2 * arch/sh/mm/cache-sh4.c
4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
5 * Copyright (C) 2001 - 2007 Paul Mundt
6 * Copyright (C) 2003 Richard Curnow
7 * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
13 #include <linux/init.h>
16 #include <linux/mutex.h>
18 #include <asm/mmu_context.h>
19 #include <asm/cacheflush.h>
22 * The maximum number of pages we support up to when doing ranged dcache
23 * flushing. Anything exceeding this will simply flush the dcache in its
26 #define MAX_DCACHE_PAGES 64 /* XXX: Tune for ways */
27 #define MAX_ICACHE_PAGES 32
29 static void __flush_cache_one(unsigned long addr
, unsigned long phys
,
30 unsigned long exec_offset
);
33 * This is initialised here to ensure that it is not placed in the BSS. If
34 * that were to happen, note that cache_init gets called before the BSS is
35 * cleared, so this would get nulled out which would be hopeless.
37 static void (*__flush_dcache_segment_fn
)(unsigned long, unsigned long) =
38 (void (*)(unsigned long, unsigned long))0xdeadbeef;
41 * Write back the range of D-cache, and purge the I-cache.
43 * Called from kernel/module.c:sys_init_module and routine for a.out format,
44 * signal handler code and kprobes code
46 static void __uses_jump_to_uncached
sh4_flush_icache_range(void *args
)
48 struct flusher_data
*data
= args
;
49 unsigned long start
, end
;
50 unsigned long flags
, v
;
56 /* If there are too many pages then just blow away the caches */
57 if (((end
- start
) >> PAGE_SHIFT
) >= MAX_ICACHE_PAGES
) {
58 local_flush_cache_all(NULL
);
63 * Selectively flush d-cache then invalidate the i-cache.
64 * This is inefficient, so only use this for small ranges.
66 start
&= ~(L1_CACHE_BYTES
-1);
67 end
+= L1_CACHE_BYTES
-1;
68 end
&= ~(L1_CACHE_BYTES
-1);
70 local_irq_save(flags
);
73 for (v
= start
; v
< end
; v
+= L1_CACHE_BYTES
) {
74 unsigned long icacheaddr
;
79 icacheaddr
= CACHE_IC_ADDRESS_ARRAY
| (v
&
80 cpu_data
->icache
.entry_mask
);
82 /* Clear i-cache line valid-bit */
83 n
= boot_cpu_data
.icache
.n_aliases
;
84 for (i
= 0; i
< cpu_data
->icache
.ways
; i
++) {
85 for (j
= 0; j
< n
; j
++)
86 __raw_writel(0, icacheaddr
+ (j
* PAGE_SIZE
));
87 icacheaddr
+= cpu_data
->icache
.way_incr
;
92 local_irq_restore(flags
);
95 static inline void flush_cache_one(unsigned long start
, unsigned long phys
)
97 unsigned long flags
, exec_offset
= 0;
100 * All types of SH-4 require PC to be in P2 to operate on the I-cache.
101 * Some types of SH-4 require PC to be in P2 to operate on the D-cache.
103 if ((boot_cpu_data
.flags
& CPU_HAS_P2_FLUSH_BUG
) ||
104 (start
< CACHE_OC_ADDRESS_ARRAY
))
105 exec_offset
= 0x20000000;
107 local_irq_save(flags
);
108 __flush_cache_one(start
| SH_CACHE_ASSOC
, P1SEGADDR(phys
), exec_offset
);
109 local_irq_restore(flags
);
113 * Write back & invalidate the D-cache of the page.
114 * (To avoid "alias" issues)
116 static void sh4_flush_dcache_page(void *arg
)
118 struct page
*page
= arg
;
120 struct address_space
*mapping
= page_mapping(page
);
122 if (mapping
&& !mapping_mapped(mapping
))
123 set_bit(PG_dcache_dirty
, &page
->flags
);
127 unsigned long phys
= PHYSADDR(page_address(page
));
128 unsigned long addr
= CACHE_OC_ADDRESS_ARRAY
;
131 /* Loop all the D-cache */
132 n
= boot_cpu_data
.dcache
.n_aliases
;
133 for (i
= 0; i
< n
; i
++, addr
+= PAGE_SIZE
)
134 flush_cache_one(addr
, phys
);
140 /* TODO: Selective icache invalidation through IC address array.. */
141 static void __uses_jump_to_uncached
flush_icache_all(void)
143 unsigned long flags
, ccr
;
145 local_irq_save(flags
);
150 ccr
|= CCR_CACHE_ICI
;
154 * back_to_cached() will take care of the barrier for us, don't add
159 local_irq_restore(flags
);
162 static inline void flush_dcache_all(void)
164 (*__flush_dcache_segment_fn
)(0UL, boot_cpu_data
.dcache
.way_size
);
168 static void sh4_flush_cache_all(void *unused
)
174 static void __flush_cache_mm(struct mm_struct
*mm
, unsigned long start
,
177 unsigned long d
= 0, p
= start
& PAGE_MASK
;
178 unsigned long alias_mask
= boot_cpu_data
.dcache
.alias_mask
;
179 unsigned long n_aliases
= boot_cpu_data
.dcache
.n_aliases
;
180 unsigned long select_bit
;
181 unsigned long all_aliases_mask
;
182 unsigned long addr_offset
;
189 dir
= pgd_offset(mm
, p
);
190 pud
= pud_offset(dir
, p
);
191 pmd
= pmd_offset(pud
, p
);
192 end
= PAGE_ALIGN(end
);
194 all_aliases_mask
= (1 << n_aliases
) - 1;
197 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
))) {
205 pte
= pte_offset_kernel(pmd
, p
);
211 if (!(pte_val(entry
) & _PAGE_PRESENT
)) {
217 phys
= pte_val(entry
) & PTE_PHYS_MASK
;
219 if ((p
^ phys
) & alias_mask
) {
220 d
|= 1 << ((p
& alias_mask
) >> PAGE_SHIFT
);
221 d
|= 1 << ((phys
& alias_mask
) >> PAGE_SHIFT
);
223 if (d
== all_aliases_mask
)
229 } while (p
< end
&& ((unsigned long)pte
& ~PAGE_MASK
));
237 for (i
= 0; i
< n_aliases
; i
++) {
238 if (d
& select_bit
) {
239 (*__flush_dcache_segment_fn
)(addr_offset
, PAGE_SIZE
);
244 addr_offset
+= PAGE_SIZE
;
249 * Note : (RPC) since the caches are physically tagged, the only point
250 * of flush_cache_mm for SH-4 is to get rid of aliases from the
251 * D-cache. The assumption elsewhere, e.g. flush_cache_range, is that
252 * lines can stay resident so long as the virtual address they were
253 * accessed with (hence cache set) is in accord with the physical
254 * address (i.e. tag). It's no different here. So I reckon we don't
255 * need to flush the I-cache, since aliases don't matter for that. We
258 * Caller takes mm->mmap_sem.
260 static void sh4_flush_cache_mm(void *arg
)
262 struct mm_struct
*mm
= arg
;
264 if (cpu_context(smp_processor_id(), mm
) == NO_CONTEXT
)
268 * If cache is only 4k-per-way, there are never any 'aliases'. Since
269 * the cache is physically tagged, the data can just be left in there.
271 if (boot_cpu_data
.dcache
.n_aliases
== 0)
275 * Don't bother groveling around the dcache for the VMA ranges
276 * if there are too many PTEs to make it worthwhile.
278 if (mm
->nr_ptes
>= MAX_DCACHE_PAGES
)
281 struct vm_area_struct
*vma
;
284 * In this case there are reasonably sized ranges to flush,
285 * iterate through the VMA list and take care of any aliases.
287 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
288 __flush_cache_mm(mm
, vma
->vm_start
, vma
->vm_end
);
291 /* Only touch the icache if one of the VMAs has VM_EXEC set. */
297 * Write back and invalidate I/D-caches for the page.
299 * ADDR: Virtual Address (U0 address)
300 * PFN: Physical page number
302 static void sh4_flush_cache_page(void *args
)
304 struct flusher_data
*data
= args
;
305 struct vm_area_struct
*vma
;
306 unsigned long address
, pfn
, phys
;
307 unsigned int alias_mask
;
310 address
= data
->addr1
;
312 phys
= pfn
<< PAGE_SHIFT
;
314 if (cpu_context(smp_processor_id(), vma
->vm_mm
) == NO_CONTEXT
)
317 alias_mask
= boot_cpu_data
.dcache
.alias_mask
;
319 /* We only need to flush D-cache when we have alias */
320 if ((address
^phys
) & alias_mask
) {
321 /* Loop 4K of the D-cache */
323 CACHE_OC_ADDRESS_ARRAY
| (address
& alias_mask
),
325 /* Loop another 4K of the D-cache */
327 CACHE_OC_ADDRESS_ARRAY
| (phys
& alias_mask
),
331 alias_mask
= boot_cpu_data
.icache
.alias_mask
;
332 if (vma
->vm_flags
& VM_EXEC
) {
334 * Evict entries from the portion of the cache from which code
335 * may have been executed at this address (virtual). There's
336 * no need to evict from the portion corresponding to the
337 * physical address as for the D-cache, because we know the
338 * kernel has never executed the code through its identity
342 CACHE_IC_ADDRESS_ARRAY
| (address
& alias_mask
),
348 * Write back and invalidate D-caches.
350 * START, END: Virtual Address (U0 address)
352 * NOTE: We need to flush the _physical_ page entry.
353 * Flushing the cache lines for U0 only isn't enough.
354 * We need to flush for P1 too, which may contain aliases.
356 static void sh4_flush_cache_range(void *args
)
358 struct flusher_data
*data
= args
;
359 struct vm_area_struct
*vma
;
360 unsigned long start
, end
;
366 if (cpu_context(smp_processor_id(), vma
->vm_mm
) == NO_CONTEXT
)
370 * If cache is only 4k-per-way, there are never any 'aliases'. Since
371 * the cache is physically tagged, the data can just be left in there.
373 if (boot_cpu_data
.dcache
.n_aliases
== 0)
377 * Don't bother with the lookup and alias check if we have a
378 * wide range to cover, just blow away the dcache in its
379 * entirety instead. -- PFM.
381 if (((end
- start
) >> PAGE_SHIFT
) >= MAX_DCACHE_PAGES
)
384 __flush_cache_mm(vma
->vm_mm
, start
, end
);
386 if (vma
->vm_flags
& VM_EXEC
) {
388 * TODO: Is this required??? Need to look at how I-cache
389 * coherency is assured when new programs are loaded to see if
399 * @addr: address in memory mapped cache array
400 * @phys: P1 address to flush (has to match tags if addr has 'A' bit
401 * set i.e. associative write)
402 * @exec_offset: set to 0x20000000 if flush has to be executed from P2
405 * The offset into the cache array implied by 'addr' selects the
406 * 'colour' of the virtual address range that will be flushed. The
407 * operation (purge/write-back) is selected by the lower 2 bits of
410 static void __flush_cache_one(unsigned long addr
, unsigned long phys
,
411 unsigned long exec_offset
)
414 unsigned long base_addr
= addr
;
415 struct cache_info
*dcache
;
416 unsigned long way_incr
;
417 unsigned long a
, ea
, p
;
418 unsigned long temp_pc
;
420 dcache
= &boot_cpu_data
.dcache
;
421 /* Write this way for better assembly. */
422 way_count
= dcache
->ways
;
423 way_incr
= dcache
->way_incr
;
426 * Apply exec_offset (i.e. branch to P2 if required.).
430 * If I write "=r" for the (temp_pc), it puts this in r6 hence
431 * trashing exec_offset before it's been added on - why? Hence
432 * "=&r" as a 'workaround'
434 asm volatile("mov.l 1f, %0\n\t"
440 "2:\n" : "=&r" (temp_pc
) : "r" (exec_offset
));
443 * We know there will be >=1 iteration, so write as do-while to avoid
444 * pointless nead-of-loop check for 0 iterations.
447 ea
= base_addr
+ PAGE_SIZE
;
452 *(volatile unsigned long *)a
= p
;
454 * Next line: intentionally not p+32, saves an add, p
455 * will do since only the cache tag bits need to
458 *(volatile unsigned long *)(a
+32) = p
;
463 base_addr
+= way_incr
;
464 } while (--way_count
!= 0);
468 * Break the 1, 2 and 4 way variants of this out into separate functions to
469 * avoid nearly all the overhead of having the conditional stuff in the function
470 * bodies (+ the 1 and 2 way cases avoid saving any registers too).
472 * We want to eliminate unnecessary bus transactions, so this code uses
473 * a non-obvious technique.
