1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/intel-family.h>
27 #include <asm/processor.h>
30 #include "edac_module.h"
33 static LIST_HEAD(sbridge_edac_list
);
36 * Alter this version for the module when modifications are made
38 #define SBRIDGE_REVISION " Ver: 1.1.2 "
39 #define EDAC_MOD_STR "sb_edac"
44 #define sbridge_printk(level, fmt, arg...) \
45 edac_printk(level, "sbridge", fmt, ##arg)
47 #define sbridge_mc_printk(mci, level, fmt, arg...) \
48 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
51 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
53 #define GET_BITFIELD(v, lo, hi) \
54 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule
[] = {
58 0x80, 0x88, 0x90, 0x98, 0xa0,
59 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
62 static const u32 ibridge_dram_rule
[] = {
63 0x60, 0x68, 0x70, 0x78, 0x80,
64 0x88, 0x90, 0x98, 0xa0, 0xa8,
65 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
69 static const u32 knl_dram_rule
[] = {
70 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 0x100, 0x108, 0x110, 0x118, /* 20-23 */
77 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
78 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
80 static char *show_dram_attr(u32 attr
)
94 static const u32 sbridge_interleave_list
[] = {
95 0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
99 static const u32 ibridge_interleave_list
[] = {
100 0x64, 0x6c, 0x74, 0x7c, 0x84,
101 0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
106 static const u32 knl_interleave_list
[] = {
107 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
114 struct interleave_pkg
{
119 static const struct interleave_pkg sbridge_interleave_pkg
[] = {
130 static const struct interleave_pkg ibridge_interleave_pkg
[] = {
141 static inline int sad_pkg(const struct interleave_pkg
*table
, u32 reg
,
144 return GET_BITFIELD(reg
, table
[interleave
].start
,
145 table
[interleave
].end
);
148 /* Devices 12 Function 7 */
152 #define HASWELL_TOLM 0xd0
153 #define HASWELL_TOHM_0 0xd4
154 #define HASWELL_TOHM_1 0xd8
155 #define KNL_TOLM 0xd0
156 #define KNL_TOHM_0 0xd4
157 #define KNL_TOHM_1 0xd8
159 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
160 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
162 /* Device 13 Function 6 */
164 #define SAD_TARGET 0xf0
166 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
168 #define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
170 #define SAD_CONTROL 0xf4
172 /* Device 14 function 0 */
174 static const u32 tad_dram_rule
[] = {
175 0x40, 0x44, 0x48, 0x4c,
176 0x50, 0x54, 0x58, 0x5c,
177 0x60, 0x64, 0x68, 0x6c,
179 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
181 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
182 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
183 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
184 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
185 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
186 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
187 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
189 /* Device 15, function 0 */
192 #define KNL_MCMTR 0x624
194 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
195 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
196 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
198 /* Device 15, function 1 */
200 #define RASENABLES 0xac
201 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
203 /* Device 15, functions 2-5 */
205 static const int mtr_regs
[] = {
209 static const int knl_mtr_reg
= 0xb60;
211 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
212 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
213 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
214 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
215 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
217 static const u32 tad_ch_nilv_offset
[] = {
218 0x90, 0x94, 0x98, 0x9c,
219 0xa0, 0xa4, 0xa8, 0xac,
220 0xb0, 0xb4, 0xb8, 0xbc,
222 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
223 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
225 static const u32 rir_way_limit
[] = {
226 0x108, 0x10c, 0x110, 0x114, 0x118,
228 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
230 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
231 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
233 #define MAX_RIR_WAY 8
235 static const u32 rir_offset
[MAX_RIR_RANGES
][MAX_RIR_WAY
] = {
236 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
237 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
238 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
239 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
240 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
243 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
244 GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
246 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
247 GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
249 /* Device 16, functions 2-7 */
252 * FIXME: Implement the error count reads directly
255 static const u32 correrrcnt
[] = {
256 0x104, 0x108, 0x10c, 0x110,
259 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
260 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
261 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
262 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
264 static const u32 correrrthrsld
[] = {
265 0x11c, 0x120, 0x124, 0x128,
268 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
269 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
272 /* Device 17, function 0 */
274 #define SB_RANK_CFG_A 0x0328
276 #define IB_RANK_CFG_A 0x0320
282 #define NUM_CHANNELS 6 /* Max channels per MC */
283 #define MAX_DIMMS 3 /* Max DIMMS per channel */
284 #define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
285 #define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
286 #define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
287 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
303 enum mirroring_mode
{
305 ADDR_RANGE_MIRRORING
,
310 struct sbridge_info
{
314 u64 (*get_tolm
)(struct sbridge_pvt
*pvt
);
315 u64 (*get_tohm
)(struct sbridge_pvt
*pvt
);
316 u64 (*rir_limit
)(u32 reg
);
317 u64 (*sad_limit
)(u32 reg
);
318 u32 (*interleave_mode
)(u32 reg
);
319 u32 (*dram_attr
)(u32 reg
);
320 const u32
*dram_rule
;
321 const u32
*interleave_list
;
322 const struct interleave_pkg
*interleave_pkg
;
325 u8 (*get_node_id
)(struct sbridge_pvt
*pvt
);
326 enum mem_type (*get_memory_type
)(struct sbridge_pvt
*pvt
);
327 enum dev_type (*get_width
)(struct sbridge_pvt
*pvt
, u32 mtr
);
328 struct pci_dev
*pci_vtd
;
331 struct sbridge_channel
{
336 struct pci_id_descr
{
342 struct pci_id_table
{
343 const struct pci_id_descr
*descr
;
351 struct list_head list
;
353 u8 node_id
, source_id
;
354 struct pci_dev
**pdev
;
358 struct mem_ctl_info
*mci
;
362 struct pci_dev
*pci_cha
[KNL_MAX_CHAS
];
363 struct pci_dev
*pci_channel
[KNL_MAX_CHANNELS
];
364 struct pci_dev
*pci_mc0
;
365 struct pci_dev
*pci_mc1
;
366 struct pci_dev
*pci_mc0_misc
;
367 struct pci_dev
*pci_mc1_misc
;
368 struct pci_dev
*pci_mc_info
; /* tolm, tohm */
372 /* Devices per socket */
373 struct pci_dev
*pci_ddrio
;
374 struct pci_dev
*pci_sad0
, *pci_sad1
;
375 struct pci_dev
*pci_br0
, *pci_br1
;
376 /* Devices per memory controller */
377 struct pci_dev
*pci_ha
, *pci_ta
, *pci_ras
;
378 struct pci_dev
*pci_tad
[NUM_CHANNELS
];
380 struct sbridge_dev
*sbridge_dev
;
382 struct sbridge_info info
;
383 struct sbridge_channel channel
[NUM_CHANNELS
];
385 /* Memory type detection */
386 bool is_cur_addr_mirrored
, is_lockstep
, is_close_pg
;
388 enum mirroring_mode mirror_mode
;
390 /* Memory description */
395 #define PCI_DESCR(device_id, opt, domain) \
396 .dev_id = (device_id), \
400 static const struct pci_id_descr pci_dev_descr_sbridge
[] = {
401 /* Processor Home Agent */
402 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
, 0, IMC0
) },
404 /* Memory controller */
405 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
, 0, IMC0
) },
406 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
, 0, IMC0
) },
407 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
, 0, IMC0
) },
408 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
, 0, IMC0
) },
409 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
, 0, IMC0
) },
410 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
, 0, IMC0
) },
411 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
, 1, SOCK
) },
413 /* System Address Decoder */
414 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
, 0, SOCK
) },
415 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
, 0, SOCK
) },
417 /* Broadcast Registers */
418 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR
, 0, SOCK
) },
421 #define PCI_ID_TABLE_ENTRY(A, N, M, T) { \
423 .n_devs_per_imc = N, \
424 .n_devs_per_sock = ARRAY_SIZE(A), \
425 .n_imcs_per_sock = M, \
429 static const struct pci_id_table pci_dev_descr_sbridge_table
[] = {
430 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge
, ARRAY_SIZE(pci_dev_descr_sbridge
), 1, SANDY_BRIDGE
),
431 {0,} /* 0 terminated list. */
434 /* This changes depending if 1HA or 2HA:
436 * 0x0eb8 (17.0) is DDRIO0
438 * 0x0ebc (17.4) is DDRIO0
440 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
441 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
444 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
446 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
447 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
448 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
462 static const struct pci_id_descr pci_dev_descr_ibridge
[] = {
463 /* Processor Home Agent */
464 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
, 0, IMC0
) },
465 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
, 1, IMC1
) },
467 /* Memory controller */
468 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
, 0, IMC0
) },
469 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
, 0, IMC0
) },
470 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
, 0, IMC0
) },
471 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
, 0, IMC0
) },
472 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
, 0, IMC0
) },
473 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
, 0, IMC0
) },
475 /* Optional, mode 2HA */
476 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
, 1, IMC1
) },
477 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
, 1, IMC1
) },
478 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
, 1, IMC1
) },
479 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
, 1, IMC1
) },
480 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
, 1, IMC1
) },
481 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
, 1, IMC1
) },
483 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
, 1, SOCK
) },
484 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
, 1, SOCK
) },
486 /* System Address Decoder */
487 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
, 0, SOCK
) },
489 /* Broadcast Registers */
490 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
, 1, SOCK
) },
491 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
, 0, SOCK
) },
495 static const struct pci_id_table pci_dev_descr_ibridge_table
[] = {
496 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge
, 12, 2, IVY_BRIDGE
),
497 {0,} /* 0 terminated list. */
500 /* Haswell support */
503 * - 3 DDR3 channels, 2 DPC per channel
506 * - 4 DDR4 channels, 3 DPC per channel
509 * - 4 DDR4 channels, 3 DPC per channel
512 * - each IMC interfaces with a SMI 2 channel
513 * - each SMI channel interfaces with a scalable memory buffer
514 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
516 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
517 #define HASWELL_HASYSDEFEATURE2 0x84
518 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
519 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
520 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
521 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
522 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
539 static const struct pci_id_descr pci_dev_descr_haswell
[] = {
540 /* first item must be the HA */
541 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
, 0, IMC0
) },
542 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
, 1, IMC1
) },
544 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
, 0, IMC0
) },
545 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM
, 0, IMC0
) },
546 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
, 0, IMC0
) },
547 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
, 0, IMC0
) },
548 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
, 1, IMC0
) },
549 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
, 1, IMC0
) },
551 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
, 1, IMC1
) },
552 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM
, 1, IMC1
) },
553 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
, 1, IMC1
) },
554 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
, 1, IMC1
) },
555 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
, 1, IMC1
) },
556 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
, 1, IMC1
) },
558 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
, 0, SOCK
) },
559 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
, 0, SOCK
) },
560 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
, 1, SOCK
) },
561 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
, 1, SOCK
) },
562 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
, 1, SOCK
) },
563 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
, 1, SOCK
) },
566 static const struct pci_id_table pci_dev_descr_haswell_table
[] = {
567 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell
, 13, 2, HASWELL
),
568 {0,} /* 0 terminated list. */
571 /* Knight's Landing Support */
573 * KNL's memory channels are swizzled between memory controllers.
