Linux 4.6-rc6
[linux/fpc-iii.git] / mm / sparse.c
blob5d0cf45403646e54b0e92673f8855e693ad1cf84
1 /*
2 * sparse memory mappings.
3 */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/export.h>
11 #include <linux/spinlock.h>
12 #include <linux/vmalloc.h>
14 #include "internal.h"
15 #include <asm/dma.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
20 * Permanent SPARSEMEM data:
22 * 1) mem_section - memory sections, mem_map's for valid memory
24 #ifdef CONFIG_SPARSEMEM_EXTREME
25 struct mem_section *mem_section[NR_SECTION_ROOTS]
26 ____cacheline_internodealigned_in_smp;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
45 int page_to_nid(const struct page *page)
47 return section_to_node_table[page_to_section(page)];
49 EXPORT_SYMBOL(page_to_nid);
51 static void set_section_nid(unsigned long section_nr, int nid)
53 section_to_node_table[section_nr] = nid;
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
59 #endif
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
68 if (slab_is_available()) {
69 if (node_state(nid, N_HIGH_MEMORY))
70 section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 else
72 section = kzalloc(array_size, GFP_KERNEL);
73 } else {
74 section = memblock_virt_alloc_node(array_size, nid);
77 return section;
80 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
82 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
83 struct mem_section *section;
85 if (mem_section[root])
86 return -EEXIST;
88 section = sparse_index_alloc(nid);
89 if (!section)
90 return -ENOMEM;
92 mem_section[root] = section;
94 return 0;
96 #else /* !SPARSEMEM_EXTREME */
97 static inline int sparse_index_init(unsigned long section_nr, int nid)
99 return 0;
101 #endif
104 * Although written for the SPARSEMEM_EXTREME case, this happens
105 * to also work for the flat array case because
106 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
108 int __section_nr(struct mem_section* ms)
110 unsigned long root_nr;
111 struct mem_section* root;
113 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
114 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
115 if (!root)
116 continue;
118 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
119 break;
122 VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
124 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
128 * During early boot, before section_mem_map is used for an actual
129 * mem_map, we use section_mem_map to store the section's NUMA
130 * node. This keeps us from having to use another data structure. The
131 * node information is cleared just before we store the real mem_map.
133 static inline unsigned long sparse_encode_early_nid(int nid)
135 return (nid << SECTION_NID_SHIFT);
138 static inline int sparse_early_nid(struct mem_section *section)
140 return (section->section_mem_map >> SECTION_NID_SHIFT);
143 /* Validate the physical addressing limitations of the model */
144 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
145 unsigned long *end_pfn)
147 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
150 * Sanity checks - do not allow an architecture to pass
151 * in larger pfns than the maximum scope of sparsemem:
153 if (*start_pfn > max_sparsemem_pfn) {
154 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
155 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
156 *start_pfn, *end_pfn, max_sparsemem_pfn);
157 WARN_ON_ONCE(1);
158 *start_pfn = max_sparsemem_pfn;
159 *end_pfn = max_sparsemem_pfn;
160 } else if (*end_pfn > max_sparsemem_pfn) {
161 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
162 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163 *start_pfn, *end_pfn, max_sparsemem_pfn);
164 WARN_ON_ONCE(1);
165 *end_pfn = max_sparsemem_pfn;
169 /* Record a memory area against a node. */
170 void __init memory_present(int nid, unsigned long start, unsigned long end)
172 unsigned long pfn;
174 start &= PAGE_SECTION_MASK;
175 mminit_validate_memmodel_limits(&start, &end);
176 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
177 unsigned long section = pfn_to_section_nr(pfn);
178 struct mem_section *ms;
180 sparse_index_init(section, nid);
181 set_section_nid(section, nid);
183 ms = __nr_to_section(section);
184 if (!ms->section_mem_map)
185 ms->section_mem_map = sparse_encode_early_nid(nid) |
186 SECTION_MARKED_PRESENT;
191 * Only used by the i386 NUMA architecures, but relatively
192 * generic code.
194 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
195 unsigned long end_pfn)
197 unsigned long pfn;
198 unsigned long nr_pages = 0;
200 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
201 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
202 if (nid != early_pfn_to_nid(pfn))
203 continue;
205 if (pfn_present(pfn))
206 nr_pages += PAGES_PER_SECTION;
209 return nr_pages * sizeof(struct page);
213 * Subtle, we encode the real pfn into the mem_map such that
214 * the identity pfn - section_mem_map will return the actual
215 * physical page frame number.
