Linux 4.6-rc6
[linux/fpc-iii.git] / mm / vmscan.c
blob142cb61f4822454bf3819a4c10c4e8b479a70ec8
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
57 #include "internal.h"
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
62 struct scan_control {
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
69 /* Allocation order */
70 int order;
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
76 nodemask_t *nodemask;
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
82 struct mem_cgroup *target_mem_cgroup;
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
87 unsigned int may_writepage:1;
89 /* Can mapped pages be reclaimed? */
90 unsigned int may_unmap:1;
92 /* Can pages be swapped as part of reclaim? */
93 unsigned int may_swap:1;
95 /* Can cgroups be reclaimed below their normal consumption range? */
96 unsigned int may_thrash:1;
98 unsigned int hibernation_mode:1;
100 /* One of the zones is ready for compaction */
101 unsigned int compaction_ready:1;
103 /* Incremented by the number of inactive pages that were scanned */
104 unsigned long nr_scanned;
106 /* Number of pages freed so far during a call to shrink_zones() */
107 unsigned long nr_reclaimed;
110 #ifdef ARCH_HAS_PREFETCH
111 #define prefetch_prev_lru_page(_page, _base, _field) \
112 do { \
113 if ((_page)->lru.prev != _base) { \
114 struct page *prev; \
116 prev = lru_to_page(&(_page->lru)); \
117 prefetch(&prev->_field); \
119 } while (0)
120 #else
121 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
122 #endif
124 #ifdef ARCH_HAS_PREFETCHW
125 #define prefetchw_prev_lru_page(_page, _base, _field) \
126 do { \
127 if ((_page)->lru.prev != _base) { \
128 struct page *prev; \
130 prev = lru_to_page(&(_page->lru)); \
131 prefetchw(&prev->_field); \
133 } while (0)
134 #else
135 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
136 #endif
139 * From 0 .. 100. Higher means more swappy.
141 int vm_swappiness = 60;
143 * The total number of pages which are beyond the high watermark within all
144 * zones.
146 unsigned long vm_total_pages;
148 static LIST_HEAD(shrinker_list);
149 static DECLARE_RWSEM(shrinker_rwsem);
151 #ifdef CONFIG_MEMCG
152 static bool global_reclaim(struct scan_control *sc)
154 return !sc->target_mem_cgroup;
158 * sane_reclaim - is the usual dirty throttling mechanism operational?
159 * @sc: scan_control in question
161 * The normal page dirty throttling mechanism in balance_dirty_pages() is
162 * completely broken with the legacy memcg and direct stalling in
163 * shrink_page_list() is used for throttling instead, which lacks all the
164 * niceties such as fairness, adaptive pausing, bandwidth proportional
165 * allocation and configurability.
167 * This function tests whether the vmscan currently in progress can assume
168 * that the normal dirty throttling mechanism is operational.
170 static bool sane_reclaim(struct scan_control *sc)
172 struct mem_cgroup *memcg = sc->target_mem_cgroup;
174 if (!memcg)
175 return true;
176 #ifdef CONFIG_CGROUP_WRITEBACK
177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
178 return true;
179 #endif
180 return false;
182 #else
183 static bool global_reclaim(struct scan_control *sc)
185 return true;
188 static bool sane_reclaim(struct scan_control *sc)
190 return true;
192 #endif
194 static unsigned long zone_reclaimable_pages(struct zone *zone)
196 unsigned long nr;
198 nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) +
199 zone_page_state_snapshot(zone, NR_INACTIVE_FILE) +
200 zone_page_state_snapshot(zone, NR_ISOLATED_FILE);
202 if (get_nr_swap_pages() > 0)
203 nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) +
204 zone_page_state_snapshot(zone, NR_INACTIVE_ANON) +
205 zone_page_state_snapshot(zone, NR_ISOLATED_ANON);
207 return nr;
210 bool zone_reclaimable(struct zone *zone)
212 return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) <
213 zone_reclaimable_pages(zone) * 6;
216 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
218 if (!mem_cgroup_disabled())
219 return mem_cgroup_get_lru_size(lruvec, lru);
221 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
225 * Add a shrinker callback to be called from the vm.
227 int register_shrinker(struct shrinker *shrinker)
229 size_t size = sizeof(*shrinker->nr_deferred);
231 if (shrinker->flags & SHRINKER_NUMA_AWARE)
232 size *= nr_node_ids;
234 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
235 if (!shrinker->nr_deferred)
236 return -ENOMEM;
238 down_write(&shrinker_rwsem);
239 list_add_tail(&shrinker->list, &shrinker_list);
240 up_write(&shrinker_rwsem);
241 return 0;
243 EXPORT_SYMBOL(register_shrinker);
246 * Remove one
248 void unregister_shrinker(struct shrinker *shrinker)
250 down_write(&shrinker_rwsem);
251 list_del(&shrinker->list);
252 up_write(&shrinker_rwsem);
253 kfree(shrinker->nr_deferred);
255 EXPORT_SYMBOL(unregister_shrinker);
257 #define SHRINK_BATCH 128
259 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
260 struct shrinker *shrinker,
261 unsigned long nr_scanned,
262 unsigned long nr_eligible)
264 unsigned long freed = 0;
265 unsigned long long delta;
266 long total_scan;
267 long freeable;
268 long nr;
269 long new_nr;
270 int nid = shrinkctl->nid;
271 long batch_size = shrinker->batch ? shrinker->batch
272 : SHRINK_BATCH;
274 freeable = shrinker->count_objects(shrinker, shrinkctl);
275 if (freeable == 0)
276 return 0;
279 * copy the current shrinker scan count into a local variable
280 * and zero it so that other concurrent shrinker invocations
281 * don't also do this scanning work.
283 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
285 total_scan = nr;
286 delta = (4 * nr_scanned) / shrinker->seeks;
287 delta *= freeable;
288 do_div(delta, nr_eligible + 1);
289 total_scan += delta;
290 if (total_scan < 0) {
291 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
292 shrinker->scan_objects, total_scan);
293 total_scan = freeable;
297 * We need to avoid excessive windup on filesystem shrinkers
298 * due to large numbers of GFP_NOFS allocations causing the
299 * shrinkers to return -1 all the time. This results in a large
300 * nr being built up so when a shrink that can do some work
301 * comes along it empties the entire cache due to nr >>>
302 * freeable. This is bad for sustaining a working set in
303 * memory.
305 * Hence only allow the shrinker to scan the entire cache when
306 * a large delta change is calculated directly.
308 if (delta < freeable / 4)
309 total_scan = min(total_scan, freeable / 2);
312 * Avoid risking looping forever due to too large nr value:
313 * never try to free more than twice the estimate number of
314 * freeable entries.
316 if (total_scan > freeable * 2)
317 total_scan = freeable * 2;
319 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
320 nr_scanned, nr_eligible,
321 freeable, delta, total_scan);
324 * Normally, we should not scan less than batch_size objects in one
325 * pass to avoid too frequent shrinker calls, but if the slab has less
326 * than batch_size objects in total and we are really tight on memory,
327 * we will try to reclaim all available objects, otherwise we can end
328 * up failing allocations although there are plenty of reclaimable
329 * objects spread over several slabs with usage less than the
330 * batch_size.
332 * We detect the "tight on memory" situations by looking at the total
333 * number of objects we want to scan (total_scan). If it is greater
334 * than the total number of objects on slab (freeable), we must be
335 * scanning at high prio and therefore should try to reclaim as much as
336 * possible.
338 while (total_scan >= batch_size ||
339 total_scan >= freeable) {
340 unsigned long ret;
341 unsigned long nr_to_scan = min(batch_size, total_scan);
343 shrinkctl->nr_to_scan = nr_to_scan;
344 ret = shrinker->scan_objects(shrinker, shrinkctl);
345 if (ret == SHRINK_STOP)
346 break;
347 freed += ret;
349 count_vm_events(SLABS_SCANNED, nr_to_scan);
350 total_scan -= nr_to_scan;
352 cond_resched();
356 * move the unused scan count back into the shrinker in a
357 * manner that handles concurrent updates. If we exhausted the
358 * scan, there is no need to do an update.
360 if (total_scan > 0)
361 new_nr = atomic_long_add_return(total_scan,
362 &shrinker->nr_deferred[nid]);
363 else
364 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
366 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
367 return freed;
371 * shrink_slab - shrink slab caches
372 * @gfp_mask: allocation context
373 * @nid: node whose slab caches to target
374 * @memcg: memory cgroup whose slab caches to target
375 * @nr_scanned: pressure numerator
376 * @nr_eligible: pressure denominator
378 * Call the shrink functions to age shrinkable caches.
380 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
381 * unaware shrinkers will receive a node id of 0 instead.
383 * @memcg specifies the memory cgroup to target. If it is not NULL,
384 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
385 * objects from the memory cgroup specified. Otherwise, only unaware
386 * shrinkers are called.
388 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
389 * the available objects should be scanned. Page reclaim for example
390 * passes the number of pages scanned and the number of pages on the
391 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
392 * when it encountered mapped pages. The ratio is further biased by
393 * the ->seeks setting of the shrink function, which indicates the
394 * cost to recreate an object relative to that of an LRU page.
396 * Returns the number of reclaimed slab objects.
398 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
399 struct mem_cgroup *memcg,
400 unsigned long nr_scanned,
401 unsigned long nr_eligible)
403 struct shrinker *shrinker;
404 unsigned long freed = 0;
406 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
407 return 0;
409 if (nr_scanned == 0)
410 nr_scanned = SWAP_CLUSTER_MAX;
412 if (!down_read_trylock(&shrinker_rwsem)) {
414 * If we would return 0, our callers would understand that we
415 * have nothing else to shrink and give up trying. By returning
416 * 1 we keep it going and assume we'll be able to shrink next
417 * time.
419 freed = 1;
420 goto out;
423 list_for_each_entry(shrinker, &shrinker_list, list) {
424 struct shrink_control sc = {
425 .gfp_mask = gfp_mask,
426 .nid = nid,
427 .memcg = memcg,
431 * If kernel memory accounting is disabled, we ignore
432 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
433 * passing NULL for memcg.
435 if (memcg_kmem_enabled() &&
436 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
437 continue;
439 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
440 sc.nid = 0;
442 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
445 up_read(&shrinker_rwsem);
446 out:
447 cond_resched();
448 return freed;
451 void drop_slab_node(int nid)
453 unsigned long freed;
455 do {
456 struct mem_cgroup *memcg = NULL;
458 freed = 0;
459 do {
460 freed += shrink_slab(GFP_KERNEL, nid, memcg,
461 1000, 1000);
462 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
463 } while (freed > 10);
466 void drop_slab(void)
468 int nid;
470 for_each_online_node(nid)
471 drop_slab_node(nid);
474 static inline int is_page_cache_freeable(struct page *page)
477 * A freeable page cache page is referenced only by the caller
478 * that isolated the page, the page cache radix tree and
479 * optional buffer heads at page->private.
481 return page_count(page) - page_has_private(page) == 2;
484 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
486 if (current->flags & PF_SWAPWRITE)
487 return 1;
488 if (!inode_write_congested(inode))
489 return 1;
490 if (inode_to_bdi(inode) == current->backing_dev_info)
491 return 1;
492 return 0;
496 * We detected a synchronous write error writing a page out. Probably
497 * -ENOSPC. We need to propagate that into the address_space for a subsequent
498 * fsync(), msync() or close().
500 * The tricky part is that after writepage we cannot touch the mapping: nothing
501 * prevents it from being freed up. But we have a ref on the page and once
502 * that page is locked, the mapping is pinned.
504 * We're allowed to run sleeping lock_page() here because we know the caller has
505 * __GFP_FS.
507 static void handle_write_error(struct address_space *mapping,
508 struct page *page, int error)
510 lock_page(page);
511 if (page_mapping(page) == mapping)
512 mapping_set_error(mapping, error);
513 unlock_page(page);
516 /* possible outcome of pageout() */
517 typedef enum {
518 /* failed to write page out, page is locked */
519 PAGE_KEEP,
520 /* move page to the active list, page is locked */
521 PAGE_ACTIVATE,
522 /* page has been sent to the disk successfully, page is unlocked */
523 PAGE_SUCCESS,
524 /* page is clean and locked */
525 PAGE_CLEAN,
526 } pageout_t;
529 * pageout is called by shrink_page_list() for each dirty page.
530 * Calls ->writepage().
532 static pageout_t pageout(struct page *page, struct address_space *mapping,
533 struct scan_control *sc)
536 * If the page is dirty, only perform writeback if that write
537 * will be non-blocking. To prevent this allocation from being
538 * stalled by pagecache activity. But note that there may be
539 * stalls if we need to run get_block(). We could test
540 * PagePrivate for that.
542 * If this process is currently in __generic_file_write_iter() against
543 * this page's queue, we can perform writeback even if that
544 * will block.
546 * If the page is swapcache, write it back even if that would
547 * block, for some throttling. This happens by accident, because
548 * swap_backing_dev_info is bust: it doesn't reflect the
549 * congestion state of the swapdevs. Easy to fix, if needed.
551 if (!is_page_cache_freeable(page))
552 return PAGE_KEEP;
553 if (!mapping) {
555 * Some data journaling orphaned pages can have
556 * page->mapping == NULL while being dirty with clean buffers.
