3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
6 #include <asm/fixmap.h>
9 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
12 #define PGALLOC_USER_GFP __GFP_HIGHMEM
14 #define PGALLOC_USER_GFP 0
17 gfp_t __userpte_alloc_gfp
= PGALLOC_GFP
| PGALLOC_USER_GFP
;
19 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
, unsigned long address
)
21 return (pte_t
*)__get_free_page(PGALLOC_GFP
);
24 pgtable_t
pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
28 pte
= alloc_pages(__userpte_alloc_gfp
, 0);
31 if (!pgtable_page_ctor(pte
)) {
38 static int __init
setup_userpte(char *arg
)
44 * "userpte=nohigh" disables allocation of user pagetables in
47 if (strcmp(arg
, "nohigh") == 0)
48 __userpte_alloc_gfp
&= ~__GFP_HIGHMEM
;
53 early_param("userpte", setup_userpte
);
55 void ___pte_free_tlb(struct mmu_gather
*tlb
, struct page
*pte
)
57 pgtable_page_dtor(pte
);
58 paravirt_release_pte(page_to_pfn(pte
));
59 tlb_remove_page(tlb
, pte
);
62 #if CONFIG_PGTABLE_LEVELS > 2
63 void ___pmd_free_tlb(struct mmu_gather
*tlb
, pmd_t
*pmd
)
65 struct page
*page
= virt_to_page(pmd
);
66 paravirt_release_pmd(__pa(pmd
) >> PAGE_SHIFT
);
68 * NOTE! For PAE, any changes to the top page-directory-pointer-table
69 * entries need a full cr3 reload to flush.
72 tlb
->need_flush_all
= 1;
74 pgtable_pmd_page_dtor(page
);
75 tlb_remove_page(tlb
, page
);
78 #if CONFIG_PGTABLE_LEVELS > 3
79 void ___pud_free_tlb(struct mmu_gather
*tlb
, pud_t
*pud
)
81 paravirt_release_pud(__pa(pud
) >> PAGE_SHIFT
);
82 tlb_remove_page(tlb
, virt_to_page(pud
));
84 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
85 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
87 static inline void pgd_list_add(pgd_t
*pgd
)
89 struct page
*page
= virt_to_page(pgd
);
91 list_add(&page
->lru
, &pgd_list
);
94 static inline void pgd_list_del(pgd_t
*pgd
)
96 struct page
*page
= virt_to_page(pgd
);
101 #define UNSHARED_PTRS_PER_PGD \
102 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
105 static void pgd_set_mm(pgd_t
*pgd
, struct mm_struct
*mm
)
107 BUILD_BUG_ON(sizeof(virt_to_page(pgd
)->index
) < sizeof(mm
));
108 virt_to_page(pgd
)->index
= (pgoff_t
)mm
;
111 struct mm_struct
*pgd_page_get_mm(struct page
*page
)
113 return (struct mm_struct
*)page
->index
;
116 static void pgd_ctor(struct mm_struct
*mm
, pgd_t
*pgd
)
118 /* If the pgd points to a shared pagetable level (either the
119 ptes in non-PAE, or shared PMD in PAE), then just copy the
120 references from swapper_pg_dir. */
121 if (CONFIG_PGTABLE_LEVELS
== 2 ||
122 (CONFIG_PGTABLE_LEVELS
== 3 && SHARED_KERNEL_PMD
) ||
123 CONFIG_PGTABLE_LEVELS
== 4) {
124 clone_pgd_range(pgd
+ KERNEL_PGD_BOUNDARY
,
125 swapper_pg_dir
+ KERNEL_PGD_BOUNDARY
,
129 /* list required to sync kernel mapping updates */
130 if (!SHARED_KERNEL_PMD
) {
136 static void pgd_dtor(pgd_t
*pgd
)
138 if (SHARED_KERNEL_PMD
)
141 spin_lock(&pgd_lock
);
143 spin_unlock(&pgd_lock
);
147 * List of all pgd's needed for non-PAE so it can invalidate entries
148 * in both cached and uncached pgd's; not needed for PAE since the
149 * kernel pmd is shared. If PAE were not to share the pmd a similar
150 * tactic would be needed. This is essentially codepath-based locking
151 * against pageattr.c; it is the unique case in which a valid change
152 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
153 * vmalloc faults work because attached pagetables are never freed.
