x86/amd-iommu: Add function to complete a tlb flush
[linux/fpc-iii.git] / arch / s390 / kernel / smp.c
blob93e52039321b1f6bcb2a89c335c3c9b4ef1c1104
1 /*
2 * arch/s390/kernel/smp.c
4 * Copyright IBM Corp. 1999, 2009
5 * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 * Heiko Carstens (heiko.carstens@de.ibm.com)
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
13 * We work with logical cpu numbering everywhere we can. The only
14 * functions using the real cpu address (got from STAP) are the sigp
15 * functions. For all other functions we use the identity mapping.
16 * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17 * used e.g. to find the idle task belonging to a logical cpu. Every array
18 * in the kernel is sorted by the logical cpu number and not by the physical
19 * one which is causing all the confusion with __cpu_logical_map and
20 * cpu_number_map in other architectures.
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/spinlock.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/delay.h>
33 #include <linux/cache.h>
34 #include <linux/interrupt.h>
35 #include <linux/irqflags.h>
36 #include <linux/cpu.h>
37 #include <linux/timex.h>
38 #include <linux/bootmem.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/sigp.h>
42 #include <asm/pgalloc.h>
43 #include <asm/irq.h>
44 #include <asm/s390_ext.h>
45 #include <asm/cpcmd.h>
46 #include <asm/tlbflush.h>
47 #include <asm/timer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/cputime.h>
51 #include <asm/vdso.h>
52 #include <asm/cpu.h>
53 #include "entry.h"
55 static struct task_struct *current_set[NR_CPUS];
57 static u8 smp_cpu_type;
58 static int smp_use_sigp_detection;
60 enum s390_cpu_state {
61 CPU_STATE_STANDBY,
62 CPU_STATE_CONFIGURED,
65 DEFINE_MUTEX(smp_cpu_state_mutex);
66 int smp_cpu_polarization[NR_CPUS];
67 static int smp_cpu_state[NR_CPUS];
68 static int cpu_management;
70 static DEFINE_PER_CPU(struct cpu, cpu_devices);
72 static void smp_ext_bitcall(int, ec_bit_sig);
74 static int cpu_stopped(int cpu)
76 __u32 status;
78 switch (signal_processor_ps(&status, 0, cpu, sigp_sense)) {
79 case sigp_status_stored:
80 /* Check for stopped and check stop state */
81 if (status & 0x50)
82 return 1;
83 break;
84 default:
85 break;
87 return 0;
90 void smp_send_stop(void)
92 int cpu, rc;
94 /* Disable all interrupts/machine checks */
95 __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
96 trace_hardirqs_off();
98 /* stop all processors */
99 for_each_online_cpu(cpu) {
100 if (cpu == smp_processor_id())
101 continue;
102 do {
103 rc = signal_processor(cpu, sigp_stop);
104 } while (rc == sigp_busy);
106 while (!cpu_stopped(cpu))
107 cpu_relax();
112 * This is the main routine where commands issued by other
113 * cpus are handled.
116 static void do_ext_call_interrupt(__u16 code)
118 unsigned long bits;
121 * handle bit signal external calls
123 * For the ec_schedule signal we have to do nothing. All the work
124 * is done automatically when we return from the interrupt.
126 bits = xchg(&S390_lowcore.ext_call_fast, 0);
128 if (test_bit(ec_call_function, &bits))
129 generic_smp_call_function_interrupt();
131 if (test_bit(ec_call_function_single, &bits))
132 generic_smp_call_function_single_interrupt();
136 * Send an external call sigp to another cpu and return without waiting
137 * for its completion.
139 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
142 * Set signaling bit in lowcore of target cpu and kick it
144 set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
145 while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
146 udelay(10);
149 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
151 int cpu;
153 for_each_cpu(cpu, mask)
154 smp_ext_bitcall(cpu, ec_call_function);
157 void arch_send_call_function_single_ipi(int cpu)
159 smp_ext_bitcall(cpu, ec_call_function_single);
162 #ifndef CONFIG_64BIT
164 * this function sends a 'purge tlb' signal to another CPU.
166 static void smp_ptlb_callback(void *info)
168 __tlb_flush_local();
171 void smp_ptlb_all(void)
173 on_each_cpu(smp_ptlb_callback, NULL, 1);
175 EXPORT_SYMBOL(smp_ptlb_all);
176 #endif /* ! CONFIG_64BIT */
179 * this function sends a 'reschedule' IPI to another CPU.
180 * it goes straight through and wastes no time serializing
181 * anything. Worst case is that we lose a reschedule ...
183 void smp_send_reschedule(int cpu)
185 smp_ext_bitcall(cpu, ec_schedule);
189 * parameter area for the set/clear control bit callbacks
191 struct ec_creg_mask_parms {
192 unsigned long orvals[16];
193 unsigned long andvals[16];
197 * callback for setting/clearing control bits
199 static void smp_ctl_bit_callback(void *info)
201 struct ec_creg_mask_parms *pp = info;
202 unsigned long cregs[16];
203 int i;
205 __ctl_store(cregs, 0, 15);
206 for (i = 0; i <= 15; i++)
207 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
208 __ctl_load(cregs, 0, 15);
212 * Set a bit in a control register of all cpus
214 void smp_ctl_set_bit(int cr, int bit)
216 struct ec_creg_mask_parms parms;
218 memset(&parms.orvals, 0, sizeof(parms.orvals));
219 memset(&parms.andvals, 0xff, sizeof(parms.andvals));
220 parms.orvals[cr] = 1 << bit;
221 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
223 EXPORT_SYMBOL(smp_ctl_set_bit);
226 * Clear a bit in a control register of all cpus
228 void smp_ctl_clear_bit(int cr, int bit)
230 struct ec_creg_mask_parms parms;
232 memset(&parms.orvals, 0, sizeof(parms.orvals));
233 memset(&parms.andvals, 0xff, sizeof(parms.andvals));
234 parms.andvals[cr] = ~(1L << bit);
235 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
237 EXPORT_SYMBOL(smp_ctl_clear_bit);
240 * In early ipl state a temp. logically cpu number is needed, so the sigp
241 * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
242 * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
244 #define CPU_INIT_NO 1
246 #ifdef CONFIG_ZFCPDUMP
249 * zfcpdump_prefix_array holds prefix registers for the following scenario:
250 * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
251 * save its prefix registers, since they get lost, when switching from 31 bit
252 * to 64 bit.
254 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
255 __attribute__((__section__(".data")));
257 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
259 if (ipl_info.type != IPL_TYPE_FCP_DUMP)
260 return;
261 if (cpu >= NR_CPUS) {
262 pr_warning("CPU %i exceeds the maximum %i and is excluded from "
263 "the dump\n", cpu, NR_CPUS - 1);
264 return;
266 zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
267 __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
268 while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
269 sigp_busy)
270 cpu_relax();
271 memcpy(zfcpdump_save_areas[cpu],
272 (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
273 SAVE_AREA_SIZE);
274 #ifdef CONFIG_64BIT
275 /* copy original prefix register */
276 zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
277 #endif
280 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
281 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
283 #else
285 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
287 #endif /* CONFIG_ZFCPDUMP */
289 static int cpu_known(int cpu_id)
291 int cpu;
293 for_each_present_cpu(cpu) {
294 if (__cpu_logical_map[cpu] == cpu_id)
295 return 1;
297 return 0;
300 static int smp_rescan_cpus_sigp(cpumask_t avail)
302 int cpu_id, logical_cpu;
304 logical_cpu = cpumask_first(&avail);
305 if (logical_cpu >= nr_cpu_ids)
306 return 0;
307 for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
308 if (cpu_known(cpu_id))
309 continue;
310 __cpu_logical_map[logical_cpu] = cpu_id;
311 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
312 if (!cpu_stopped(logical_cpu))
313 continue;
314 cpu_set(logical_cpu, cpu_present_map);
315 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
316 logical_cpu = cpumask_next(logical_cpu, &avail);
317 if (logical_cpu >= nr_cpu_ids)
318 break;
320 return 0;
323 static int smp_rescan_cpus_sclp(cpumask_t avail)
325 struct sclp_cpu_info *info;
326 int cpu_id, logical_cpu, cpu;
327 int rc;
329 logical_cpu = cpumask_first(&avail);
330 if (logical_cpu >= nr_cpu_ids)
331 return 0;
332 info = kmalloc(sizeof(*info), GFP_KERNEL);
333 if (!info)
334 return -ENOMEM;
335 rc = sclp_get_cpu_info(info);
336 if (rc)
337 goto out;
338 for (cpu = 0; cpu < info->combined; cpu++) {
339 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
340 continue;
341 cpu_id = info->cpu[cpu].address;
342 if (cpu_known(cpu_id))
343 continue;
344 __cpu_logical_map[logical_cpu] = cpu_id;
345 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
346 cpu_set(logical_cpu, cpu_present_map);
347 if (cpu >= info->configured)
348 smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
349 else
350 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
351 logical_cpu = cpumask_next(logical_cpu, &avail);
352 if (logical_cpu >= nr_cpu_ids)
353 break;
355 out:
356 kfree(info);
357 return rc;
360 static int __smp_rescan_cpus(void)
362 cpumask_t avail;
364 cpus_xor(avail, cpu_possible_map, cpu_present_map);
365 if (smp_use_sigp_detection)
366 return smp_rescan_cpus_sigp(avail);
367 else
368 return smp_rescan_cpus_sclp(avail);
371 static void __init smp_detect_cpus(void)
373 unsigned int cpu, c_cpus, s_cpus;
374 struct sclp_cpu_info *info;
375 u16 boot_cpu_addr, cpu_addr;
377 c_cpus = 1;
378 s_cpus = 0;
379 boot_cpu_addr = __cpu_logical_map[0];
380 info = kmalloc(sizeof(*info), GFP_KERNEL);
381 if (!info)
382 panic("smp_detect_cpus failed to allocate memory\n");
383 /* Use sigp detection algorithm if sclp doesn't work. */
384 if (sclp_get_cpu_info(info)) {
385 smp_use_sigp_detection = 1;
386 for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
387 if (cpu == boot_cpu_addr)
388 continue;
389 __cpu_logical_map[CPU_INIT_NO] = cpu;
390 if (!cpu_stopped(CPU_INIT_NO))
391 continue;
392 smp_get_save_area(c_cpus, cpu);
393 c_cpus++;
395 goto out;
398 if (info->has_cpu_type) {
399 for (cpu = 0; cpu < info->combined; cpu++) {
400 if (info->cpu[cpu].address == boot_cpu_addr) {
401 smp_cpu_type = info->cpu[cpu].type;
402 break;
407 for (cpu = 0; cpu < info->combined; cpu++) {
408 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
409 continue;
410 cpu_addr = info->cpu[cpu].address;
411 if (cpu_addr == boot_cpu_addr)
412 continue;
413 __cpu_logical_map[CPU_INIT_NO] = cpu_addr;
414 if (!cpu_stopped(CPU_INIT_NO)) {
415 s_cpus++;
416 continue;
418 smp_get_save_area(c_cpus, cpu_addr);
419 c_cpus++;
421 out:
422 kfree(info);
423 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
424 get_online_cpus();
425 __smp_rescan_cpus();
426 put_online_cpus();
430 * Activate a secondary processor.
432 int __cpuinit start_secondary(void *cpuvoid)
434 /* Setup the cpu */
435 cpu_init();
436 preempt_disable();
437 /* Enable TOD clock interrupts on the secondary cpu. */
438 init_cpu_timer();
439 /* Enable cpu timer interrupts on the secondary cpu. */
440 init_cpu_vtimer();
441 /* Enable pfault pseudo page faults on this cpu. */
442 pfault_init();
444 /* call cpu notifiers */
445 notify_cpu_starting(smp_processor_id());
446 /* Mark this cpu as online */
447 ipi_call_lock();
448 cpu_set(smp_processor_id(), cpu_online_map);
449 ipi_call_unlock();
450 /* Switch on interrupts */
451 local_irq_enable();
452 /* Print info about this processor */
453 print_cpu_info();
454 /* cpu_idle will call schedule for us */
455 cpu_idle();
456 return 0;
459 static void __init smp_create_idle(unsigned int cpu)
461 struct task_struct *p;
464 * don't care about the psw and regs settings since we'll never
465 * reschedule the forked task.
467 p = fork_idle(cpu);
468 if (IS_ERR(p))
469 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
470 current_set[cpu] = p;
473 static int __cpuinit smp_alloc_lowcore(int cpu)
475 unsigned long async_stack, panic_stack;
476 struct _lowcore *lowcore;
478 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
479 if (!lowcore)
480 return -ENOMEM;
481 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
482 panic_stack = __get_free_page(GFP_KERNEL);
483 if (!panic_stack || !async_stack)
484 goto out;
485 memcpy(lowcore, &S390_lowcore, 512);
486 memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
487 lowcore->async_stack = async_stack + ASYNC_SIZE;
488 lowcore->panic_stack = panic_stack + PAGE_SIZE;
490 #ifndef CONFIG_64BIT
491 if (MACHINE_HAS_IEEE) {
492 unsigned long save_area;
494 save_area = get_zeroed_page(GFP_KERNEL);
495 if (!save_area)
496 goto out;
497 lowcore->extended_save_area_addr = (u32) save_area;
499 #else
500 if (vdso_alloc_per_cpu(cpu, lowcore))
501 goto out;
502 #endif
503 lowcore_ptr[cpu] = lowcore;
504 return 0;
506 out:
507 free_page(panic_stack);
508 free_pages(async_stack, ASYNC_ORDER);
509 free_pages((unsigned long) lowcore, LC_ORDER);
510 return -ENOMEM;
513 static void smp_free_lowcore(int cpu)
515 struct _lowcore *lowcore;
517 lowcore = lowcore_ptr[cpu];
518 #ifndef CONFIG_64BIT
519 if (MACHINE_HAS_IEEE)
520 free_page((unsigned long) lowcore->extended_save_area_addr);
521 #else
522 vdso_free_per_cpu(cpu, lowcore);
523 #endif
524 free_page(lowcore->panic_stack - PAGE_SIZE);
525 free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
526 free_pages((unsigned long) lowcore, LC_ORDER);
527 lowcore_ptr[cpu] = NULL;
530 /* Upping and downing of CPUs */
531 int __cpuinit __cpu_up(unsigned int cpu)
533 struct task_struct *idle;
534 struct _lowcore *cpu_lowcore;
535 struct stack_frame *sf;
536 sigp_ccode ccode;
537 u32 lowcore;
539 if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
540 return -EIO;
541 if (smp_alloc_lowcore(cpu))
542 return -ENOMEM;
543 do {
544 ccode = signal_processor(cpu, sigp_initial_cpu_reset);
545 if (ccode == sigp_busy)
546 udelay(10);
547 if (ccode == sigp_not_operational)
548 goto err_out;
549 } while (ccode == sigp_busy);
551 lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
552 while (signal_processor_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
553 udelay(10);
555 idle = current_set[cpu];
556 cpu_lowcore = lowcore_ptr[cpu];
557 cpu_lowcore->kernel_stack = (unsigned long)
558 task_stack_page(idle) + THREAD_SIZE;
559 cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
560 sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
561 - sizeof(struct pt_regs)
562 - sizeof(struct stack_frame));
563 memset(sf, 0, sizeof(struct stack_frame));
564 sf->gprs[9] = (unsigned long) sf;
565 cpu_lowcore->save_area[15] = (unsigned long) sf;
566 __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
567 asm volatile(
568 " stam 0,15,0(%0)"
569 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
570 cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
571 cpu_lowcore->current_task = (unsigned long) idle;
572 cpu_lowcore->cpu_nr = cpu;
573 cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
574 cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
575 cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
576 eieio();
578 while (signal_processor(cpu, sigp_restart) == sigp_busy)
579 udelay(10);
581 while (!cpu_online(cpu))
582 cpu_relax();
583 return 0;
585 err_out:
586 smp_free_lowcore(cpu);
587 return -EIO;
590 static int __init setup_possible_cpus(char *s)
592 int pcpus, cpu;
594 pcpus = simple_strtoul(s, NULL, 0);
595 init_cpu_possible(cpumask_of(0));
596 for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
597 set_cpu_possible(cpu, true);
598 return 0;
600 early_param("possible_cpus", setup_possible_cpus);
602 #ifdef CONFIG_HOTPLUG_CPU
604 int __cpu_disable(void)
606 struct ec_creg_mask_parms cr_parms;
607 int cpu = smp_processor_id();
609 cpu_clear(cpu, cpu_online_map);
611 /* Disable pfault pseudo page faults on this cpu. */
612 pfault_fini();
614 memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
615 memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
617 /* disable all external interrupts */
618 cr_parms.orvals[0] = 0;
619 cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
620 1 << 11 | 1 << 10 | 1 << 6 | 1 << 4);
621 /* disable all I/O interrupts */
622 cr_parms.orvals[6] = 0;
623 cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
624 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
625 /* disable most machine checks */
626 cr_parms.orvals[14] = 0;
627 cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
628 1 << 25 | 1 << 24);
630 smp_ctl_bit_callback(&cr_parms);
632 return 0;
635 void __cpu_die(unsigned int cpu)
637 /* Wait until target cpu is down */
638 while (!cpu_stopped(cpu))
639 cpu_relax();
640 while (signal_processor_p(0, cpu, sigp_set_prefix) == sigp_busy)
641 udelay(10);
642 smp_free_lowcore(cpu);
643 pr_info("Processor %d stopped\n", cpu);
646 void cpu_die(void)
648 idle_task_exit();
649 while (signal_processor(smp_processor_id(), sigp_stop) == sigp_busy)
650 cpu_relax();
651 for (;;);
654 #endif /* CONFIG_HOTPLUG_CPU */
656 void __init smp_prepare_cpus(unsigned int max_cpus)
658 #ifndef CONFIG_64BIT
659 unsigned long save_area = 0;
660 #endif
661 unsigned long async_stack, panic_stack;
662 struct _lowcore *lowcore;
663 unsigned int cpu;
665 smp_detect_cpus();
667 /* request the 0x1201 emergency signal external interrupt */
668 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
669 panic("Couldn't request external interrupt 0x1201");
670 print_cpu_info();
672 /* Reallocate current lowcore, but keep its contents. */
673 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
674 panic_stack = __get_free_page(GFP_KERNEL);
675 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
676 BUG_ON(!lowcore || !panic_stack || !async_stack);
677 #ifndef CONFIG_64BIT
678 if (MACHINE_HAS_IEEE)
679 save_area = get_zeroed_page(GFP_KERNEL);
680 #endif
681 local_irq_disable();
682 local_mcck_disable();
683 lowcore_ptr[smp_processor_id()] = lowcore;
684 *lowcore = S390_lowcore;
685 lowcore->panic_stack = panic_stack + PAGE_SIZE;
686 lowcore->async_stack = async_stack + ASYNC_SIZE;
687 #ifndef CONFIG_64BIT
688 if (MACHINE_HAS_IEEE)
689 lowcore->extended_save_area_addr = (u32) save_area;
690 #endif
691 set_prefix((u32)(unsigned long) lowcore);
692 local_mcck_enable();
693 local_irq_enable();
694 #ifdef CONFIG_64BIT
695 if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
696 BUG();
697 #endif
698 for_each_possible_cpu(cpu)
699 if (cpu != smp_processor_id())
700 smp_create_idle(cpu);
703 void __init smp_prepare_boot_cpu(void)
705 BUG_ON(smp_processor_id() != 0);
707 current_thread_info()->cpu = 0;
708 cpu_set(0, cpu_present_map);
709 cpu_set(0, cpu_online_map);
710 S390_lowcore.percpu_offset = __per_cpu_offset[0];
711 current_set[0] = current;
712 smp_cpu_state[0] = CPU_STATE_CONFIGURED;
713 smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
716 void __init smp_cpus_done(unsigned int max_cpus)
721 * the frequency of the profiling timer can be changed
722 * by writing a multiplier value into /proc/profile.
724 * usually you want to run this on all CPUs ;)
726 int setup_profiling_timer(unsigned int multiplier)
728 return 0;
731 #ifdef CONFIG_HOTPLUG_CPU
732 static ssize_t cpu_configure_show(struct sys_device *dev,
733 struct sysdev_attribute *attr, char *buf)
735 ssize_t count;
737 mutex_lock(&smp_cpu_state_mutex);
738 count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
739 mutex_unlock(&smp_cpu_state_mutex);
740 return count;
743 static ssize_t cpu_configure_store(struct sys_device *dev,
744 struct sysdev_attribute *attr,
745 const char *buf, size_t count)
747 int cpu = dev->id;
748 int val, rc;
749 char delim;
751 if (sscanf(buf, "%d %c", &val, &delim) != 1)
752 return -EINVAL;
753 if (val != 0 && val != 1)
754 return -EINVAL;
756 get_online_cpus();
757 mutex_lock(&smp_cpu_state_mutex);
758 rc = -EBUSY;
759 if (cpu_online(cpu))
760 goto out;
761 rc = 0;
762 switch (val) {
763 case 0:
764 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
765 rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
766 if (!rc) {
767 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
768 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
771 break;
772 case 1:
773 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
774 rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
775 if (!rc) {
776 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
777 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
780 break;
781 default:
782 break;
784 out:
785 mutex_unlock(&smp_cpu_state_mutex);
786 put_online_cpus();
787 return rc ? rc : count;
789 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
790 #endif /* CONFIG_HOTPLUG_CPU */
792 static ssize_t cpu_polarization_show(struct sys_device *dev,
793 struct sysdev_attribute *attr, char *buf)
795 int cpu = dev->id;
796 ssize_t count;
798 mutex_lock(&smp_cpu_state_mutex);
799 switch (smp_cpu_polarization[cpu]) {
800 case POLARIZATION_HRZ:
801 count = sprintf(buf, "horizontal\n");
802 break;
803 case POLARIZATION_VL:
804 count = sprintf(buf, "vertical:low\n");
805 break;
806 case POLARIZATION_VM:
807 count = sprintf(buf, "vertical:medium\n");
808 break;
809 case POLARIZATION_VH:
810 count = sprintf(buf, "vertical:high\n");
811 break;
812 default:
813 count = sprintf(buf, "unknown\n");
814 break;
816 mutex_unlock(&smp_cpu_state_mutex);
817 return count;
819 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
821 static ssize_t show_cpu_address(struct sys_device *dev,
822 struct sysdev_attribute *attr, char *buf)
824 return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
826 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
829 static struct attribute *cpu_common_attrs[] = {
830 #ifdef CONFIG_HOTPLUG_CPU
831 &attr_configure.attr,
832 #endif
833 &attr_address.attr,
834 &attr_polarization.attr,
835 NULL,
838 static struct attribute_group cpu_common_attr_group = {
839 .attrs = cpu_common_attrs,
842 static ssize_t show_capability(struct sys_device *dev,
843 struct sysdev_attribute *attr, char *buf)
845 unsigned int capability;
846 int rc;
848 rc = get_cpu_capability(&capability);
849 if (rc)
850 return rc;
851 return sprintf(buf, "%u\n", capability);
853 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
855 static ssize_t show_idle_count(struct sys_device *dev,
856 struct sysdev_attribute *attr, char *buf)
858 struct s390_idle_data *idle;
859 unsigned long long idle_count;
860 unsigned int sequence;
862 idle = &per_cpu(s390_idle, dev->id);
863 repeat:
864 sequence = idle->sequence;
865 smp_rmb();
866 if (sequence & 1)
867 goto repeat;
868 idle_count = idle->idle_count;
869 if (idle->idle_enter)
870 idle_count++;
871 smp_rmb();
872 if (idle->sequence != sequence)
873 goto repeat;
874 return sprintf(buf, "%llu\n", idle_count);
876 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
878 static ssize_t show_idle_time(struct sys_device *dev,
879 struct sysdev_attribute *attr, char *buf)
881 struct s390_idle_data *idle;
882 unsigned long long now, idle_time, idle_enter;
883 unsigned int sequence;
885 idle = &per_cpu(s390_idle, dev->id);
886 now = get_clock();
887 repeat:
888 sequence = idle->sequence;
889 smp_rmb();
890 if (sequence & 1)
891 goto repeat;
892 idle_time = idle->idle_time;
893 idle_enter = idle->idle_enter;
894 if (idle_enter != 0ULL && idle_enter < now)
895 idle_time += now - idle_enter;
896 smp_rmb();
897 if (idle->sequence != sequence)
898 goto repeat;
899 return sprintf(buf, "%llu\n", idle_time >> 12);
901 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
903 static struct attribute *cpu_online_attrs[] = {
904 &attr_capability.attr,
905 &attr_idle_count.attr,
906 &attr_idle_time_us.attr,
907 NULL,
910 static struct attribute_group cpu_online_attr_group = {
911 .attrs = cpu_online_attrs,
914 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
915 unsigned long action, void *hcpu)
917 unsigned int cpu = (unsigned int)(long)hcpu;
918 struct cpu *c = &per_cpu(cpu_devices, cpu);
919 struct sys_device *s = &c->sysdev;
920 struct s390_idle_data *idle;
922 switch (action) {
923 case CPU_ONLINE:
924 case CPU_ONLINE_FROZEN:
925 idle = &per_cpu(s390_idle, cpu);
926 memset(idle, 0, sizeof(struct s390_idle_data));
927 if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
928 return NOTIFY_BAD;
929 break;
930 case CPU_DEAD:
931 case CPU_DEAD_FROZEN:
932 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
933 break;
935 return NOTIFY_OK;
938 static struct notifier_block __cpuinitdata smp_cpu_nb = {
939 .notifier_call = smp_cpu_notify,
942 static int __devinit smp_add_present_cpu(int cpu)
944 struct cpu *c = &per_cpu(cpu_devices, cpu);
945 struct sys_device *s = &c->sysdev;
946 int rc;
948 c->hotpluggable = 1;
949 rc = register_cpu(c, cpu);
950 if (rc)
951 goto out;
952 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
953 if (rc)
954 goto out_cpu;
955 if (!cpu_online(cpu))
956 goto out;
957 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
958 if (!rc)
959 return 0;
960 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
961 out_cpu:
962 #ifdef CONFIG_HOTPLUG_CPU
963 unregister_cpu(c);
964 #endif
965 out:
966 return rc;
969 #ifdef CONFIG_HOTPLUG_CPU
971 int __ref smp_rescan_cpus(void)
973 cpumask_t newcpus;
974 int cpu;
975 int rc;
977 get_online_cpus();
978 mutex_lock(&smp_cpu_state_mutex);
979 newcpus = cpu_present_map;
980 rc = __smp_rescan_cpus();
981 if (rc)
982 goto out;
983 cpus_andnot(newcpus, cpu_present_map, newcpus);
984 for_each_cpu_mask(cpu, newcpus) {
985 rc = smp_add_present_cpu(cpu);
986 if (rc)
987 cpu_clear(cpu, cpu_present_map);
989 rc = 0;
990 out:
991 mutex_unlock(&smp_cpu_state_mutex);
992 put_online_cpus();
993 if (!cpus_empty(newcpus))
994 topology_schedule_update();
995 return rc;
998 static ssize_t __ref rescan_store(struct sysdev_class *class, const char *buf,
999 size_t count)
1001 int rc;
1003 rc = smp_rescan_cpus();
1004 return rc ? rc : count;
1006 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1007 #endif /* CONFIG_HOTPLUG_CPU */
1009 static ssize_t dispatching_show(struct sysdev_class *class, char *buf)
1011 ssize_t count;
1013 mutex_lock(&smp_cpu_state_mutex);
1014 count = sprintf(buf, "%d\n", cpu_management);
1015 mutex_unlock(&smp_cpu_state_mutex);
1016 return count;
1019 static ssize_t dispatching_store(struct sysdev_class *dev, const char *buf,
1020 size_t count)
1022 int val, rc;
1023 char delim;
1025 if (sscanf(buf, "%d %c", &val, &delim) != 1)
1026 return -EINVAL;
1027 if (val != 0 && val != 1)
1028 return -EINVAL;
1029 rc = 0;
1030 get_online_cpus();
1031 mutex_lock(&smp_cpu_state_mutex);
1032 if (cpu_management == val)
1033 goto out;
1034 rc = topology_set_cpu_management(val);
1035 if (!rc)
1036 cpu_management = val;
1037 out:
1038 mutex_unlock(&smp_cpu_state_mutex);
1039 put_online_cpus();
1040 return rc ? rc : count;
1042 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1043 dispatching_store);
1045 static int __init topology_init(void)
1047 int cpu;
1048 int rc;
1050 register_cpu_notifier(&smp_cpu_nb);
1052 #ifdef CONFIG_HOTPLUG_CPU
1053 rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1054 if (rc)
1055 return rc;
1056 #endif
1057 rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1058 if (rc)
1059 return rc;
1060 for_each_present_cpu(cpu) {
1061 rc = smp_add_present_cpu(cpu);
1062 if (rc)
1063 return rc;
1065 return 0;
1067 subsys_initcall(topology_init);