558 if (page_has_private(page)) {
559 if (try_to_free_buffers(page)) {
560 ClearPageDirty(page);
561 pr_info("%s: orphaned page\n", __func__);
562 return PAGE_CLEAN;
565 return PAGE_KEEP;
567 if (mapping->a_ops->writepage == NULL)
568 return PAGE_ACTIVATE;
569 if (!may_write_to_inode(mapping->host, sc))
570 return PAGE_KEEP;
572 if (clear_page_dirty_for_io(page)) {
573 int res;
574 struct writeback_control wbc = {
575 .sync_mode = WB_SYNC_NONE,
576 .nr_to_write = SWAP_CLUSTER_MAX,
577 .range_start = 0,
578 .range_end = LLONG_MAX,
579 .for_reclaim = 1,
582 SetPageReclaim(page);
583 res = mapping->a_ops->writepage(page, &wbc);
584 if (res < 0)
585 handle_write_error(mapping, page, res);
586 if (res == AOP_WRITEPAGE_ACTIVATE) {
587 ClearPageReclaim(page);
588 return PAGE_ACTIVATE;
591 if (!PageWriteback(page)) {
592 /* synchronous write or broken a_ops? */
593 ClearPageReclaim(page);
595 trace_mm_vmscan_writepage(page);
596 inc_zone_page_state(page, NR_VMSCAN_WRITE);
597 return PAGE_SUCCESS;
600 return PAGE_CLEAN;
604 * Same as remove_mapping, but if the page is removed from the mapping, it
605 * gets returned with a refcount of 0.
607 static int __remove_mapping(struct address_space *mapping, struct page *page,
608 bool reclaimed)
610 unsigned long flags;
612 BUG_ON(!PageLocked(page));
613 BUG_ON(mapping != page_mapping(page));
615 spin_lock_irqsave(&mapping->tree_lock, flags);
617 * The non racy check for a busy page.
619 * Must be careful with the order of the tests. When someone has
620 * a ref to the page, it may be possible that they dirty it then
621 * drop the reference. So if PageDirty is tested before page_count
622 * here, then the following race may occur:
624 * get_user_pages(&page);
625 * [user mapping goes away]
626 * write_to(page);
627 * !PageDirty(page) [good]
628 * SetPageDirty(page);
629 * put_page(page);
630 * !page_count(page) [good, discard it]
632 * [oops, our write_to data is lost]
634 * Reversing the order of the tests ensures such a situation cannot
635 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
636 * load is not satisfied before that of page->_count.
638 * Note that if SetPageDirty is always performed via set_page_dirty,
639 * and thus under tree_lock, then this ordering is not required.
641 if (!page_ref_freeze(page, 2))
642 goto cannot_free;
643 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
644 if (unlikely(PageDirty(page))) {
645 page_ref_unfreeze(page, 2);
646 goto cannot_free;
649 if (PageSwapCache(page)) {
650 swp_entry_t swap = { .val = page_private(page) };
651 mem_cgroup_swapout(page, swap);
652 __delete_from_swap_cache(page);
653 spin_unlock_irqrestore(&mapping->tree_lock, flags);
654 swapcache_free(swap);
655 } else {
656 void (*freepage)(struct page *);
657 void *shadow = NULL;
659 freepage = mapping->a_ops->freepage;
661 * Remember a shadow entry for reclaimed file cache in
662 * order to detect refaults, thus thrashing, later on.
664 * But don't store shadows in an address space that is
665 * already exiting. This is not just an optizimation,
666 * inode reclaim needs to empty out the radix tree or
667 * the nodes are lost. Don't plant shadows behind its
668 * back.
670 * We also don't store shadows for DAX mappings because the
671 * only page cache pages found in these are zero pages
672 * covering holes, and because we don't want to mix DAX
673 * exceptional entries and shadow exceptional entries in the
674 * same page_tree.
676 if (reclaimed && page_is_file_cache(page) &&
677 !mapping_exiting(mapping) && !dax_mapping(mapping))
678 shadow = workingset_eviction(mapping, page);
679 __delete_from_page_cache(page, shadow);
680 spin_unlock_irqrestore(&mapping->tree_lock, flags);
682 if (freepage != NULL)
683 freepage(page);
686 return 1;
688 cannot_free:
689 spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 return 0;
694 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
695 * someone else has a ref on the page, abort and return 0. If it was
696 * successfully detached, return 1. Assumes the caller has a single ref on
697 * this page.
699 int remove_mapping(struct address_space *mapping, struct page *page)
701 if (__remove_mapping(mapping, page, false)) {
703 * Unfreezing the refcount with 1 rather than 2 effectively
704 * drops the pagecache ref for us without requiring another
705 * atomic operation.
707 page_ref_unfreeze(page, 1);
708 return 1;
710 return 0;
714 * putback_lru_page - put previously isolated page onto appropriate LRU list
715 * @page: page to be put back to appropriate lru list
717 * Add previously isolated @page to appropriate LRU list.
718 * Page may still be unevictable for other reasons.
720 * lru_lock must not be held, interrupts must be enabled.
722 void putback_lru_page(struct page *page)
724 bool is_unevictable;
725 int was_unevictable = PageUnevictable(page);
727 VM_BUG_ON_PAGE(PageLRU(page), page);
729 redo:
730 ClearPageUnevictable(page);
732 if (page_evictable(page)) {
734 * For evictable pages, we can use the cache.
735 * In event of a race, worst case is we end up with an
736 * unevictable page on [in]active list.
737 * We know how to handle that.
739 is_unevictable = false;
740 lru_cache_add(page);
741 } else {
743 * Put unevictable pages directly on zone's unevictable
744 * list.
746 is_unevictable = true;
747 add_page_to_unevictable_list(page);
749 * When racing with an mlock or AS_UNEVICTABLE clearing
750 * (page is unlocked) make sure that if the other thread
751 * does not observe our setting of PG_lru and fails
752 * isolation/check_move_unevictable_pages,
753 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
754 * the page back to the evictable list.
756 * The other side is TestClearPageMlocked() or shmem_lock().
758 smp_mb();
762 * page's status can change while we move it among lru. If an evictable
763 * page is on unevictable list, it never be freed. To avoid that,
764 * check after we added it to the list, again.
766 if (is_unevictable && page_evictable(page)) {
767 if (!isolate_lru_page(page)) {
768 put_page(page);
769 goto redo;
771 /* This means someone else dropped this page from LRU
772 * So, it will be freed or putback to LRU again. There is
773 * nothing to do here.
777 if (was_unevictable && !is_unevictable)
778 count_vm_event(UNEVICTABLE_PGRESCUED);
779 else if (!was_unevictable && is_unevictable)
780 count_vm_event(UNEVICTABLE_PGCULLED);
782 put_page(page); /* drop ref from isolate */
785 enum page_references {
786 PAGEREF_RECLAIM,
787 PAGEREF_RECLAIM_CLEAN,
788 PAGEREF_KEEP,
789 PAGEREF_ACTIVATE,
792 static enum page_references page_check_references(struct page *page,
793 struct scan_control *sc)
795 int referenced_ptes, referenced_page;
796 unsigned long vm_flags;
798 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
799 &vm_flags);
800 referenced_page = TestClearPageReferenced(page);
803 * Mlock lost the isolation race with us. Let try_to_unmap()
804 * move the page to the unevictable list.
806 if (vm_flags & VM_LOCKED)
807 return PAGEREF_RECLAIM;
809 if (referenced_ptes) {
810 if (PageSwapBacked(page))
811 return PAGEREF_ACTIVATE;
813 * All mapped pages start out with page table
814 * references from the instantiating fault, so we need
815 * to look twice if a mapped file page is used more
816 * than once.
818 * Mark it and spare it for another trip around the
819 * inactive list. Another page table reference will
820 * lead to its activation.
822 * Note: the mark is set for activated pages as well
823 * so that recently deactivated but used pages are
824 * quickly recovered.
826 SetPageReferenced(page);
828 if (referenced_page || referenced_ptes > 1)
829 return PAGEREF_ACTIVATE;
832 * Activate file-backed executable pages after first usage.
834 if (vm_flags & VM_EXEC)
835 return PAGEREF_ACTIVATE;
837 return PAGEREF_KEEP;
840 /* Reclaim if clean, defer dirty pages to writeback */
841 if (referenced_page && !PageSwapBacked(page))
842 return PAGEREF_RECLAIM_CLEAN;
844 return PAGEREF_RECLAIM;
847 /* Check if a page is dirty or under writeback */
848 static void page_check_dirty_writeback(struct page *page,
849 bool *dirty, bool *writeback)
851 struct address_space *mapping;
854 * Anonymous pages are not handled by flushers and must be written
855 * from reclaim context. Do not stall reclaim based on them
857 if (!page_is_file_cache(page)) {
858 *dirty = false;
859 *writeback = false;
860 return;
863 /* By default assume that the page flags are accurate */
864 *dirty = PageDirty(page);
865 *writeback = PageWriteback(page);
867 /* Verify dirty/writeback state if the filesystem supports it */
868 if (!page_has_private(page))
869 return;
871 mapping = page_mapping(page);
872 if (mapping && mapping->a_ops->is_dirty_writeback)
873 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
877 * shrink_page_list() returns the number of reclaimed pages
879 static unsigned long shrink_page_list(struct list_head *page_list,
880 struct zone *zone,
881 struct scan_control *sc,
882 enum ttu_flags ttu_flags,
883 unsigned long *ret_nr_dirty,
884 unsigned long *ret_nr_unqueued_dirty,
885 unsigned long *ret_nr_congested,
886 unsigned long *ret_nr_writeback,
887 unsigned long *ret_nr_immediate,
888 bool force_reclaim)
890 LIST_HEAD(ret_pages);
891 LIST_HEAD(free_pages);
892 int pgactivate = 0;
893 unsigned long nr_unqueued_dirty = 0;
894 unsigned long nr_dirty = 0;
895 unsigned long nr_congested = 0;
896 unsigned long nr_reclaimed = 0;
897 unsigned long nr_writeback = 0;
898 unsigned long nr_immediate = 0;
900 cond_resched();
902 while (!list_empty(page_list)) {
903 struct address_space *mapping;
904 struct page *page;
905 int may_enter_fs;
906 enum page_references references = PAGEREF_RECLAIM_CLEAN;
907 bool dirty, writeback;
908 bool lazyfree = false;
909 int ret = SWAP_SUCCESS;
911 cond_resched();
913 page = lru_to_page(page_list);
914 list_del(&page->lru);
916 if (!trylock_page(page))
917 goto keep;
919 VM_BUG_ON_PAGE(PageActive(page), page);
920 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
922 sc->nr_scanned++;
924 if (unlikely(!page_evictable(page)))
925 goto cull_mlocked;
927 if (!sc->may_unmap && page_mapped(page))
928 goto keep_locked;
930 /* Double the slab pressure for mapped and swapcache pages */
931 if (page_mapped(page) || PageSwapCache(page))
932 sc->nr_scanned++;
934 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
935 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
938 * The number of dirty pages determines if a zone is marked
939 * reclaim_congested which affects wait_iff_congested. kswapd
940 * will stall and start writing pages if the tail of the LRU
941 * is all dirty unqueued pages.
943 page_check_dirty_writeback(page, &dirty, &writeback);
944 if (dirty || writeback)
945 nr_dirty++;
947 if (dirty && !writeback)
948 nr_unqueued_dirty++;
951 * Treat this page as congested if the underlying BDI is or if
952 * pages are cycling through the LRU so quickly that the
953 * pages marked for immediate reclaim are making it to the
954 * end of the LRU a second time.
956 mapping = page_mapping(page);
957 if (((dirty || writeback) && mapping &&
958 inode_write_congested(mapping->host)) ||
959 (writeback && PageReclaim(page)))
960 nr_congested++;
963 * If a page at the tail of the LRU is under writeback, there
964 * are three cases to consider.
966 * 1) If reclaim is encountering an excessive number of pages
967 * under writeback and this page is both under writeback and
968 * PageReclaim then it indicates that pages are being queued
969 * for IO but are being recycled through the LRU before the
970 * IO can complete. Waiting on the page itself risks an
971 * indefinite stall if it is impossible to writeback the
972 * page due to IO error or disconnected storage so instead
973 * note that the LRU is being scanned too quickly and the
974 * caller can stall after page list has been processed.
976 * 2) Global or new memcg reclaim encounters a page that is
977 * not marked for immediate reclaim, or the caller does not
978 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
979 * not to fs). In this case mark the page for immediate
980 * reclaim and continue scanning.
982 * Require may_enter_fs because we would wait on fs, which
983 * may not have submitted IO yet. And the loop driver might
984 * enter reclaim, and deadlock if it waits on a page for
985 * which it is needed to do the write (loop masks off
986 * __GFP_IO|__GFP_FS for this reason); but more thought
987 * would probably show more reasons.
989 * 3) Legacy memcg encounters a page that is already marked
990 * PageReclaim. memcg does not have any dirty pages
991 * throttling so we could easily OOM just because too many
992 * pages are in writeback and there is nothing else to
993 * reclaim. Wait for the writeback to complete.
995 if (PageWriteback(page)) {
996 /* Case 1 above */
997 if (current_is_kswapd() &&
998 PageReclaim(page) &&
999 test_bit(ZONE_WRITEBACK, &zone->flags)) {
1000 nr_immediate++;
1001 goto keep_locked;
1003 /* Case 2 above */
1004 } else if (sane_reclaim(sc) ||
1005 !PageReclaim(page) || !may_enter_fs) {
1007 * This is slightly racy - end_page_writeback()
1008 * might have just cleared PageReclaim, then
1009 * setting PageReclaim here end up interpreted
1010 * as PageReadahead - but that does not matter
1011 * enough to care. What we do want is for this
1012 * page to have PageReclaim set next time memcg
1013 * reclaim reaches the tests above, so it will
1014 * then wait_on_page_writeback() to avoid OOM;
1015 * and it's also appropriate in global reclaim.