157 #ifdef CONFIG_X86_PAE
159 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
160 * updating the top-level pagetable entries to guarantee the
161 * processor notices the update. Since this is expensive, and
162 * all 4 top-level entries are used almost immediately in a
163 * new process's life, we just pre-populate them here.
165 * Also, if we're in a paravirt environment where the kernel pmd is
166 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
167 * and initialize the kernel pmds here.
169 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
171 void pud_populate(struct mm_struct
*mm
, pud_t
*pudp
, pmd_t
*pmd
)
173 paravirt_alloc_pmd(mm
, __pa(pmd
) >> PAGE_SHIFT
);
175 /* Note: almost everything apart from _PAGE_PRESENT is
176 reserved at the pmd (PDPT) level. */
177 set_pud(pudp
, __pud(__pa(pmd
) | _PAGE_PRESENT
));
180 * According to Intel App note "TLBs, Paging-Structure Caches,
181 * and Their Invalidation", April 2007, document 317080-001,
182 * section 8.1: in PAE mode we explicitly have to flush the
183 * TLB via cr3 if the top-level pgd is changed...
187 #else /* !CONFIG_X86_PAE */
189 /* No need to prepopulate any pagetable entries in non-PAE modes. */
190 #define PREALLOCATED_PMDS 0
192 #endif /* CONFIG_X86_PAE */
194 static void free_pmds(struct mm_struct
*mm
, pmd_t
*pmds
[])
198 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++)
200 pgtable_pmd_page_dtor(virt_to_page(pmds
[i
]));
201 free_page((unsigned long)pmds
[i
]);
206 static int preallocate_pmds(struct mm_struct
*mm
, pmd_t
*pmds
[])
211 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++) {
212 pmd_t
*pmd
= (pmd_t
*)__get_free_page(PGALLOC_GFP
);
215 if (pmd
&& !pgtable_pmd_page_ctor(virt_to_page(pmd
))) {
216 free_page((unsigned long)pmd
);
234 * Mop up any pmd pages which may still be attached to the pgd.
235 * Normally they will be freed by munmap/exit_mmap, but any pmd we
236 * preallocate which never got a corresponding vma will need to be
239 static void pgd_mop_up_pmds(struct mm_struct
*mm
, pgd_t
*pgdp
)
243 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++) {
246 if (pgd_val(pgd
) != 0) {
247 pmd_t
*pmd
= (pmd_t
*)pgd_page_vaddr(pgd
);
249 pgdp
[i
] = native_make_pgd(0);
251 paravirt_release_pmd(pgd_val(pgd
) >> PAGE_SHIFT
);
258 static void pgd_prepopulate_pmd(struct mm_struct
*mm
, pgd_t
*pgd
, pmd_t
*pmds
[])
263 if (PREALLOCATED_PMDS
== 0) /* Work around gcc-3.4.x bug */
266 pud
= pud_offset(pgd
, 0);
268 for (i
= 0; i
< PREALLOCATED_PMDS
; i
++, pud
++) {
269 pmd_t
*pmd
= pmds
[i
];
271 if (i
>= KERNEL_PGD_BOUNDARY
)
272 memcpy(pmd
, (pmd_t
*)pgd_page_vaddr(swapper_pg_dir
[i
]),
273 sizeof(pmd_t
) * PTRS_PER_PMD
);
275 pud_populate(mm
, pud
, pmd
);
280 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
281 * assumes that pgd should be in one page.
283 * But kernel with PAE paging that is not running as a Xen domain
284 * only needs to allocate 32 bytes for pgd instead of one page.
286 #ifdef CONFIG_X86_PAE
288 #include <linux/slab.h>
290 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
293 static struct kmem_cache
*pgd_cache
;
295 static int __init
pgd_cache_init(void)
298 * When PAE kernel is running as a Xen domain, it does not use
299 * shared kernel pmd. And this requires a whole page for pgd.
