1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
7 * This file is part of the SCTP kernel implementation
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
28 * Please send any bug reports or fixes you make to the
30 * lksctp developers <linux-sctp@vger.kernel.org>
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Perry Melange <pmelange@null.cc.uic.edu>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Jon Grimm <jgrimm@us.ibm.com>
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
48 #include <linux/slab.h>
49 #include <net/sock.h> /* For skb_set_owner_w */
51 #include <net/sctp/sctp.h>
52 #include <net/sctp/sm.h>
54 /* Declare internal functions here. */
55 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
);
56 static void sctp_check_transmitted(struct sctp_outq
*q
,
57 struct list_head
*transmitted_queue
,
58 struct sctp_transport
*transport
,
59 union sctp_addr
*saddr
,
60 struct sctp_sackhdr
*sack
,
61 __u32
*highest_new_tsn
);
63 static void sctp_mark_missing(struct sctp_outq
*q
,
64 struct list_head
*transmitted_queue
,
65 struct sctp_transport
*transport
,
66 __u32 highest_new_tsn
,
67 int count_of_newacks
);
69 static void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 sack_ctsn
);
71 static int sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
, gfp_t gfp
);
73 /* Add data to the front of the queue. */
74 static inline void sctp_outq_head_data(struct sctp_outq
*q
,
75 struct sctp_chunk
*ch
)
77 list_add(&ch
->list
, &q
->out_chunk_list
);
78 q
->out_qlen
+= ch
->skb
->len
;
81 /* Take data from the front of the queue. */
82 static inline struct sctp_chunk
*sctp_outq_dequeue_data(struct sctp_outq
*q
)
84 struct sctp_chunk
*ch
= NULL
;
86 if (!list_empty(&q
->out_chunk_list
)) {
87 struct list_head
*entry
= q
->out_chunk_list
.next
;
89 ch
= list_entry(entry
, struct sctp_chunk
, list
);
91 q
->out_qlen
-= ch
->skb
->len
;
95 /* Add data chunk to the end of the queue. */
96 static inline void sctp_outq_tail_data(struct sctp_outq
*q
,
97 struct sctp_chunk
*ch
)
99 list_add_tail(&ch
->list
, &q
->out_chunk_list
);
100 q
->out_qlen
+= ch
->skb
->len
;
104 * SFR-CACC algorithm:
105 * D) If count_of_newacks is greater than or equal to 2
106 * and t was not sent to the current primary then the
107 * sender MUST NOT increment missing report count for t.
109 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport
*primary
,
110 struct sctp_transport
*transport
,
111 int count_of_newacks
)
113 if (count_of_newacks
>= 2 && transport
!= primary
)
119 * SFR-CACC algorithm:
120 * F) If count_of_newacks is less than 2, let d be the
121 * destination to which t was sent. If cacc_saw_newack
122 * is 0 for destination d, then the sender MUST NOT
123 * increment missing report count for t.
125 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport
*transport
,
126 int count_of_newacks
)
128 if (count_of_newacks
< 2 &&
129 (transport
&& !transport
->cacc
.cacc_saw_newack
))
135 * SFR-CACC algorithm:
136 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
137 * execute steps C, D, F.
139 * C has been implemented in sctp_outq_sack
141 static inline int sctp_cacc_skip_3_1(struct sctp_transport
*primary
,
142 struct sctp_transport
*transport
,
143 int count_of_newacks
)
145 if (!primary
->cacc
.cycling_changeover
) {
146 if (sctp_cacc_skip_3_1_d(primary
, transport
, count_of_newacks
))
148 if (sctp_cacc_skip_3_1_f(transport
, count_of_newacks
))
156 * SFR-CACC algorithm:
157 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
158 * than next_tsn_at_change of the current primary, then
159 * the sender MUST NOT increment missing report count
162 static inline int sctp_cacc_skip_3_2(struct sctp_transport
*primary
, __u32 tsn
)
164 if (primary
->cacc
.cycling_changeover
&&
165 TSN_lt(tsn
, primary
->cacc
.next_tsn_at_change
))
171 * SFR-CACC algorithm:
172 * 3) If the missing report count for TSN t is to be
173 * incremented according to [RFC2960] and
174 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
175 * then the sender MUST further execute steps 3.1 and
176 * 3.2 to determine if the missing report count for
177 * TSN t SHOULD NOT be incremented.
179 * 3.3) If 3.1 and 3.2 do not dictate that the missing
180 * report count for t should not be incremented, then
181 * the sender SHOULD increment missing report count for
182 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
184 static inline int sctp_cacc_skip(struct sctp_transport
*primary
,
185 struct sctp_transport
*transport
,
186 int count_of_newacks
,
189 if (primary
->cacc
.changeover_active
&&
190 (sctp_cacc_skip_3_1(primary
, transport
, count_of_newacks
) ||
191 sctp_cacc_skip_3_2(primary
, tsn
)))
196 /* Initialize an existing sctp_outq. This does the boring stuff.
197 * You still need to define handlers if you really want to DO
198 * something with this structure...
200 void sctp_outq_init(struct sctp_association
*asoc
, struct sctp_outq
*q
)
202 memset(q
, 0, sizeof(struct sctp_outq
));
205 INIT_LIST_HEAD(&q
->out_chunk_list
);
206 INIT_LIST_HEAD(&q
->control_chunk_list
);
207 INIT_LIST_HEAD(&q
->retransmit
);
208 INIT_LIST_HEAD(&q
->sacked
);
209 INIT_LIST_HEAD(&q
->abandoned
);
212 /* Free the outqueue structure and any related pending chunks.
214 static void __sctp_outq_teardown(struct sctp_outq
*q
)
216 struct sctp_transport
*transport
;
217 struct list_head
*lchunk
, *temp
;
218 struct sctp_chunk
*chunk
, *tmp
;
220 /* Throw away unacknowledged chunks. */
221 list_for_each_entry(transport
, &q
->asoc
->peer
.transport_addr_list
,
223 while ((lchunk
= sctp_list_dequeue(&transport
->transmitted
)) != NULL
) {
224 chunk
= list_entry(lchunk
, struct sctp_chunk
,
226 /* Mark as part of a failed message. */
227 sctp_chunk_fail(chunk
, q
->error
);
228 sctp_chunk_free(chunk
);
232 /* Throw away chunks that have been gap ACKed. */
233 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
234 list_del_init(lchunk
);
235 chunk
= list_entry(lchunk
, struct sctp_chunk
,
237 sctp_chunk_fail(chunk
, q
->error
);
238 sctp_chunk_free(chunk
);
241 /* Throw away any chunks in the retransmit queue. */
242 list_for_each_safe(lchunk
, temp
, &q
->retransmit
) {
243 list_del_init(lchunk
);
244 chunk
= list_entry(lchunk
, struct sctp_chunk
,
246 sctp_chunk_fail(chunk
, q
->error
);
247 sctp_chunk_free(chunk
);
250 /* Throw away any chunks that are in the abandoned queue. */
251 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
252 list_del_init(lchunk
);
253 chunk
= list_entry(lchunk
, struct sctp_chunk
,
255 sctp_chunk_fail(chunk
, q
->error
);
256 sctp_chunk_free(chunk
);
259 /* Throw away any leftover data chunks. */
260 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
262 /* Mark as send failure. */
263 sctp_chunk_fail(chunk
, q
->error
);
264 sctp_chunk_free(chunk
);
267 /* Throw away any leftover control chunks. */
268 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
269 list_del_init(&chunk
->list
);
270 sctp_chunk_free(chunk
);
274 void sctp_outq_teardown(struct sctp_outq
*q
)
276 __sctp_outq_teardown(q
);
277 sctp_outq_init(q
->asoc
, q
);
280 /* Free the outqueue structure and any related pending chunks. */
281 void sctp_outq_free(struct sctp_outq
*q
)
283 /* Throw away leftover chunks. */
284 __sctp_outq_teardown(q
);
287 /* Put a new chunk in an sctp_outq. */
288 int sctp_outq_tail(struct sctp_outq
*q
, struct sctp_chunk
*chunk
, gfp_t gfp
)
290 struct net
*net
= sock_net(q
->asoc
->base
.sk
);
293 pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__
, q
, chunk
,
294 chunk
&& chunk
->chunk_hdr
?