1017 SetPageReclaim(page);
1018 nr_writeback++;
1019 goto keep_locked;
1021 /* Case 3 above */
1022 } else {
1023 unlock_page(page);
1024 wait_on_page_writeback(page);
1025 /* then go back and try same page again */
1026 list_add_tail(&page->lru, page_list);
1027 continue;
1031 if (!force_reclaim)
1032 references = page_check_references(page, sc);
1034 switch (references) {
1035 case PAGEREF_ACTIVATE:
1036 goto activate_locked;
1037 case PAGEREF_KEEP:
1038 goto keep_locked;
1039 case PAGEREF_RECLAIM:
1040 case PAGEREF_RECLAIM_CLEAN:
1041 ; /* try to reclaim the page below */
1045 * Anonymous process memory has backing store?
1046 * Try to allocate it some swap space here.
1048 if (PageAnon(page) && !PageSwapCache(page)) {
1049 if (!(sc->gfp_mask & __GFP_IO))
1050 goto keep_locked;
1051 if (!add_to_swap(page, page_list))
1052 goto activate_locked;
1053 lazyfree = true;
1054 may_enter_fs = 1;
1056 /* Adding to swap updated mapping */
1057 mapping = page_mapping(page);
1061 * The page is mapped into the page tables of one or more
1062 * processes. Try to unmap it here.
1064 if (page_mapped(page) && mapping) {
1065 switch (ret = try_to_unmap(page, lazyfree ?
1066 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1067 (ttu_flags | TTU_BATCH_FLUSH))) {
1068 case SWAP_FAIL:
1069 goto activate_locked;
1070 case SWAP_AGAIN:
1071 goto keep_locked;
1072 case SWAP_MLOCK:
1073 goto cull_mlocked;
1074 case SWAP_LZFREE:
1075 goto lazyfree;
1076 case SWAP_SUCCESS:
1077 ; /* try to free the page below */
1081 if (PageDirty(page)) {
1083 * Only kswapd can writeback filesystem pages to
1084 * avoid risk of stack overflow but only writeback
1085 * if many dirty pages have been encountered.
1087 if (page_is_file_cache(page) &&
1088 (!current_is_kswapd() ||
1089 !test_bit(ZONE_DIRTY, &zone->flags))) {
1091 * Immediately reclaim when written back.
1092 * Similar in principal to deactivate_page()
1093 * except we already have the page isolated
1094 * and know it's dirty
1096 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1097 SetPageReclaim(page);
1099 goto keep_locked;
1102 if (references == PAGEREF_RECLAIM_CLEAN)
1103 goto keep_locked;
1104 if (!may_enter_fs)
1105 goto keep_locked;
1106 if (!sc->may_writepage)
1107 goto keep_locked;
1110 * Page is dirty. Flush the TLB if a writable entry
1111 * potentially exists to avoid CPU writes after IO
1112 * starts and then write it out here.
1114 try_to_unmap_flush_dirty();
1115 switch (pageout(page, mapping, sc)) {
1116 case PAGE_KEEP:
1117 goto keep_locked;
1118 case PAGE_ACTIVATE:
1119 goto activate_locked;
1120 case PAGE_SUCCESS:
1121 if (PageWriteback(page))
1122 goto keep;
1123 if (PageDirty(page))
1124 goto keep;
1127 * A synchronous write - probably a ramdisk. Go
1128 * ahead and try to reclaim the page.
1130 if (!trylock_page(page))
1131 goto keep;
1132 if (PageDirty(page) || PageWriteback(page))
1133 goto keep_locked;
1134 mapping = page_mapping(page);
1135 case PAGE_CLEAN:
1136 ; /* try to free the page below */
1141 * If the page has buffers, try to free the buffer mappings
1142 * associated with this page. If we succeed we try to free
1143 * the page as well.
1145 * We do this even if the page is PageDirty().
1146 * try_to_release_page() does not perform I/O, but it is
1147 * possible for a page to have PageDirty set, but it is actually
1148 * clean (all its buffers are clean). This happens if the
1149 * buffers were written out directly, with submit_bh(). ext3
1150 * will do this, as well as the blockdev mapping.
1151 * try_to_release_page() will discover that cleanness and will
1152 * drop the buffers and mark the page clean - it can be freed.
1154 * Rarely, pages can have buffers and no ->mapping. These are
1155 * the pages which were not successfully invalidated in
1156 * truncate_complete_page(). We try to drop those buffers here
1157 * and if that worked, and the page is no longer mapped into
1158 * process address space (page_count == 1) it can be freed.
1159 * Otherwise, leave the page on the LRU so it is swappable.
1161 if (page_has_private(page)) {
1162 if (!try_to_release_page(page, sc->gfp_mask))
1163 goto activate_locked;
1164 if (!mapping && page_count(page) == 1) {
1165 unlock_page(page);
1166 if (put_page_testzero(page))
1167 goto free_it;
1168 else {
1170 * rare race with speculative reference.
1171 * the speculative reference will free
1172 * this page shortly, so we may
1173 * increment nr_reclaimed here (and
1174 * leave it off the LRU).
1176 nr_reclaimed++;
1177 continue;
1182 lazyfree:
1183 if (!mapping || !__remove_mapping(mapping, page, true))
1184 goto keep_locked;
1187 * At this point, we have no other references and there is
1188 * no way to pick any more up (removed from LRU, removed
1189 * from pagecache). Can use non-atomic bitops now (and
1190 * we obviously don't have to worry about waking up a process
1191 * waiting on the page lock, because there are no references.
1193 __ClearPageLocked(page);
1194 free_it:
1195 if (ret == SWAP_LZFREE)
1196 count_vm_event(PGLAZYFREED);
1198 nr_reclaimed++;
1201 * Is there need to periodically free_page_list? It would
1202 * appear not as the counts should be low
1204 list_add(&page->lru, &free_pages);
1205 continue;
1207 cull_mlocked:
1208 if (PageSwapCache(page))
1209 try_to_free_swap(page);
1210 unlock_page(page);
1211 list_add(&page->lru, &ret_pages);
1212 continue;
1214 activate_locked:
1215 /* Not a candidate for swapping, so reclaim swap space. */
1216 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1217 try_to_free_swap(page);
1218 VM_BUG_ON_PAGE(PageActive(page), page);
1219 SetPageActive(page);
1220 pgactivate++;
1221 keep_locked:
1222 unlock_page(page);
1223 keep:
1224 list_add(&page->lru, &ret_pages);
1225 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1228 mem_cgroup_uncharge_list(&free_pages);
1229 try_to_unmap_flush();
1230 free_hot_cold_page_list(&free_pages, true);
1232 list_splice(&ret_pages, page_list);
1233 count_vm_events(PGACTIVATE, pgactivate);
1235 *ret_nr_dirty += nr_dirty;
1236 *ret_nr_congested += nr_congested;
1237 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1238 *ret_nr_writeback += nr_writeback;
1239 *ret_nr_immediate += nr_immediate;
1240 return nr_reclaimed;
1243 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1244 struct list_head *page_list)
1246 struct scan_control sc = {
1247 .gfp_mask = GFP_KERNEL,
1248 .priority = DEF_PRIORITY,
1249 .may_unmap = 1,
1251 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1252 struct page *page, *next;
1253 LIST_HEAD(clean_pages);
1255 list_for_each_entry_safe(page, next, page_list, lru) {
1256 if (page_is_file_cache(page) && !PageDirty(page) &&
1257 !isolated_balloon_page(page)) {
1258 ClearPageActive(page);
1259 list_move(&page->lru, &clean_pages);
1263 ret = shrink_page_list(&clean_pages, zone, &sc,
1264 TTU_UNMAP|TTU_IGNORE_ACCESS,
1265 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1266 list_splice(&clean_pages, page_list);
1267 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1268 return ret;
1272 * Attempt to remove the specified page from its LRU. Only take this page
1273 * if it is of the appropriate PageActive status. Pages which are being
1274 * freed elsewhere are also ignored.
1276 * page: page to consider
1277 * mode: one of the LRU isolation modes defined above
1279 * returns 0 on success, -ve errno on failure.
1281 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1283 int ret = -EINVAL;
1285 /* Only take pages on the LRU. */
1286 if (!PageLRU(page))
1287 return ret;
1289 /* Compaction should not handle unevictable pages but CMA can do so */
1290 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1291 return ret;
1293 ret = -EBUSY;
1296 * To minimise LRU disruption, the caller can indicate that it only
1297 * wants to isolate pages it will be able to operate on without
1298 * blocking - clean pages for the most part.
1300 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1301 * is used by reclaim when it is cannot write to backing storage
1303 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1304 * that it is possible to migrate without blocking
1306 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1307 /* All the caller can do on PageWriteback is block */
1308 if (PageWriteback(page))
1309 return ret;
1311 if (PageDirty(page)) {
1312 struct address_space *mapping;
1314 /* ISOLATE_CLEAN means only clean pages */
1315 if (mode & ISOLATE_CLEAN)
1316 return ret;
1319 * Only pages without mappings or that have a
1320 * ->migratepage callback are possible to migrate
1321 * without blocking
1323 mapping = page_mapping(page);
1324 if (mapping && !mapping->a_ops->migratepage)
1325 return ret;
1329 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1330 return ret;
1332 if (likely(get_page_unless_zero(page))) {
1334 * Be careful not to clear PageLRU until after we're
1335 * sure the page is not being freed elsewhere -- the
1336 * page release code relies on it.
1338 ClearPageLRU(page);
1339 ret = 0;
1342 return ret;
1346 * zone->lru_lock is heavily contended. Some of the functions that
1347 * shrink the lists perform better by taking out a batch of pages
1348 * and working on them outside the LRU lock.
1350 * For pagecache intensive workloads, this function is the hottest
1351 * spot in the kernel (apart from copy_*_user functions).
1353 * Appropriate locks must be held before calling this function.
1355 * @nr_to_scan: The number of pages to look through on the list.
1356 * @lruvec: The LRU vector to pull pages from.
1357 * @dst: The temp list to put pages on to.
1358 * @nr_scanned: The number of pages that were scanned.
1359 * @sc: The scan_control struct for this reclaim session
1360 * @mode: One of the LRU isolation modes
1361 * @lru: LRU list id for isolating
1363 * returns how many pages were moved onto *@dst.
1365 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1366 struct lruvec *lruvec, struct list_head *dst,
1367 unsigned long *nr_scanned, struct scan_control *sc,
1368 isolate_mode_t mode, enum lru_list lru)
1370 struct list_head *src = &lruvec->lists[lru];
1371 unsigned long nr_taken = 0;
1372 unsigned long scan;
1374 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1375 !list_empty(src); scan++) {
1376 struct page *page;
1377 int nr_pages;
1379 page = lru_to_page(src);
1380 prefetchw_prev_lru_page(page, src, flags);
1382 VM_BUG_ON_PAGE(!PageLRU(page), page);
1384 switch (__isolate_lru_page(page, mode)) {
1385 case 0:
1386 nr_pages = hpage_nr_pages(page);
1387 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1388 list_move(&page->lru, dst);
1389 nr_taken += nr_pages;
1390 break;
1392 case -EBUSY:
1393 /* else it is being freed elsewhere */
1394 list_move(&page->lru, src);
1395 continue;
1397 default:
1398 BUG();
1402 *nr_scanned = scan;
1403 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1404 nr_taken, mode, is_file_lru(lru));
1405 return nr_taken;
1409 * isolate_lru_page - tries to isolate a page from its LRU list
1410 * @page: page to isolate from its LRU list
1412 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1413 * vmstat statistic corresponding to whatever LRU list the page was on.
1415 * Returns 0 if the page was removed from an LRU list.
1416 * Returns -EBUSY if the page was not on an LRU list.
1418 * The returned page will have PageLRU() cleared. If it was found on
1419 * the active list, it will have PageActive set. If it was found on
1420 * the unevictable list, it will have the PageUnevictable bit set. That flag
1421 * may need to be cleared by the caller before letting the page go.
1423 * The vmstat statistic corresponding to the list on which the page was
1424 * found will be decremented.
1426 * Restrictions:
1427 * (1) Must be called with an elevated refcount on the page. This is a
1428 * fundamentnal difference from isolate_lru_pages (which is called
1429 * without a stable reference).
1430 * (2) the lru_lock must not be held.
1431 * (3) interrupts must be enabled.
1433 int isolate_lru_page(struct page *page)
1435 int ret = -EBUSY;
1437 VM_BUG_ON_PAGE(!page_count(page), page);
1438 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1440 if (PageLRU(page)) {
1441 struct zone *zone = page_zone(page);
1442 struct lruvec *lruvec;
1444 spin_lock_irq(&zone->lru_lock);
1445 lruvec = mem_cgroup_page_lruvec(page, zone);
1446 if (PageLRU(page)) {
1447 int lru = page_lru(page);
1448 get_page(page);
1449 ClearPageLRU(page);
1450 del_page_from_lru_list(page, lruvec, lru);
1451 ret = 0;
1453 spin_unlock_irq(&zone->lru_lock);
1455 return ret;
1459 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1460 * then get resheduled. When there are massive number of tasks doing page
1461 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1462 * the LRU list will go small and be scanned faster than necessary, leading to
1463 * unnecessary swapping, thrashing and OOM.