301 if (!SHARED_KERNEL_PMD
)
305 * when PAE kernel is not running as a Xen domain, it uses
306 * shared kernel pmd. Shared kernel pmd does not require a whole
307 * page for pgd. We are able to just allocate a 32-byte for pgd.
308 * During boot time, we create a 32-byte slab for pgd table allocation.
310 pgd_cache
= kmem_cache_create("pgd_cache", PGD_SIZE
, PGD_ALIGN
,
317 core_initcall(pgd_cache_init
);
319 static inline pgd_t
*_pgd_alloc(void)
322 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
323 * We allocate one page for pgd.
325 if (!SHARED_KERNEL_PMD
)
326 return (pgd_t
*)__get_free_page(PGALLOC_GFP
);
329 * Now PAE kernel is not running as a Xen domain. We can allocate
330 * a 32-byte slab for pgd to save memory space.
332 return kmem_cache_alloc(pgd_cache
, PGALLOC_GFP
);
335 static inline void _pgd_free(pgd_t
*pgd
)
337 if (!SHARED_KERNEL_PMD
)
338 free_page((unsigned long)pgd
);
340 kmem_cache_free(pgd_cache
, pgd
);
343 static inline pgd_t
*_pgd_alloc(void)
345 return (pgd_t
*)__get_free_page(PGALLOC_GFP
);
348 static inline void _pgd_free(pgd_t
*pgd
)
350 free_page((unsigned long)pgd
);
352 #endif /* CONFIG_X86_PAE */
354 pgd_t
*pgd_alloc(struct mm_struct
*mm
)
357 pmd_t
*pmds
[PREALLOCATED_PMDS
];
366 if (preallocate_pmds(mm
, pmds
) != 0)
369 if (paravirt_pgd_alloc(mm
) != 0)
373 * Make sure that pre-populating the pmds is atomic with
374 * respect to anything walking the pgd_list, so that they
375 * never see a partially populated pgd.
377 spin_lock(&pgd_lock
);
380 pgd_prepopulate_pmd(mm
, pgd
, pmds
);
382 spin_unlock(&pgd_lock
);
394 void pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
396 pgd_mop_up_pmds(mm
, pgd
);
398 paravirt_pgd_free(mm
, pgd
);
403 * Used to set accessed or dirty bits in the page table entries
404 * on other architectures. On x86, the accessed and dirty bits
405 * are tracked by hardware. However, do_wp_page calls this function
406 * to also make the pte writeable at the same time the dirty bit is
407 * set. In that case we do actually need to write the PTE.
409 int ptep_set_access_flags(struct vm_area_struct
*vma
,
410 unsigned long address
, pte_t
*ptep
,
411 pte_t entry
, int dirty
)
413 int changed
= !pte_same(*ptep
, entry
);
415 if (changed
&& dirty
) {
417 pte_update(vma
->vm_mm
, address
, ptep
);
423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
424 int pmdp_set_access_flags(struct vm_area_struct
*vma
,
425 unsigned long address
, pmd_t
*pmdp
,
426 pmd_t entry
, int dirty
)
428 int changed
= !pmd_same(*pmdp
, entry
);
430 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
432 if (changed
&& dirty
) {
435 * We had a write-protection fault here and changed the pmd
436 * to to more permissive. No need to flush the TLB for that,
437 * #PF is architecturally guaranteed to do that and in the
438 * worst-case we'll generate a spurious fault.