475 * Loop over a cache way sized block of, one cache line at a time. For each
476 * line, use movca.a to cause the current cache line contents to be written
477 * back, but without reading anything from main memory. However this has the
478 * side effect that the cache is now caching that memory location. So follow
479 * this with a cache invalidate to mark the cache line invalid. And do all
480 * this with interrupts disabled, to avoid the cache line being accidently
481 * evicted while it is holding garbage.
483 * This also breaks in a number of circumstances:
484 * - if there are modifications to the region of memory just above
485 * empty_zero_page (for example because a breakpoint has been placed
486 * there), then these can be lost.
488 * This is because the the memory address which the cache temporarily
489 * caches in the above description is empty_zero_page. So the
490 * movca.l hits the cache (it is assumed that it misses, or at least
491 * isn't dirty), modifies the line and then invalidates it, losing the
494 * - If caches are disabled or configured in write-through mode, then
495 * the movca.l writes garbage directly into memory.
497 static void __flush_dcache_segment_writethrough(unsigned long start
,
498 unsigned long extent_per_way
)
503 addr
= CACHE_OC_ADDRESS_ARRAY
| (start
& cpu_data
->dcache
.entry_mask
);
505 while (extent_per_way
) {
506 for (i
= 0; i
< cpu_data
->dcache
.ways
; i
++)
507 __raw_writel(0, addr
+ cpu_data
->dcache
.way_incr
* i
);
509 addr
+= cpu_data
->dcache
.linesz
;
510 extent_per_way
-= cpu_data
->dcache
.linesz
;
514 static void __flush_dcache_segment_1way(unsigned long start
,
515 unsigned long extent_per_way
)
517 unsigned long orig_sr
, sr_with_bl
;
518 unsigned long base_addr
;
519 unsigned long way_incr
, linesz
, way_size
;
520 struct cache_info
*dcache
;
521 register unsigned long a0
, a0e
;
523 asm volatile("stc sr, %0" : "=r" (orig_sr
));
524 sr_with_bl
= orig_sr
| (1<<28);
525 base_addr
= ((unsigned long)&empty_zero_page
[0]);
528 * The previous code aligned base_addr to 16k, i.e. the way_size of all
529 * existing SH-4 D-caches. Whilst I don't see a need to have this
530 * aligned to any better than the cache line size (which it will be
531 * anyway by construction), let's align it to at least the way_size of
532 * any existing or conceivable SH-4 D-cache. -- RPC
534 base_addr
= ((base_addr
>> 16) << 16);
537 dcache
= &boot_cpu_data
.dcache
;
538 linesz
= dcache
->linesz
;
539 way_incr
= dcache
->way_incr
;
540 way_size
= dcache
->way_size
;
543 a0e
= base_addr
+ extent_per_way
;
545 asm volatile("ldc %0, sr" : : "r" (sr_with_bl
));
546 asm volatile("movca.l r0, @%0\n\t"
547 "ocbi @%0" : : "r" (a0
));
549 asm volatile("movca.l r0, @%0\n\t"
550 "ocbi @%0" : : "r" (a0
));
552 asm volatile("movca.l r0, @%0\n\t"
553 "ocbi @%0" : : "r" (a0
));
555 asm volatile("movca.l r0, @%0\n\t"
556 "ocbi @%0" : : "r" (a0
));
557 asm volatile("ldc %0, sr" : : "r" (orig_sr
));
562 static void __flush_dcache_segment_2way(unsigned long start
,
563 unsigned long extent_per_way
)
565 unsigned long orig_sr
, sr_with_bl
;
566 unsigned long base_addr
;
567 unsigned long way_incr
, linesz
, way_size
;
568 struct cache_info
*dcache
;
569 register unsigned long a0
, a1
, a0e
;
571 asm volatile("stc sr, %0" : "=r" (orig_sr
));
572 sr_with_bl
= orig_sr
| (1<<28);
573 base_addr
= ((unsigned long)&empty_zero_page
[0]);
575 /* See comment under 1-way above */
576 base_addr
= ((base_addr
>> 16) << 16);
579 dcache
= &boot_cpu_data
.dcache
;
580 linesz
= dcache
->linesz
;
581 way_incr
= dcache
->way_incr
;
582 way_size
= dcache
->way_size
;
586 a0e
= base_addr
+ extent_per_way
;
588 asm volatile("ldc %0, sr" : : "r" (sr_with_bl
));
589 asm volatile("movca.l r0, @%0\n\t"
590 "movca.l r0, @%1\n\t"
596 asm volatile("movca.l r0, @%0\n\t"
597 "movca.l r0, @%1\n\t"
603 asm volatile("movca.l r0, @%0\n\t"
604 "movca.l r0, @%1\n\t"
610 asm volatile("movca.l r0, @%0\n\t"
611 "movca.l r0, @%1\n\t"
615 asm volatile("ldc %0, sr" : : "r" (orig_sr
));
621 static void __flush_dcache_segment_4way(unsigned long start
,
622 unsigned long extent_per_way
)
624 unsigned long orig_sr
, sr_with_bl
;
625 unsigned long base_addr
;
626 unsigned long way_incr
, linesz
, way_size
;
627 struct cache_info
*dcache
;
628 register unsigned long a0
, a1
, a2
, a3
, a0e
;
630 asm volatile("stc sr, %0" : "=r" (orig_sr
));
631 sr_with_bl
= orig_sr
| (1<<28);
632 base_addr
= ((unsigned long)&empty_zero_page
[0]);
634 /* See comment under 1-way above */
635 base_addr
= ((base_addr
>> 16) << 16);
638 dcache
= &boot_cpu_data
.dcache
;
639 linesz
= dcache
->linesz
;
640 way_incr
= dcache
->way_incr
;
641 way_size
= dcache
->way_size
;
647 a0e
= base_addr
+ extent_per_way
;
649 asm volatile("ldc %0, sr" : : "r" (sr_with_bl
));
650 asm volatile("movca.l r0, @%0\n\t"
651 "movca.l r0, @%1\n\t"
652 "movca.l r0, @%2\n\t"
653 "movca.l r0, @%3\n\t"
658 "r" (a0
), "r" (a1
), "r" (a2
), "r" (a3
));
663 asm volatile("movca.l r0, @%0\n\t"
664 "movca.l r0, @%1\n\t"
665 "movca.l r0, @%2\n\t"
666 "movca.l r0, @%3\n\t"
671 "r" (a0
), "r" (a1
), "r" (a2
), "r" (a3
));
676 asm volatile("movca.l r0, @%0\n\t"
677 "movca.l r0, @%1\n\t"
678 "movca.l r0, @%2\n\t"
679 "movca.l r0, @%3\n\t"
684 "r" (a0
), "r" (a1
), "r" (a2
), "r" (a3
));
689 asm volatile("movca.l r0, @%0\n\t"
690 "movca.l r0, @%1\n\t"
691 "movca.l r0, @%2\n\t"
692 "movca.l r0, @%3\n\t"
697 "r" (a0
), "r" (a1
), "r" (a2
), "r" (a3
));
698 asm volatile("ldc %0, sr" : : "r" (orig_sr
));
706 extern void __weak
sh4__flush_region_init(void);
709 * SH-4 has virtually indexed and physically tagged cache.
711 void __init
sh4_cache_init(void)
713 unsigned int wt_enabled
= !!(__raw_readl(CCR
) & CCR_CACHE_WT
);
715 printk("PVR=%08x CVR=%08x PRR=%08x\n",
721 __flush_dcache_segment_fn
= __flush_dcache_segment_writethrough
;
723 switch (boot_cpu_data
.dcache
.ways
) {
725 __flush_dcache_segment_fn
= __flush_dcache_segment_1way
;
728 __flush_dcache_segment_fn
= __flush_dcache_segment_2way
;
731 __flush_dcache_segment_fn
= __flush_dcache_segment_4way
;
734 panic("unknown number of cache ways\n");
739 local_flush_icache_range
= sh4_flush_icache_range
;
740 local_flush_dcache_page
= sh4_flush_dcache_page
;
741 local_flush_cache_all
= sh4_flush_cache_all
;
742 local_flush_cache_mm
= sh4_flush_cache_mm
;
743 local_flush_cache_dup_mm
= sh4_flush_cache_mm
;
744 local_flush_cache_page
= sh4_flush_cache_page
;
745 local_flush_cache_range
= sh4_flush_cache_range
;
747 sh4__flush_region_init();