1465 static int too_many_isolated(struct zone *zone, int file,
1466 struct scan_control *sc)
1468 unsigned long inactive, isolated;
1470 if (current_is_kswapd())
1471 return 0;
1473 if (!sane_reclaim(sc))
1474 return 0;
1476 if (file) {
1477 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1478 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1479 } else {
1480 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1481 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1485 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1486 * won't get blocked by normal direct-reclaimers, forming a circular
1487 * deadlock.
1489 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1490 inactive >>= 3;
1492 return isolated > inactive;
1495 static noinline_for_stack void
1496 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1498 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1499 struct zone *zone = lruvec_zone(lruvec);
1500 LIST_HEAD(pages_to_free);
1503 * Put back any unfreeable pages.
1505 while (!list_empty(page_list)) {
1506 struct page *page = lru_to_page(page_list);
1507 int lru;
1509 VM_BUG_ON_PAGE(PageLRU(page), page);
1510 list_del(&page->lru);
1511 if (unlikely(!page_evictable(page))) {
1512 spin_unlock_irq(&zone->lru_lock);
1513 putback_lru_page(page);
1514 spin_lock_irq(&zone->lru_lock);
1515 continue;
1518 lruvec = mem_cgroup_page_lruvec(page, zone);
1520 SetPageLRU(page);
1521 lru = page_lru(page);
1522 add_page_to_lru_list(page, lruvec, lru);
1524 if (is_active_lru(lru)) {
1525 int file = is_file_lru(lru);
1526 int numpages = hpage_nr_pages(page);
1527 reclaim_stat->recent_rotated[file] += numpages;
1529 if (put_page_testzero(page)) {
1530 __ClearPageLRU(page);
1531 __ClearPageActive(page);
1532 del_page_from_lru_list(page, lruvec, lru);
1534 if (unlikely(PageCompound(page))) {
1535 spin_unlock_irq(&zone->lru_lock);
1536 mem_cgroup_uncharge(page);
1537 (*get_compound_page_dtor(page))(page);
1538 spin_lock_irq(&zone->lru_lock);
1539 } else
1540 list_add(&page->lru, &pages_to_free);
1545 * To save our caller's stack, now use input list for pages to free.
1547 list_splice(&pages_to_free, page_list);
1551 * If a kernel thread (such as nfsd for loop-back mounts) services
1552 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1553 * In that case we should only throttle if the backing device it is
1554 * writing to is congested. In other cases it is safe to throttle.
1556 static int current_may_throttle(void)
1558 return !(current->flags & PF_LESS_THROTTLE) ||
1559 current->backing_dev_info == NULL ||
1560 bdi_write_congested(current->backing_dev_info);
1564 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1565 * of reclaimed pages
1567 static noinline_for_stack unsigned long
1568 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1569 struct scan_control *sc, enum lru_list lru)
1571 LIST_HEAD(page_list);
1572 unsigned long nr_scanned;
1573 unsigned long nr_reclaimed = 0;
1574 unsigned long nr_taken;
1575 unsigned long nr_dirty = 0;
1576 unsigned long nr_congested = 0;
1577 unsigned long nr_unqueued_dirty = 0;
1578 unsigned long nr_writeback = 0;
1579 unsigned long nr_immediate = 0;
1580 isolate_mode_t isolate_mode = 0;
1581 int file = is_file_lru(lru);
1582 struct zone *zone = lruvec_zone(lruvec);
1583 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1585 while (unlikely(too_many_isolated(zone, file, sc))) {
1586 congestion_wait(BLK_RW_ASYNC, HZ/10);
1588 /* We are about to die and free our memory. Return now. */
1589 if (fatal_signal_pending(current))
1590 return SWAP_CLUSTER_MAX;
1593 lru_add_drain();
1595 if (!sc->may_unmap)
1596 isolate_mode |= ISOLATE_UNMAPPED;
1597 if (!sc->may_writepage)
1598 isolate_mode |= ISOLATE_CLEAN;
1600 spin_lock_irq(&zone->lru_lock);
1602 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1603 &nr_scanned, sc, isolate_mode, lru);
1605 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1606 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1608 if (global_reclaim(sc)) {
1609 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1610 if (current_is_kswapd())
1611 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1612 else
1613 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1615 spin_unlock_irq(&zone->lru_lock);
1617 if (nr_taken == 0)
1618 return 0;
1620 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1621 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1622 &nr_writeback, &nr_immediate,
1623 false);
1625 spin_lock_irq(&zone->lru_lock);
1627 reclaim_stat->recent_scanned[file] += nr_taken;
1629 if (global_reclaim(sc)) {
1630 if (current_is_kswapd())
1631 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1632 nr_reclaimed);
1633 else
1634 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1635 nr_reclaimed);
1638 putback_inactive_pages(lruvec, &page_list);
1640 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1642 spin_unlock_irq(&zone->lru_lock);
1644 mem_cgroup_uncharge_list(&page_list);
1645 free_hot_cold_page_list(&page_list, true);
1648 * If reclaim is isolating dirty pages under writeback, it implies
1649 * that the long-lived page allocation rate is exceeding the page
1650 * laundering rate. Either the global limits are not being effective
1651 * at throttling processes due to the page distribution throughout
1652 * zones or there is heavy usage of a slow backing device. The
1653 * only option is to throttle from reclaim context which is not ideal
1654 * as there is no guarantee the dirtying process is throttled in the
1655 * same way balance_dirty_pages() manages.
1657 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1658 * of pages under pages flagged for immediate reclaim and stall if any
1659 * are encountered in the nr_immediate check below.
1661 if (nr_writeback && nr_writeback == nr_taken)
1662 set_bit(ZONE_WRITEBACK, &zone->flags);
1665 * Legacy memcg will stall in page writeback so avoid forcibly
1666 * stalling here.
1668 if (sane_reclaim(sc)) {
1670 * Tag a zone as congested if all the dirty pages scanned were
1671 * backed by a congested BDI and wait_iff_congested will stall.
1673 if (nr_dirty && nr_dirty == nr_congested)
1674 set_bit(ZONE_CONGESTED, &zone->flags);
1677 * If dirty pages are scanned that are not queued for IO, it
1678 * implies that flushers are not keeping up. In this case, flag
1679 * the zone ZONE_DIRTY and kswapd will start writing pages from
1680 * reclaim context.
1682 if (nr_unqueued_dirty == nr_taken)
1683 set_bit(ZONE_DIRTY, &zone->flags);
1686 * If kswapd scans pages marked marked for immediate
1687 * reclaim and under writeback (nr_immediate), it implies
1688 * that pages are cycling through the LRU faster than
1689 * they are written so also forcibly stall.
1691 if (nr_immediate && current_may_throttle())
1692 congestion_wait(BLK_RW_ASYNC, HZ/10);
1696 * Stall direct reclaim for IO completions if underlying BDIs or zone
1697 * is congested. Allow kswapd to continue until it starts encountering
1698 * unqueued dirty pages or cycling through the LRU too quickly.
1700 if (!sc->hibernation_mode && !current_is_kswapd() &&
1701 current_may_throttle())
1702 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1704 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1705 sc->priority, file);
1706 return nr_reclaimed;
1710 * This moves pages from the active list to the inactive list.
1712 * We move them the other way if the page is referenced by one or more
1713 * processes, from rmap.
1715 * If the pages are mostly unmapped, the processing is fast and it is
1716 * appropriate to hold zone->lru_lock across the whole operation. But if
1717 * the pages are mapped, the processing is slow (page_referenced()) so we
1718 * should drop zone->lru_lock around each page. It's impossible to balance
1719 * this, so instead we remove the pages from the LRU while processing them.
1720 * It is safe to rely on PG_active against the non-LRU pages in here because
1721 * nobody will play with that bit on a non-LRU page.
1723 * The downside is that we have to touch page->_count against each page.
1724 * But we had to alter page->flags anyway.
1727 static void move_active_pages_to_lru(struct lruvec *lruvec,
1728 struct list_head *list,
1729 struct list_head *pages_to_free,
1730 enum lru_list lru)
1732 struct zone *zone = lruvec_zone(lruvec);
1733 unsigned long pgmoved = 0;
1734 struct page *page;
1735 int nr_pages;
1737 while (!list_empty(list)) {
1738 page = lru_to_page(list);
1739 lruvec = mem_cgroup_page_lruvec(page, zone);
1741 VM_BUG_ON_PAGE(PageLRU(page), page);
1742 SetPageLRU(page);
1744 nr_pages = hpage_nr_pages(page);
1745 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1746 list_move(&page->lru, &lruvec->lists[lru]);
1747 pgmoved += nr_pages;
1749 if (put_page_testzero(page)) {
1750 __ClearPageLRU(page);
1751 __ClearPageActive(page);
1752 del_page_from_lru_list(page, lruvec, lru);
1754 if (unlikely(PageCompound(page))) {
1755 spin_unlock_irq(&zone->lru_lock);
1756 mem_cgroup_uncharge(page);
1757 (*get_compound_page_dtor(page))(page);
1758 spin_lock_irq(&zone->lru_lock);
1759 } else
1760 list_add(&page->lru, pages_to_free);
1763 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1764 if (!is_active_lru(lru))
1765 __count_vm_events(PGDEACTIVATE, pgmoved);
1768 static void shrink_active_list(unsigned long nr_to_scan,
1769 struct lruvec *lruvec,
1770 struct scan_control *sc,
1771 enum lru_list lru)
1773 unsigned long nr_taken;
1774 unsigned long nr_scanned;
1775 unsigned long vm_flags;
1776 LIST_HEAD(l_hold); /* The pages which were snipped off */
1777 LIST_HEAD(l_active);
1778 LIST_HEAD(l_inactive);
1779 struct page *page;
1780 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1781 unsigned long nr_rotated = 0;
1782 isolate_mode_t isolate_mode = 0;
1783 int file = is_file_lru(lru);
1784 struct zone *zone = lruvec_zone(lruvec);
1786 lru_add_drain();
1788 if (!sc->may_unmap)
1789 isolate_mode |= ISOLATE_UNMAPPED;
1790 if (!sc->may_writepage)
1791 isolate_mode |= ISOLATE_CLEAN;
1793 spin_lock_irq(&zone->lru_lock);
1795 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1796 &nr_scanned, sc, isolate_mode, lru);
1797 if (global_reclaim(sc))
1798 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1800 reclaim_stat->recent_scanned[file] += nr_taken;
1802 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1803 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1804 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1805 spin_unlock_irq(&zone->lru_lock);
1807 while (!list_empty(&l_hold)) {
1808 cond_resched();
1809 page = lru_to_page(&l_hold);
1810 list_del(&page->lru);
1812 if (unlikely(!page_evictable(page))) {
1813 putback_lru_page(page);
1814 continue;
1817 if (unlikely(buffer_heads_over_limit)) {
1818 if (page_has_private(page) && trylock_page(page)) {
1819 if (page_has_private(page))
1820 try_to_release_page(page, 0);
1821 unlock_page(page);
1825 if (page_referenced(page, 0, sc->target_mem_cgroup,
1826 &vm_flags)) {
1827 nr_rotated += hpage_nr_pages(page);
1829 * Identify referenced, file-backed active pages and
1830 * give them one more trip around the active list. So
1831 * that executable code get better chances to stay in
1832 * memory under moderate memory pressure. Anon pages
1833 * are not likely to be evicted by use-once streaming
1834 * IO, plus JVM can create lots of anon VM_EXEC pages,
1835 * so we ignore them here.
1837 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1838 list_add(&page->lru, &l_active);
1839 continue;
1843 ClearPageActive(page); /* we are de-activating */
1844 list_add(&page->lru, &l_inactive);
1848 * Move pages back to the lru list.
1850 spin_lock_irq(&zone->lru_lock);
1852 * Count referenced pages from currently used mappings as rotated,
1853 * even though only some of them are actually re-activated. This
1854 * helps balance scan pressure between file and anonymous pages in
1855 * get_scan_count.
1857 reclaim_stat->recent_rotated[file] += nr_rotated;
1859 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1860 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1861 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1862 spin_unlock_irq(&zone->lru_lock);
1864 mem_cgroup_uncharge_list(&l_hold);
1865 free_hot_cold_page_list(&l_hold, true);
1868 #ifdef CONFIG_SWAP
1869 static bool inactive_anon_is_low_global(struct zone *zone)
1871 unsigned long active, inactive;
1873 active = zone_page_state(zone, NR_ACTIVE_ANON);
1874 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1876 return inactive * zone->inactive_ratio < active;
1880 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1881 * @lruvec: LRU vector to check
1883 * Returns true if the zone does not have enough inactive anon pages,
1884 * meaning some active anon pages need to be deactivated.
1886 static bool inactive_anon_is_low(struct lruvec *lruvec)
1889 * If we don't have swap space, anonymous page deactivation
1890 * is pointless.
1892 if (!total_swap_pages)
1893 return false;
1895 if (!mem_cgroup_disabled())
1896 return mem_cgroup_inactive_anon_is_low(lruvec);
1898 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1900 #else
1901 static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1903 return false;
1905 #endif
1908 * inactive_file_is_low - check if file pages need to be deactivated
1909 * @lruvec: LRU vector to check
1911 * When the system is doing streaming IO, memory pressure here
1912 * ensures that active file pages get deactivated, until more
1913 * than half of the file pages are on the inactive list.
1915 * Once we get to that situation, protect the system's working
1916 * set from being evicted by disabling active file page aging.
1918 * This uses a different ratio than the anonymous pages, because
1919 * the page cache uses a use-once replacement algorithm.