295 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
)) :
298 /* If it is data, queue it up, otherwise, send it
301 if (sctp_chunk_is_data(chunk
)) {
302 /* Is it OK to queue data chunks? */
303 /* From 9. Termination of Association
305 * When either endpoint performs a shutdown, the
306 * association on each peer will stop accepting new
307 * data from its user and only deliver data in queue
308 * at the time of sending or receiving the SHUTDOWN
311 switch (q
->asoc
->state
) {
312 case SCTP_STATE_CLOSED
:
313 case SCTP_STATE_SHUTDOWN_PENDING
:
314 case SCTP_STATE_SHUTDOWN_SENT
:
315 case SCTP_STATE_SHUTDOWN_RECEIVED
:
316 case SCTP_STATE_SHUTDOWN_ACK_SENT
:
317 /* Cannot send after transport endpoint shutdown */
322 pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
323 __func__
, q
, chunk
, chunk
&& chunk
->chunk_hdr
?
324 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
)) :
327 sctp_chunk_hold(chunk
);
328 sctp_outq_tail_data(q
, chunk
);
329 if (chunk
->chunk_hdr
->flags
& SCTP_DATA_UNORDERED
)
330 SCTP_INC_STATS(net
, SCTP_MIB_OUTUNORDERCHUNKS
);
332 SCTP_INC_STATS(net
, SCTP_MIB_OUTORDERCHUNKS
);
336 list_add_tail(&chunk
->list
, &q
->control_chunk_list
);
337 SCTP_INC_STATS(net
, SCTP_MIB_OUTCTRLCHUNKS
);
344 error
= sctp_outq_flush(q
, 0, gfp
);
349 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
350 * and the abandoned list are in ascending order.
352 static void sctp_insert_list(struct list_head
*head
, struct list_head
*new)
354 struct list_head
*pos
;
355 struct sctp_chunk
*nchunk
, *lchunk
;
359 nchunk
= list_entry(new, struct sctp_chunk
, transmitted_list
);
360 ntsn
= ntohl(nchunk
->subh
.data_hdr
->tsn
);
362 list_for_each(pos
, head
) {
363 lchunk
= list_entry(pos
, struct sctp_chunk
, transmitted_list
);
364 ltsn
= ntohl(lchunk
->subh
.data_hdr
->tsn
);
365 if (TSN_lt(ntsn
, ltsn
)) {
366 list_add(new, pos
->prev
);
372 list_add_tail(new, head
);
375 /* Mark all the eligible packets on a transport for retransmission. */
376 void sctp_retransmit_mark(struct sctp_outq
*q
,
377 struct sctp_transport
*transport
,
380 struct list_head
*lchunk
, *ltemp
;
381 struct sctp_chunk
*chunk
;
383 /* Walk through the specified transmitted queue. */
384 list_for_each_safe(lchunk
, ltemp
, &transport
->transmitted
) {
385 chunk
= list_entry(lchunk
, struct sctp_chunk
,
388 /* If the chunk is abandoned, move it to abandoned list. */
389 if (sctp_chunk_abandoned(chunk
)) {
390 list_del_init(lchunk
);
391 sctp_insert_list(&q
->abandoned
, lchunk
);
393 /* If this chunk has not been previousely acked,
394 * stop considering it 'outstanding'. Our peer
395 * will most likely never see it since it will
396 * not be retransmitted
398 if (!chunk
->tsn_gap_acked
) {
399 if (chunk
->transport
)
400 chunk
->transport
->flight_size
-=
401 sctp_data_size(chunk
);
402 q
->outstanding_bytes
-= sctp_data_size(chunk
);
403 q
->asoc
->peer
.rwnd
+= sctp_data_size(chunk
);
408 /* If we are doing retransmission due to a timeout or pmtu
409 * discovery, only the chunks that are not yet acked should
410 * be added to the retransmit queue.
412 if ((reason
== SCTP_RTXR_FAST_RTX
&&
413 (chunk
->fast_retransmit
== SCTP_NEED_FRTX
)) ||
414 (reason
!= SCTP_RTXR_FAST_RTX
&& !chunk
->tsn_gap_acked
)) {
415 /* RFC 2960 6.2.1 Processing a Received SACK
417 * C) Any time a DATA chunk is marked for
418 * retransmission (via either T3-rtx timer expiration
419 * (Section 6.3.3) or via fast retransmit
420 * (Section 7.2.4)), add the data size of those
421 * chunks to the rwnd.
423 q
->asoc
->peer
.rwnd
+= sctp_data_size(chunk
);
424 q
->outstanding_bytes
-= sctp_data_size(chunk
);
425 if (chunk
->transport
)
426 transport
->flight_size
-= sctp_data_size(chunk
);
428 /* sctpimpguide-05 Section 2.8.2
429 * M5) If a T3-rtx timer expires, the
430 * 'TSN.Missing.Report' of all affected TSNs is set
433 chunk
->tsn_missing_report
= 0;
435 /* If a chunk that is being used for RTT measurement
436 * has to be retransmitted, we cannot use this chunk
437 * anymore for RTT measurements. Reset rto_pending so
438 * that a new RTT measurement is started when a new
439 * data chunk is sent.
441 if (chunk
->rtt_in_progress
) {
442 chunk
->rtt_in_progress
= 0;
443 transport
->rto_pending
= 0;
448 /* Move the chunk to the retransmit queue. The chunks
449 * on the retransmit queue are always kept in order.
451 list_del_init(lchunk
);
452 sctp_insert_list(&q
->retransmit
, lchunk
);
456 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
457 "flight_size:%d, pba:%d\n", __func__
, transport
, reason
,
458 transport
->cwnd
, transport
->ssthresh
, transport
->flight_size
,
459 transport
->partial_bytes_acked
);
462 /* Mark all the eligible packets on a transport for retransmission and force
465 void sctp_retransmit(struct sctp_outq
*q
, struct sctp_transport
*transport
,
466 sctp_retransmit_reason_t reason
)
468 struct net
*net
= sock_net(q
->asoc
->base
.sk
);
472 case SCTP_RTXR_T3_RTX
:
473 SCTP_INC_STATS(net
, SCTP_MIB_T3_RETRANSMITS
);
474 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_T3_RTX
);
475 /* Update the retran path if the T3-rtx timer has expired for
476 * the current retran path.