574 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
576 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
578 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
579 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
580 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
581 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843
582 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
583 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
584 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
585 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
586 /* SAD target - 1-29-1 (1 of these) */
587 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
588 /* Caching / Home Agent */
589 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
590 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
591 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
594 * KNL differs from SB, IB, and Haswell in that it has multiple
595 * instances of the same device with the same device ID, so we handle that
596 * by creating as many copies in the table as we expect to find.
597 * (Like device ID must be grouped together.)
600 static const struct pci_id_descr pci_dev_descr_knl
[] = {
601 [0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC
, 0, IMC0
)},
602 [2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN
, 0, IMC0
) },
603 [8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA
, 0, IMC0
) },
604 [9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
, 0, IMC0
) },
605 [10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
, 0, SOCK
) },
606 [11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
, 0, SOCK
) },
607 [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
, 0, SOCK
) },
610 static const struct pci_id_table pci_dev_descr_knl_table
[] = {
611 PCI_ID_TABLE_ENTRY(pci_dev_descr_knl
, ARRAY_SIZE(pci_dev_descr_knl
), 1, KNIGHTS_LANDING
),
620 * - 2 DDR3 channels, 2 DPC per channel
623 * - 4 DDR4 channels, 3 DPC per channel
626 * - 4 DDR4 channels, 3 DPC per channel
629 * - each IMC interfaces with a SMI 2 channel
630 * - each SMI channel interfaces with a scalable memory buffer
631 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
633 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
634 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
635 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
636 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
637 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
652 static const struct pci_id_descr pci_dev_descr_broadwell
[] = {
653 /* first item must be the HA */
654 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
, 0, IMC0
) },
655 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
, 1, IMC1
) },
657 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
, 0, IMC0
) },
658 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM
, 0, IMC0
) },
659 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
, 0, IMC0
) },
660 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
, 0, IMC0
) },
661 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
, 1, IMC0
) },
662 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
, 1, IMC0
) },
664 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
, 1, IMC1
) },
665 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM
, 1, IMC1
) },
666 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
, 1, IMC1
) },
667 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
, 1, IMC1
) },
668 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
, 1, IMC1
) },
669 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
, 1, IMC1
) },
671 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
, 0, SOCK
) },
672 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
, 0, SOCK
) },
673 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
, 1, SOCK
) },
676 static const struct pci_id_table pci_dev_descr_broadwell_table
[] = {
677 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell
, 10, 2, BROADWELL
),
678 {0,} /* 0 terminated list. */
682 /****************************************************************************
683 Ancillary status routines
684 ****************************************************************************/
686 static inline int numrank(enum type type
, u32 mtr
)
688 int ranks
= (1 << RANK_CNT_BITS(mtr
));
691 if (type
== HASWELL
|| type
== BROADWELL
|| type
== KNIGHTS_LANDING
)
695 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
696 ranks
, max
, (unsigned int)RANK_CNT_BITS(mtr
), mtr
);
703 static inline int numrow(u32 mtr
)
705 int rows
= (RANK_WIDTH_BITS(mtr
) + 12);
707 if (rows
< 13 || rows
> 18) {
708 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
709 rows
, (unsigned int)RANK_WIDTH_BITS(mtr
), mtr
);
716 static inline int numcol(u32 mtr
)
718 int cols
= (COL_WIDTH_BITS(mtr
) + 10);
721 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
722 cols
, (unsigned int)COL_WIDTH_BITS(mtr
), mtr
);
729 static struct sbridge_dev
*get_sbridge_dev(u8 bus
, enum domain dom
, int multi_bus
,
730 struct sbridge_dev
*prev
)
732 struct sbridge_dev
*sbridge_dev
;
735 * If we have devices scattered across several busses that pertain
736 * to the same memory controller, we'll lump them all together.
739 return list_first_entry_or_null(&sbridge_edac_list
,
740 struct sbridge_dev
, list
);
743 sbridge_dev
= list_entry(prev
? prev
->list
.next
744 : sbridge_edac_list
.next
, struct sbridge_dev
, list
);
746 list_for_each_entry_from(sbridge_dev
, &sbridge_edac_list
, list
) {
747 if (sbridge_dev
->bus
== bus
&& (dom
== SOCK
|| dom
== sbridge_dev
->dom
))
754 static struct sbridge_dev
*alloc_sbridge_dev(u8 bus
, enum domain dom
,
755 const struct pci_id_table
*table
)
757 struct sbridge_dev
*sbridge_dev
;
759 sbridge_dev
= kzalloc(sizeof(*sbridge_dev
), GFP_KERNEL
);
763 sbridge_dev
->pdev
= kcalloc(table
->n_devs_per_imc
,
764 sizeof(*sbridge_dev
->pdev
),
766 if (!sbridge_dev
->pdev
) {
771 sbridge_dev
->bus
= bus
;
772 sbridge_dev
->dom
= dom
;
773 sbridge_dev
->n_devs
= table
->n_devs_per_imc
;
774 list_add_tail(&sbridge_dev
->list
, &sbridge_edac_list
);
779 static void free_sbridge_dev(struct sbridge_dev
*sbridge_dev
)
781 list_del(&sbridge_dev
->list
);
782 kfree(sbridge_dev
->pdev
);
786 static u64
sbridge_get_tolm(struct sbridge_pvt
*pvt
)
790 /* Address range is 32:28 */
791 pci_read_config_dword(pvt
->pci_sad1
, TOLM
, ®
);
792 return GET_TOLM(reg
);
795 static u64
sbridge_get_tohm(struct sbridge_pvt
*pvt
)
799 pci_read_config_dword(pvt
->pci_sad1
, TOHM
, ®
);
800 return GET_TOHM(reg
);
803 static u64
ibridge_get_tolm(struct sbridge_pvt
*pvt
)
807 pci_read_config_dword(pvt
->pci_br1
, TOLM
, ®
);
809 return GET_TOLM(reg
);
812 static u64
ibridge_get_tohm(struct sbridge_pvt
*pvt
)
816 pci_read_config_dword(pvt
->pci_br1
, TOHM
, ®
);
818 return GET_TOHM(reg
);
821 static u64
rir_limit(u32 reg
)
823 return ((u64
)GET_BITFIELD(reg
, 1, 10) << 29) | 0x1fffffff;
826 static u64
sad_limit(u32 reg
)
828 return (GET_BITFIELD(reg
, 6, 25) << 26) | 0x3ffffff;
831 static u32
interleave_mode(u32 reg
)
833 return GET_BITFIELD(reg
, 1, 1);
836 static u32
dram_attr(u32 reg
)
838 return GET_BITFIELD(reg
, 2, 3);
841 static u64
knl_sad_limit(u32 reg
)
843 return (GET_BITFIELD(reg
, 7, 26) << 26) | 0x3ffffff;
846 static u32
knl_interleave_mode(u32 reg
)
848 return GET_BITFIELD(reg
, 1, 2);
851 static const char * const knl_intlv_mode
[] = {
852 "[8:6]", "[10:8]", "[14:12]", "[32:30]"
855 static const char *get_intlv_mode_str(u32 reg
, enum type t
)
857 if (t
== KNIGHTS_LANDING
)
858 return knl_intlv_mode
[knl_interleave_mode(reg
)];
860 return interleave_mode(reg
) ? "[8:6]" : "[8:6]XOR[18:16]";
863 static u32
dram_attr_knl(u32 reg
)
865 return GET_BITFIELD(reg
, 3, 4);
869 static enum mem_type
get_memory_type(struct sbridge_pvt
*pvt
)
874 if (pvt
->pci_ddrio
) {
875 pci_read_config_dword(pvt
->pci_ddrio
, pvt
->info
.rankcfgr
,
877 if (GET_BITFIELD(reg
, 11, 11))
878 /* FIXME: Can also be LRDIMM */
888 static enum mem_type
haswell_get_memory_type(struct sbridge_pvt
*pvt
)
891 bool registered
= false;
892 enum mem_type mtype
= MEM_UNKNOWN
;
897 pci_read_config_dword(pvt
->pci_ddrio
,
898 HASWELL_DDRCRCLKCONTROLS
, ®
);
900 if (GET_BITFIELD(reg
, 16, 16))
903 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, ®
);
904 if (GET_BITFIELD(reg
, 14, 14)) {
920 static enum dev_type
knl_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
922 /* for KNL value is fixed */
926 static enum dev_type
sbridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
928 /* there's no way to figure out */
932 static enum dev_type
__ibridge_get_width(u32 mtr
)
954 static enum dev_type
ibridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
957 * ddr3_width on the documentation but also valid for DDR4 on
960 return __ibridge_get_width(GET_BITFIELD(mtr
, 7, 8));
963 static enum dev_type
broadwell_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
965 /* ddr3_width on the documentation but also valid for DDR4 */
966 return __ibridge_get_width(GET_BITFIELD(mtr
, 8, 9));
969 static enum mem_type
knl_get_memory_type(struct sbridge_pvt
*pvt
)
971 /* DDR4 RDIMMS and LRDIMMS are supported */
975 static u8
get_node_id(struct sbridge_pvt
*pvt
)
978 pci_read_config_dword(pvt
->pci_br0
, SAD_CONTROL
, ®
);
979 return GET_BITFIELD(reg
, 0, 2);
982 static u8
haswell_get_node_id(struct sbridge_pvt
*pvt
)
986 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
987 return GET_BITFIELD(reg
, 0, 3);
990 static u8
knl_get_node_id(struct sbridge_pvt
*pvt
)
994 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
995 return GET_BITFIELD(reg
, 0, 2);
999 static u64
haswell_get_tolm(struct sbridge_pvt
*pvt
)
1003 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOLM
, ®
);
1004 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1007 static u64
haswell_get_tohm(struct sbridge_pvt
*pvt
)
1012 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_0
, ®
);
1013 rc
= GET_BITFIELD(reg
, 26, 31);
1014 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_1
, ®
);
1015 rc
= ((reg
<< 6) | rc
) << 26;
1017 return rc
| 0x1ffffff;
1020 static u64
knl_get_tolm(struct sbridge_pvt
*pvt
)
1024 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOLM
, ®
);
1025 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1028 static u64
knl_get_tohm(struct sbridge_pvt
*pvt
)
1033 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_0
, ®_lo
);
1034 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_1
, ®_hi
);
1035 rc
= ((u64
)reg_hi
<< 32) | reg_lo
;
1036 return rc
| 0x3ffffff;
1040 static u64
haswell_rir_limit(u32 reg
)
1042 return (((u64
)GET_BITFIELD(reg
, 1, 11) + 1) << 29) - 1;
1045 static inline u8
sad_pkg_socket(u8 pkg
)
1047 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1048 return ((pkg
>> 3) << 2) | (pkg
& 0x3);
1051 static inline u8
sad_pkg_ha(u8 pkg
)
1053 return (pkg
>> 2) & 0x1;
1056 static int haswell_chan_hash(int idx
, u64 addr
)
1061 * XOR even bits from 12:26 to bit0 of idx,
1062 * odd bits from 13:27 to bit1
1064 for (i
= 12; i
< 28; i
+= 2)
1065 idx
^= (addr
>> i
) & 3;
1070 /* Low bits of TAD limit, and some metadata. */
1071 static const u32 knl_tad_dram_limit_lo
[] = {
1072 0x400, 0x500, 0x600, 0x700,
1073 0x800, 0x900, 0xa00, 0xb00,
1076 /* Low bits of TAD offset. */
1077 static const u32 knl_tad_dram_offset_lo
[] = {
1078 0x404, 0x504, 0x604, 0x704,
1079 0x804, 0x904, 0xa04, 0xb04,
1082 /* High 16 bits of TAD limit and offset. */
1083 static const u32 knl_tad_dram_hi
[] = {
1084 0x408, 0x508, 0x608, 0x708,
1085 0x808, 0x908, 0xa08, 0xb08,
1088 /* Number of ways a tad entry is interleaved. */
1089 static const u32 knl_tad_ways
[] = {
1094 * Retrieve the n'th Target Address Decode table entry
1095 * from the memory controller's TAD table.
1097 * @pvt: driver private data
1098 * @entry: which entry you want to retrieve
1099 * @mc: which memory controller (0 or 1)
1100 * @offset: output tad range offset
1101 * @limit: output address of first byte above tad range
1102 * @ways: output number of interleave ways
1104 * The offset value has curious semantics. It's a sort of running total
1105 * of the sizes of all the memory regions that aren't mapped in this
1108 static int knl_get_tad(const struct sbridge_pvt
*pvt
,
1115 u32 reg_limit_lo
, reg_offset_lo
, reg_hi
;
1116 struct pci_dev
*pci_mc
;
1121 pci_mc
= pvt
->knl
.pci_mc0
;
1124 pci_mc
= pvt
->knl
.pci_mc1
;
1131 pci_read_config_dword(pci_mc
,
1132 knl_tad_dram_limit_lo
[entry
], ®_limit_lo
);
1133 pci_read_config_dword(pci_mc
,
1134 knl_tad_dram_offset_lo
[entry
], ®_offset_lo
);
1135 pci_read_config_dword(pci_mc
,
1136 knl_tad_dram_hi
[entry
], ®_hi
);
1138 /* Is this TAD entry enabled? */
1139 if (!GET_BITFIELD(reg_limit_lo
, 0, 0))
1142 way_id
= GET_BITFIELD(reg_limit_lo
, 3, 5);
1144 if (way_id
< ARRAY_SIZE(knl_tad_ways
)) {
1145 *ways
= knl_tad_ways
[way_id
];
1148 sbridge_printk(KERN_ERR
,
1149 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1155 * The least significant 6 bits of base and limit are truncated.
1156 * For limit, we fill the missing bits with 1s.
1158 *offset
= ((u64
) GET_BITFIELD(reg_offset_lo
, 6, 31) << 6) |
1159 ((u64
) GET_BITFIELD(reg_hi
, 0, 15) << 32);
1160 *limit
= ((u64
) GET_BITFIELD(reg_limit_lo
, 6, 31) << 6) | 63 |
1161 ((u64
) GET_BITFIELD(reg_hi
, 16, 31) << 32);
1166 /* Determine which memory controller is responsible for a given channel. */
1167 static int knl_channel_mc(int channel
)
1169 WARN_ON(channel
< 0 || channel
>= 6);
1171 return channel
< 3 ? 1 : 0;
1175 * Get the Nth entry from EDC_ROUTE_TABLE register.
1176 * (This is the per-tile mapping of logical interleave targets to
1177 * physical EDC modules.)
1189 static u32
knl_get_edc_route(int entry
, u32 reg
)
1191 WARN_ON(entry
>= KNL_MAX_EDCS
);
1192 return GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1196 * Get the Nth entry from MC_ROUTE_TABLE register.
1197 * (This is the per-tile mapping of logical interleave targets to
1198 * physical DRAM channels modules.)
1200 * entry 0: mc 0:2 channel 18:19
1201 * 1: mc 3:5 channel 20:21
1202 * 2: mc 6:8 channel 22:23
1203 * 3: mc 9:11 channel 24:25
1204 * 4: mc 12:14 channel 26:27
1205 * 5: mc 15:17 channel 28:29
1208 * Though we have 3 bits to identify the MC, we should only see
1209 * the values 0 or 1.
1212 static u32
knl_get_mc_route(int entry
, u32 reg
)
1216 WARN_ON(entry
>= KNL_MAX_CHANNELS
);
1218 mc
= GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1219 chan
= GET_BITFIELD(reg
, (entry
*2) + 18, (entry
*2) + 18 + 1);
1221 return knl_channel_remap(mc
, chan
);
1225 * Render the EDC_ROUTE register in human-readable form.
1226 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1228 static void knl_show_edc_route(u32 reg
, char *s
)
1232 for (i
= 0; i
< KNL_MAX_EDCS
; i
++) {
1233 s
[i
*2] = knl_get_edc_route(i
, reg
) + '0';
1237 s
[KNL_MAX_EDCS
*2 - 1] = '\0';
1241 * Render the MC_ROUTE register in human-readable form.
1242 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1244 static void knl_show_mc_route(u32 reg
, char *s
)
1248 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
1249 s
[i
*2] = knl_get_mc_route(i
, reg
) + '0';
1253 s
[KNL_MAX_CHANNELS
*2 - 1] = '\0';
1256 #define KNL_EDC_ROUTE 0xb8
1257 #define KNL_MC_ROUTE 0xb4
1259 /* Is this dram rule backed by regular DRAM in flat mode? */
1260 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1262 /* Is this dram rule cached? */
1263 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1265 /* Is this rule backed by edc ? */
1266 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1268 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1269 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1271 /* Is this rule mod3? */
1272 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1275 * Figure out how big our RAM modules are.
1277 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1278 * have to figure this out from the SAD rules, interleave lists, route tables,
1281 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1282 * inspect the TAD rules to figure out how large the SAD regions really are.
1284 * When we know the real size of a SAD region and how many ways it's
1285 * interleaved, we know the individual contribution of each channel to
1288 * Finally, we have to check whether each channel participates in each SAD
1291 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1292 * much memory the channel uses, we know the DIMM is at least that large.
1293 * (The BIOS might possibly choose not to map all available memory, in which
1294 * case we will underreport the size of the DIMM.)
1296 * In theory, we could try to determine the EDC sizes as well, but that would
1297 * only work in flat mode, not in cache mode.
1299 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1302 static int knl_get_dimm_capacity(struct sbridge_pvt
*pvt
, u64
*mc_sizes
)
1304 u64 sad_base
, sad_size
, sad_limit
= 0;
1305 u64 tad_base
, tad_size
, tad_limit
, tad_deadspace
, tad_livespace
;
1308 int intrlv_ways
, tad_ways
;
1311 u64 sad_actual_size
[2]; /* sad size accounting for holes, per mc */
1312 u32 dram_rule
, interleave_reg
;
1313 u32 mc_route_reg
[KNL_MAX_CHAS
];
1314 u32 edc_route_reg
[KNL_MAX_CHAS
];
1316 char edc_route_string
[KNL_MAX_EDCS
*2];
1317 char mc_route_string
[KNL_MAX_CHANNELS
*2];
1321 int participants
[KNL_MAX_CHANNELS
];
1323 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++)
1326 /* Read the EDC route table in each CHA. */
1328 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1329 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1330 KNL_EDC_ROUTE
, &edc_route_reg
[i
]);
1332 if (i
> 0 && edc_route_reg
[i
] != edc_route_reg
[i
-1]) {
1333 knl_show_edc_route(edc_route_reg
[i
-1],
1335 if (cur_reg_start
== i
-1)
1336 edac_dbg(0, "edc route table for CHA %d: %s\n",
1337 cur_reg_start
, edc_route_string
);
1339 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1340 cur_reg_start
, i
-1, edc_route_string
);
1344 knl_show_edc_route(edc_route_reg
[i
-1], edc_route_string
);
1345 if (cur_reg_start
== i
-1)
1346 edac_dbg(0, "edc route table for CHA %d: %s\n",
1347 cur_reg_start
, edc_route_string
);
1349 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1350 cur_reg_start
, i
-1, edc_route_string
);
1352 /* Read the MC route table in each CHA. */
1354 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1355 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1356 KNL_MC_ROUTE
, &mc_route_reg
[i
]);
1358 if (i
> 0 && mc_route_reg
[i
] != mc_route_reg
[i
-1]) {
1359 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1360 if (cur_reg_start
== i
-1)
1361 edac_dbg(0, "mc route table for CHA %d: %s\n",
1362 cur_reg_start
, mc_route_string
);
1364 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1365 cur_reg_start
, i
-1, mc_route_string
);
1369 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1370 if (cur_reg_start
== i
-1)
1371 edac_dbg(0, "mc route table for CHA %d: %s\n",
1372 cur_reg_start
, mc_route_string
);
1374 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1375 cur_reg_start
, i
-1, mc_route_string
);
1377 /* Process DRAM rules */
1378 for (sad_rule
= 0; sad_rule
< pvt
->info
.max_sad
; sad_rule
++) {
1379 /* previous limit becomes the new base */
1380 sad_base
= sad_limit
;
1382 pci_read_config_dword(pvt
->pci_sad0
,
1383 pvt
->info
.dram_rule
[sad_rule
], &dram_rule
);
1385 if (!DRAM_RULE_ENABLE(dram_rule
))
1388 edram_only
= KNL_EDRAM_ONLY(dram_rule
);
1390 sad_limit
= pvt
->info
.sad_limit(dram_rule
)+1;
1391 sad_size
= sad_limit
- sad_base
;
1393 pci_read_config_dword(pvt
->pci_sad0
,
1394 pvt
->info
.interleave_list
[sad_rule
], &interleave_reg
);
1397 * Find out how many ways this dram rule is interleaved.