1921 static bool inactive_file_is_low(struct lruvec *lruvec)
1923 unsigned long inactive;
1924 unsigned long active;
1926 inactive = lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
1927 active = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE);
1929 return active > inactive;
1932 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1934 if (is_file_lru(lru))
1935 return inactive_file_is_low(lruvec);
1936 else
1937 return inactive_anon_is_low(lruvec);
1940 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1941 struct lruvec *lruvec, struct scan_control *sc)
1943 if (is_active_lru(lru)) {
1944 if (inactive_list_is_low(lruvec, lru))
1945 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1946 return 0;
1949 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1952 enum scan_balance {
1953 SCAN_EQUAL,
1954 SCAN_FRACT,
1955 SCAN_ANON,
1956 SCAN_FILE,
1960 * Determine how aggressively the anon and file LRU lists should be
1961 * scanned. The relative value of each set of LRU lists is determined
1962 * by looking at the fraction of the pages scanned we did rotate back
1963 * onto the active list instead of evict.
1965 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1966 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1968 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1969 struct scan_control *sc, unsigned long *nr,
1970 unsigned long *lru_pages)
1972 int swappiness = mem_cgroup_swappiness(memcg);
1973 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1974 u64 fraction[2];
1975 u64 denominator = 0; /* gcc */
1976 struct zone *zone = lruvec_zone(lruvec);
1977 unsigned long anon_prio, file_prio;
1978 enum scan_balance scan_balance;
1979 unsigned long anon, file;
1980 bool force_scan = false;
1981 unsigned long ap, fp;
1982 enum lru_list lru;
1983 bool some_scanned;
1984 int pass;
1987 * If the zone or memcg is small, nr[l] can be 0. This
1988 * results in no scanning on this priority and a potential
1989 * priority drop. Global direct reclaim can go to the next
1990 * zone and tends to have no problems. Global kswapd is for
1991 * zone balancing and it needs to scan a minimum amount. When
1992 * reclaiming for a memcg, a priority drop can cause high
1993 * latencies, so it's better to scan a minimum amount there as
1994 * well.
1996 if (current_is_kswapd()) {
1997 if (!zone_reclaimable(zone))
1998 force_scan = true;
1999 if (!mem_cgroup_online(memcg))
2000 force_scan = true;
2002 if (!global_reclaim(sc))
2003 force_scan = true;
2005 /* If we have no swap space, do not bother scanning anon pages. */
2006 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2007 scan_balance = SCAN_FILE;
2008 goto out;
2012 * Global reclaim will swap to prevent OOM even with no
2013 * swappiness, but memcg users want to use this knob to
2014 * disable swapping for individual groups completely when
2015 * using the memory controller's swap limit feature would be
2016 * too expensive.
2018 if (!global_reclaim(sc) && !swappiness) {
2019 scan_balance = SCAN_FILE;
2020 goto out;
2024 * Do not apply any pressure balancing cleverness when the
2025 * system is close to OOM, scan both anon and file equally
2026 * (unless the swappiness setting disagrees with swapping).
2028 if (!sc->priority && swappiness) {
2029 scan_balance = SCAN_EQUAL;
2030 goto out;
2034 * Prevent the reclaimer from falling into the cache trap: as
2035 * cache pages start out inactive, every cache fault will tip
2036 * the scan balance towards the file LRU. And as the file LRU
2037 * shrinks, so does the window for rotation from references.
2038 * This means we have a runaway feedback loop where a tiny
2039 * thrashing file LRU becomes infinitely more attractive than
2040 * anon pages. Try to detect this based on file LRU size.
2042 if (global_reclaim(sc)) {
2043 unsigned long zonefile;
2044 unsigned long zonefree;
2046 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2047 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2048 zone_page_state(zone, NR_INACTIVE_FILE);
2050 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2051 scan_balance = SCAN_ANON;
2052 goto out;
2057 * If there is enough inactive page cache, i.e. if the size of the
2058 * inactive list is greater than that of the active list *and* the
2059 * inactive list actually has some pages to scan on this priority, we
2060 * do not reclaim anything from the anonymous working set right now.
2061 * Without the second condition we could end up never scanning an
2062 * lruvec even if it has plenty of old anonymous pages unless the
2063 * system is under heavy pressure.
2065 if (!inactive_file_is_low(lruvec) &&
2066 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2067 scan_balance = SCAN_FILE;
2068 goto out;
2071 scan_balance = SCAN_FRACT;
2074 * With swappiness at 100, anonymous and file have the same priority.
2075 * This scanning priority is essentially the inverse of IO cost.
2077 anon_prio = swappiness;
2078 file_prio = 200 - anon_prio;
2081 * OK, so we have swap space and a fair amount of page cache
2082 * pages. We use the recently rotated / recently scanned
2083 * ratios to determine how valuable each cache is.
2085 * Because workloads change over time (and to avoid overflow)
2086 * we keep these statistics as a floating average, which ends
2087 * up weighing recent references more than old ones.
2089 * anon in [0], file in [1]
2092 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2093 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2094 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2095 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2097 spin_lock_irq(&zone->lru_lock);
2098 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2099 reclaim_stat->recent_scanned[0] /= 2;
2100 reclaim_stat->recent_rotated[0] /= 2;
2103 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2104 reclaim_stat->recent_scanned[1] /= 2;
2105 reclaim_stat->recent_rotated[1] /= 2;
2109 * The amount of pressure on anon vs file pages is inversely
2110 * proportional to the fraction of recently scanned pages on
2111 * each list that were recently referenced and in active use.
2113 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2114 ap /= reclaim_stat->recent_rotated[0] + 1;
2116 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2117 fp /= reclaim_stat->recent_rotated[1] + 1;
2118 spin_unlock_irq(&zone->lru_lock);
2120 fraction[0] = ap;
2121 fraction[1] = fp;
2122 denominator = ap + fp + 1;
2123 out:
2124 some_scanned = false;
2125 /* Only use force_scan on second pass. */
2126 for (pass = 0; !some_scanned && pass < 2; pass++) {
2127 *lru_pages = 0;
2128 for_each_evictable_lru(lru) {
2129 int file = is_file_lru(lru);
2130 unsigned long size;
2131 unsigned long scan;
2133 size = lruvec_lru_size(lruvec, lru);
2134 scan = size >> sc->priority;
2136 if (!scan && pass && force_scan)
2137 scan = min(size, SWAP_CLUSTER_MAX);
2139 switch (scan_balance) {
2140 case SCAN_EQUAL:
2141 /* Scan lists relative to size */
2142 break;
2143 case SCAN_FRACT:
2145 * Scan types proportional to swappiness and
2146 * their relative recent reclaim efficiency.
2148 scan = div64_u64(scan * fraction[file],
2149 denominator);
2150 break;
2151 case SCAN_FILE:
2152 case SCAN_ANON:
2153 /* Scan one type exclusively */
2154 if ((scan_balance == SCAN_FILE) != file) {
2155 size = 0;
2156 scan = 0;
2158 break;
2159 default:
2160 /* Look ma, no brain */
2161 BUG();
2164 *lru_pages += size;
2165 nr[lru] = scan;
2168 * Skip the second pass and don't force_scan,
2169 * if we found something to scan.
2171 some_scanned |= !!scan;
2176 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2177 static void init_tlb_ubc(void)
2180 * This deliberately does not clear the cpumask as it's expensive
2181 * and unnecessary. If there happens to be data in there then the
2182 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2183 * then will be cleared.
2185 current->tlb_ubc.flush_required = false;
2187 #else
2188 static inline void init_tlb_ubc(void)
2191 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2194 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2196 static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2197 struct scan_control *sc, unsigned long *lru_pages)
2199 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2200 unsigned long nr[NR_LRU_LISTS];
2201 unsigned long targets[NR_LRU_LISTS];
2202 unsigned long nr_to_scan;
2203 enum lru_list lru;
2204 unsigned long nr_reclaimed = 0;
2205 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2206 struct blk_plug plug;
2207 bool scan_adjusted;
2209 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2211 /* Record the original scan target for proportional adjustments later */
2212 memcpy(targets, nr, sizeof(nr));
2215 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2216 * event that can occur when there is little memory pressure e.g.
2217 * multiple streaming readers/writers. Hence, we do not abort scanning
2218 * when the requested number of pages are reclaimed when scanning at
2219 * DEF_PRIORITY on the assumption that the fact we are direct
2220 * reclaiming implies that kswapd is not keeping up and it is best to
2221 * do a batch of work at once. For memcg reclaim one check is made to
2222 * abort proportional reclaim if either the file or anon lru has already
2223 * dropped to zero at the first pass.
2225 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2226 sc->priority == DEF_PRIORITY);
2228 init_tlb_ubc();
2230 blk_start_plug(&plug);
2231 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2232 nr[LRU_INACTIVE_FILE]) {
2233 unsigned long nr_anon, nr_file, percentage;
2234 unsigned long nr_scanned;
2236 for_each_evictable_lru(lru) {
2237 if (nr[lru]) {
2238 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2239 nr[lru] -= nr_to_scan;
2241 nr_reclaimed += shrink_list(lru, nr_to_scan,
2242 lruvec, sc);
2246 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2247 continue;
2250 * For kswapd and memcg, reclaim at least the number of pages
2251 * requested. Ensure that the anon and file LRUs are scanned
2252 * proportionally what was requested by get_scan_count(). We
2253 * stop reclaiming one LRU and reduce the amount scanning
2254 * proportional to the original scan target.
2256 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2257 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2260 * It's just vindictive to attack the larger once the smaller
2261 * has gone to zero. And given the way we stop scanning the
2262 * smaller below, this makes sure that we only make one nudge
2263 * towards proportionality once we've got nr_to_reclaim.
2265 if (!nr_file || !nr_anon)
2266 break;
2268 if (nr_file > nr_anon) {
2269 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2270 targets[LRU_ACTIVE_ANON] + 1;
2271 lru = LRU_BASE;
2272 percentage = nr_anon * 100 / scan_target;
2273 } else {
2274 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2275 targets[LRU_ACTIVE_FILE] + 1;
2276 lru = LRU_FILE;
2277 percentage = nr_file * 100 / scan_target;
2280 /* Stop scanning the smaller of the LRU */
2281 nr[lru] = 0;
2282 nr[lru + LRU_ACTIVE] = 0;
2285 * Recalculate the other LRU scan count based on its original
2286 * scan target and the percentage scanning already complete
2288 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2289 nr_scanned = targets[lru] - nr[lru];
2290 nr[lru] = targets[lru] * (100 - percentage) / 100;
2291 nr[lru] -= min(nr[lru], nr_scanned);
2293 lru += LRU_ACTIVE;
2294 nr_scanned = targets[lru] - nr[lru];
2295 nr[lru] = targets[lru] * (100 - percentage) / 100;
2296 nr[lru] -= min(nr[lru], nr_scanned);
2298 scan_adjusted = true;
2300 blk_finish_plug(&plug);
2301 sc->nr_reclaimed += nr_reclaimed;
2304 * Even if we did not try to evict anon pages at all, we want to
2305 * rebalance the anon lru active/inactive ratio.
2307 if (inactive_anon_is_low(lruvec))
2308 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2309 sc, LRU_ACTIVE_ANON);
2311 throttle_vm_writeout(sc->gfp_mask);
2314 /* Use reclaim/compaction for costly allocs or under memory pressure */
2315 static bool in_reclaim_compaction(struct scan_control *sc)
2317 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2318 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2319 sc->priority < DEF_PRIORITY - 2))
2320 return true;
2322 return false;
2326 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2327 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2328 * true if more pages should be reclaimed such that when the page allocator
2329 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2330 * It will give up earlier than that if there is difficulty reclaiming pages.
2332 static inline bool should_continue_reclaim(struct zone *zone,
2333 unsigned long nr_reclaimed,
2334 unsigned long nr_scanned,
2335 struct scan_control *sc)
2337 unsigned long pages_for_compaction;
2338 unsigned long inactive_lru_pages;
2340 /* If not in reclaim/compaction mode, stop */
2341 if (!in_reclaim_compaction(sc))
2342 return false;
2344 /* Consider stopping depending on scan and reclaim activity */
2345 if (sc->gfp_mask & __GFP_REPEAT) {
2347 * For __GFP_REPEAT allocations, stop reclaiming if the
2348 * full LRU list has been scanned and we are still failing
2349 * to reclaim pages. This full LRU scan is potentially
2350 * expensive but a __GFP_REPEAT caller really wants to succeed
2352 if (!nr_reclaimed && !nr_scanned)
2353 return false;
2354 } else {
2356 * For non-__GFP_REPEAT allocations which can presumably
2357 * fail without consequence, stop if we failed to reclaim
2358 * any pages from the last SWAP_CLUSTER_MAX number of
2359 * pages that were scanned. This will return to the
2360 * caller faster at the risk reclaim/compaction and
2361 * the resulting allocation attempt fails
2363 if (!nr_reclaimed)
2364 return false;
2368 * If we have not reclaimed enough pages for compaction and the
2369 * inactive lists are large enough, continue reclaiming
2371 pages_for_compaction = (2UL << sc->order);
2372 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2373 if (get_nr_swap_pages() > 0)
2374 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2375 if (sc->nr_reclaimed < pages_for_compaction &&
2376 inactive_lru_pages > pages_for_compaction)
2377 return true;
2379 /* If compaction would go ahead or the allocation would succeed, stop */
2380 switch (compaction_suitable(zone, sc->order, 0, 0)) {
2381 case COMPACT_PARTIAL:
2382 case COMPACT_CONTINUE:
2383 return false;
2384 default:
2385 return true;
2389 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2390 bool is_classzone)
2392 struct reclaim_state *reclaim_state = current->reclaim_state;
2393 unsigned long nr_reclaimed, nr_scanned;
2394 bool reclaimable = false;
2396 do {
2397 struct mem_cgroup *root = sc->target_mem_cgroup;
2398 struct mem_cgroup_reclaim_cookie reclaim = {
2399 .zone = zone,
2400 .priority = sc->priority,
2402 unsigned long zone_lru_pages = 0;
2403 struct mem_cgroup *memcg;
2405 nr_reclaimed = sc->nr_reclaimed;
2406 nr_scanned = sc->nr_scanned;
2408 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2409 do {
2410 unsigned long lru_pages;
2411 unsigned long reclaimed;
2412 unsigned long scanned;
2414 if (mem_cgroup_low(root, memcg)) {
2415 if (!sc->may_thrash)
2416 continue;
2417 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2420 reclaimed = sc->nr_reclaimed;
2421 scanned = sc->nr_scanned;
2423 shrink_zone_memcg(zone, memcg, sc, &lru_pages);
2424 zone_lru_pages += lru_pages;
2426 if (memcg && is_classzone)
2427 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2428 memcg, sc->nr_scanned - scanned,
2429 lru_pages);
2431 /* Record the group's reclaim efficiency */
2432 vmpressure(sc->gfp_mask, memcg, false,
2433 sc->nr_scanned - scanned,
2434 sc->nr_reclaimed - reclaimed);
2437 * Direct reclaim and kswapd have to scan all memory
2438 * cgroups to fulfill the overall scan target for the
2439 * zone.