217 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
219 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
223 * Decode mem_map from the coded memmap
225 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
227 /* mask off the extra low bits of information */
228 coded_mem_map &= SECTION_MAP_MASK;
229 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
232 static int __meminit sparse_init_one_section(struct mem_section *ms,
233 unsigned long pnum, struct page *mem_map,
234 unsigned long *pageblock_bitmap)
236 if (!present_section(ms))
237 return -EINVAL;
239 ms->section_mem_map &= ~SECTION_MAP_MASK;
240 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
241 SECTION_HAS_MEM_MAP;
242 ms->pageblock_flags = pageblock_bitmap;
244 return 1;
247 unsigned long usemap_size(void)
249 unsigned long size_bytes;
250 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
251 size_bytes = roundup(size_bytes, sizeof(unsigned long));
252 return size_bytes;
255 #ifdef CONFIG_MEMORY_HOTPLUG
256 static unsigned long *__kmalloc_section_usemap(void)
258 return kmalloc(usemap_size(), GFP_KERNEL);
260 #endif /* CONFIG_MEMORY_HOTPLUG */
262 #ifdef CONFIG_MEMORY_HOTREMOVE
263 static unsigned long * __init
264 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
265 unsigned long size)
267 unsigned long goal, limit;
268 unsigned long *p;
269 int nid;
271 * A page may contain usemaps for other sections preventing the
272 * page being freed and making a section unremovable while
273 * other sections referencing the usemap remain active. Similarly,
274 * a pgdat can prevent a section being removed. If section A
275 * contains a pgdat and section B contains the usemap, both
276 * sections become inter-dependent. This allocates usemaps
277 * from the same section as the pgdat where possible to avoid
278 * this problem.
280 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
281 limit = goal + (1UL << PA_SECTION_SHIFT);
282 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
283 again:
284 p = memblock_virt_alloc_try_nid_nopanic(size,
285 SMP_CACHE_BYTES, goal, limit,
286 nid);
287 if (!p && limit) {
288 limit = 0;
289 goto again;
291 return p;
294 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
296 unsigned long usemap_snr, pgdat_snr;
297 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
298 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
299 struct pglist_data *pgdat = NODE_DATA(nid);
300 int usemap_nid;
302 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
303 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
304 if (usemap_snr == pgdat_snr)
305 return;
307 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
308 /* skip redundant message */
309 return;
311 old_usemap_snr = usemap_snr;
312 old_pgdat_snr = pgdat_snr;
314 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
315 if (usemap_nid != nid) {
316 pr_info("node %d must be removed before remove section %ld\n",
317 nid, usemap_snr);
318 return;
321 * There is a circular dependency.
322 * Some platforms allow un-removable section because they will just
323 * gather other removable sections for dynamic partitioning.
324 * Just notify un-removable section's number here.
326 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
327 usemap_snr, pgdat_snr, nid);
329 #else
330 static unsigned long * __init
331 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
332 unsigned long size)
334 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
337 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
340 #endif /* CONFIG_MEMORY_HOTREMOVE */
342 static void __init sparse_early_usemaps_alloc_node(void *data,
343 unsigned long pnum_begin,
344 unsigned long pnum_end,
345 unsigned long usemap_count, int nodeid)
347 void *usemap;
348 unsigned long pnum;
349 unsigned long **usemap_map = (unsigned long **)data;
350 int size = usemap_size();
352 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
353 size * usemap_count);
354 if (!usemap) {
355 pr_warn("%s: allocation failed\n", __func__);
356 return;
359 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
360 if (!present_section_nr(pnum))
361 continue;
362 usemap_map[pnum] = usemap;
363 usemap += size;
364 check_usemap_section_nr(nodeid, usemap_map[pnum]);
368 #ifndef CONFIG_SPARSEMEM_VMEMMAP
369 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
371 struct page *map;
372 unsigned long size;
374 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
375 if (map)
376 return map;
378 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
379 map = memblock_virt_alloc_try_nid(size,
380 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
381 BOOTMEM_ALLOC_ACCESSIBLE, nid);
382 return map;
384 void __init sparse_mem_maps_populate_node(struct page **map_map,
385 unsigned long pnum_begin,
386 unsigned long pnum_end,
387 unsigned long map_count, int nodeid)
389 void *map;
390 unsigned long pnum;
391 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
393 map = alloc_remap(nodeid, size * map_count);
394 if (map) {
395 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
396 if (!present_section_nr(pnum))
397 continue;
398 map_map[pnum] = map;
399 map += size;
401 return;
404 size = PAGE_ALIGN(size);
405 map = memblock_virt_alloc_try_nid(size * map_count,
406 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
407 BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
408 if (map) {
409 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
410 if (!present_section_nr(pnum))
411 continue;
412 map_map[pnum] = map;
413 map += size;
415 return;
418 /* fallback */
419 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
420 struct mem_section *ms;
422 if (!present_section_nr(pnum))
423 continue;
424 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
425 if (map_map[pnum])
426 continue;
427 ms = __nr_to_section(pnum);
428 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
429 __func__);
430 ms->section_mem_map = 0;
433 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
435 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
436 static void __init sparse_early_mem_maps_alloc_node(void *data,
437 unsigned long pnum_begin,
438 unsigned long pnum_end,
439 unsigned long map_count, int nodeid)
441 struct page **map_map = (struct page **)data;
442 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
443 map_count, nodeid);
445 #else
446 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
448 struct page *map;
449 struct mem_section *ms = __nr_to_section(pnum);
450 int nid = sparse_early_nid(ms);
452 map = sparse_mem_map_populate(pnum, nid);
453 if (map)
454 return map;
456 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
457 __func__);
458 ms->section_mem_map = 0;
459 return NULL;
461 #endif
463 void __weak __meminit vmemmap_populate_print_last(void)
468 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
469 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
471 static void __init alloc_usemap_and_memmap(void (*alloc_func)
472 (void *, unsigned long, unsigned long,
473 unsigned long, int), void *data)
475 unsigned long pnum;
476 unsigned long map_count;
477 int nodeid_begin = 0;
478 unsigned long pnum_begin = 0;
480 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
481 struct mem_section *ms;
483 if (!present_section_nr(pnum))
484 continue;
485 ms = __nr_to_section(pnum);
486 nodeid_begin = sparse_early_nid(ms);
487 pnum_begin = pnum;
488 break;
490 map_count = 1;
491 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
492 struct mem_section *ms;
493 int nodeid;
495 if (!present_section_nr(pnum))
496 continue;
497 ms = __nr_to_section(pnum);
498 nodeid = sparse_early_nid(ms);
499 if (nodeid == nodeid_begin) {
500 map_count++;
501 continue;
503 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
504 alloc_func(data, pnum_begin, pnum,
505 map_count, nodeid_begin);
506 /* new start, update count etc*/
507 nodeid_begin = nodeid;
508 pnum_begin = pnum;
509 map_count = 1;
511 /* ok, last chunk */
512 alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
513 map_count, nodeid_begin);
517 * Allocate the accumulated non-linear sections, allocate a mem_map
518 * for each and record the physical to section mapping.
520 void __init sparse_init(void)
522 unsigned long pnum;
523 struct page *map;
524 unsigned long *usemap;
525 unsigned long **usemap_map;
526 int size;
527 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
528 int size2;
529 struct page **map_map;
530 #endif
532 /* see include/linux/mmzone.h 'struct mem_section' definition */
533 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
535 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
536 set_pageblock_order();
539 * map is using big page (aka 2M in x86 64 bit)
540 * usemap is less one page (aka 24 bytes)
541 * so alloc 2M (with 2M align) and 24 bytes in turn will
542 * make next 2M slip to one more 2M later.
543 * then in big system, the memory will have a lot of holes...
544 * here try to allocate 2M pages continuously.
546 * powerpc need to call sparse_init_one_section right after each
547 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
549 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
550 usemap_map = memblock_virt_alloc(size, 0);
551 if (!usemap_map)
552 panic("can not allocate usemap_map\n");
553 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
554 (void *)usemap_map);
556 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
557 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
558 map_map = memblock_virt_alloc(size2, 0);
559 if (!map_map)
560 panic("can not allocate map_map\n");
561 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
562 (void *)map_map);
563 #endif
565 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
566 if (!present_section_nr(pnum))
567 continue;
569 usemap = usemap_map[pnum];
570 if (!usemap)
571 continue;
573 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
574 map = map_map[pnum];
575 #else
576 map = sparse_early_mem_map_alloc(pnum);
577 #endif
578 if (!map)
579 continue;
581 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
582 usemap);
585 vmemmap_populate_print_last();
587 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
588 memblock_free_early(__pa(map_map), size2);
589 #endif
590 memblock_free_early(__pa(usemap_map), size);
593 #ifdef CONFIG_MEMORY_HOTPLUG
594 #ifdef CONFIG_SPARSEMEM_VMEMMAP
595 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
597 /* This will make the necessary allocations eventually. */
598 return sparse_mem_map_populate(pnum, nid);
600 static void __kfree_section_memmap(struct page *memmap)
602 unsigned long start = (unsigned long)memmap;
603 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
605 vmemmap_free(start, end);
607 #ifdef CONFIG_MEMORY_HOTREMOVE
608 static void free_map_bootmem(struct page *memmap)
610 unsigned long start = (unsigned long)memmap;
611 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
613 vmemmap_free(start, end);
615 #endif /* CONFIG_MEMORY_HOTREMOVE */
616 #else
617 static struct page *__kmalloc_section_memmap(void)
619 struct page *page, *ret;
620 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
622 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
623 if (page)
624 goto got_map_page;
626 ret = vmalloc(memmap_size);
627 if (ret)
628 goto got_map_ptr;
630 return NULL;
631 got_map_page:
632 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
633 got_map_ptr:
635 return ret;
638 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
640 return __kmalloc_section_memmap();
643 static void __kfree_section_memmap(struct page *memmap)
645 if (is_vmalloc_addr(memmap))
646 vfree(memmap);
647 else
648 free_pages((unsigned long)memmap,
649 get_order(sizeof(struct page) * PAGES_PER_SECTION));
652 #ifdef CONFIG_MEMORY_HOTREMOVE
653 static void free_map_bootmem(struct page *memmap)
655 unsigned long maps_section_nr, removing_section_nr, i;
656 unsigned long magic, nr_pages;
657 struct page *page = virt_to_page(memmap);
659 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
660 >> PAGE_SHIFT;
662 for (i = 0; i < nr_pages; i++, page++) {
663 magic = (unsigned long) page->lru.next;
665 BUG_ON(magic == NODE_INFO);
667 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
668 removing_section_nr = page->private;
671 * When this function is called, the removing section is
672 * logical offlined state. This means all pages are isolated
673 * from page allocator. If removing section's memmap is placed
674 * on the same section, it must not be freed.
