vhost: lockless enqueuing
[linux/fpc-iii.git] / kernel / kexec.c
blob4384672d324516128557e4f7b29637a4cca1df30
1 /*
2 * kexec.c - kexec_load system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/syscalls.h>
18 #include <linux/vmalloc.h>
19 #include <linux/slab.h>
21 #include "kexec_internal.h"
23 static int copy_user_segment_list(struct kimage *image,
24 unsigned long nr_segments,
25 struct kexec_segment __user *segments)
27 int ret;
28 size_t segment_bytes;
30 /* Read in the segments */
31 image->nr_segments = nr_segments;
32 segment_bytes = nr_segments * sizeof(*segments);
33 ret = copy_from_user(image->segment, segments, segment_bytes);
34 if (ret)
35 ret = -EFAULT;
37 return ret;
40 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
41 unsigned long nr_segments,
42 struct kexec_segment __user *segments,
43 unsigned long flags)
45 int ret;
46 struct kimage *image;
47 bool kexec_on_panic = flags & KEXEC_ON_CRASH;
49 if (kexec_on_panic) {
50 /* Verify we have a valid entry point */
51 if ((entry < crashk_res.start) || (entry > crashk_res.end))
52 return -EADDRNOTAVAIL;
55 /* Allocate and initialize a controlling structure */
56 image = do_kimage_alloc_init();
57 if (!image)
58 return -ENOMEM;
60 image->start = entry;
62 ret = copy_user_segment_list(image, nr_segments, segments);
63 if (ret)
64 goto out_free_image;
66 if (kexec_on_panic) {
67 /* Enable special crash kernel control page alloc policy. */
68 image->control_page = crashk_res.start;
69 image->type = KEXEC_TYPE_CRASH;
72 ret = sanity_check_segment_list(image);
73 if (ret)
74 goto out_free_image;
77 * Find a location for the control code buffer, and add it
78 * the vector of segments so that it's pages will also be
79 * counted as destination pages.
81 ret = -ENOMEM;
82 image->control_code_page = kimage_alloc_control_pages(image,
83 get_order(KEXEC_CONTROL_PAGE_SIZE));
84 if (!image->control_code_page) {
85 pr_err("Could not allocate control_code_buffer\n");
86 goto out_free_image;
89 if (!kexec_on_panic) {
90 image->swap_page = kimage_alloc_control_pages(image, 0);
91 if (!image->swap_page) {
92 pr_err("Could not allocate swap buffer\n");
93 goto out_free_control_pages;
97 *rimage = image;
98 return 0;
99 out_free_control_pages:
100 kimage_free_page_list(&image->control_pages);
101 out_free_image:
102 kfree(image);
103 return ret;
106 static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
107 struct kexec_segment __user *segments, unsigned long flags)
109 struct kimage **dest_image, *image;
110 unsigned long i;
111 int ret;
113 if (flags & KEXEC_ON_CRASH) {
114 dest_image = &kexec_crash_image;
115 if (kexec_crash_image)
116 arch_kexec_unprotect_crashkres();
117 } else {
118 dest_image = &kexec_image;
121 if (nr_segments == 0) {
122 /* Uninstall image */
123 kimage_free(xchg(dest_image, NULL));
124 return 0;
126 if (flags & KEXEC_ON_CRASH) {
128 * Loading another kernel to switch to if this one
129 * crashes. Free any current crash dump kernel before
130 * we corrupt it.
132 kimage_free(xchg(&kexec_crash_image, NULL));
135 ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
136 if (ret)
137 return ret;
139 if (flags & KEXEC_PRESERVE_CONTEXT)
140 image->preserve_context = 1;
142 ret = machine_kexec_prepare(image);
143 if (ret)
144 goto out;
146 for (i = 0; i < nr_segments; i++) {
147 ret = kimage_load_segment(image, &image->segment[i]);
148 if (ret)
149 goto out;
152 kimage_terminate(image);
154 /* Install the new kernel and uninstall the old */
155 image = xchg(dest_image, image);
157 out:
158 if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
159 arch_kexec_protect_crashkres();
161 kimage_free(image);
162 return ret;
166 * Exec Kernel system call: for obvious reasons only root may call it.
168 * This call breaks up into three pieces.
169 * - A generic part which loads the new kernel from the current
170 * address space, and very carefully places the data in the
171 * allocated pages.
173 * - A generic part that interacts with the kernel and tells all of
174 * the devices to shut down. Preventing on-going dmas, and placing
175 * the devices in a consistent state so a later kernel can
176 * reinitialize them.
178 * - A machine specific part that includes the syscall number
179 * and then copies the image to it's final destination. And
180 * jumps into the image at entry.
182 * kexec does not sync, or unmount filesystems so if you need
183 * that to happen you need to do that yourself.
186 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
187 struct kexec_segment __user *, segments, unsigned long, flags)
189 int result;
191 /* We only trust the superuser with rebooting the system. */
192 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
193 return -EPERM;
196 * Verify we have a legal set of flags
197 * This leaves us room for future extensions.
199 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
200 return -EINVAL;
202 /* Verify we are on the appropriate architecture */
203 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
204 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
205 return -EINVAL;
207 /* Put an artificial cap on the number
208 * of segments passed to kexec_load.
210 if (nr_segments > KEXEC_SEGMENT_MAX)
211 return -EINVAL;
213 /* Because we write directly to the reserved memory
214 * region when loading crash kernels we need a mutex here to
215 * prevent multiple crash kernels from attempting to load
216 * simultaneously, and to prevent a crash kernel from loading
217 * over the top of a in use crash kernel.
219 * KISS: always take the mutex.
221 if (!mutex_trylock(&kexec_mutex))
222 return -EBUSY;
224 result = do_kexec_load(entry, nr_segments, segments, flags);
226 mutex_unlock(&kexec_mutex);
228 return result;
231 #ifdef CONFIG_COMPAT
232 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
233 compat_ulong_t, nr_segments,
234 struct compat_kexec_segment __user *, segments,
235 compat_ulong_t, flags)
237 struct compat_kexec_segment in;
238 struct kexec_segment out, __user *ksegments;
239 unsigned long i, result;
241 /* Don't allow clients that don't understand the native
242 * architecture to do anything.
244 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
245 return -EINVAL;
247 if (nr_segments > KEXEC_SEGMENT_MAX)
248 return -EINVAL;
250 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
251 for (i = 0; i < nr_segments; i++) {
252 result = copy_from_user(&in, &segments[i], sizeof(in));
253 if (result)
254 return -EFAULT;
256 out.buf = compat_ptr(in.buf);
257 out.bufsz = in.bufsz;
258 out.mem = in.mem;
259 out.memsz = in.memsz;
261 result = copy_to_user(&ksegments[i], &out, sizeof(out));
262 if (result)
263 return -EFAULT;
266 return sys_kexec_load(entry, nr_segments, ksegments, flags);
268 #endif