2441 * Limit reclaim, on the other hand, only cares about
2442 * nr_to_reclaim pages to be reclaimed and it will
2443 * retry with decreasing priority if one round over the
2444 * whole hierarchy is not sufficient.
2446 if (!global_reclaim(sc) &&
2447 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2448 mem_cgroup_iter_break(root, memcg);
2449 break;
2451 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2454 * Shrink the slab caches in the same proportion that
2455 * the eligible LRU pages were scanned.
2457 if (global_reclaim(sc) && is_classzone)
2458 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2459 sc->nr_scanned - nr_scanned,
2460 zone_lru_pages);
2462 if (reclaim_state) {
2463 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2464 reclaim_state->reclaimed_slab = 0;
2467 /* Record the subtree's reclaim efficiency */
2468 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2469 sc->nr_scanned - nr_scanned,
2470 sc->nr_reclaimed - nr_reclaimed);
2472 if (sc->nr_reclaimed - nr_reclaimed)
2473 reclaimable = true;
2475 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2476 sc->nr_scanned - nr_scanned, sc));
2478 return reclaimable;
2482 * Returns true if compaction should go ahead for a high-order request, or
2483 * the high-order allocation would succeed without compaction.
2485 static inline bool compaction_ready(struct zone *zone, int order)
2487 unsigned long balance_gap, watermark;
2488 bool watermark_ok;
2491 * Compaction takes time to run and there are potentially other
2492 * callers using the pages just freed. Continue reclaiming until
2493 * there is a buffer of free pages available to give compaction
2494 * a reasonable chance of completing and allocating the page
2496 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2497 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2498 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2499 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2502 * If compaction is deferred, reclaim up to a point where
2503 * compaction will have a chance of success when re-enabled
2505 if (compaction_deferred(zone, order))
2506 return watermark_ok;
2509 * If compaction is not ready to start and allocation is not likely
2510 * to succeed without it, then keep reclaiming.
2512 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2513 return false;
2515 return watermark_ok;
2519 * This is the direct reclaim path, for page-allocating processes. We only
2520 * try to reclaim pages from zones which will satisfy the caller's allocation
2521 * request.
2523 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2524 * Because:
2525 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2526 * allocation or
2527 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2528 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2529 * zone defense algorithm.
2531 * If a zone is deemed to be full of pinned pages then just give it a light
2532 * scan then give up on it.
2534 * Returns true if a zone was reclaimable.
2536 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2538 struct zoneref *z;
2539 struct zone *zone;
2540 unsigned long nr_soft_reclaimed;
2541 unsigned long nr_soft_scanned;
2542 gfp_t orig_mask;
2543 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2544 bool reclaimable = false;
2547 * If the number of buffer_heads in the machine exceeds the maximum
2548 * allowed level, force direct reclaim to scan the highmem zone as
2549 * highmem pages could be pinning lowmem pages storing buffer_heads
2551 orig_mask = sc->gfp_mask;
2552 if (buffer_heads_over_limit)
2553 sc->gfp_mask |= __GFP_HIGHMEM;
2555 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2556 gfp_zone(sc->gfp_mask), sc->nodemask) {
2557 enum zone_type classzone_idx;
2559 if (!populated_zone(zone))
2560 continue;
2562 classzone_idx = requested_highidx;
2563 while (!populated_zone(zone->zone_pgdat->node_zones +
2564 classzone_idx))
2565 classzone_idx--;
2568 * Take care memory controller reclaiming has small influence
2569 * to global LRU.
2571 if (global_reclaim(sc)) {
2572 if (!cpuset_zone_allowed(zone,
2573 GFP_KERNEL | __GFP_HARDWALL))
2574 continue;
2576 if (sc->priority != DEF_PRIORITY &&
2577 !zone_reclaimable(zone))
2578 continue; /* Let kswapd poll it */
2581 * If we already have plenty of memory free for
2582 * compaction in this zone, don't free any more.
2583 * Even though compaction is invoked for any
2584 * non-zero order, only frequent costly order
2585 * reclamation is disruptive enough to become a
2586 * noticeable problem, like transparent huge
2587 * page allocations.
2589 if (IS_ENABLED(CONFIG_COMPACTION) &&
2590 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2591 zonelist_zone_idx(z) <= requested_highidx &&
2592 compaction_ready(zone, sc->order)) {
2593 sc->compaction_ready = true;
2594 continue;
2598 * This steals pages from memory cgroups over softlimit
2599 * and returns the number of reclaimed pages and
2600 * scanned pages. This works for global memory pressure
2601 * and balancing, not for a memcg's limit.
2603 nr_soft_scanned = 0;
2604 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2605 sc->order, sc->gfp_mask,
2606 &nr_soft_scanned);
2607 sc->nr_reclaimed += nr_soft_reclaimed;
2608 sc->nr_scanned += nr_soft_scanned;
2609 if (nr_soft_reclaimed)
2610 reclaimable = true;
2611 /* need some check for avoid more shrink_zone() */
2614 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2615 reclaimable = true;
2617 if (global_reclaim(sc) &&
2618 !reclaimable && zone_reclaimable(zone))
2619 reclaimable = true;
2623 * Restore to original mask to avoid the impact on the caller if we
2624 * promoted it to __GFP_HIGHMEM.
2626 sc->gfp_mask = orig_mask;
2628 return reclaimable;
2632 * This is the main entry point to direct page reclaim.
2634 * If a full scan of the inactive list fails to free enough memory then we
2635 * are "out of memory" and something needs to be killed.
2637 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2638 * high - the zone may be full of dirty or under-writeback pages, which this
2639 * caller can't do much about. We kick the writeback threads and take explicit
2640 * naps in the hope that some of these pages can be written. But if the
2641 * allocating task holds filesystem locks which prevent writeout this might not
2642 * work, and the allocation attempt will fail.
2644 * returns: 0, if no pages reclaimed
2645 * else, the number of pages reclaimed
2647 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2648 struct scan_control *sc)
2650 int initial_priority = sc->priority;
2651 unsigned long total_scanned = 0;
2652 unsigned long writeback_threshold;
2653 bool zones_reclaimable;
2654 retry:
2655 delayacct_freepages_start();
2657 if (global_reclaim(sc))
2658 count_vm_event(ALLOCSTALL);
2660 do {
2661 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2662 sc->priority);
2663 sc->nr_scanned = 0;
2664 zones_reclaimable = shrink_zones(zonelist, sc);
2666 total_scanned += sc->nr_scanned;
2667 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2668 break;
2670 if (sc->compaction_ready)
2671 break;
2674 * If we're getting trouble reclaiming, start doing
2675 * writepage even in laptop mode.
2677 if (sc->priority < DEF_PRIORITY - 2)
2678 sc->may_writepage = 1;
2681 * Try to write back as many pages as we just scanned. This
2682 * tends to cause slow streaming writers to write data to the
2683 * disk smoothly, at the dirtying rate, which is nice. But
2684 * that's undesirable in laptop mode, where we *want* lumpy
2685 * writeout. So in laptop mode, write out the whole world.
2687 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2688 if (total_scanned > writeback_threshold) {
2689 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2690 WB_REASON_TRY_TO_FREE_PAGES);
2691 sc->may_writepage = 1;
2693 } while (--sc->priority >= 0);
2695 delayacct_freepages_end();
2697 if (sc->nr_reclaimed)
2698 return sc->nr_reclaimed;
2700 /* Aborted reclaim to try compaction? don't OOM, then */
2701 if (sc->compaction_ready)
2702 return 1;
2704 /* Untapped cgroup reserves? Don't OOM, retry. */
2705 if (!sc->may_thrash) {
2706 sc->priority = initial_priority;
2707 sc->may_thrash = 1;
2708 goto retry;
2711 /* Any of the zones still reclaimable? Don't OOM. */
2712 if (zones_reclaimable)
2713 return 1;
2715 return 0;
2718 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2720 struct zone *zone;
2721 unsigned long pfmemalloc_reserve = 0;
2722 unsigned long free_pages = 0;
2723 int i;
2724 bool wmark_ok;
2726 for (i = 0; i <= ZONE_NORMAL; i++) {
2727 zone = &pgdat->node_zones[i];
2728 if (!populated_zone(zone) ||
2729 zone_reclaimable_pages(zone) == 0)
2730 continue;
2732 pfmemalloc_reserve += min_wmark_pages(zone);
2733 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2736 /* If there are no reserves (unexpected config) then do not throttle */
2737 if (!pfmemalloc_reserve)
2738 return true;
2740 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2742 /* kswapd must be awake if processes are being throttled */
2743 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2744 pgdat->classzone_idx = min(pgdat->classzone_idx,
2745 (enum zone_type)ZONE_NORMAL);
2746 wake_up_interruptible(&pgdat->kswapd_wait);
2749 return wmark_ok;
2753 * Throttle direct reclaimers if backing storage is backed by the network
2754 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2755 * depleted. kswapd will continue to make progress and wake the processes
2756 * when the low watermark is reached.
2758 * Returns true if a fatal signal was delivered during throttling. If this
2759 * happens, the page allocator should not consider triggering the OOM killer.
2761 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2762 nodemask_t *nodemask)
2764 struct zoneref *z;
2765 struct zone *zone;
2766 pg_data_t *pgdat = NULL;
2769 * Kernel threads should not be throttled as they may be indirectly
2770 * responsible for cleaning pages necessary for reclaim to make forward
2771 * progress. kjournald for example may enter direct reclaim while
2772 * committing a transaction where throttling it could forcing other
2773 * processes to block on log_wait_commit().
2775 if (current->flags & PF_KTHREAD)
2776 goto out;
2779 * If a fatal signal is pending, this process should not throttle.
2780 * It should return quickly so it can exit and free its memory
2782 if (fatal_signal_pending(current))
2783 goto out;
2786 * Check if the pfmemalloc reserves are ok by finding the first node
2787 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2788 * GFP_KERNEL will be required for allocating network buffers when
2789 * swapping over the network so ZONE_HIGHMEM is unusable.
2791 * Throttling is based on the first usable node and throttled processes
2792 * wait on a queue until kswapd makes progress and wakes them. There
2793 * is an affinity then between processes waking up and where reclaim
2794 * progress has been made assuming the process wakes on the same node.
2795 * More importantly, processes running on remote nodes will not compete
2796 * for remote pfmemalloc reserves and processes on different nodes
2797 * should make reasonable progress.
2799 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2800 gfp_zone(gfp_mask), nodemask) {
2801 if (zone_idx(zone) > ZONE_NORMAL)
2802 continue;
2804 /* Throttle based on the first usable node */
2805 pgdat = zone->zone_pgdat;
2806 if (pfmemalloc_watermark_ok(pgdat))
2807 goto out;
2808 break;
2811 /* If no zone was usable by the allocation flags then do not throttle */
2812 if (!pgdat)
2813 goto out;
2815 /* Account for the throttling */
2816 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2819 * If the caller cannot enter the filesystem, it's possible that it
2820 * is due to the caller holding an FS lock or performing a journal
2821 * transaction in the case of a filesystem like ext[3|4]. In this case,
2822 * it is not safe to block on pfmemalloc_wait as kswapd could be
2823 * blocked waiting on the same lock. Instead, throttle for up to a
2824 * second before continuing.
2826 if (!(gfp_mask & __GFP_FS)) {
2827 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2828 pfmemalloc_watermark_ok(pgdat), HZ);
2830 goto check_pending;
2833 /* Throttle until kswapd wakes the process */
2834 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2835 pfmemalloc_watermark_ok(pgdat));
2837 check_pending:
2838 if (fatal_signal_pending(current))
2839 return true;
2841 out:
2842 return false;
2845 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2846 gfp_t gfp_mask, nodemask_t *nodemask)
2848 unsigned long nr_reclaimed;
2849 struct scan_control sc = {
2850 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2851 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2852 .order = order,
2853 .nodemask = nodemask,
2854 .priority = DEF_PRIORITY,
2855 .may_writepage = !laptop_mode,
2856 .may_unmap = 1,
2857 .may_swap = 1,
2861 * Do not enter reclaim if fatal signal was delivered while throttled.