675 * If it is freed, page allocator may allocate it which will
676 * be removed physically soon.
678 if (maps_section_nr != removing_section_nr)
679 put_page_bootmem(page);
682 #endif /* CONFIG_MEMORY_HOTREMOVE */
683 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
686 * returns the number of sections whose mem_maps were properly
687 * set. If this is <=0, then that means that the passed-in
688 * map was not consumed and must be freed.
690 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
692 unsigned long section_nr = pfn_to_section_nr(start_pfn);
693 struct pglist_data *pgdat = zone->zone_pgdat;
694 struct mem_section *ms;
695 struct page *memmap;
696 unsigned long *usemap;
697 unsigned long flags;
698 int ret;
701 * no locking for this, because it does its own
702 * plus, it does a kmalloc
704 ret = sparse_index_init(section_nr, pgdat->node_id);
705 if (ret < 0 && ret != -EEXIST)
706 return ret;
707 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
708 if (!memmap)
709 return -ENOMEM;
710 usemap = __kmalloc_section_usemap();
711 if (!usemap) {
712 __kfree_section_memmap(memmap);
713 return -ENOMEM;
716 pgdat_resize_lock(pgdat, &flags);
718 ms = __pfn_to_section(start_pfn);
719 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
720 ret = -EEXIST;
721 goto out;
724 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
726 ms->section_mem_map |= SECTION_MARKED_PRESENT;
728 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
730 out:
731 pgdat_resize_unlock(pgdat, &flags);
732 if (ret <= 0) {
733 kfree(usemap);
734 __kfree_section_memmap(memmap);
736 return ret;
739 #ifdef CONFIG_MEMORY_HOTREMOVE
740 #ifdef CONFIG_MEMORY_FAILURE
741 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
743 int i;
745 if (!memmap)
746 return;
748 for (i = 0; i < nr_pages; i++) {
749 if (PageHWPoison(&memmap[i])) {
750 atomic_long_sub(1, &num_poisoned_pages);
751 ClearPageHWPoison(&memmap[i]);
755 #else
756 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
759 #endif
761 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
763 struct page *usemap_page;
765 if (!usemap)
766 return;
768 usemap_page = virt_to_page(usemap);
770 * Check to see if allocation came from hot-plug-add
772 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
773 kfree(usemap);
774 if (memmap)
775 __kfree_section_memmap(memmap);
776 return;
780 * The usemap came from bootmem. This is packed with other usemaps
781 * on the section which has pgdat at boot time. Just keep it as is now.
784 if (memmap)
785 free_map_bootmem(memmap);
788 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
789 unsigned long map_offset)
791 struct page *memmap = NULL;
792 unsigned long *usemap = NULL, flags;
793 struct pglist_data *pgdat = zone->zone_pgdat;
795 pgdat_resize_lock(pgdat, &flags);
796 if (ms->section_mem_map) {
797 usemap = ms->pageblock_flags;
798 memmap = sparse_decode_mem_map(ms->section_mem_map,
799 __section_nr(ms));
800 ms->section_mem_map = 0;
801 ms->pageblock_flags = NULL;
803 pgdat_resize_unlock(pgdat, &flags);
805 clear_hwpoisoned_pages(memmap + map_offset,
806 PAGES_PER_SECTION - map_offset);
807 free_section_usemap(memmap, usemap);
809 #endif /* CONFIG_MEMORY_HOTREMOVE */
810 #endif /* CONFIG_MEMORY_HOTPLUG */