446 int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
447 unsigned long addr
, pte_t
*ptep
)
451 if (pte_young(*ptep
))
452 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
453 (unsigned long *) &ptep
->pte
);
456 pte_update(vma
->vm_mm
, addr
, ptep
);
461 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
462 int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
463 unsigned long addr
, pmd_t
*pmdp
)
467 if (pmd_young(*pmdp
))
468 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
469 (unsigned long *)pmdp
);
475 int ptep_clear_flush_young(struct vm_area_struct
*vma
,
476 unsigned long address
, pte_t
*ptep
)
479 * On x86 CPUs, clearing the accessed bit without a TLB flush
480 * doesn't cause data corruption. [ It could cause incorrect
481 * page aging and the (mistaken) reclaim of hot pages, but the
482 * chance of that should be relatively low. ]
484 * So as a performance optimization don't flush the TLB when
485 * clearing the accessed bit, it will eventually be flushed by
486 * a context switch or a VM operation anyway. [ In the rare
487 * event of it not getting flushed for a long time the delay
488 * shouldn't really matter because there's no real memory
489 * pressure for swapout to react to. ]
491 return ptep_test_and_clear_young(vma
, address
, ptep
);
494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
495 int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
496 unsigned long address
, pmd_t
*pmdp
)
500 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
502 young
= pmdp_test_and_clear_young(vma
, address
, pmdp
);
504 flush_tlb_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
511 * reserve_top_address - reserves a hole in the top of kernel address space
512 * @reserve - size of hole to reserve
514 * Can be used to relocate the fixmap area and poke a hole in the top
515 * of kernel address space to make room for a hypervisor.
517 void __init
reserve_top_address(unsigned long reserve
)
520 BUG_ON(fixmaps_set
> 0);
521 __FIXADDR_TOP
= round_down(-reserve
, 1 << PMD_SHIFT
) - PAGE_SIZE
;
522 printk(KERN_INFO
"Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
523 -reserve
, __FIXADDR_TOP
+ PAGE_SIZE
);
529 void __native_set_fixmap(enum fixed_addresses idx
, pte_t pte
)
531 unsigned long address
= __fix_to_virt(idx
);
533 if (idx
>= __end_of_fixed_addresses
) {
537 set_pte_vaddr(address
, pte
);
541 void native_set_fixmap(enum fixed_addresses idx
, phys_addr_t phys
,
544 __native_set_fixmap(idx
, pfn_pte(phys
>> PAGE_SHIFT
, flags
));
547 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
549 * pud_set_huge - setup kernel PUD mapping
551 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
552 * function sets up a huge page only if any of the following conditions are met:
554 * - MTRRs are disabled, or
556 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
558 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
559 * has no effect on the requested PAT memory type.
561 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
562 * page mapping attempt fails.
564 * Returns 1 on success and 0 on failure.
566 int pud_set_huge(pud_t
*pud
, phys_addr_t addr
, pgprot_t prot
)
570 mtrr
= mtrr_type_lookup(addr
, addr
+ PUD_SIZE
, &uniform
);
571 if ((mtrr
!= MTRR_TYPE_INVALID
) && (!uniform
) &&
572 (mtrr
!= MTRR_TYPE_WRBACK
))
575 prot
= pgprot_4k_2_large(prot
);
577 set_pte((pte_t
*)pud
, pfn_pte(
578 (u64
)addr
>> PAGE_SHIFT
,
579 __pgprot(pgprot_val(prot
) | _PAGE_PSE
)));
585 * pmd_set_huge - setup kernel PMD mapping
587 * See text over pud_set_huge() above.
589 * Returns 1 on success and 0 on failure.
591 int pmd_set_huge(pmd_t
*pmd
, phys_addr_t addr
, pgprot_t prot
)
595 mtrr
= mtrr_type_lookup(addr
, addr
+ PMD_SIZE
, &uniform
);
596 if ((mtrr
!= MTRR_TYPE_INVALID
) && (!uniform
) &&
597 (mtrr
!= MTRR_TYPE_WRBACK
)) {
598 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
599 __func__
, addr
, addr
+ PMD_SIZE
);
603 prot
= pgprot_4k_2_large(prot
);
605 set_pte((pte_t
*)pmd
, pfn_pte(
606 (u64
)addr
>> PAGE_SHIFT
,
607 __pgprot(pgprot_val(prot
) | _PAGE_PSE
)));
613 * pud_clear_huge - clear kernel PUD mapping when it is set
615 * Returns 1 on success and 0 on failure (no PUD map is found).
617 int pud_clear_huge(pud_t
*pud
)
619 if (pud_large(*pud
)) {
628 * pmd_clear_huge - clear kernel PMD mapping when it is set
630 * Returns 1 on success and 0 on failure (no PMD map is found).
632 int pmd_clear_huge(pmd_t
*pmd
)
634 if (pmd_large(*pmd
)) {
641 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */