAE */
194 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
196 int i;
198 for(i = 0; i < PREALLOCATED_PMDS; i++)
199 if (pmds[i]) {
200 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
201 free_page((unsigned long)pmds[i]);
202 mm_dec_nr_pmds(mm);
206 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
208 int i;
209 bool failed = false;
211 for(i = 0; i < PREALLOCATED_PMDS; i++) {
212 pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
213 if (!pmd)
214 failed = true;
215 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
216 free_page((unsigned long)pmd);
217 pmd = NULL;
218 failed = true;
220 if (pmd)
221 mm_inc_nr_pmds(mm);
222 pmds[i] = pmd;
225 if (failed) {
226 free_pmds(mm, pmds);
227 return -ENOMEM;
230 return 0;
234 * Mop up any pmd pages which may still be attached to the pgd.
235 * Normally they will be freed by munmap/exit_mmap, but any pmd we
236 * preallocate which never got a corresponding vma will need to be
237 * freed manually.
239 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
241 int i;
243 for(i = 0; i < PREALLOCATED_PMDS; i++) {
244 pgd_t pgd = pgdp[i];
246 if (pgd_val(pgd) != 0) {
247 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
249 pgdp[i] = native_make_pgd(0);
251 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
252 pmd_free(mm, pmd);
253 mm_dec_nr_pmds(mm);
258 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
260 pud_t *pud;
261 int i;
263 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
264 return;
266 pud = pud_offset(pgd, 0);
268 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
269 pmd_t *pmd = pmds[i];
271 if (i >= KERNEL_PGD_BOUNDARY)
272 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
273 sizeof(pmd_t) * PTRS_PER_PMD);
275 pud_populate(mm, pud, pmd);
280 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
281 * assumes that pgd should be in one page.
283 * But kernel with PAE paging that is not running as a Xen domain
284 * only needs to allocate 32 bytes for pgd instead of one page.
286 #ifdef CONFIG_X86_PAE
288 #include <linux/slab.h>
290 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
291 #define PGD_ALIGN 32
293 static struct kmem_cache *pgd_cache;
295 static int __init pgd_cache_init(void)
298 * When PAE kernel is running as a Xen domain, it does not use
299 * shared kernel pmd. And this requires a whole page for pgd.
301 if (!SHARED_KERNEL_PMD)
302 return 0;
305 * when PAE kernel is not running as a Xen domain, it uses
306 * shared kernel pmd. Shared kernel pmd does not require a whole
307 * page for pgd. We are able to just allocate a 32-byte for pgd.
308 * During boot time, we create a 32-byte slab for pgd table allocation.
310 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
311 SLAB_PANIC, NULL);
312 if (!pgd_cache)
313 return -ENOMEM;
315 return 0;
317 core_initcall(pgd_cache_init);
319 static inline pgd_t *_pgd_alloc(void)
322 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
323 * We allocate one page for pgd.
325 if (!SHARED_KERNEL_PMD)
326 return (pgd_t *)__get_free_page(PGALLOC_GFP);
329 * Now PAE kernel is not running as a Xen domain. We can allocate
330 * a 32-byte slab for pgd to save memory space.
332 return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
335 static inline void _pgd_free(pgd_t *pgd)
337 if (!SHARED_KERNEL_PMD)
338 free_page((unsigned long)pgd);
339 else
340 kmem_cache_free(pgd_cache, pgd);
342 #else
343 static inline pgd_t *_pgd_alloc(void)
345 return (pgd_t *)__get_free_page(PGALLOC_GFP);
348 static inline void _pgd_free(pgd_t *pgd)
350 free_page((unsigned long)pgd);
352 #endif /* CONFIG_X86_PAE */
354 pgd_t *pgd_alloc(struct mm_struct *mm)
356 pgd_t *pgd;
357 pmd_t *pmds[PREALLOCATED_PMDS];
359 pgd = _pgd_alloc();
361 if (pgd == NULL)
362 goto out;
364 mm->pgd = pgd;
366 if (preallocate_pmds(mm, pmds) != 0)
367 goto out_free_pgd;
369 if (paravirt_pgd_alloc(mm) != 0)
370 goto out_free_pmds;
373 * Make sure that pre-populating the pmds is atomic with
374 * respect to anything walking the pgd_list, so that they
375 * never see a partially populated pgd.
377 spin_lock(&pgd_lock);
379 pgd_ctor(mm, pgd);
380 pgd_prepopulate_pmd(mm, pgd, pmds);
382 spin_unlock(&pgd_lock);
384 return pgd;
386 out_free_pmds:
387 free_pmds(mm, pmds);
388 out_free_pgd:
389 _pgd_free(pgd);
390 out:
391 return NULL;
394 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
396 pgd_mop_up_pmds(mm, pgd);
397 pgd_dtor(pgd);
398 paravirt_pgd_free(mm, pgd);
399 _pgd_free(pgd);
403 * Used to set accessed or dirty bits in the page table entries
404 * on other architectures. On x86, the accessed and dirty bits
405 * are tracked by hardware. However, do_wp_page calls this function
406 * to also make the pte writeable at the same time the dirty bit is
407 * set. In that case we do actually need to write the PTE.
409 int ptep_set_access_flags(struct vm_area_struct *vma,
410 unsigned long address, pte_t *ptep,
411 pte_t entry, int dirty)
413 int changed = !pte_same(*ptep, entry);
415 if (changed && dirty) {
416 *ptep = entry;
417 pte_update(vma->vm_mm, address, ptep);
420 return changed;
423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
424 int pmdp_set_access_flags(struct vm_area_struct *vma,
425 unsigned long address, pmd_t *pmdp,
426 pmd_t entry, int dirty)
428 int changed = !pmd_same(*pmdp, entry);
430 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
432 if (changed && dirty) {
433 *pmdp = entry;
435 * We had a write-protection fault here and changed the pmd
436 * to to more permissive. No need to flush the TLB for that,
437 * #PF is architecturally guaranteed to do that and in the
438 * worst-case we'll generate a spurious fault.
442 return changed;
444 #endif
446 int ptep_test_and_clear_young(struct vm_area_struct *vma,
447 unsigned long addr, pte_t *ptep)
449 int ret = 0;
451 if (pte_young(*ptep))
452 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
453 (unsigned long *) &ptep->pte);
455 if (ret)
456 pte_update(vma->vm_mm, addr, ptep);
458 return ret;
461 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
462 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
463 unsigned long addr, pmd_t *pmdp)
465 int ret = 0;
467 if (pmd_young(*pmdp))
468 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
469 (unsigned long *)pmdp);
471 return ret;
473 #endif
475 int ptep_clear_flush_young(struct vm_area_struct *vma,
476 unsigned long address, pte_t *ptep)
479 * On x86 CPUs, clearing the accessed bit without a TLB flush
480 * doesn't cause data corruption. [ It could cause incorrect
481 * page aging and the (mistaken) reclaim of hot pages, but the
482 * chance of that should be relatively low. ]
484 * So as a performance optimization don't flush the TLB when
485 * clearing the accessed bit, it will eventually be flushed by
486 * a context switch or a VM operation anyway. [ In the rare
487 * event of it not getting flushed for a long time the delay
488 * shouldn't really matter because there's no real memory
489 * pressure for swapout to react to. ]
491 return ptep_test_and_clear_young(vma, address, ptep);
494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
495 int pmdp_clear_flush_young(struct vm_area_struct *vma,
496 unsigned long address, pmd_t *pmdp)
498 int young;
500 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
502 young = pmdp_test_and_clear_young(vma, address, pmdp);
503 if (young)
504 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
506 return young;
508 #endif
511 * reserve_top_address - reserves a hole in the top of kernel address space
512 * @reserve - size of hole to reserve
514 * Can be used to relocate the fixmap area and poke a hole in the top
515 * of kernel address space to make room for a hypervisor.
517 void __init reserve_top_address(unsigned long reserve)
519 #ifdef CONFIG_X86_32
520 BUG_ON(fixmaps_set > 0);
521 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
522 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
523 -reserve, __FIXADDR_TOP + PAGE_SIZE);
524 #endif
527 int fixmaps_set;
529 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
531 unsigned long address = __fix_to_virt(idx);
533 if (idx >= __end_of_fixed_addresses) {
534 BUG();
535 return;
537 set_pte_vaddr(address, pte);
538 fixmaps_set++;
541 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
542 pgprot_t flags)
544 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
547 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
549 * pud_set_huge - setup kernel PUD mapping
551 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
552 * function sets up a huge page only if any of the following conditions are met:
554 * - MTRRs are disabled, or
556 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
558 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
559 * has no effect on the requested PAT memory type.
561 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
562 * page mapping attempt fails.
564 * Returns 1 on success and 0 on failure.
566 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
568 u8 mtrr, uniform;
570 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
571 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
572 (mtrr != MTRR_TYPE_WRBACK))
573 return 0;
575 prot = pgprot_4k_2_large(prot);
577 set_pte((pte_t *)pud, pfn_pte(
578 (u64)addr >> PAGE_SHIFT,
579 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
581 return 1;
585 * pmd_set_huge - setup kernel PMD mapping
587 * See text over pud_set_huge() above.
589 * Returns 1 on success and 0 on failure.
591 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
593 u8 mtrr, uniform;
595 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
596 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
597 (mtrr != MTRR_TYPE_WRBACK)) {
598 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
599 __func__, addr, addr + PMD_SIZE);
600 return 0;
603 prot = pgprot_4k_2_large(prot);
605 set_pte((pte_t *)pmd, pfn_pte(
606 (u64)addr >> PAGE_SHIFT,
607 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
609 return 1;
613 * pud_clear_huge - clear kernel PUD mapping when it is set
615 * Returns 1 on success and 0 on failure (no PUD map is found).
617 int pud_clear_huge(pud_t *pud)
619 if (pud_large(*pud)) {
620 pud_clear(pud);
621 return 1;
624 return 0;
628 * pmd_clear_huge - clear kernel PMD mapping when it is set
630 * Returns 1 on success and 0 on failure (no PMD map is found).
632 int pmd_clear_huge(pmd_t *pmd)
634 if (pmd_large(*pmd)) {
635 pmd_clear(pmd);
636 return 1;
639 return 0;
641 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */