x86/amd-iommu: Add function to complete a tlb flush
[linux/fpc-iii.git] / arch / cris / arch-v10 / kernel / time.c
blob31ca1418d5a7be1bd1e1538948739fb27c2e31cc
1 /*
2 * linux/arch/cris/arch-v10/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Copyright (C) 1999-2002 Axis Communications AB
7 */
9 #include <linux/timex.h>
10 #include <linux/time.h>
11 #include <linux/jiffies.h>
12 #include <linux/interrupt.h>
13 #include <linux/swap.h>
14 #include <linux/sched.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <arch/svinto.h>
18 #include <asm/types.h>
19 #include <asm/signal.h>
20 #include <asm/io.h>
21 #include <asm/delay.h>
22 #include <asm/rtc.h>
23 #include <asm/irq_regs.h>
25 /* define this if you need to use print_timestamp */
26 /* it will make jiffies at 96 hz instead of 100 hz though */
27 #undef USE_CASCADE_TIMERS
29 extern void update_xtime_from_cmos(void);
30 extern int set_rtc_mmss(unsigned long nowtime);
31 extern int have_rtc;
33 unsigned long get_ns_in_jiffie(void)
35 unsigned char timer_count, t1;
36 unsigned short presc_count;
37 unsigned long ns;
38 unsigned long flags;
40 local_irq_save(flags);
41 timer_count = *R_TIMER0_DATA;
42 presc_count = *R_TIM_PRESC_STATUS;
43 /* presc_count might be wrapped */
44 t1 = *R_TIMER0_DATA;
46 if (timer_count != t1){
47 /* it wrapped, read prescaler again... */
48 presc_count = *R_TIM_PRESC_STATUS;
49 timer_count = t1;
51 local_irq_restore(flags);
52 if (presc_count >= PRESCALE_VALUE/2 ){
53 presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
54 } else {
55 presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
58 ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) +
59 ( (presc_count) * (1000000000/PRESCALE_FREQ));
60 return ns;
63 unsigned long do_slow_gettimeoffset(void)
65 unsigned long count, t1;
66 unsigned long usec_count = 0;
67 unsigned short presc_count;
69 static unsigned long count_p = TIMER0_DIV;/* for the first call after boot */
70 static unsigned long jiffies_p = 0;
73 * cache volatile jiffies temporarily; we have IRQs turned off.
75 unsigned long jiffies_t;
77 /* The timer interrupt comes from Etrax timer 0. In order to get
78 * better precision, we check the current value. It might have
79 * underflowed already though.
82 #ifndef CONFIG_SVINTO_SIM
83 /* Not available in the xsim simulator. */
84 count = *R_TIMER0_DATA;
85 presc_count = *R_TIM_PRESC_STATUS;
86 /* presc_count might be wrapped */
87 t1 = *R_TIMER0_DATA;
88 if (count != t1){
89 /* it wrapped, read prescaler again... */
90 presc_count = *R_TIM_PRESC_STATUS;
91 count = t1;
93 #else
94 count = 0;
95 presc_count = 0;
96 #endif
98 jiffies_t = jiffies;
101 * avoiding timer inconsistencies (they are rare, but they happen)...
102 * there are one problem that must be avoided here:
103 * 1. the timer counter underflows
105 if( jiffies_t == jiffies_p ) {
106 if( count > count_p ) {
107 /* Timer wrapped, use new count and prescale
108 * increase the time corresponding to one jiffie
110 usec_count = 1000000/HZ;
112 } else
113 jiffies_p = jiffies_t;
114 count_p = count;
115 if (presc_count >= PRESCALE_VALUE/2 ){
116 presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
117 } else {
118 presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
120 /* Convert timer value to usec */
121 usec_count += ( (TIMER0_DIV - count) * (1000000/HZ)/TIMER0_DIV ) +
122 (( (presc_count) * (1000000000/PRESCALE_FREQ))/1000);
124 return usec_count;
127 /* Excerpt from the Etrax100 HSDD about the built-in watchdog:
129 * 3.10.4 Watchdog timer
131 * When the watchdog timer is started, it generates an NMI if the watchdog
132 * isn't restarted or stopped within 0.1 s. If it still isn't restarted or
133 * stopped after an additional 3.3 ms, the watchdog resets the chip.
134 * The watchdog timer is stopped after reset. The watchdog timer is controlled
135 * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit
136 * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is
137 * described in the table below:
139 * Watchdog Value written:
140 * state: To enable: To key: Operation:
141 * -------- ---------- ------- ----------
142 * stopped 0 X No effect.
143 * stopped 1 key_val Start watchdog with key = key_val.
144 * started 0 ~key Stop watchdog
145 * started 1 ~key Restart watchdog with key = ~key.
146 * started X new_key_val Change key to new_key_val.
148 * Note: '~' is the bitwise NOT operator.
152 /* right now, starting the watchdog is the same as resetting it */
153 #define start_watchdog reset_watchdog
155 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
156 static int watchdog_key = 0; /* arbitrary number */
157 #endif
159 /* number of pages to consider "out of memory". it is normal that the memory
160 * is used though, so put this really low.
163 #define WATCHDOG_MIN_FREE_PAGES 8
165 void
166 reset_watchdog(void)
168 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
169 /* only keep watchdog happy as long as we have memory left! */
170 if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
171 /* reset the watchdog with the inverse of the old key */
172 watchdog_key ^= 0x7; /* invert key, which is 3 bits */
173 *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
174 IO_STATE(R_WATCHDOG, enable, start);
176 #endif
179 /* stop the watchdog - we still need the correct key */
181 void
182 stop_watchdog(void)
184 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
185 watchdog_key ^= 0x7; /* invert key, which is 3 bits */
186 *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
187 IO_STATE(R_WATCHDOG, enable, stop);
188 #endif
191 /* last time the cmos clock got updated */
192 static long last_rtc_update = 0;
195 * timer_interrupt() needs to keep up the real-time clock,
196 * as well as call the "do_timer()" routine every clocktick
199 //static unsigned short myjiff; /* used by our debug routine print_timestamp */
201 extern void cris_do_profile(struct pt_regs *regs);
203 static inline irqreturn_t
204 timer_interrupt(int irq, void *dev_id)
206 struct pt_regs *regs = get_irq_regs();
207 /* acknowledge the timer irq */
209 #ifdef USE_CASCADE_TIMERS
210 *R_TIMER_CTRL =
211 IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
212 IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
213 IO_STATE( R_TIMER_CTRL, i1, clr) |
214 IO_STATE( R_TIMER_CTRL, tm1, run) |
215 IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
216 IO_STATE( R_TIMER_CTRL, i0, clr) |
217 IO_STATE( R_TIMER_CTRL, tm0, run) |
218 IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
219 #else
220 *R_TIMER_CTRL = r_timer_ctrl_shadow |
221 IO_STATE(R_TIMER_CTRL, i0, clr);
222 #endif
224 /* reset watchdog otherwise it resets us! */
225 reset_watchdog();
227 /* Update statistics. */
228 update_process_times(user_mode(regs));
230 /* call the real timer interrupt handler */
232 do_timer(1);
234 cris_do_profile(regs); /* Save profiling information */
237 * If we have an externally synchronized Linux clock, then update
238 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
239 * called as close as possible to 500 ms before the new second starts.
241 * The division here is not time critical since it will run once in
242 * 11 minutes
244 if (ntp_synced() &&
245 xtime.tv_sec > last_rtc_update + 660 &&
246 (xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 &&
247 (xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) {
248 if (set_rtc_mmss(xtime.tv_sec) == 0)
249 last_rtc_update = xtime.tv_sec;
250 else
251 last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
253 return IRQ_HANDLED;
256 /* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain
257 * it needs to be IRQF_DISABLED to make the jiffies update work properly
260 static struct irqaction irq2 = {
261 .handler = timer_interrupt,
262 .flags = IRQF_SHARED | IRQF_DISABLED,
263 .name = "timer",
266 void __init
267 time_init(void)
269 /* probe for the RTC and read it if it exists
270 * Before the RTC can be probed the loops_per_usec variable needs
271 * to be initialized to make usleep work. A better value for
272 * loops_per_usec is calculated by the kernel later once the
273 * clock has started.
275 loops_per_usec = 50;
277 if(RTC_INIT() < 0) {
278 /* no RTC, start at 1980 */
279 xtime.tv_sec = 0;
280 xtime.tv_nsec = 0;
281 have_rtc = 0;
282 } else {
283 /* get the current time */
284 have_rtc = 1;
285 update_xtime_from_cmos();
289 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
290 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
292 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
294 /* Setup the etrax timers
295 * Base frequency is 25000 hz, divider 250 -> 100 HZ
296 * In normal mode, we use timer0, so timer1 is free. In cascade
297 * mode (which we sometimes use for debugging) both timers are used.
298 * Remember that linux/timex.h contains #defines that rely on the
299 * timer settings below (hz and divide factor) !!!
302 #ifdef USE_CASCADE_TIMERS
303 *R_TIMER_CTRL =
304 IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
305 IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
306 IO_STATE( R_TIMER_CTRL, i1, nop) |
307 IO_STATE( R_TIMER_CTRL, tm1, stop_ld) |
308 IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
309 IO_STATE( R_TIMER_CTRL, i0, nop) |
310 IO_STATE( R_TIMER_CTRL, tm0, stop_ld) |
311 IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
313 *R_TIMER_CTRL = r_timer_ctrl_shadow =
314 IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
315 IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
316 IO_STATE( R_TIMER_CTRL, i1, nop) |
317 IO_STATE( R_TIMER_CTRL, tm1, run) |
318 IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
319 IO_STATE( R_TIMER_CTRL, i0, nop) |
320 IO_STATE( R_TIMER_CTRL, tm0, run) |
321 IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
322 #else
323 *R_TIMER_CTRL =
324 IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) |
325 IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) |
326 IO_STATE(R_TIMER_CTRL, i1, nop) |
327 IO_STATE(R_TIMER_CTRL, tm1, stop_ld) |
328 IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) |
329 IO_STATE(R_TIMER_CTRL, i0, nop) |
330 IO_STATE(R_TIMER_CTRL, tm0, stop_ld) |
331 IO_STATE(R_TIMER_CTRL, clksel0, flexible);
333 *R_TIMER_CTRL = r_timer_ctrl_shadow =
334 IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) |
335 IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) |
336 IO_STATE(R_TIMER_CTRL, i1, nop) |
337 IO_STATE(R_TIMER_CTRL, tm1, run) |
338 IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) |
339 IO_STATE(R_TIMER_CTRL, i0, nop) |
340 IO_STATE(R_TIMER_CTRL, tm0, run) |
341 IO_STATE(R_TIMER_CTRL, clksel0, flexible);
343 *R_TIMER_PRESCALE = PRESCALE_VALUE;
344 #endif
346 *R_IRQ_MASK0_SET =
347 IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */
349 /* now actually register the timer irq handler that calls timer_interrupt() */
351 setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */
353 /* enable watchdog if we should use one */
355 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
356 printk("Enabling watchdog...\n");
357 start_watchdog();
359 /* If we use the hardware watchdog, we want to trap it as an NMI
360 and dump registers before it resets us. For this to happen, we
361 must set the "m" NMI enable flag (which once set, is unset only
362 when an NMI is taken).
364 The same goes for the external NMI, but that doesn't have any
365 driver or infrastructure support yet. */
366 asm ("setf m");
368 *R_IRQ_MASK0_SET =
369 IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set);
370 *R_VECT_MASK_SET =
371 IO_STATE(R_VECT_MASK_SET, nmi, set);
372 #endif