1398 * We stop when we see the first channel again.
1400 first_pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1402 for (intrlv_ways
= 1; intrlv_ways
< 8; intrlv_ways
++) {
1403 pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1404 interleave_reg
, intrlv_ways
);
1406 if ((pkg
& 0x8) == 0) {
1408 * 0 bit means memory is non-local,
1409 * which KNL doesn't support
1411 edac_dbg(0, "Unexpected interleave target %d\n",
1416 if (pkg
== first_pkg
)
1419 if (KNL_MOD3(dram_rule
))
1422 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1427 edram_only
? ", EDRAM" : "");
1430 * Find out how big the SAD region really is by iterating
1431 * over TAD tables (SAD regions may contain holes).
1432 * Each memory controller might have a different TAD table, so
1433 * we have to look at both.
1435 * Livespace is the memory that's mapped in this TAD table,
1436 * deadspace is the holes (this could be the MMIO hole, or it
1437 * could be memory that's mapped by the other TAD table but
1440 for (mc
= 0; mc
< 2; mc
++) {
1441 sad_actual_size
[mc
] = 0;
1444 tad_rule
< ARRAY_SIZE(
1445 knl_tad_dram_limit_lo
);
1447 if (knl_get_tad(pvt
,
1455 tad_size
= (tad_limit
+1) -
1456 (tad_livespace
+ tad_deadspace
);
1457 tad_livespace
+= tad_size
;
1458 tad_base
= (tad_limit
+1) - tad_size
;
1460 if (tad_base
< sad_base
) {
1461 if (tad_limit
> sad_base
)
1462 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1463 } else if (tad_base
< sad_limit
) {
1464 if (tad_limit
+1 > sad_limit
) {
1465 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1467 /* TAD region is completely inside SAD region */
1468 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1470 tad_limit
, tad_size
,
1472 sad_actual_size
[mc
] += tad_size
;
1475 tad_base
= tad_limit
+1;
1479 for (mc
= 0; mc
< 2; mc
++) {
1480 edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1481 mc
, sad_actual_size
[mc
], sad_actual_size
[mc
]);
1484 /* Ignore EDRAM rule */
1488 /* Figure out which channels participate in interleave. */
1489 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++)
1490 participants
[channel
] = 0;
1492 /* For each channel, does at least one CHA have
1493 * this channel mapped to the given target?
1495 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1499 for (target
= 0; target
< KNL_MAX_CHANNELS
; target
++) {
1500 for (cha
= 0; cha
< KNL_MAX_CHAS
; cha
++) {
1501 if (knl_get_mc_route(target
,
1502 mc_route_reg
[cha
]) == channel
1503 && !participants
[channel
]) {
1504 participants
[channel
] = 1;
1511 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1512 mc
= knl_channel_mc(channel
);
1513 if (participants
[channel
]) {
1514 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1516 sad_actual_size
[mc
]/intrlv_ways
,
1518 mc_sizes
[channel
] +=
1519 sad_actual_size
[mc
]/intrlv_ways
;
1527 static void get_source_id(struct mem_ctl_info
*mci
)
1529 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1532 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
||
1533 pvt
->info
.type
== KNIGHTS_LANDING
)
1534 pci_read_config_dword(pvt
->pci_sad1
, SAD_TARGET
, ®
);
1536 pci_read_config_dword(pvt
->pci_br0
, SAD_TARGET
, ®
);
1538 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1539 pvt
->sbridge_dev
->source_id
= SOURCE_ID_KNL(reg
);
1541 pvt
->sbridge_dev
->source_id
= SOURCE_ID(reg
);
1544 static int __populate_dimms(struct mem_ctl_info
*mci
,
1545 u64 knl_mc_sizes
[KNL_MAX_CHANNELS
],
1546 enum edac_type mode
)
1548 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1549 int channels
= pvt
->info
.type
== KNIGHTS_LANDING
? KNL_MAX_CHANNELS
1551 unsigned int i
, j
, banks
, ranks
, rows
, cols
, npages
;
1552 struct dimm_info
*dimm
;
1553 enum mem_type mtype
;
1556 mtype
= pvt
->info
.get_memory_type(pvt
);
1557 if (mtype
== MEM_RDDR3
|| mtype
== MEM_RDDR4
)
1558 edac_dbg(0, "Memory is registered\n");
1559 else if (mtype
== MEM_UNKNOWN
)
1560 edac_dbg(0, "Cannot determine memory type\n");
1562 edac_dbg(0, "Memory is unregistered\n");
1564 if (mtype
== MEM_DDR4
|| mtype
== MEM_RDDR4
)
1569 for (i
= 0; i
< channels
; i
++) {
1572 int max_dimms_per_channel
;
1574 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1575 max_dimms_per_channel
= 1;
1576 if (!pvt
->knl
.pci_channel
[i
])
1579 max_dimms_per_channel
= ARRAY_SIZE(mtr_regs
);
1580 if (!pvt
->pci_tad
[i
])
1584 for (j
= 0; j
< max_dimms_per_channel
; j
++) {
1585 dimm
= EDAC_DIMM_PTR(mci
->layers
, mci
->dimms
, mci
->n_layers
, i
, j
, 0);
1586 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1587 pci_read_config_dword(pvt
->knl
.pci_channel
[i
],
1590 pci_read_config_dword(pvt
->pci_tad
[i
],
1593 edac_dbg(4, "Channel #%d MTR%d = %x\n", i
, j
, mtr
);
1594 if (IS_DIMM_PRESENT(mtr
)) {
1595 if (!IS_ECC_ENABLED(pvt
->info
.mcmtr
)) {
1596 sbridge_printk(KERN_ERR
, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1597 pvt
->sbridge_dev
->source_id
,
1598 pvt
->sbridge_dev
->dom
, i
);
1601 pvt
->channel
[i
].dimms
++;
1603 ranks
= numrank(pvt
->info
.type
, mtr
);
1605 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1606 /* For DDR4, this is fixed. */
1608 rows
= knl_mc_sizes
[i
] /
1609 ((u64
) cols
* ranks
* banks
* 8);
1615 size
= ((u64
)rows
* cols
* banks
* ranks
) >> (20 - 3);
1616 npages
= MiB_TO_PAGES(size
);
1618 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1619 pvt
->sbridge_dev
->mc
, pvt
->sbridge_dev
->dom
, i
, j
,
1621 banks
, ranks
, rows
, cols
);
1623 dimm
->nr_pages
= npages
;
1625 dimm
->dtype
= pvt
->info
.get_width(pvt
, mtr
);
1626 dimm
->mtype
= mtype
;
1627 dimm
->edac_mode
= mode
;
1628 snprintf(dimm
->label
, sizeof(dimm
->label
),
1629 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1630 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
, i
, j
);
1638 static int get_dimm_config(struct mem_ctl_info
*mci
)
1640 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1641 u64 knl_mc_sizes
[KNL_MAX_CHANNELS
];
1642 enum edac_type mode
;
1645 pvt
->sbridge_dev
->node_id
= pvt
->info
.get_node_id(pvt
);
1646 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1647 pvt
->sbridge_dev
->mc
,
1648 pvt
->sbridge_dev
->node_id
,
1649 pvt
->sbridge_dev
->source_id
);
1651 /* KNL doesn't support mirroring or lockstep,
1652 * and is always closed page
1654 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1655 mode
= EDAC_S4ECD4ED
;
1656 pvt
->mirror_mode
= NON_MIRRORING
;
1657 pvt
->is_cur_addr_mirrored
= false;
1659 if (knl_get_dimm_capacity(pvt
, knl_mc_sizes
) != 0)
1661 if (pci_read_config_dword(pvt
->pci_ta
, KNL_MCMTR
, &pvt
->info
.mcmtr
)) {
1662 edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1666 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
1667 if (pci_read_config_dword(pvt
->pci_ha
, HASWELL_HASYSDEFEATURE2
, ®
)) {
1668 edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1671 pvt
->is_chan_hash
= GET_BITFIELD(reg
, 21, 21);
1672 if (GET_BITFIELD(reg
, 28, 28)) {
1673 pvt
->mirror_mode
= ADDR_RANGE_MIRRORING
;
1674 edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1678 if (pci_read_config_dword(pvt
->pci_ras
, RASENABLES
, ®
)) {
1679 edac_dbg(0, "Failed to read RASENABLES register\n");
1682 if (IS_MIRROR_ENABLED(reg
)) {
1683 pvt
->mirror_mode
= FULL_MIRRORING
;
1684 edac_dbg(0, "Full memory mirroring is enabled\n");
1686 pvt
->mirror_mode
= NON_MIRRORING
;
1687 edac_dbg(0, "Memory mirroring is disabled\n");
1691 if (pci_read_config_dword(pvt
->pci_ta
, MCMTR
, &pvt
->info
.mcmtr
)) {
1692 edac_dbg(0, "Failed to read MCMTR register\n");
1695 if (IS_LOCKSTEP_ENABLED(pvt
->info
.mcmtr
)) {
1696 edac_dbg(0, "Lockstep is enabled\n");
1697 mode
= EDAC_S8ECD8ED
;
1698 pvt
->is_lockstep
= true;
1700 edac_dbg(0, "Lockstep is disabled\n");
1701 mode
= EDAC_S4ECD4ED
;
1702 pvt
->is_lockstep
= false;
1704 if (IS_CLOSE_PG(pvt
->info
.mcmtr
)) {
1705 edac_dbg(0, "address map is on closed page mode\n");
1706 pvt
->is_close_pg
= true;
1708 edac_dbg(0, "address map is on open page mode\n");
1709 pvt
->is_close_pg
= false;
1713 return __populate_dimms(mci
, knl_mc_sizes
, mode
);
1716 static void get_memory_layout(const struct mem_ctl_info
*mci
)
1718 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1719 int i
, j
, k
, n_sads
, n_tads
, sad_interl
;
1727 * Step 1) Get TOLM/TOHM ranges
1730 pvt
->tolm
= pvt
->info
.get_tolm(pvt
);
1731 tmp_mb
= (1 + pvt
->tolm
) >> 20;
1733 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1734 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1735 gb
, (mb
*1000)/1024, (u64
)pvt
->tolm
);
1737 /* Address range is already 45:25 */
1738 pvt
->tohm
= pvt
->info
.get_tohm(pvt
);
1739 tmp_mb
= (1 + pvt
->tohm
) >> 20;
1741 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1742 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1743 gb
, (mb
*1000)/1024, (u64
)pvt
->tohm
);
1746 * Step 2) Get SAD range and SAD Interleave list
1747 * TAD registers contain the interleave wayness. However, it
1748 * seems simpler to just discover it indirectly, with the
1752 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1753 /* SAD_LIMIT Address range is 45:26 */
1754 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1756 limit
= pvt
->info
.sad_limit(reg
);
1758 if (!DRAM_RULE_ENABLE(reg
))
1764 tmp_mb
= (limit
+ 1) >> 20;
1765 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1766 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1768 show_dram_attr(pvt
->info
.dram_attr(reg
)),
1770 ((u64
)tmp_mb
) << 20L,
1771 get_intlv_mode_str(reg
, pvt
->info
.type
),
1775 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1777 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1778 for (j
= 0; j
< 8; j
++) {
1779 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, j
);
1780 if (j
> 0 && sad_interl
== pkg
)
1783 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1788 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1792 * Step 3) Get TAD range
1795 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
1796 pci_read_config_dword(pvt
->pci_ha
, tad_dram_rule
[n_tads
], ®
);
1797 limit
= TAD_LIMIT(reg
);
1800 tmp_mb
= (limit
+ 1) >> 20;
1802 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1803 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1804 n_tads
, gb
, (mb
*1000)/1024,
1805 ((u64
)tmp_mb
) << 20L,
1806 (u32
)(1 << TAD_SOCK(reg
)),
1807 (u32
)TAD_CH(reg
) + 1,
1817 * Step 4) Get TAD offsets, per each channel
1819 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1820 if (!pvt
->channel
[i
].dimms
)
1822 for (j
= 0; j
< n_tads
; j
++) {
1823 pci_read_config_dword(pvt
->pci_tad
[i
],
1824 tad_ch_nilv_offset
[j
],
1826 tmp_mb
= TAD_OFFSET(reg
) >> 20;
1827 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1828 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1831 ((u64
)tmp_mb
) << 20L,
1837 * Step 6) Get RIR Wayness/Limit, per each channel
1839 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1840 if (!pvt
->channel
[i
].dimms
)
1842 for (j
= 0; j
< MAX_RIR_RANGES
; j
++) {
1843 pci_read_config_dword(pvt
->pci_tad
[i
],
1847 if (!IS_RIR_VALID(reg
))
1850 tmp_mb
= pvt
->info
.rir_limit(reg
) >> 20;
1851 rir_way
= 1 << RIR_WAY(reg
);
1852 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1853 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1856 ((u64
)tmp_mb
) << 20L,
1860 for (k
= 0; k
< rir_way
; k
++) {
1861 pci_read_config_dword(pvt
->pci_tad
[i
],
1864 tmp_mb
= RIR_OFFSET(pvt
->info
.type
, reg
) << 6;
1866 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1867 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1870 ((u64
)tmp_mb
) << 20L,
1871 (u32
)RIR_RNK_TGT(pvt
->info
.type
, reg
),
1878 static struct mem_ctl_info
*get_mci_for_node_id(u8 node_id
, u8 ha
)
1880 struct sbridge_dev
*sbridge_dev
;
1882 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
1883 if (sbridge_dev
->node_id
== node_id
&& sbridge_dev
->dom
== ha
)
1884 return sbridge_dev
->mci
;
1889 static int get_memory_error_data(struct mem_ctl_info
*mci
,
1894 char **area_type
, char *msg
)
1896 struct mem_ctl_info
*new_mci
;
1897 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1898 struct pci_dev
*pci_ha
;
1899 int n_rir
, n_sads
, n_tads
, sad_way
, sck_xch
;
1900 int sad_interl
, idx
, base_ch
;
1901 int interleave_mode
, shiftup
= 0;
1902 unsigned sad_interleave
[pvt
->info
.max_interleave
];
1904 u8 ch_way
, sck_way
, pkg
, sad_ha
= 0;
1908 u64 ch_addr
, offset
, limit
= 0, prv
= 0;
1912 * Step 0) Check if the address is at special memory ranges
1913 * The check bellow is probably enough to fill all cases where
1914 * the error is not inside a memory, except for the legacy
1915 * range (e. g. VGA addresses). It is unlikely, however, that the
1916 * memory controller would generate an error on that range.
1918 if ((addr
> (u64
) pvt
->tolm
) && (addr
< (1LL << 32))) {
1919 sprintf(msg
, "Error at TOLM area, on addr 0x%08Lx", addr
);
1922 if (addr
>= (u64
)pvt
->tohm
) {
1923 sprintf(msg
, "Error at MMIOH area, on addr 0x%016Lx", addr
);
1928 * Step 1) Get socket
1930 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1931 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1934 if (!DRAM_RULE_ENABLE(reg
))
1937 limit
= pvt
->info
.sad_limit(reg
);
1939 sprintf(msg
, "Can't discover the memory socket");
1946 if (n_sads
== pvt
->info
.max_sad
) {
1947 sprintf(msg
, "Can't discover the memory socket");
1951 *area_type
= show_dram_attr(pvt
->info
.dram_attr(dram_rule
));
1952 interleave_mode
= pvt
->info
.interleave_mode(dram_rule
);
1954 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1957 if (pvt
->info
.type
== SANDY_BRIDGE
) {
1958 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1959 for (sad_way
= 0; sad_way
< 8; sad_way
++) {
1960 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, sad_way
);
1961 if (sad_way
> 0 && sad_interl
== pkg
)
1963 sad_interleave
[sad_way
] = pkg
;
1964 edac_dbg(0, "SAD interleave #%d: %d\n",
1965 sad_way
, sad_interleave
[sad_way
]);
1967 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1968 pvt
->sbridge_dev
->mc
,
1973 !interleave_mode
? "" : "XOR[18:16]");
1974 if (interleave_mode
)
1975 idx
= ((addr
>> 6) ^ (addr
>> 16)) & 7;
1977 idx
= (addr
>> 6) & 7;
1991 sprintf(msg
, "Can't discover socket interleave");
1994 *socket
= sad_interleave
[idx
];
1995 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1996 idx
, sad_way
, *socket
);
1997 } else if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
1998 int bits
, a7mode
= A7MODE(dram_rule
);
2001 /* A7 mode swaps P9 with P6 */
2002 bits
= GET_BITFIELD(addr
, 7, 8) << 1;
2003 bits
|= GET_BITFIELD(addr
, 9, 9);
2005 bits
= GET_BITFIELD(addr
, 6, 8);
2007 if (interleave_mode
== 0) {
2008 /* interleave mode will XOR {8,7,6} with {18,17,16} */
2009 idx
= GET_BITFIELD(addr
, 16, 18);
2014 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2015 *socket
= sad_pkg_socket(pkg
);
2016 sad_ha
= sad_pkg_ha(pkg
);
2019 /* MCChanShiftUpEnable */
2020 pci_read_config_dword(pvt
->pci_ha
, HASWELL_HASYSDEFEATURE2
, ®
);
2021 shiftup
= GET_BITFIELD(reg
, 22, 22);
2024 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2025 idx
, *socket
, sad_ha
, shiftup
);
2027 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2028 idx
= (addr
>> 6) & 7;
2029 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2030 *socket
= sad_pkg_socket(pkg
);
2031 sad_ha
= sad_pkg_ha(pkg
);
2032 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2033 idx
, *socket
, sad_ha
);
2039 * Move to the proper node structure, in order to access the
2040 * right PCI registers
2042 new_mci
= get_mci_for_node_id(*socket
, sad_ha
);
2044 sprintf(msg
, "Struct for socket #%u wasn't initialized",
2049 pvt
= mci
->pvt_info
;
2052 * Step 2) Get memory channel
2055 pci_ha
= pvt
->pci_ha
;
2056 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
2057 pci_read_config_dword(pci_ha
, tad_dram_rule
[n_tads
], ®
);
2058 limit
= TAD_LIMIT(reg
);
2060 sprintf(msg
, "Can't discover the memory channel");
2067 if (n_tads
== MAX_TAD
) {
2068 sprintf(msg
, "Can't discover the memory channel");
2072 ch_way
= TAD_CH(reg
) + 1;
2073 sck_way
= TAD_SOCK(reg
);
2078 idx
= (addr
>> (6 + sck_way
+ shiftup
)) & 0x3;
2079 if (pvt
->is_chan_hash
)
2080 idx
= haswell_chan_hash(idx
, addr
);
2085 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2089 base_ch
= TAD_TGT0(reg
);
2092 base_ch
= TAD_TGT1(reg
);
2095 base_ch
= TAD_TGT2(reg
);
2098 base_ch
= TAD_TGT3(reg
);
2101 sprintf(msg
, "Can't discover the TAD target");
2104 *channel_mask
= 1 << base_ch
;
2106 pci_read_config_dword(pvt
->pci_tad
[base_ch
], tad_ch_nilv_offset
[n_tads
], &tad_offset
);
2108 if (pvt
->mirror_mode
== FULL_MIRRORING
||
2109 (pvt
->mirror_mode
== ADDR_RANGE_MIRRORING
&& n_tads
== 0)) {
2110 *channel_mask
|= 1 << ((base_ch
+ 2) % 4);
2114 sck_xch
= (1 << sck_way
) * (ch_way
>> 1);
2117 sprintf(msg
, "Invalid mirror set. Can't decode addr");
2121 pvt
->is_cur_addr_mirrored
= true;
2123 sck_xch
= (1 << sck_way
) * ch_way
;
2124 pvt
->is_cur_addr_mirrored
= false;
2127 if (pvt
->is_lockstep
)
2128 *channel_mask
|= 1 << ((base_ch
+ 1) % 4);
2130 offset
= TAD_OFFSET(tad_offset
);
2132 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2143 /* Calculate channel address */
2144 /* Remove the TAD offset */
2146 if (offset
> addr
) {
2147 sprintf(msg
, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2152 ch_addr
= addr
- offset
;
2153 ch_addr
>>= (6 + shiftup
);
2155 ch_addr
<<= (6 + shiftup
);
2156 ch_addr
|= addr
& ((1 << (6 + shiftup
)) - 1);
2159 * Step 3) Decode rank
2161 for (n_rir
= 0; n_rir
< MAX_RIR_RANGES
; n_rir
++) {
2162 pci_read_config_dword(pvt
->pci_tad
[base_ch
], rir_way_limit
[n_rir
], ®
);
2164 if (!IS_RIR_VALID(reg
))
2167 limit
= pvt
->info
.rir_limit(reg
);
2168 gb
= div_u64_rem(limit
>> 20, 1024, &mb
);
2169 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2174 if (ch_addr
<= limit
)
2177 if (n_rir
== MAX_RIR_RANGES
) {
2178 sprintf(msg
, "Can't discover the memory rank for ch addr 0x%08Lx",
2182 rir_way
= RIR_WAY(reg
);
2184 if (pvt
->is_close_pg
)
2185 idx
= (ch_addr
>> 6);
2187 idx
= (ch_addr
>> 13); /* FIXME: Datasheet says to shift by 15 */
2188 idx
%= 1 << rir_way
;
2190 pci_read_config_dword(pvt
->pci_tad
[base_ch
], rir_offset
[n_rir
][idx
], ®
);
2191 *rank
= RIR_RNK_TGT(pvt
->info
.type
, reg
);
2193 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2203 /****************************************************************************
2204 Device initialization routines: put/get, init/exit
2205 ****************************************************************************/
2208 * sbridge_put_all_devices 'put' all the devices that we have
2209 * reserved via 'get'
2211 static void sbridge_put_devices(struct sbridge_dev
*sbridge_dev
)
2216 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2217 struct pci_dev
*pdev
= sbridge_dev
->pdev
[i
];
2220 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2222 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
2227 static void sbridge_put_all_devices(void)
2229 struct sbridge_dev
*sbridge_dev
, *tmp
;
2231 list_for_each_entry_safe(sbridge_dev
, tmp
, &sbridge_edac_list
, list
) {
2232 sbridge_put_devices(sbridge_dev
);
2233 free_sbridge_dev(sbridge_dev
);
2237 static int sbridge_get_onedevice(struct pci_dev
**prev
,
2239 const struct pci_id_table
*table
,
2240 const unsigned devno
,
2241 const int multi_bus
)
2243 struct sbridge_dev
*sbridge_dev
= NULL
;
2244 const struct pci_id_descr
*dev_descr
= &table
->descr
[devno
];
2245 struct pci_dev
*pdev
= NULL
;
2249 sbridge_printk(KERN_DEBUG
,
2250 "Seeking for: PCI ID %04x:%04x\n",
2251 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2253 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2254 dev_descr
->dev_id
, *prev
);
2262 if (dev_descr
->optional
)
2265 /* if the HA wasn't found */
2269 sbridge_printk(KERN_INFO
,
2270 "Device not found: %04x:%04x\n",
2271 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2273 /* End of list, leave */
2276 bus
= pdev
->bus
->number
;
2279 sbridge_dev
= get_sbridge_dev(bus
, dev_descr
->dom
, multi_bus
, sbridge_dev
);
2281 /* If the HA1 wasn't found, don't create EDAC second memory controller */
2282 if (dev_descr
->dom
== IMC1
&& devno
!= 1) {
2283 edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2284 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2289 if (dev_descr
->dom
== SOCK
)
2292 sbridge_dev
= alloc_sbridge_dev(bus
, dev_descr
->dom
, table
);
2300 if (sbridge_dev
->pdev
[sbridge_dev
->i_devs
]) {
2301 sbridge_printk(KERN_ERR
,
2302 "Duplicated device for %04x:%04x\n",
2303 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2308 sbridge_dev
->pdev
[sbridge_dev
->i_devs
++] = pdev
;
2310 /* pdev belongs to more than one IMC, do extra gets */
2314 if (dev_descr
->dom
== SOCK
&& i
< table
->n_imcs_per_sock
)
2318 /* Be sure that the device is enabled */
2319 if (unlikely(pci_enable_device(pdev
) < 0)) {
2320 sbridge_printk(KERN_ERR
,
2321 "Couldn't enable %04x:%04x\n",
2322 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2326 edac_dbg(0, "Detected %04x:%04x\n",
2327 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2330 * As stated on drivers/pci/search.c, the reference count for
2331 * @from is always decremented if it is not %NULL. So, as we need
2332 * to get all devices up to null, we need to do a get for the device
2342 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2343 * devices we want to reference for this driver.
2344 * @num_mc: pointer to the memory controllers count, to be incremented in case
2346 * @table: model specific table
2348 * returns 0 in case of success or error code
2350 static int sbridge_get_all_devices(u8
*num_mc
,
2351 const struct pci_id_table
*table
)
2354 struct pci_dev
*pdev
= NULL
;
2358 if (table
->type
== KNIGHTS_LANDING
)
2359 allow_dups
= multi_bus
= 1;
2360 while (table