2862 * 1 is returned so that the page allocator does not OOM kill at this
2863 * point.
2865 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2866 return 1;
2868 trace_mm_vmscan_direct_reclaim_begin(order,
2869 sc.may_writepage,
2870 gfp_mask);
2872 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2874 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2876 return nr_reclaimed;
2879 #ifdef CONFIG_MEMCG
2881 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2882 gfp_t gfp_mask, bool noswap,
2883 struct zone *zone,
2884 unsigned long *nr_scanned)
2886 struct scan_control sc = {
2887 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2888 .target_mem_cgroup = memcg,
2889 .may_writepage = !laptop_mode,
2890 .may_unmap = 1,
2891 .may_swap = !noswap,
2893 unsigned long lru_pages;
2895 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2896 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2898 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2899 sc.may_writepage,
2900 sc.gfp_mask);
2903 * NOTE: Although we can get the priority field, using it
2904 * here is not a good idea, since it limits the pages we can scan.
2905 * if we don't reclaim here, the shrink_zone from balance_pgdat
2906 * will pick up pages from other mem cgroup's as well. We hack
2907 * the priority and make it zero.
2909 shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
2911 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2913 *nr_scanned = sc.nr_scanned;
2914 return sc.nr_reclaimed;
2917 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2918 unsigned long nr_pages,
2919 gfp_t gfp_mask,
2920 bool may_swap)
2922 struct zonelist *zonelist;
2923 unsigned long nr_reclaimed;
2924 int nid;
2925 struct scan_control sc = {
2926 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2927 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2928 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2929 .target_mem_cgroup = memcg,
2930 .priority = DEF_PRIORITY,
2931 .may_writepage = !laptop_mode,
2932 .may_unmap = 1,
2933 .may_swap = may_swap,
2937 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2938 * take care of from where we get pages. So the node where we start the
2939 * scan does not need to be the current node.
2941 nid = mem_cgroup_select_victim_node(memcg);
2943 zonelist = NODE_DATA(nid)->node_zonelists;
2945 trace_mm_vmscan_memcg_reclaim_begin(0,
2946 sc.may_writepage,
2947 sc.gfp_mask);
2949 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2951 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2953 return nr_reclaimed;
2955 #endif
2957 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2959 struct mem_cgroup *memcg;
2961 if (!total_swap_pages)
2962 return;
2964 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2965 do {
2966 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2968 if (inactive_anon_is_low(lruvec))
2969 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2970 sc, LRU_ACTIVE_ANON);
2972 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2973 } while (memcg);
2976 static bool zone_balanced(struct zone *zone, int order, bool highorder,
2977 unsigned long balance_gap, int classzone_idx)
2979 unsigned long mark = high_wmark_pages(zone) + balance_gap;
2982 * When checking from pgdat_balanced(), kswapd should stop and sleep
2983 * when it reaches the high order-0 watermark and let kcompactd take
2984 * over. Other callers such as wakeup_kswapd() want to determine the
2985 * true high-order watermark.
2987 if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) {
2988 mark += (1UL << order);
2989 order = 0;
2992 return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
2996 * pgdat_balanced() is used when checking if a node is balanced.
2998 * For order-0, all zones must be balanced!
3000 * For high-order allocations only zones that meet watermarks and are in a
3001 * zone allowed by the callers classzone_idx are added to balanced_pages. The
3002 * total of balanced pages must be at least 25% of the zones allowed by
3003 * classzone_idx for the node to be considered balanced. Forcing all zones to
3004 * be balanced for high orders can cause excessive reclaim when there are
3005 * imbalanced zones.
3006 * The choice of 25% is due to
3007 * o a 16M DMA zone that is balanced will not balance a zone on any
3008 * reasonable sized machine
3009 * o On all other machines, the top zone must be at least a reasonable
3010 * percentage of the middle zones. For example, on 32-bit x86, highmem
3011 * would need to be at least 256M for it to be balance a whole node.
3012 * Similarly, on x86-64 the Normal zone would need to be at least 1G
3013 * to balance a node on its own. These seemed like reasonable ratios.
3015 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3017 unsigned long managed_pages = 0;
3018 unsigned long balanced_pages = 0;
3019 int i;
3021 /* Check the watermark levels */
3022 for (i = 0; i <= classzone_idx; i++) {
3023 struct zone *zone = pgdat->node_zones + i;
3025 if (!populated_zone(zone))
3026 continue;
3028 managed_pages += zone->managed_pages;
3031 * A special case here:
3033 * balance_pgdat() skips over all_unreclaimable after
3034 * DEF_PRIORITY. Effectively, it considers them balanced so
3035 * they must be considered balanced here as well!
3037 if (!zone_reclaimable(zone)) {
3038 balanced_pages += zone->managed_pages;
3039 continue;
3042 if (zone_balanced(zone, order, false, 0, i))
3043 balanced_pages += zone->managed_pages;
3044 else if (!order)
3045 return false;
3048 if (order)
3049 return balanced_pages >= (managed_pages >> 2);
3050 else
3051 return true;
3055 * Prepare kswapd for sleeping. This verifies that there are no processes
3056 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3058 * Returns true if kswapd is ready to sleep
3060 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3061 int classzone_idx)
3063 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3064 if (remaining)
3065 return false;
3068 * The throttled processes are normally woken up in balance_pgdat() as
3069 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3070 * race between when kswapd checks the watermarks and a process gets
3071 * throttled. There is also a potential race if processes get
3072 * throttled, kswapd wakes, a large process exits thereby balancing the
3073 * zones, which causes kswapd to exit balance_pgdat() before reaching
3074 * the wake up checks. If kswapd is going to sleep, no process should
3075 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3076 * the wake up is premature, processes will wake kswapd and get
3077 * throttled again. The difference from wake ups in balance_pgdat() is
3078 * that here we are under prepare_to_wait().
3080 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3081 wake_up_all(&pgdat->pfmemalloc_wait);
3083 return pgdat_balanced(pgdat, order, classzone_idx);
3087 * kswapd shrinks the zone by the number of pages required to reach
3088 * the high watermark.
3090 * Returns true if kswapd scanned at least the requested number of pages to
3091 * reclaim or if the lack of progress was due to pages under writeback.
3092 * This is used to determine if the scanning priority needs to be raised.
3094 static bool kswapd_shrink_zone(struct zone *zone,
3095 int classzone_idx,
3096 struct scan_control *sc)
3098 unsigned long balance_gap;
3099 bool lowmem_pressure;
3101 /* Reclaim above the high watermark. */
3102 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3105 * We put equal pressure on every zone, unless one zone has way too
3106 * many pages free already. The "too many pages" is defined as the
3107 * high wmark plus a "gap" where the gap is either the low
3108 * watermark or 1% of the zone, whichever is smaller.
3110 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3111 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3114 * If there is no low memory pressure or the zone is balanced then no
3115 * reclaim is necessary
3117 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3118 if (!lowmem_pressure && zone_balanced(zone, sc->order, false,
3119 balance_gap, classzone_idx))
3120 return true;
3122 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3124 clear_bit(ZONE_WRITEBACK, &zone->flags);
3127 * If a zone reaches its high watermark, consider it to be no longer
3128 * congested. It's possible there are dirty pages backed by congested
3129 * BDIs but as pressure is relieved, speculatively avoid congestion
3130 * waits.
3132 if (zone_reclaimable(zone) &&
3133 zone_balanced(zone, sc->order, false, 0, classzone_idx)) {
3134 clear_bit(ZONE_CONGESTED, &zone->flags);
3135 clear_bit(ZONE_DIRTY, &zone->flags);
3138 return sc->nr_scanned >= sc->nr_to_reclaim;
3142 * For kswapd, balance_pgdat() will work across all this node's zones until
3143 * they are all at high_wmark_pages(zone).
3145 * Returns the highest zone idx kswapd was reclaiming at
3147 * There is special handling here for zones which are full of pinned pages.
3148 * This can happen if the pages are all mlocked, or if they are all used by
3149 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3150 * What we do is to detect the case where all pages in the zone have been
3151 * scanned twice and there has been zero successful reclaim. Mark the zone as
3152 * dead and from now on, only perform a short scan. Basically we're polling
3153 * the zone for when the problem goes away.
3155 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3156 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3157 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3158 * lower zones regardless of the number of free pages in the lower zones. This
3159 * interoperates with the page allocator fallback scheme to ensure that aging
3160 * of pages is balanced across the zones.
3162 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3164 int i;
3165 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3166 unsigned long nr_soft_reclaimed;
3167 unsigned long nr_soft_scanned;
3168 struct scan_control sc = {
3169 .gfp_mask = GFP_KERNEL,
3170 .order = order,
3171 .priority = DEF_PRIORITY,
3172 .may_writepage = !laptop_mode,
3173 .may_unmap = 1,
3174 .may_swap = 1,
3176 count_vm_event(PAGEOUTRUN);
3178 do {
3179 bool raise_priority = true;
3181 sc.nr_reclaimed = 0;
3184 * Scan in the highmem->dma direction for the highest
3185 * zone which needs scanning
3187 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3188 struct zone *zone = pgdat->node_zones + i;
3190 if (!populated_zone(zone))
3191 continue;
3193 if (sc.priority != DEF_PRIORITY &&
3194 !zone_reclaimable(zone))
3195 continue;
3198 * Do some background aging of the anon list, to give
3199 * pages a chance to be referenced before reclaiming.
3201 age_active_anon(zone, &sc);
3204 * If the number of buffer_heads in the machine
3205 * exceeds the maximum allowed level and this node
3206 * has a highmem zone, force kswapd to reclaim from
3207 * it to relieve lowmem pressure.
3209 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3210 end_zone = i;
3211 break;
3214 if (!zone_balanced(zone, order, false, 0, 0)) {
3215 end_zone = i;
3216 break;
3217 } else {
3219 * If balanced, clear the dirty and congested
3220 * flags
3222 clear_bit(ZONE_CONGESTED, &zone->flags);
3223 clear_bit(ZONE_DIRTY, &zone->flags);
3227 if (i < 0)
3228 goto out;
3231 * If we're getting trouble reclaiming, start doing writepage
3232 * even in laptop mode.
3234 if (sc.priority < DEF_PRIORITY - 2)
3235 sc.may_writepage = 1;
3238 * Now scan the zone in the dma->highmem direction, stopping
3239 * at the last zone which needs scanning.
3241 * We do this because the page allocator works in the opposite
3242 * direction. This prevents the page allocator from allocating
3243 * pages behind kswapd's direction of progress, which would
3244 * cause too much scanning of the lower zones.
3246 for (i = 0; i <= end_zone; i++) {
3247 struct zone *zone = pgdat->node_zones + i;
3249 if (!populated_zone(zone))
3250 continue;
3252 if (sc.priority != DEF_PRIORITY &&
3253 !zone_reclaimable(zone))
3254 continue;
3256 sc.nr_scanned = 0;
3258 nr_soft_scanned = 0;
3260 * Call soft limit reclaim before calling shrink_zone.
3262 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3263 order, sc.gfp_mask,
3264 &nr_soft_scanned);
3265 sc.nr_reclaimed += nr_soft_reclaimed;
3268 * There should be no need to raise the scanning
3269 * priority if enough pages are already being scanned
3270 * that that high watermark would be met at 100%
3271 * efficiency.
3273 if (kswapd_shrink_zone(zone, end_zone, &sc))
3274 raise_priority = false;
3278 * If the low watermark is met there is no need for processes
3279 * to be throttled on pfmemalloc_wait as they should not be
3280 * able to safely make forward progress. Wake them
3282 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3283 pfmemalloc_watermark_ok(pgdat))
3284 wake_up_all(&pgdat->pfmemalloc_wait);
3286 /* Check if kswapd should be suspending */
3287 if (try_to_freeze() || kthread_should_stop())
3288 break;
3291 * Raise priority if scanning rate is too low or there was no
3292 * progress in reclaiming pages
3294 if (raise_priority || !sc.nr_reclaimed)
3295 sc.priority--;
3296 } while (sc.priority >= 1 &&
3297 !pgdat_balanced(pgdat, order, classzone_idx));
3299 out:
3301 * Return the highest zone idx we were reclaiming at so
3302 * prepare_kswapd_sleep() makes the same decisions as here.
3304 return end_zone;
3307 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order,
3308 int classzone_idx, int balanced_classzone_idx)
3310 long remaining = 0;
3311 DEFINE_WAIT(wait);
3313 if (freezing(current) || kthread_should_stop())
3314 return;
3316 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3318 /* Try to sleep for a short interval */
3319 if (prepare_kswapd_sleep(pgdat, order, remaining,
3320 balanced_classzone_idx)) {
3322 * Compaction records what page blocks it recently failed to
3323 * isolate pages from and skips them in the future scanning.
3324 * When kswapd is going to sleep, it is reasonable to assume
3325 * that pages and compaction may succeed so reset the cache.
3327 reset_isolation_suitable(pgdat);
3330 * We have freed the memory, now we should compact it to make
3331 * allocation of the requested order possible.
3333 wakeup_kcompactd(pgdat, order, classzone_idx);
3335 remaining = schedule_timeout(HZ/10);
3336 finish_wait(&pgdat->kswapd_wait, &wait);
3337 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3341 * After a short sleep, check if it was a premature sleep. If not, then
3342 * go fully to sleep until explicitly woken up.
3344 if (prepare_kswapd_sleep(pgdat, order, remaining,
3345 balanced_classzone_idx)) {
3346 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3349 * vmstat counters are not perfectly accurate and the estimated
3350 * value for counters such as NR_FREE_PAGES can deviate from the
3351 * true value by nr_online_cpus * threshold. To avoid the zone
3352 * watermarks being breached while under pressure, we reduce the
3353 * per-cpu vmstat threshold while kswapd is awake and restore
3354 * them before going back to sleep.
3356 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3358 if (!kthread_should_stop())
3359 schedule();
3361 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3362 } else {
3363 if (remaining)
3364 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3365 else
3366 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3368 finish_wait(&pgdat->kswapd_wait, &wait);
3372 * The background pageout daemon, started as a kernel thread
3373 * from the init process.
3375 * This basically trickles out pages so that we have _some_
3376 * free memory available even if there is no other activity
3377 * that frees anything up. This is needed for things like routing
3378 * etc, where we otherwise might have all activity going on in
3379 * asynchronous contexts that cannot page things out.
3381 * If there are applications that are active memory-allocators
3382 * (most normal use), this basically shouldn't matter.
3384 static int kswapd(void *p)
3386 unsigned long order, new_order;
3387 int classzone_idx, new_classzone_idx;
3388 int balanced_classzone_idx;
3389 pg_data_t *pgdat = (pg_data_t*)p;
3390 struct task_struct *tsk = current;
3392 struct reclaim_state reclaim_state = {
3393 .reclaimed_slab = 0,
3395 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3397 lockdep_set_current_reclaim_state(GFP_KERNEL);
3399 if (!cpumask_empty(cpumask))
3400 set_cpus_allowed_ptr(tsk, cpumask);
3401 current->reclaim_state = &reclaim_state;
3404 * Tell the memory management that we're a "memory allocator",
3405 * and that if we need more memory we should get access to it
3406 * regardless (see "__alloc_pages()"). "kswapd" should
3407 * never get caught in the normal page freeing logic.
3409 * (Kswapd normally doesn't need memory anyway, but sometimes
3410 * you need a small amount of memory in order to be able to
3411 * page out something else, and this flag essentially protects
3412 * us from recursively trying to free more memory as we're
3413 * trying to free the first piece of memory in the first place).
3415 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3416 set_freezable();
3418 order = new_order = 0;
3419 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3420 balanced_classzone_idx = classzone_idx;
3421 for ( ; ; ) {
3422 bool ret;
3425 * While we were reclaiming, there might have been another
3426 * wakeup, so check the values.
3428 new_order = pgdat->kswapd_max_order;
3429 new_classzone_idx = pgdat->classzone_idx;
3430 pgdat->kswapd_max_order = 0;
3431 pgdat->classzone_idx = pgdat->nr_zones - 1;
3433 if (order < new_order || classzone_idx > new_classzone_idx) {
3435 * Don't sleep if someone wants a larger 'order'
3436 * allocation or has tigher zone constraints
3438 order = new_order;
3439 classzone_idx = new_classzone_idx;
3440 } else {
3441 kswapd_try_to_sleep(pgdat, order, classzone_idx,
3442 balanced_classzone_idx);
3443 order = pgdat->kswapd_max_order;
3444 classzone_idx = pgdat->classzone_idx;
3445 new_order = order;
3446 new_classzone_idx = classzone_idx;
3447 pgdat->kswapd_max_order = 0;
3448 pgdat->classzone_idx = pgdat->nr_zones - 1;
3451 ret = try_to_freeze();
3452 if (kthread_should_stop())
3453 break;
3456 * We can speed up thawing tasks if we don't call balance_pgdat
3457 * after returning from the refrigerator
3459 if (!ret) {
3460 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3461 balanced_classzone_idx = balance_pgdat(pgdat, order,
3462 classzone_idx);
3466 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3467 current->reclaim_state = NULL;
3468 lockdep_clear_current_reclaim_state();
3470 return 0;
3474 * A zone is low on free memory, so wake its kswapd task to service it.
3476 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3478 pg_data_t *pgdat;
3480 if (!populated_zone(zone))
3481 return;
3483 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3484 return;
3485 pgdat = zone->zone_pgdat;
3486 if (pgdat->kswapd_max_order < order) {
3487 pgdat->kswapd_max_order = order;
3488 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3490 if (!waitqueue_active(&pgdat->kswapd_wait))
3491 return;
3492 if (zone_balanced(zone, order, true, 0, 0))
3493 return;
3495 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3496 wake_up_interruptible(&pgdat->kswapd_wait);
3499 #ifdef CONFIG_HIBERNATION
3501 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3502 * freed pages.
3504 * Rather than trying to age LRUs the aim is to preserve the overall
3505 * LRU order by reclaiming preferentially
3506 * inactive > active > active referenced > active mapped
3508 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3510 struct reclaim_state reclaim_state;
3511 struct scan_control sc = {
3512 .nr_to_reclaim = nr_to_reclaim,
3513 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3514 .priority = DEF_PRIORITY,
3515 .may_writepage = 1,
3516 .may_unmap = 1,
3517 .may_swap = 1,
3518 .hibernation_mode = 1,
3520 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3521 struct task_struct *p = current;
3522 unsigned long nr_reclaimed;
3524 p->flags |= PF_MEMALLOC;
3525 lockdep_set_current_reclaim_state(sc.gfp_mask);
3526 reclaim_state.reclaimed_slab = 0;
3527 p->reclaim_state = &reclaim_state;
3529 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3531 p->reclaim_state = NULL;
3532 lockdep_clear_current_reclaim_state();
3533 p->flags &= ~PF_MEMALLOC;
3535 return nr_reclaimed;
3537 #endif /* CONFIG_HIBERNATION */
3539 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3540 not required for correctness. So if the last cpu in a node goes
3541 away, we get changed to run anywhere: as the first one comes back,
3542 restore their cpu bindings. */
3543 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3544 void *hcpu)
3546 int nid;
3548 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3549 for_each_node_state(nid, N_MEMORY) {
3550 pg_data_t *pgdat = NODE_DATA(nid);
3551 const struct cpumask *mask;
3553 mask = cpumask_of_node(pgdat->node_id);
3555 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3556 /* One of our CPUs online: restore mask */
3557 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3560 return NOTIFY_OK;
3564 * This kswapd start function will be called by init and node-hot-add.
3565 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3567 int kswapd_run(int nid)
3569 pg_data_t *pgdat = NODE_DATA(nid);
3570 int ret = 0;
3572 if (pgdat->kswapd)
3573 return 0;
3575 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3576 if (IS_ERR(pgdat->kswapd)) {
3577 /* failure at boot is fatal */
3578 BUG_ON(system_state == SYSTEM_BOOTING);
3579 pr_err("Failed to start kswapd on node %d\n", nid);
3580 ret = PTR_ERR(pgdat->kswapd);
3581 pgdat->kswapd = NULL;
3583 return ret;
3587 * Called by memory hotplug when all memory in a node is offlined. Caller must
3588 * hold mem_hotplug_begin/end().
3590 void kswapd_stop(int nid)
3592 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3594 if (kswapd) {
3595 kthread_stop(kswapd);
3596 NODE_DATA(nid)->kswapd = NULL;
3600 static int __init kswapd_init(void)
3602 int nid;
3604 swap_setup();
3605 for_each_node_state(nid, N_MEMORY)
3606 kswapd_run(nid);
3607 hotcpu_notifier(cpu_callback, 0);
3608 return 0;
3611 module_init(kswapd_init)
3613 #ifdef CONFIG_NUMA
3615 * Zone reclaim mode
3617 * If non-zero call zone_reclaim when the number of free pages falls below
3618 * the watermarks.
3620 int zone_reclaim_mode __read_mostly;
3622 #define RECLAIM_OFF 0
3623 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3624 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3625 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3628 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3629 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3630 * a zone.
3632 #define ZONE_RECLAIM_PRIORITY 4
3635 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3636 * occur.
3638 int sysctl_min_unmapped_ratio = 1;
3641 * If the number of slab pages in a zone grows beyond this percentage then
3642 * slab reclaim needs to occur.
3644 int sysctl_min_slab_ratio = 5;
3646 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3648 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3649 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3650 zone_page_state(zone, NR_ACTIVE_FILE);
3653 * It's possible for there to be more file mapped pages than
3654 * accounted for by the pages on the file LRU lists because
3655 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3657 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3660 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3661 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3663 unsigned long nr_pagecache_reclaimable;
3664 unsigned long delta = 0;
3667 * If RECLAIM_UNMAP is set, then all file pages are considered
3668 * potentially reclaimable. Otherwise, we have to worry about
3669 * pages like swapcache and zone_unmapped_file_pages() provides
3670 * a better estimate
3672 if (zone_reclaim_mode & RECLAIM_UNMAP)
3673 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3674 else
3675 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3677 /* If we can't clean pages, remove dirty pages from consideration */
3678 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3679 delta += zone_page_state(zone, NR_FILE_DIRTY);
3681 /* Watch for any possible underflows due to delta */
3682 if (unlikely(delta > nr_pagecache_reclaimable))
3683 delta = nr_pagecache_reclaimable;
3685 return nr_pagecache_reclaimable - delta;
3689 * Try to free up some pages from this zone through reclaim.
3691 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3693 /* Minimum pages needed in order to stay on node */
3694 const unsigned long nr_pages = 1 << order;
3695 struct task_struct *p = current;
3696 struct reclaim_state reclaim_state;
3697 struct scan_control sc = {
3698 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3699 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3700 .order = order,
3701 .priority = ZONE_RECLAIM_PRIORITY,
3702 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3703 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3704 .may_swap = 1,
3707 cond_resched();
3709 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3710 * and we also need to be able to write out pages for RECLAIM_WRITE
3711 * and RECLAIM_UNMAP.
3713 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3714 lockdep_set_current_reclaim_state(gfp_mask);
3715 reclaim_state.reclaimed_slab = 0;
3716 p->reclaim_state = &reclaim_state;
3718 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3720 * Free memory by calling shrink zone with increasing
3721 * priorities until we have enough memory freed.
3723 do {
3724 shrink_zone(zone, &sc, true);
3725 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3728 p->reclaim_state = NULL;
3729 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3730 lockdep_clear_current_reclaim_state();
3731 return sc.nr_reclaimed >= nr_pages;
3734 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3736 int node_id;
3737 int ret;
3740 * Zone reclaim reclaims unmapped file backed pages and
3741 * slab pages if we are over the defined limits.
3743 * A small portion of unmapped file backed pages is needed for
3744 * file I/O otherwise pages read by file I/O will be immediately
3745 * thrown out if the zone is overallocated. So we do not reclaim
3746 * if less than a specified percentage of the zone is used by
3747 * unmapped file backed pages.
3749 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3750 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3751 return ZONE_RECLAIM_FULL;
3753 if (!zone_reclaimable(zone))
3754 return ZONE_RECLAIM_FULL;
3757 * Do not scan if the allocation should not be delayed.
3759 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3760 return ZONE_RECLAIM_NOSCAN;
3763 * Only run zone reclaim on the local zone or on zones that do not
3764 * have associated processors. This will favor the local processor
3765 * over remote processors and spread off node memory allocations
3766 * as wide as possible.
3768 node_id = zone_to_nid(zone);
3769 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3770 return ZONE_RECLAIM_NOSCAN;
3772 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3773 return ZONE_RECLAIM_NOSCAN;
3775 ret = __zone_reclaim(zone, gfp_mask, order);
3776 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3778 if (!ret)
3779 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3781 return ret;
3783 #endif
3786 * page_evictable - test whether a page is evictable
3787 * @page: the page to test
3789 * Test whether page is evictable--i.e., should be placed on active/inactive
3790 * lists vs unevictable list.
3792 * Reasons page might not be evictable:
3793 * (1) page's mapping marked unevictable
3794 * (2) page is part of an mlocked VMA
3797 int page_evictable(struct page *page)
3799 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3802 #ifdef CONFIG_SHMEM
3804 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3805 * @pages: array of pages to check
3806 * @nr_pages: number of pages to check
3808 * Checks pages for evictability and moves them to the appropriate lru list.
3810 * This function is only used for SysV IPC SHM_UNLOCK.
3812 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3814 struct lruvec *lruvec;
3815 struct zone *zone = NULL;
3816 int pgscanned = 0;
3817 int pgrescued = 0;
3818 int i;
3820 for (i = 0; i < nr_pages; i++) {
3821 struct page *page = pages[i];
3822 struct zone *pagezone;
3824 pgscanned++;
3825 pagezone = page_zone(page);
3826 if (pagezone != zone) {
3827 if (zone)
3828 spin_unlock_irq(&zone->lru_lock);
3829 zone = pagezone;
3830 spin_lock_irq(&zone->lru_lock);
3832 lruvec = mem_cgroup_page_lruvec(page, zone);
3834 if (!PageLRU(page) || !PageUnevictable(page))
3835 continue;
3837 if (page_evictable(page)) {
3838 enum lru_list lru = page_lru_base_type(page);
3840 VM_BUG_ON_PAGE(PageActive(page), page);
3841 ClearPageUnevictable(page);
3842 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3843 add_page_to_lru_list(page, lruvec, lru);
3844 pgrescued++;
3848 if (zone) {
3849 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3850 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3851 spin_unlock_irq(&zone->lru_lock);
3854 #endif /* CONFIG_SHMEM */