478 if (transport
== transport
->asoc
->peer
.retran_path
)
479 sctp_assoc_update_retran_path(transport
->asoc
);
480 transport
->asoc
->rtx_data_chunks
+=
481 transport
->asoc
->unack_data
;
483 case SCTP_RTXR_FAST_RTX
:
484 SCTP_INC_STATS(net
, SCTP_MIB_FAST_RETRANSMITS
);
485 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_FAST_RTX
);
488 case SCTP_RTXR_PMTUD
:
489 SCTP_INC_STATS(net
, SCTP_MIB_PMTUD_RETRANSMITS
);
491 case SCTP_RTXR_T1_RTX
:
492 SCTP_INC_STATS(net
, SCTP_MIB_T1_RETRANSMITS
);
493 transport
->asoc
->init_retries
++;
499 sctp_retransmit_mark(q
, transport
, reason
);
501 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
502 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
503 * following the procedures outlined in C1 - C5.
505 if (reason
== SCTP_RTXR_T3_RTX
)
506 sctp_generate_fwdtsn(q
, q
->asoc
->ctsn_ack_point
);
508 /* Flush the queues only on timeout, since fast_rtx is only
509 * triggered during sack processing and the queue
510 * will be flushed at the end.
512 if (reason
!= SCTP_RTXR_FAST_RTX
)
513 error
= sctp_outq_flush(q
, /* rtx_timeout */ 1, GFP_ATOMIC
);
516 q
->asoc
->base
.sk
->sk_err
= -error
;
520 * Transmit DATA chunks on the retransmit queue. Upon return from
521 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
522 * need to be transmitted by the caller.
523 * We assume that pkt->transport has already been set.
525 * The return value is a normal kernel error return value.
527 static int sctp_outq_flush_rtx(struct sctp_outq
*q
, struct sctp_packet
*pkt
,
528 int rtx_timeout
, int *start_timer
)
530 struct list_head
*lqueue
;
531 struct sctp_transport
*transport
= pkt
->transport
;
533 struct sctp_chunk
*chunk
, *chunk1
;
539 lqueue
= &q
->retransmit
;
540 fast_rtx
= q
->fast_rtx
;
542 /* This loop handles time-out retransmissions, fast retransmissions,
543 * and retransmissions due to opening of whindow.
545 * RFC 2960 6.3.3 Handle T3-rtx Expiration
547 * E3) Determine how many of the earliest (i.e., lowest TSN)
548 * outstanding DATA chunks for the address for which the
549 * T3-rtx has expired will fit into a single packet, subject
550 * to the MTU constraint for the path corresponding to the
551 * destination transport address to which the retransmission
552 * is being sent (this may be different from the address for
553 * which the timer expires [see Section 6.4]). Call this value
554 * K. Bundle and retransmit those K DATA chunks in a single
555 * packet to the destination endpoint.
557 * [Just to be painfully clear, if we are retransmitting
558 * because a timeout just happened, we should send only ONE
559 * packet of retransmitted data.]
561 * For fast retransmissions we also send only ONE packet. However,
562 * if we are just flushing the queue due to open window, we'll
563 * try to send as much as possible.
565 list_for_each_entry_safe(chunk
, chunk1
, lqueue
, transmitted_list
) {
566 /* If the chunk is abandoned, move it to abandoned list. */
567 if (sctp_chunk_abandoned(chunk
)) {
568 list_del_init(&chunk
->transmitted_list
);
569 sctp_insert_list(&q
->abandoned
,
570 &chunk
->transmitted_list
);
574 /* Make sure that Gap Acked TSNs are not retransmitted. A
575 * simple approach is just to move such TSNs out of the
576 * way and into a 'transmitted' queue and skip to the
579 if (chunk
->tsn_gap_acked
) {
580 list_move_tail(&chunk
->transmitted_list
,
581 &transport
->transmitted
);
585 /* If we are doing fast retransmit, ignore non-fast_rtransmit
588 if (fast_rtx
&& !chunk
->fast_retransmit
)
592 /* Attempt to append this chunk to the packet. */
593 status
= sctp_packet_append_chunk(pkt
, chunk
);
596 case SCTP_XMIT_PMTU_FULL
:
597 if (!pkt
->has_data
&& !pkt
->has_cookie_echo
) {
598 /* If this packet did not contain DATA then
599 * retransmission did not happen, so do it
600 * again. We'll ignore the error here since
601 * control chunks are already freed so there
602 * is nothing we can do.
604 sctp_packet_transmit(pkt
, GFP_ATOMIC
);
608 /* Send this packet. */
609 error
= sctp_packet_transmit(pkt
, GFP_ATOMIC
);
611 /* If we are retransmitting, we should only
612 * send a single packet.
613 * Otherwise, try appending this chunk again.
615 if (rtx_timeout
|| fast_rtx
)
620 /* Bundle next chunk in the next round. */
623 case SCTP_XMIT_RWND_FULL
:
624 /* Send this packet. */
625 error
= sctp_packet_transmit(pkt
, GFP_ATOMIC
);
627 /* Stop sending DATA as there is no more room
633 case SCTP_XMIT_DELAY
:
634 /* Send this packet. */
635 error
= sctp_packet_transmit(pkt
, GFP_ATOMIC
);
637 /* Stop sending DATA because of nagle delay. */
642 /* The append was successful, so add this chunk to
643 * the transmitted list.
645 list_move_tail(&chunk
->transmitted_list
,
646 &transport
->transmitted
);
648 /* Mark the chunk as ineligible for fast retransmit
649 * after it is retransmitted.
651 if (chunk
->fast_retransmit
== SCTP_NEED_FRTX
)
652 chunk
->fast_retransmit
= SCTP_DONT_FRTX
;
654 q
->asoc
->stats
.rtxchunks
++;
658 /* Set the timer if there were no errors */
659 if (!error
&& !timer
)
666 /* If we are here due to a retransmit timeout or a fast
667 * retransmit and if there are any chunks left in the retransmit
668 * queue that could not fit in the PMTU sized packet, they need
669 * to be marked as ineligible for a subsequent fast retransmit.
671 if (rtx_timeout
|| fast_rtx
) {
672 list_for_each_entry(chunk1
, lqueue
, transmitted_list
) {
673 if (chunk1
->fast_retransmit
== SCTP_NEED_FRTX
)
674 chunk1
->fast_retransmit
= SCTP_DONT_FRTX
;
678 *start_timer
= timer
;
680 /* Clear fast retransmit hint */
687 /* Cork the outqueue so queued chunks are really queued. */
688 int sctp_outq_uncork(struct sctp_outq
*q
, gfp_t gfp
)
693 return sctp_outq_flush(q
, 0, gfp
);
698 * Try to flush an outqueue.
700 * Description: Send everything in q which we legally can, subject to
701 * congestion limitations.
702 * * Note: This function can be called from multiple contexts so appropriate
703 * locking concerns must be made. Today we use the sock lock to protect
706 static int sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
, gfp_t gfp
)
708 struct sctp_packet
*packet
;
709 struct sctp_packet singleton
;
710 struct sctp_association
*asoc
= q
->asoc
;
711 __u16 sport
= asoc
->base
.bind_addr
.port
;
712 __u16 dport
= asoc
->peer
.port
;
713 __u32 vtag
= asoc
->peer
.i
.init_tag
;
714 struct sctp_transport
*transport
= NULL
;
715 struct sctp_transport
*new_transport
;
716 struct sctp_chunk
*chunk
, *tmp
;
722 /* These transports have chunks to send. */
723 struct list_head transport_list
;
724 struct list_head
*ltransport
;
726 INIT_LIST_HEAD(&transport_list
);
732 * When bundling control chunks with DATA chunks, an
733 * endpoint MUST place control chunks first in the outbound
734 * SCTP packet. The transmitter MUST transmit DATA chunks
735 * within a SCTP packet in increasing order of TSN.
739 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
741 * F1) This means that until such time as the ASCONF
742 * containing the add is acknowledged, the sender MUST
743 * NOT use the new IP address as a source for ANY SCTP
744 * packet except on carrying an ASCONF Chunk.
746 if (asoc
->src_out_of_asoc_ok
&&
747 chunk
->chunk_hdr
->type
!= SCTP_CID_ASCONF
)
750 list_del_init(&chunk
->list
);
752 /* Pick the right transport to use. */
753 new_transport
= chunk
->transport
;
755 if (!new_transport
) {
757 * If we have a prior transport pointer, see if
758 * the destination address of the chunk
759 * matches the destination address of the
760 * current transport. If not a match, then
761 * try to look up the transport with a given
762 * destination address. We do this because
763 * after processing ASCONFs, we may have new
764 * transports created.
767 sctp_cmp_addr_exact(&chunk
->dest
,
769 new_transport
= transport
;
771 new_transport
= sctp_assoc_lookup_paddr(asoc
,
774 /* if we still don't have a new transport, then
775 * use the current active path.
778 new_transport
= asoc
->peer
.active_path
;
779 } else if ((new_transport
->state
== SCTP_INACTIVE
) ||
780 (new_transport
->state
== SCTP_UNCONFIRMED
) ||
781 (new_transport
->state
== SCTP_PF
)) {
782 /* If the chunk is Heartbeat or Heartbeat Ack,
783 * send it to chunk->transport, even if it's
786 * 3.3.6 Heartbeat Acknowledgement:
788 * A HEARTBEAT ACK is always sent to the source IP
789 * address of the IP datagram containing the
790 * HEARTBEAT chunk to which this ack is responding.
793 * ASCONF_ACKs also must be sent to the source.
795 if (chunk
->chunk_hdr
->type
!= SCTP_CID_HEARTBEAT
&&
796 chunk
->chunk_hdr
->type
!= SCTP_CID_HEARTBEAT_ACK
&&
797 chunk
->chunk_hdr
->type
!= SCTP_CID_ASCONF_ACK
)
798 new_transport
= asoc
->peer
.active_path
;
801 /* Are we switching transports?
802 * Take care of transport locks.
804 if (new_transport
!= transport
) {
805 transport
= new_transport
;
806 if (list_empty(&transport
->send_ready
)) {
807 list_add_tail(&transport
->send_ready
,
810 packet
= &transport
->packet
;
811 sctp_packet_config(packet
, vtag
,
812 asoc
->peer
.ecn_capable
);
815 switch (chunk
->chunk_hdr
->type
) {
819 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
820 * COMPLETE with any other chunks. [Send them immediately.]
823 case SCTP_CID_INIT_ACK
:
824 case SCTP_CID_SHUTDOWN_COMPLETE
:
825 sctp_packet_init(&singleton
, transport
, sport
, dport
);
826 sctp_packet_config(&singleton
, vtag
, 0);
827 sctp_packet_append_chunk(&singleton
, chunk
);
828 error
= sctp_packet_transmit(&singleton
, gfp
);
834 if (sctp_test_T_bit(chunk
)) {
835 packet
->vtag
= asoc
->c
.my_vtag
;
837 /* The following chunks are "response" chunks, i.e.
838 * they are generated in response to something we
839 * received. If we are sending these, then we can
840 * send only 1 packet containing these chunks.
842 case SCTP_CID_HEARTBEAT_ACK
:
843 case SCTP_CID_SHUTDOWN_ACK
:
844 case SCTP_CID_COOKIE_ACK
:
845 case SCTP_CID_COOKIE_ECHO
:
847 case SCTP_CID_ECN_CWR
:
848 case SCTP_CID_ASCONF_ACK
:
853 case SCTP_CID_HEARTBEAT
:
854 case SCTP_CID_SHUTDOWN
:
855 case SCTP_CID_ECN_ECNE
:
856 case SCTP_CID_ASCONF
:
857 case SCTP_CID_FWD_TSN
:
858 status
= sctp_packet_transmit_chunk(packet
, chunk
,
860 if (status
!= SCTP_XMIT_OK
) {
861 /* put the chunk back */
862 list_add(&chunk
->list
, &q
->control_chunk_list
);
864 asoc
->stats
.octrlchunks
++;
865 /* PR-SCTP C5) If a FORWARD TSN is sent, the
866 * sender MUST assure that at least one T3-rtx
869 if (chunk
->chunk_hdr
->type
== SCTP_CID_FWD_TSN
) {
870 sctp_transport_reset_t3_rtx(transport
);
871 transport
->last_time_sent
= jiffies
;
877 /* We built a chunk with an illegal type! */
882 if (q
->asoc
->src_out_of_asoc_ok
)
885 /* Is it OK to send data chunks? */
886 switch (asoc
->state
) {
887 case SCTP_STATE_COOKIE_ECHOED
:
888 /* Only allow bundling when this packet has a COOKIE-ECHO
891 if (!packet
|| !packet
->has_cookie_echo
)
895 case SCTP_STATE_ESTABLISHED
:
896 case SCTP_STATE_SHUTDOWN_PENDING
:
897 case SCTP_STATE_SHUTDOWN_RECEIVED
:
899 * RFC 2960 6.1 Transmission of DATA Chunks
901 * C) When the time comes for the sender to transmit,
902 * before sending new DATA chunks, the sender MUST
903 * first transmit any outstanding DATA chunks which
904 * are marked for retransmission (limited by the
907 if (!list_empty(&q
->retransmit
)) {
908 if (asoc
->peer
.retran_path
->state
== SCTP_UNCONFIRMED
)
910 if (transport
== asoc
->peer
.retran_path
)
913 /* Switch transports & prepare the packet. */
915 transport
= asoc
->peer
.retran_path
;
917 if (list_empty(&transport
->send_ready
)) {
918 list_add_tail(&transport
->send_ready
,
922 packet
= &transport
->packet
;
923 sctp_packet_config(packet
, vtag
,
924 asoc
->peer
.ecn_capable
);
926 error
= sctp_outq_flush_rtx(q
, packet
,
927 rtx_timeout
, &start_timer
);
930 sctp_transport_reset_t3_rtx(transport
);
931 transport
->last_time_sent
= jiffies
;
934 /* This can happen on COOKIE-ECHO resend. Only
935 * one chunk can get bundled with a COOKIE-ECHO.
937 if (packet
->has_cookie_echo
)
940 /* Don't send new data if there is still data
941 * waiting to retransmit.
943 if (!list_empty(&q
->retransmit
))
947 /* Apply Max.Burst limitation to the current transport in
948 * case it will be used for new data. We are going to
949 * rest it before we return, but we want to apply the limit
950 * to the currently queued data.
953 sctp_transport_burst_limited(transport
);
955 /* Finally, transmit new packets. */
956 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
957 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
960 if (chunk
->sinfo
.sinfo_stream
>=
961 asoc
->c
.sinit_num_ostreams
) {
963 /* Mark as failed send. */
964 sctp_chunk_fail(chunk
, SCTP_ERROR_INV_STRM
);
965 sctp_chunk_free(chunk
);
969 /* Has this chunk expired? */
970 if (sctp_chunk_abandoned(chunk
)) {
971 sctp_chunk_fail(chunk
, 0);
972 sctp_chunk_free(chunk
);
976 /* If there is a specified transport, use it.
977 * Otherwise, we want to use the active path.
979 new_transport
= chunk
->transport
;
980 if (!new_transport
||
981 ((new_transport
->state
== SCTP_INACTIVE
) ||
982 (new_transport
->state
== SCTP_UNCONFIRMED
) ||
983 (new_transport
->state
== SCTP_PF
)))
984 new_transport
= asoc
->peer
.active_path
;
985 if (new_transport
->state
== SCTP_UNCONFIRMED
) {
986 WARN_ONCE(1, "Atempt to send packet on unconfirmed path.");
987 sctp_chunk_fail(chunk
, 0);
988 sctp_chunk_free(chunk
);
992 /* Change packets if necessary. */
993 if (new_transport
!= transport
) {
994 transport
= new_transport
;
996 /* Schedule to have this transport's
999 if (list_empty(&transport
->send_ready
)) {
1000 list_add_tail(&transport
->send_ready
,
1004 packet
= &transport
->packet
;
1005 sctp_packet_config(packet
, vtag
,
1006 asoc
->peer
.ecn_capable
);
1007 /* We've switched transports, so apply the
1008 * Burst limit to the new transport.
1010 sctp_transport_burst_limited(transport
);
1013 pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p "
1015 __func__
, q
, chunk
, chunk
&& chunk
->chunk_hdr
?
1016 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
)) :
1017 "illegal chunk", ntohl(chunk
->subh
.data_hdr
->tsn
),
1018 chunk
->skb
? chunk
->skb
->head
: NULL
, chunk
->skb
?
1019 atomic_read(&chunk
->skb
->users
) : -1);
1021 /* Add the chunk to the packet. */
1022 status
= sctp_packet_transmit_chunk(packet
, chunk
, 0, gfp
);
1025 case SCTP_XMIT_PMTU_FULL
:
1026 case SCTP_XMIT_RWND_FULL
:
1027 case SCTP_XMIT_DELAY
:
1028 /* We could not append this chunk, so put
1029 * the chunk back on the output queue.
1031 pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1032 __func__
, ntohl(chunk
->subh
.data_hdr
->tsn
),
1035 sctp_outq_head_data(q
, chunk
);
1036 goto sctp_flush_out
;
1039 /* The sender is in the SHUTDOWN-PENDING state,
1040 * The sender MAY set the I-bit in the DATA
1043 if (asoc
->state
== SCTP_STATE_SHUTDOWN_PENDING
)
1044 chunk
->chunk_hdr
->flags
|= SCTP_DATA_SACK_IMM
;
1045 if (chunk
->chunk_hdr
->flags
& SCTP_DATA_UNORDERED
)
1046 asoc
->stats
.ouodchunks
++;
1048 asoc
->stats
.oodchunks
++;
1056 /* BUG: We assume that the sctp_packet_transmit()
1057 * call below will succeed all the time and add the
1058 * chunk to the transmitted list and restart the
1060 * It is possible that the call can fail under OOM
1063 * Is this really a problem? Won't this behave
1066 list_add_tail(&chunk
->transmitted_list
,
1067 &transport
->transmitted
);
1069 sctp_transport_reset_t3_rtx(transport
);
1070 transport
->last_time_sent
= jiffies
;
1072 /* Only let one DATA chunk get bundled with a
1073 * COOKIE-ECHO chunk.
1075 if (packet
->has_cookie_echo
)
1076 goto sctp_flush_out
;
1087 /* Before returning, examine all the transports touched in
1088 * this call. Right now, we bluntly force clear all the
1089 * transports. Things might change after we implement Nagle.
1090 * But such an examination is still required.
1094 while ((ltransport
= sctp_list_dequeue(&transport_list
)) != NULL
) {
1095 struct sctp_transport
*t
= list_entry(ltransport
,
1096 struct sctp_transport
,
1098 packet
= &t
->packet
;
1099 if (!sctp_packet_empty(packet
))
1100 error
= sctp_packet_transmit(packet
, gfp
);
1102 /* Clear the burst limited state, if any */
1103 sctp_transport_burst_reset(t
);
1109 /* Update unack_data based on the incoming SACK chunk */
1110 static void sctp_sack_update_unack_data(struct sctp_association
*assoc
,
1111 struct sctp_sackhdr
*sack
)
1113 sctp_sack_variable_t
*frags
;
1117 unack_data
= assoc
->next_tsn
- assoc
->ctsn_ack_point
- 1;
1119 frags
= sack
->variable
;
1120 for (i
= 0; i
< ntohs(sack
->num_gap_ack_blocks
); i
++) {
1121 unack_data
-= ((ntohs(frags
[i
].gab
.end
) -
1122 ntohs(frags
[i
].gab
.start
) + 1));
1125 assoc
->unack_data
= unack_data
;
1128 /* This is where we REALLY process a SACK.
1130 * Process the SACK against the outqueue. Mostly, this just frees
1131 * things off the transmitted queue.
1133 int sctp_outq_sack(struct sctp_outq
*q
, struct sctp_chunk
*chunk
)
1135 struct sctp_association
*asoc
= q
->asoc
;
1136 struct sctp_sackhdr
*sack
= chunk
->subh
.sack_hdr
;
1137 struct sctp_transport
*transport
;
1138 struct sctp_chunk
*tchunk
= NULL
;
1139 struct list_head
*lchunk
, *transport_list
, *temp
;
1140 sctp_sack_variable_t
*frags
= sack
->variable
;
1141 __u32 sack_ctsn
, ctsn
, tsn
;
1142 __u32 highest_tsn
, highest_new_tsn
;
1144 unsigned int outstanding
;
1145 struct sctp_transport
*primary
= asoc
->peer
.primary_path
;
1146 int count_of_newacks
= 0;
1150 /* Grab the association's destination address list. */
1151 transport_list
= &asoc
->peer
.transport_addr_list
;
1153 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1154 gap_ack_blocks
= ntohs(sack
->num_gap_ack_blocks
);
1155 asoc
->stats
.gapcnt
+= gap_ack_blocks
;
1157 * SFR-CACC algorithm:
1158 * On receipt of a SACK the sender SHOULD execute the
1159 * following statements.
1161 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1162 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1163 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1165 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1166 * is set the receiver of the SACK MUST take the following actions:
1168 * A) Initialize the cacc_saw_newack to 0 for all destination
1171 * Only bother if changeover_active is set. Otherwise, this is
1172 * totally suboptimal to do on every SACK.
1174 if (primary
->cacc
.changeover_active
) {
1175 u8 clear_cycling
= 0;
1177 if (TSN_lte(primary
->cacc
.next_tsn_at_change
, sack_ctsn
)) {
1178 primary
->cacc
.changeover_active
= 0;
1182 if (clear_cycling
|| gap_ack_blocks
) {
1183 list_for_each_entry(transport
, transport_list
,
1186 transport
->cacc
.cycling_changeover
= 0;
1188 transport
->cacc
.cacc_saw_newack
= 0;
1193 /* Get the highest TSN in the sack. */
1194 highest_tsn
= sack_ctsn
;
1196 highest_tsn
+= ntohs(frags
[gap_ack_blocks
- 1].gab
.end
);
1198 if (TSN_lt(asoc
->highest_sacked
, highest_tsn
))
1199 asoc
->highest_sacked
= highest_tsn
;
1201 highest_new_tsn
= sack_ctsn
;
1203 /* Run through the retransmit queue. Credit bytes received
1204 * and free those chunks that we can.
1206 sctp_check_transmitted(q
, &q
->retransmit
, NULL
, NULL
, sack
, &highest_new_tsn
);
1208 /* Run through the transmitted queue.
1209 * Credit bytes received and free those chunks which we can.
1211 * This is a MASSIVE candidate for optimization.
1213 list_for_each_entry(transport
, transport_list
, transports
) {
1214 sctp_check_transmitted(q
, &transport
->transmitted
,
1215 transport
, &chunk
->source
, sack
,
1218 * SFR-CACC algorithm:
1219 * C) Let count_of_newacks be the number of
1220 * destinations for which cacc_saw_newack is set.
1222 if (transport
->cacc
.cacc_saw_newack
)
1226 /* Move the Cumulative TSN Ack Point if appropriate. */
1227 if (TSN_lt(asoc
->ctsn_ack_point
, sack_ctsn
)) {
1228 asoc
->ctsn_ack_point
= sack_ctsn
;
1232 if (gap_ack_blocks
) {
1234 if (asoc
->fast_recovery
&& accum_moved
)
1235 highest_new_tsn
= highest_tsn
;
1237 list_for_each_entry(transport
, transport_list
, transports
)
1238 sctp_mark_missing(q
, &transport
->transmitted
, transport
,
1239 highest_new_tsn
, count_of_newacks
);
1242 /* Update unack_data field in the assoc. */
1243 sctp_sack_update_unack_data(asoc
, sack
);
1245 ctsn
= asoc
->ctsn_ack_point
;
1247 /* Throw away stuff rotting on the sack queue. */
1248 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
1249 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1251 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1252 if (TSN_lte(tsn
, ctsn
)) {
1253 list_del_init(&tchunk
->transmitted_list
);
1254 sctp_chunk_free(tchunk
);
1258 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1259 * number of bytes still outstanding after processing the
1260 * Cumulative TSN Ack and the Gap Ack Blocks.
1263 sack_a_rwnd
= ntohl(sack
->a_rwnd
);
1264 asoc
->peer
.zero_window_announced
= !sack_a_rwnd
;
1265 outstanding
= q
->outstanding_bytes
;
1267 if (outstanding
< sack_a_rwnd
)
1268 sack_a_rwnd
-= outstanding
;
1272 asoc
->peer
.rwnd
= sack_a_rwnd
;
1274 sctp_generate_fwdtsn(q
, sack_ctsn
);
1276 pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__
, sack_ctsn
);
1277 pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1278 "advertised peer ack point:0x%x\n", __func__
, asoc
, ctsn
,
1279 asoc
->adv_peer_ack_point
);
1281 return sctp_outq_is_empty(q
);
1284 /* Is the outqueue empty?
1285 * The queue is empty when we have not pending data, no in-flight data
1286 * and nothing pending retransmissions.
1288 int sctp_outq_is_empty(const struct sctp_outq
*q
)
1290 return q
->out_qlen
== 0 && q
->outstanding_bytes
== 0 &&
1291 list_empty(&q
->retransmit
);
1294 /********************************************************************
1295 * 2nd Level Abstractions
1296 ********************************************************************/
1298 /* Go through a transport's transmitted list or the association's retransmit
1299 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1300 * The retransmit list will not have an associated transport.
1302 * I added coherent debug information output. --xguo
1304 * Instead of printing 'sacked' or 'kept' for each TSN on the
1305 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1306 * KEPT TSN6-TSN7, etc.
1308 static void sctp_check_transmitted(struct sctp_outq
*q
,
1309 struct list_head
*transmitted_queue
,
1310 struct sctp_transport
*transport
,
1311 union sctp_addr
*saddr
,
1312 struct sctp_sackhdr
*sack
,
1313 __u32
*highest_new_tsn_in_sack
)
1315 struct list_head
*lchunk
;
1316 struct sctp_chunk
*tchunk
;
1317 struct list_head tlist
;
1321 __u8 restart_timer
= 0;
1322 int bytes_acked
= 0;
1323 int migrate_bytes
= 0;
1324 bool forward_progress
= false;
1326 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1328 INIT_LIST_HEAD(&tlist
);
1330 /* The while loop will skip empty transmitted queues. */
1331 while (NULL
!= (lchunk
= sctp_list_dequeue(transmitted_queue
))) {
1332 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1335 if (sctp_chunk_abandoned(tchunk
)) {
1336 /* Move the chunk to abandoned list. */
1337 sctp_insert_list(&q
->abandoned
, lchunk
);
1339 /* If this chunk has not been acked, stop
1340 * considering it as 'outstanding'.
1342 if (!tchunk
->tsn_gap_acked
) {
1343 if (tchunk
->transport
)
1344 tchunk
->transport
->flight_size
-=
1345 sctp_data_size(tchunk
);
1346 q
->outstanding_bytes
-= sctp_data_size(tchunk
);
1351 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1352 if (sctp_acked(sack
, tsn
)) {
1353 /* If this queue is the retransmit queue, the
1354 * retransmit timer has already reclaimed
1355 * the outstanding bytes for this chunk, so only
1356 * count bytes associated with a transport.
1359 /* If this chunk is being used for RTT
1360 * measurement, calculate the RTT and update
1361 * the RTO using this value.
1363 * 6.3.1 C5) Karn's algorithm: RTT measurements
1364 * MUST NOT be made using packets that were
1365 * retransmitted (and thus for which it is
1366 * ambiguous whether the reply was for the
1367 * first instance of the packet or a later
1370 if (!tchunk
->tsn_gap_acked
&&
1372 tchunk
->rtt_in_progress
) {
1373 tchunk
->rtt_in_progress
= 0;
1374 rtt
= jiffies
- tchunk
->sent_at
;
1375 sctp_transport_update_rto(transport
,
1380 /* If the chunk hasn't been marked as ACKED,
1381 * mark it and account bytes_acked if the
1382 * chunk had a valid transport (it will not
1383 * have a transport if ASCONF had deleted it
1384 * while DATA was outstanding).
1386 if (!tchunk
->tsn_gap_acked
) {
1387 tchunk
->tsn_gap_acked
= 1;
1388 if (TSN_lt(*highest_new_tsn_in_sack
, tsn
))
1389 *highest_new_tsn_in_sack
= tsn
;
1390 bytes_acked
+= sctp_data_size(tchunk
);
1391 if (!tchunk
->transport
)
1392 migrate_bytes
+= sctp_data_size(tchunk
);
1393 forward_progress
= true;
1396 if (TSN_lte(tsn
, sack_ctsn
)) {
1397 /* RFC 2960 6.3.2 Retransmission Timer Rules
1399 * R3) Whenever a SACK is received
1400 * that acknowledges the DATA chunk
1401 * with the earliest outstanding TSN
1402 * for that address, restart T3-rtx
1403 * timer for that address with its
1407 forward_progress
= true;
1409 if (!tchunk
->tsn_gap_acked
) {
1411 * SFR-CACC algorithm:
1412 * 2) If the SACK contains gap acks
1413 * and the flag CHANGEOVER_ACTIVE is
1414 * set the receiver of the SACK MUST
1415 * take the following action:
1417 * B) For each TSN t being acked that
1418 * has not been acked in any SACK so
1419 * far, set cacc_saw_newack to 1 for
1420 * the destination that the TSN was
1424 sack
->num_gap_ack_blocks
&&
1425 q
->asoc
->peer
.primary_path
->cacc
.
1427 transport
->cacc
.cacc_saw_newack
1431 list_add_tail(&tchunk
->transmitted_list
,
1434 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1435 * M2) Each time a SACK arrives reporting
1436 * 'Stray DATA chunk(s)' record the highest TSN
1437 * reported as newly acknowledged, call this
1438 * value 'HighestTSNinSack'. A newly
1439 * acknowledged DATA chunk is one not
1440 * previously acknowledged in a SACK.
1442 * When the SCTP sender of data receives a SACK
1443 * chunk that acknowledges, for the first time,
1444 * the receipt of a DATA chunk, all the still
1445 * unacknowledged DATA chunks whose TSN is
1446 * older than that newly acknowledged DATA
1447 * chunk, are qualified as 'Stray DATA chunks'.
1449 list_add_tail(lchunk
, &tlist
);
1452 if (tchunk
->tsn_gap_acked
) {
1453 pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1456 tchunk
->tsn_gap_acked
= 0;
1458 if (tchunk
->transport
)
1459 bytes_acked
-= sctp_data_size(tchunk
);
1461 /* RFC 2960 6.3.2 Retransmission Timer Rules
1463 * R4) Whenever a SACK is received missing a
1464 * TSN that was previously acknowledged via a
1465 * Gap Ack Block, start T3-rtx for the
1466 * destination address to which the DATA
1467 * chunk was originally
1468 * transmitted if it is not already running.
1473 list_add_tail(lchunk
, &tlist
);
1479 struct sctp_association
*asoc
= transport
->asoc
;
1481 /* We may have counted DATA that was migrated
1482 * to this transport due to DEL-IP operation.
1483 * Subtract those bytes, since the were never
1484 * send on this transport and shouldn't be
1485 * credited to this transport.
1487 bytes_acked
-= migrate_bytes
;
1489 /* 8.2. When an outstanding TSN is acknowledged,
1490 * the endpoint shall clear the error counter of
1491 * the destination transport address to which the
1492 * DATA chunk was last sent.
1493 * The association's overall error counter is
1496 transport
->error_count
= 0;
1497 transport
->asoc
->overall_error_count
= 0;
1498 forward_progress
= true;
1501 * While in SHUTDOWN PENDING, we may have started
1502 * the T5 shutdown guard timer after reaching the
1503 * retransmission limit. Stop that timer as soon
1504 * as the receiver acknowledged any data.
1506 if (asoc
->state
== SCTP_STATE_SHUTDOWN_PENDING
&&
1507 del_timer(&asoc
->timers
1508 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD
]))
1509 sctp_association_put(asoc
);
1511 /* Mark the destination transport address as
1512 * active if it is not so marked.
1514 if ((transport
->state
== SCTP_INACTIVE
||
1515 transport
->state
== SCTP_UNCONFIRMED
) &&
1516 sctp_cmp_addr_exact(&transport
->ipaddr
, saddr
)) {
1517 sctp_assoc_control_transport(
1521 SCTP_RECEIVED_SACK
);
1524 sctp_transport_raise_cwnd(transport
, sack_ctsn
,
1527 transport
->flight_size
-= bytes_acked
;
1528 if (transport
->flight_size
== 0)
1529 transport
->partial_bytes_acked
= 0;
1530 q
->outstanding_bytes
-= bytes_acked
+ migrate_bytes
;
1532 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1533 * When a sender is doing zero window probing, it
1534 * should not timeout the association if it continues
1535 * to receive new packets from the receiver. The
1536 * reason is that the receiver MAY keep its window
1537 * closed for an indefinite time.
1538 * A sender is doing zero window probing when the
1539 * receiver's advertised window is zero, and there is
1540 * only one data chunk in flight to the receiver.
1542 * Allow the association to timeout while in SHUTDOWN
1543 * PENDING or SHUTDOWN RECEIVED in case the receiver
1544 * stays in zero window mode forever.
1546 if (!q
->asoc
->peer
.rwnd
&&
1547 !list_empty(&tlist
) &&
1548 (sack_ctsn
+2 == q
->asoc
->next_tsn
) &&
1549 q
->asoc
->state
< SCTP_STATE_SHUTDOWN_PENDING
) {
1550 pr_debug("%s: sack received for zero window "
1551 "probe:%u\n", __func__
, sack_ctsn
);
1553 q
->asoc
->overall_error_count
= 0;
1554 transport
->error_count
= 0;
1558 /* RFC 2960 6.3.2 Retransmission Timer Rules
1560 * R2) Whenever all outstanding data sent to an address have
1561 * been acknowledged, turn off the T3-rtx timer of that
1564 if (!transport
->flight_size
) {
1565 if (del_timer(&transport
->T3_rtx_timer
))
1566 sctp_transport_put(transport
);
1567 } else if (restart_timer
) {
1568 if (!mod_timer(&transport
->T3_rtx_timer
,
1569 jiffies
+ transport
->rto
))
1570 sctp_transport_hold(transport
);
1573 if (forward_progress
) {
1575 dst_confirm(transport
->dst
);
1579 list_splice(&tlist
, transmitted_queue
);
1582 /* Mark chunks as missing and consequently may get retransmitted. */
1583 static void sctp_mark_missing(struct sctp_outq
*q
,
1584 struct list_head
*transmitted_queue
,
1585 struct sctp_transport
*transport
,
1586 __u32 highest_new_tsn_in_sack
,
1587 int count_of_newacks
)
1589 struct sctp_chunk
*chunk
;
1591 char do_fast_retransmit
= 0;
1592 struct sctp_association
*asoc
= q
->asoc
;
1593 struct sctp_transport
*primary
= asoc
->peer
.primary_path
;
1595 list_for_each_entry(chunk
, transmitted_queue
, transmitted_list
) {
1597 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1599 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1600 * 'Unacknowledged TSN's', if the TSN number of an
1601 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1602 * value, increment the 'TSN.Missing.Report' count on that
1603 * chunk if it has NOT been fast retransmitted or marked for
1604 * fast retransmit already.
1606 if (chunk
->fast_retransmit
== SCTP_CAN_FRTX
&&
1607 !chunk
->tsn_gap_acked
&&
1608 TSN_lt(tsn
, highest_new_tsn_in_sack
)) {
1610 /* SFR-CACC may require us to skip marking
1611 * this chunk as missing.
1613 if (!transport
|| !sctp_cacc_skip(primary
,
1615 count_of_newacks
, tsn
)) {
1616 chunk
->tsn_missing_report
++;
1618 pr_debug("%s: tsn:0x%x missing counter:%d\n",
1619 __func__
, tsn
, chunk
->tsn_missing_report
);
1623 * M4) If any DATA chunk is found to have a
1624 * 'TSN.Missing.Report'
1625 * value larger than or equal to 3, mark that chunk for
1626 * retransmission and start the fast retransmit procedure.
1629 if (chunk
->tsn_missing_report
>= 3) {
1630 chunk
->fast_retransmit
= SCTP_NEED_FRTX
;
1631 do_fast_retransmit
= 1;
1636 if (do_fast_retransmit
)
1637 sctp_retransmit(q
, transport
, SCTP_RTXR_FAST_RTX
);
1639 pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1640 "flight_size:%d, pba:%d\n", __func__
, transport
,
1641 transport
->cwnd
, transport
->ssthresh
,
1642 transport
->flight_size
, transport
->partial_bytes_acked
);
1646 /* Is the given TSN acked by this packet? */
1647 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
)
1650 sctp_sack_variable_t
*frags
;
1652 __u32 ctsn
= ntohl(sack
->cum_tsn_ack
);
1654 if (TSN_lte(tsn
, ctsn
))
1657 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1660 * These fields contain the Gap Ack Blocks. They are repeated
1661 * for each Gap Ack Block up to the number of Gap Ack Blocks
1662 * defined in the Number of Gap Ack Blocks field. All DATA
1663 * chunks with TSNs greater than or equal to (Cumulative TSN
1664 * Ack + Gap Ack Block Start) and less than or equal to
1665 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1666 * Block are assumed to have been received correctly.
1669 frags
= sack
->variable
;
1671 for (i
= 0; i
< ntohs(sack
->num_gap_ack_blocks
); ++i
) {
1672 if (TSN_lte(ntohs(frags
[i
].gab
.start
), gap
) &&
1673 TSN_lte(gap
, ntohs(frags
[i
].gab
.end
)))
1682 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip
*skiplist
,
1683 int nskips
, __be16 stream
)
1687 for (i
= 0; i
< nskips
; i
++) {
1688 if (skiplist
[i
].stream
== stream
)
1694 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1695 static void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 ctsn
)
1697 struct sctp_association
*asoc
= q
->asoc
;
1698 struct sctp_chunk
*ftsn_chunk
= NULL
;
1699 struct sctp_fwdtsn_skip ftsn_skip_arr
[10];
1703 struct sctp_chunk
*chunk
;
1704 struct list_head
*lchunk
, *temp
;
1706 if (!asoc
->peer
.prsctp_capable
)
1709 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1712 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1713 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1715 if (TSN_lt(asoc
->adv_peer_ack_point
, ctsn
))
1716 asoc
->adv_peer_ack_point
= ctsn
;
1718 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1719 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1720 * the chunk next in the out-queue space is marked as "abandoned" as
1721 * shown in the following example:
1723 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1724 * and the Advanced.Peer.Ack.Point is updated to this value:
1726 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1727 * normal SACK processing local advancement
1729 * Adv.Ack.Pt-> 102 acked 102 acked
1730 * 103 abandoned 103 abandoned
1731 * 104 abandoned Adv.Ack.P-> 104 abandoned
1733 * 106 acked 106 acked
1736 * In this example, the data sender successfully advanced the
1737 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1739 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
1740 chunk
= list_entry(lchunk
, struct sctp_chunk
,
1742 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1744 /* Remove any chunks in the abandoned queue that are acked by
1747 if (TSN_lte(tsn
, ctsn
)) {
1748 list_del_init(lchunk
);
1749 sctp_chunk_free(chunk
);
1751 if (TSN_lte(tsn
, asoc
->adv_peer_ack_point
+1)) {
1752 asoc
->adv_peer_ack_point
= tsn
;
1753 if (chunk
->chunk_hdr
->flags
&
1754 SCTP_DATA_UNORDERED
)
1756 skip_pos
= sctp_get_skip_pos(&ftsn_skip_arr
[0],
1758 chunk
->subh
.data_hdr
->stream
);
1759 ftsn_skip_arr
[skip_pos
].stream
=
1760 chunk
->subh
.data_hdr
->stream
;
1761 ftsn_skip_arr
[skip_pos
].ssn
=
1762 chunk
->subh
.data_hdr
->ssn
;
1763 if (skip_pos
== nskips
)
1772 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1773 * is greater than the Cumulative TSN ACK carried in the received
1774 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1775 * chunk containing the latest value of the
1776 * "Advanced.Peer.Ack.Point".
1778 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1779 * list each stream and sequence number in the forwarded TSN. This
1780 * information will enable the receiver to easily find any
1781 * stranded TSN's waiting on stream reorder queues. Each stream
1782 * SHOULD only be reported once; this means that if multiple
1783 * abandoned messages occur in the same stream then only the
1784 * highest abandoned stream sequence number is reported. If the
1785 * total size of the FORWARD TSN does NOT fit in a single MTU then
1786 * the sender of the FORWARD TSN SHOULD lower the
1787 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1790 if (asoc
->adv_peer_ack_point
> ctsn
)
1791 ftsn_chunk
= sctp_make_fwdtsn(asoc
, asoc
->adv_peer_ack_point
,
1792 nskips
, &ftsn_skip_arr
[0]);
1795 list_add_tail(&ftsn_chunk
->list
, &q
->control_chunk_list
);
1796 SCTP_INC_STATS(sock_net(asoc
->base
.sk
), SCTP_MIB_OUTCTRLCHUNKS
);