&& table
->descr
) {
2361 for (i
= 0; i
< table
->n_devs_per_sock
; i
++) {
2362 if (!allow_dups
|| i
== 0 ||
2363 table
->descr
[i
].dev_id
!=
2364 table
->descr
[i
-1].dev_id
) {
2368 rc
= sbridge_get_onedevice(&pdev
, num_mc
,
2369 table
, i
, multi_bus
);
2372 i
= table
->n_devs_per_sock
;
2375 sbridge_put_all_devices();
2378 } while (pdev
&& !allow_dups
);
2387 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2388 * the format: XXXa. So we can convert from a device to the corresponding
2391 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2393 static int sbridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2394 struct sbridge_dev
*sbridge_dev
)
2396 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2397 struct pci_dev
*pdev
;
2398 u8 saw_chan_mask
= 0;
2401 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2402 pdev
= sbridge_dev
->pdev
[i
];
2406 switch (pdev
->device
) {
2407 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
:
2408 pvt
->pci_sad0
= pdev
;
2410 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
:
2411 pvt
->pci_sad1
= pdev
;
2413 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR
:
2414 pvt
->pci_br0
= pdev
;
2416 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
:
2419 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
:
2422 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
:
2423 pvt
->pci_ras
= pdev
;
2425 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
:
2426 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
:
2427 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
:
2428 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
:
2430 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2431 pvt
->pci_tad
[id
] = pdev
;
2432 saw_chan_mask
|= 1 << id
;
2435 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
:
2436 pvt
->pci_ddrio
= pdev
;
2442 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2443 pdev
->vendor
, pdev
->device
,
2448 /* Check if everything were registered */
2449 if (!pvt
->pci_sad0
|| !pvt
->pci_sad1
|| !pvt
->pci_ha
||
2450 !pvt
->pci_ras
|| !pvt
->pci_ta
)
2453 if (saw_chan_mask
!= 0x0f)
2458 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2462 sbridge_printk(KERN_ERR
, "Unexpected device %02x:%02x\n",
2463 PCI_VENDOR_ID_INTEL
, pdev
->device
);
2467 static int ibridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2468 struct sbridge_dev
*sbridge_dev
)
2470 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2471 struct pci_dev
*pdev
;
2472 u8 saw_chan_mask
= 0;
2475 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2476 pdev
= sbridge_dev
->pdev
[i
];
2480 switch (pdev
->device
) {
2481 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
:
2482 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
:
2485 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
:
2486 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
:
2489 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
:
2490 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
:
2491 pvt
->pci_ras
= pdev
;
2493 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
:
2494 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
:
2495 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
:
2496 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
:
2497 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
:
2498 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
:
2499 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
:
2500 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
:
2502 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2503 pvt
->pci_tad
[id
] = pdev
;
2504 saw_chan_mask
|= 1 << id
;
2507 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
:
2508 pvt
->pci_ddrio
= pdev
;
2510 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
:
2511 pvt
->pci_ddrio
= pdev
;
2513 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
:
2514 pvt
->pci_sad0
= pdev
;
2516 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
:
2517 pvt
->pci_br0
= pdev
;
2519 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
:
2520 pvt
->pci_br1
= pdev
;
2526 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2528 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2532 /* Check if everything were registered */
2533 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_br0
||
2534 !pvt
->pci_br1
|| !pvt
->pci_ras
|| !pvt
->pci_ta
)
2537 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2538 saw_chan_mask
!= 0x03) /* -EP */
2543 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2547 sbridge_printk(KERN_ERR
,
2548 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL
,
2553 static int haswell_mci_bind_devs(struct mem_ctl_info
*mci
,
2554 struct sbridge_dev
*sbridge_dev
)
2556 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2557 struct pci_dev
*pdev
;
2558 u8 saw_chan_mask
= 0;
2561 /* there's only one device per system; not tied to any bus */
2562 if (pvt
->info
.pci_vtd
== NULL
)
2563 /* result will be checked later */
2564 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2565 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC
,
2568 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2569 pdev
= sbridge_dev
->pdev
[i
];
2573 switch (pdev
->device
) {
2574 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
:
2575 pvt
->pci_sad0
= pdev
;
2577 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
:
2578 pvt
->pci_sad1
= pdev
;
2580 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
:
2581 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
:
2584 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
:
2585 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
:
2588 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM
:
2589 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM
:
2590 pvt
->pci_ras
= pdev
;
2592 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
:
2593 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
:
2594 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
:
2595 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
:
2596 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
:
2597 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
:
2598 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
:
2599 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
:
2601 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2602 pvt
->pci_tad
[id
] = pdev
;
2603 saw_chan_mask
|= 1 << id
;
2606 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
:
2607 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
:
2608 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
:
2609 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
:
2610 if (!pvt
->pci_ddrio
)
2611 pvt
->pci_ddrio
= pdev
;
2617 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2619 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2623 /* Check if everything were registered */
2624 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_sad1
||
2625 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2628 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2629 saw_chan_mask
!= 0x03) /* -EP */
2634 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2638 static int broadwell_mci_bind_devs(struct mem_ctl_info
*mci
,
2639 struct sbridge_dev
*sbridge_dev
)
2641 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2642 struct pci_dev
*pdev
;
2643 u8 saw_chan_mask
= 0;
2646 /* there's only one device per system; not tied to any bus */
2647 if (pvt
->info
.pci_vtd
== NULL
)
2648 /* result will be checked later */
2649 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2650 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC
,
2653 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2654 pdev
= sbridge_dev
->pdev
[i
];
2658 switch (pdev
->device
) {
2659 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
:
2660 pvt
->pci_sad0
= pdev
;
2662 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
:
2663 pvt
->pci_sad1
= pdev
;
2665 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
:
2666 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
:
2669 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
:
2670 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
:
2673 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM
:
2674 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM
:
2675 pvt
->pci_ras
= pdev
;
2677 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
:
2678 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
:
2679 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
:
2680 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
:
2681 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
:
2682 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
:
2683 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
:
2684 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
:
2686 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2687 pvt
->pci_tad
[id
] = pdev
;
2688 saw_chan_mask
|= 1 << id
;
2691 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
:
2692 pvt
->pci_ddrio
= pdev
;
2698 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2700 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2704 /* Check if everything were registered */
2705 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_sad1
||
2706 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2709 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2710 saw_chan_mask
!= 0x03) /* -EP */
2715 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2719 static int knl_mci_bind_devs(struct mem_ctl_info
*mci
,
2720 struct sbridge_dev
*sbridge_dev
)
2722 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2723 struct pci_dev
*pdev
;
2729 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2730 pdev
= sbridge_dev
->pdev
[i
];
2734 /* Extract PCI device and function. */
2735 dev
= (pdev
->devfn
>> 3) & 0x1f;
2736 func
= pdev
->devfn
& 0x7;
2738 switch (pdev
->device
) {
2739 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC
:
2741 pvt
->knl
.pci_mc0
= pdev
;
2743 pvt
->knl
.pci_mc1
= pdev
;
2745 sbridge_printk(KERN_ERR
,
2746 "Memory controller in unexpected place! (dev %d, fn %d)\n",
2752 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
:
2753 pvt
->pci_sad0
= pdev
;
2756 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
:
2757 pvt
->pci_sad1
= pdev
;
2760 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
:
2761 /* There are one of these per tile, and range from
2764 devidx
= ((dev
-14)*8)+func
;
2766 if (devidx
< 0 || devidx
>= KNL_MAX_CHAS
) {
2767 sbridge_printk(KERN_ERR
,
2768 "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2773 WARN_ON(pvt
->knl
.pci_cha
[devidx
] != NULL
);
2775 pvt
->knl
.pci_cha
[devidx
] = pdev
;
2778 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN
:
2782 * MC0 channels 0-2 are device 9 function 2-4,
2783 * MC1 channels 3-5 are device 8 function 2-4.
2789 devidx
= 3 + (func
-2);
2791 if (devidx
< 0 || devidx
>= KNL_MAX_CHANNELS
) {
2792 sbridge_printk(KERN_ERR
,
2793 "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2798 WARN_ON(pvt
->knl
.pci_channel
[devidx
] != NULL
);
2799 pvt
->knl
.pci_channel
[devidx
] = pdev
;
2802 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
:
2803 pvt
->knl
.pci_mc_info
= pdev
;
2806 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA
:
2811 sbridge_printk(KERN_ERR
, "Unexpected device %d\n",
2817 if (!pvt
->knl
.pci_mc0
|| !pvt
->knl
.pci_mc1
||
2818 !pvt
->pci_sad0
|| !pvt
->pci_sad1
||
2823 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
2824 if (!pvt
->knl
.pci_channel
[i
]) {
2825 sbridge_printk(KERN_ERR
, "Missing channel %d\n", i
);
2830 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
2831 if (!pvt
->knl
.pci_cha
[i
]) {
2832 sbridge_printk(KERN_ERR
, "Missing CHA %d\n", i
);
2840 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2844 /****************************************************************************
2845 Error check routines
2846 ****************************************************************************/
2849 * While Sandy Bridge has error count registers, SMI BIOS read values from
2850 * and resets the counters. So, they are not reliable for the OS to read
2851 * from them. So, we have no option but to just trust on whatever MCE is
2852 * telling us about the errors.
2854 static void sbridge_mce_output_error(struct mem_ctl_info
*mci
,
2855 const struct mce
*m
)
2857 struct mem_ctl_info
*new_mci
;
2858 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2859 enum hw_event_mc_err_type tp_event
;
2860 char *type
, *optype
, msg
[256];
2861 bool ripv
= GET_BITFIELD(m
->mcgstatus
, 0, 0);
2862 bool overflow
= GET_BITFIELD(m
->status
, 62, 62);
2863 bool uncorrected_error
= GET_BITFIELD(m
->status
, 61, 61);
2865 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
2866 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
2867 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
2868 u32 channel
= GET_BITFIELD(m
->status
, 0, 3);
2869 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
2870 long channel_mask
, first_channel
;
2871 u8 rank
, socket
, ha
;
2873 char *area_type
= NULL
;
2875 if (pvt
->info
.type
!= SANDY_BRIDGE
)
2878 recoverable
= GET_BITFIELD(m
->status
, 56, 56);
2880 if (uncorrected_error
) {
2883 tp_event
= HW_EVENT_ERR_FATAL
;
2886 tp_event
= HW_EVENT_ERR_UNCORRECTED
;
2890 tp_event
= HW_EVENT_ERR_CORRECTED
;
2894 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2895 * memory errors should fit in this mask:
2896 * 000f 0000 1mmm cccc (binary)
2898 * f = Correction Report Filtering Bit. If 1, subsequent errors
2902 * If the mask doesn't match, report an error to the parsing logic
2904 if (! ((errcode
& 0xef80) == 0x80)) {
2905 optype
= "Can't parse: it is not a mem";
2907 switch (optypenum
) {
2909 optype
= "generic undef request error";
2912 optype
= "memory read error";
2915 optype
= "memory write error";
2918 optype
= "addr/cmd error";
2921 optype
= "memory scrubbing error";
2924 optype
= "reserved";
2929 /* Only decode errors with an valid address (ADDRV) */
2930 if (!GET_BITFIELD(m
->status
, 58, 58))
2933 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
2934 if (channel
== 14) {
2935 edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2936 overflow
? " OVERFLOW" : "",
2937 (uncorrected_error
&& recoverable
)
2938 ? " recoverable" : "",
2945 * Reported channel is in range 0-2, so we can't map it
2946 * back to mc. To figure out mc we check machine check
2947 * bank register that reported this error.
2948 * bank15 means mc0 and bank16 means mc1.
2950 channel
= knl_channel_remap(m
->bank
== 16, channel
);
2951 channel_mask
= 1 << channel
;
2953 snprintf(msg
, sizeof(msg
),
2954 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
2955 overflow
? " OVERFLOW" : "",
2956 (uncorrected_error
&& recoverable
)
2957 ? " recoverable" : " ",
2958 mscod
, errcode
, channel
, A
+ channel
);
2959 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
2960 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
2966 rc
= get_memory_error_data(mci
, m
->addr
, &socket
, &ha
,
2967 &channel_mask
, &rank
, &area_type
, msg
);
2972 new_mci
= get_mci_for_node_id(socket
, ha
);
2974 strcpy(msg
, "Error: socket got corrupted!");
2978 pvt
= mci
->pvt_info
;
2980 first_channel
= find_first_bit(&channel_mask
, NUM_CHANNELS
);
2991 * FIXME: On some memory configurations (mirror, lockstep), the
2992 * Memory Controller can't point the error to a single DIMM. The
2993 * EDAC core should be handling the channel mask, in order to point
2994 * to the group of dimm's where the error may be happening.
2996 if (!pvt
->is_lockstep
&& !pvt
->is_cur_addr_mirrored
&& !pvt
->is_close_pg
)
2997 channel
= first_channel
;
2999 snprintf(msg
, sizeof(msg
),
3000 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3001 overflow
? " OVERFLOW" : "",
3002 (uncorrected_error
&& recoverable
) ? " recoverable" : "",
3009 edac_dbg(0, "%s\n", msg
);
3011 /* FIXME: need support for channel mask */
3013 if (channel
== CHANNEL_UNSPECIFIED
)
3016 /* Call the helper to output message */
3017 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
3018 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
3023 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
, 0, 0, 0,
3030 * Check that logging is enabled and that this is the right type
3031 * of error for us to handle.
3033 static int sbridge_mce_check_error(struct notifier_block
*nb
, unsigned long val
,
3036 struct mce
*mce
= (struct mce
*)data
;
3037 struct mem_ctl_info
*mci
;
3038 struct sbridge_pvt
*pvt
;
3041 if (edac_get_report_status() == EDAC_REPORTING_DISABLED
)
3044 mci
= get_mci_for_node_id(mce
->socketid
, IMC0
);
3047 pvt
= mci
->pvt_info
;
3050 * Just let mcelog handle it if the error is
3051 * outside the memory controller. A memory error
3052 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3053 * bit 12 has an special meaning.
3055 if ((mce
->status
& 0xefff) >> 7 != 1)
3058 if (mce
->mcgstatus
& MCG_STATUS_MCIP
)
3063 sbridge_mc_printk(mci
, KERN_DEBUG
, "HANDLING MCE MEMORY ERROR\n");
3065 sbridge_mc_printk(mci
, KERN_DEBUG
, "CPU %d: Machine Check %s: %Lx "
3066 "Bank %d: %016Lx\n", mce
->extcpu
, type
,
3067 mce
->mcgstatus
, mce
->bank
, mce
->status
);
3068 sbridge_mc_printk(mci
, KERN_DEBUG
, "TSC %llx ", mce
->tsc
);
3069 sbridge_mc_printk(mci
, KERN_DEBUG
, "ADDR %llx ", mce
->addr
);
3070 sbridge_mc_printk(mci
, KERN_DEBUG
, "MISC %llx ", mce
->misc
);
3072 sbridge_mc_printk(mci
, KERN_DEBUG
, "PROCESSOR %u:%x TIME %llu SOCKET "
3073 "%u APIC %x\n", mce
->cpuvendor
, mce
->cpuid
,
3074 mce
->time
, mce
->socketid
, mce
->apicid
);
3076 sbridge_mce_output_error(mci
, mce
);
3078 /* Advice mcelog that the error were handled */
3082 static struct notifier_block sbridge_mce_dec
= {
3083 .notifier_call
= sbridge_mce_check_error
,
3084 .priority
= MCE_PRIO_EDAC
,
3087 /****************************************************************************
3088 EDAC register/unregister logic
3089 ****************************************************************************/
3091 static void sbridge_unregister_mci(struct sbridge_dev
*sbridge_dev
)
3093 struct mem_ctl_info
*mci
= sbridge_dev
->mci
;
3094 struct sbridge_pvt
*pvt
;
3096 if (unlikely(!mci
|| !mci
->pvt_info
)) {
3097 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev
->pdev
[0]->dev
);
3099 sbridge_printk(KERN_ERR
, "Couldn't find mci handler\n");
3103 pvt
= mci
->pvt_info
;
3105 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3106 mci
, &sbridge_dev
->pdev
[0]->dev
);
3108 /* Remove MC sysfs nodes */
3109 edac_mc_del_mc(mci
->pdev
);
3111 edac_dbg(1, "%s: free mci struct\n", mci
->ctl_name
);
3112 kfree(mci
->ctl_name
);
3114 sbridge_dev
->mci
= NULL
;
3117 static int sbridge_register_mci(struct sbridge_dev
*sbridge_dev
, enum type type
)
3119 struct mem_ctl_info
*mci
;
3120 struct edac_mc_layer layers
[2];
3121 struct sbridge_pvt
*pvt
;
3122 struct pci_dev
*pdev
= sbridge_dev
->pdev
[0];
3125 /* allocate a new MC control structure */
3126 layers
[0].type
= EDAC_MC_LAYER_CHANNEL
;
3127 layers
[0].size
= type
== KNIGHTS_LANDING
?
3128 KNL_MAX_CHANNELS
: NUM_CHANNELS
;
3129 layers
[0].is_virt_csrow
= false;
3130 layers
[1].type
= EDAC_MC_LAYER_SLOT
;
3131 layers
[1].size
= type
== KNIGHTS_LANDING
? 1 : MAX_DIMMS
;
3132 layers
[1].is_virt_csrow
= true;
3133 mci
= edac_mc_alloc(sbridge_dev
->mc
, ARRAY_SIZE(layers
), layers
,
3139 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3142 pvt
= mci
->pvt_info
;
3143 memset(pvt
, 0, sizeof(*pvt
));
3145 /* Associate sbridge_dev and mci for future usage */
3146 pvt
->sbridge_dev
= sbridge_dev
;
3147 sbridge_dev
->mci
= mci
;
3149 mci
->mtype_cap
= type
== KNIGHTS_LANDING
?
3150 MEM_FLAG_DDR4
: MEM_FLAG_DDR3
;
3151 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
3152 mci
->edac_cap
= EDAC_FLAG_NONE
;
3153 mci
->mod_name
= EDAC_MOD_STR
;
3154 mci
->dev_name
= pci_name(pdev
);
3155 mci
->ctl_page_to_phys
= NULL
;
3157 pvt
->info
.type
= type
;
3160 pvt
->info
.rankcfgr
= IB_RANK_CFG_A
;
3161 pvt
->info
.get_tolm
= ibridge_get_tolm
;
3162 pvt
->info
.get_tohm
= ibridge_get_tohm
;
3163 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3164 pvt
->info
.get_memory_type
= get_memory_type
;
3165 pvt
->info
.get_node_id
= get_node_id
;
3166 pvt
->info
.rir_limit
= rir_limit
;
3167 pvt
->info
.sad_limit
= sad_limit
;
3168 pvt
->info
.interleave_mode
= interleave_mode
;
3169 pvt
->info
.dram_attr
= dram_attr
;
3170 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3171 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3172 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
3173 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3174 pvt
->info
.get_width
= ibridge_get_width
;
3176 /* Store pci devices at mci for faster access */
3177 rc
= ibridge_mci_bind_devs(mci
, sbridge_dev
);
3178 if (unlikely(rc
< 0))
3181 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Ivy Bridge SrcID#%d_Ha#%d",
3182 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3185 pvt
->info
.rankcfgr
= SB_RANK_CFG_A
;
3186 pvt
->info
.get_tolm
= sbridge_get_tolm
;
3187 pvt
->info
.get_tohm
= sbridge_get_tohm
;
3188 pvt
->info
.dram_rule
= sbridge_dram_rule
;
3189 pvt
->info
.get_memory_type
= get_memory_type
;
3190 pvt
->info
.get_node_id
= get_node_id
;
3191 pvt
->info
.rir_limit
= rir_limit
;
3192 pvt
->info
.sad_limit
= sad_limit
;
3193 pvt
->info
.interleave_mode
= interleave_mode
;
3194 pvt
->info
.dram_attr
= dram_attr
;
3195 pvt
->info
.max_sad
= ARRAY_SIZE(sbridge_dram_rule
);
3196 pvt
->info
.interleave_list
= sbridge_interleave_list
;
3197 pvt
->info
.max_interleave
= ARRAY_SIZE(sbridge_interleave_list
);
3198 pvt
->info
.interleave_pkg
= sbridge_interleave_pkg
;
3199 pvt
->info
.get_width
= sbridge_get_width
;
3201 /* Store pci devices at mci for faster access */
3202 rc
= sbridge_mci_bind_devs(mci
, sbridge_dev
);
3203 if (unlikely(rc
< 0))
3206 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Sandy Bridge SrcID#%d_Ha#%d",
3207 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3210 /* rankcfgr isn't used */
3211 pvt
->info
.get_tolm
= haswell_get_tolm
;
3212 pvt
->info
.get_tohm
= haswell_get_tohm
;
3213 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3214 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3215 pvt
->info
.get_node_id
= haswell_get_node_id
;
3216 pvt
->info
.rir_limit
= haswell_rir_limit
;
3217 pvt
->info
.sad_limit
= sad_limit
;
3218 pvt
->info
.interleave_mode
= interleave_mode
;
3219 pvt
->info
.dram_attr
= dram_attr
;
3220 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3221 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3222 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
3223 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3224 pvt
->info
.get_width
= ibridge_get_width
;
3226 /* Store pci devices at mci for faster access */
3227 rc
= haswell_mci_bind_devs(mci
, sbridge_dev
);
3228 if (unlikely(rc
< 0))
3231 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Haswell SrcID#%d_Ha#%d",
3232 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3235 /* rankcfgr isn't used */
3236 pvt
->info
.get_tolm
= haswell_get_tolm
;
3237 pvt
->info
.get_tohm
= haswell_get_tohm
;
3238 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3239 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3240 pvt
->info
.get_node_id
= haswell_get_node_id
;
3241 pvt
->info
.rir_limit
= haswell_rir_limit
;
3242 pvt
->info
.sad_limit
= sad_limit
;
3243 pvt
->info
.interleave_mode
= interleave_mode
;
3244 pvt
->info
.dram_attr
= dram_attr
;
3245 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3246 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3247 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
3248 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3249 pvt
->info
.get_width
= broadwell_get_width
;
3251 /* Store pci devices at mci for faster access */
3252 rc
= broadwell_mci_bind_devs(mci
, sbridge_dev
);
3253 if (unlikely(rc
< 0))
3256 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Broadwell SrcID#%d_Ha#%d",
3257 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3259 case KNIGHTS_LANDING
:
3260 /* pvt->info.rankcfgr == ??? */
3261 pvt
->info
.get_tolm
= knl_get_tolm
;
3262 pvt
->info
.get_tohm
= knl_get_tohm
;
3263 pvt
->info
.dram_rule
= knl_dram_rule
;
3264 pvt
->info
.get_memory_type
= knl_get_memory_type
;
3265 pvt
->info
.get_node_id
= knl_get_node_id
;
3266 pvt
->info
.rir_limit
= NULL
;
3267 pvt
->info
.sad_limit
= knl_sad_limit
;
3268 pvt
->info
.interleave_mode
= knl_interleave_mode
;
3269 pvt
->info
.dram_attr
= dram_attr_knl
;
3270 pvt
->info
.max_sad
= ARRAY_SIZE(knl_dram_rule
);
3271 pvt
->info
.interleave_list
= knl_interleave_list
;
3272 pvt
->info
.max_interleave
= ARRAY_SIZE(knl_interleave_list
);
3273 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3274 pvt
->info
.get_width
= knl_get_width
;
3276 rc
= knl_mci_bind_devs(mci
, sbridge_dev
);
3277 if (unlikely(rc
< 0))
3280 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Knights Landing SrcID#%d_Ha#%d",
3281 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3285 if (!mci
->ctl_name
) {
3290 /* Get dimm basic config and the memory layout */
3291 rc
= get_dimm_config(mci
);
3293 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3296 get_memory_layout(mci
);
3298 /* record ptr to the generic device */
3299 mci
->pdev
= &pdev
->dev
;
3301 /* add this new MC control structure to EDAC's list of MCs */
3302 if (unlikely(edac_mc_add_mc(mci
))) {
3303 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3311 kfree(mci
->ctl_name
);
3314 sbridge_dev
->mci
= NULL
;
3318 #define ICPU(model, table) \
3319 { X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3321 static const struct x86_cpu_id sbridge_cpuids
[] = {
3322 ICPU(INTEL_FAM6_SANDYBRIDGE_X
, pci_dev_descr_sbridge_table
),
3323 ICPU(INTEL_FAM6_IVYBRIDGE_X
, pci_dev_descr_ibridge_table
),
3324 ICPU(INTEL_FAM6_HASWELL_X
, pci_dev_descr_haswell_table
),
3325 ICPU(INTEL_FAM6_BROADWELL_X
, pci_dev_descr_broadwell_table
),
3326 ICPU(INTEL_FAM6_BROADWELL_XEON_D
, pci_dev_descr_broadwell_table
),
3327 ICPU(INTEL_FAM6_XEON_PHI_KNL
, pci_dev_descr_knl_table
),
3328 ICPU(INTEL_FAM6_XEON_PHI_KNM
, pci_dev_descr_knl_table
),
3331 MODULE_DEVICE_TABLE(x86cpu
, sbridge_cpuids
);
3334 * sbridge_probe Get all devices and register memory controllers
3337 * 0 for FOUND a device
3338 * < 0 for error code
3341 static int sbridge_probe(const struct x86_cpu_id
*id
)
3345 struct sbridge_dev
*sbridge_dev
;
3346 struct pci_id_table
*ptable
= (struct pci_id_table
*)id
->driver_data
;
3348 /* get the pci devices we want to reserve for our use */
3349 rc
= sbridge_get_all_devices(&num_mc
, ptable
);
3351 if (unlikely(rc
< 0)) {
3352 edac_dbg(0, "couldn't get all devices\n");
3358 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
3359 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3360 mc
, mc
+ 1, num_mc
);
3362 sbridge_dev
->mc
= mc
++;
3363 rc
= sbridge_register_mci(sbridge_dev
, ptable
->type
);
3364 if (unlikely(rc
< 0))
3368 sbridge_printk(KERN_INFO
, "%s\n", SBRIDGE_REVISION
);
3373 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3374 sbridge_unregister_mci(sbridge_dev
);
3376 sbridge_put_all_devices();
3382 * sbridge_remove cleanup
3385 static void sbridge_remove(void)
3387 struct sbridge_dev
*sbridge_dev
;
3391 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3392 sbridge_unregister_mci(sbridge_dev
);
3394 /* Release PCI resources */
3395 sbridge_put_all_devices();
3399 * sbridge_init Module entry function
3400 * Try to initialize this module for its devices
3402 static int __init
sbridge_init(void)
3404 const struct x86_cpu_id
*id
;
3410 owner
= edac_get_owner();
3411 if (owner
&& strncmp(owner
, EDAC_MOD_STR
, sizeof(EDAC_MOD_STR
)))
3414 id
= x86_match_cpu(sbridge_cpuids
);
3418 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3421 rc
= sbridge_probe(id
);
3424 mce_register_decode_chain(&sbridge_mce_dec
);
3425 if (edac_get_report_status() == EDAC_REPORTING_DISABLED
)
3426 sbridge_printk(KERN_WARNING
, "Loading driver, error reporting disabled.\n");
3430 sbridge_printk(KERN_ERR
, "Failed to register device with error %d.\n",
3437 * sbridge_exit() Module exit function
3438 * Unregister the driver
3440 static void __exit
sbridge_exit(void)
3444 mce_unregister_decode_chain(&sbridge_mce_dec
);
3447 module_init(sbridge_init
);
3448 module_exit(sbridge_exit
);
3450 module_param(edac_op_state
, int, 0444);
3451 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
3453 MODULE_LICENSE("GPL");
3454 MODULE_AUTHOR("Mauro Carvalho Chehab");
3455 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3456 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "