x86/amd-iommu: Add function to complete a tlb flush
[linux/fpc-iii.git] / drivers / crypto / ixp4xx_crypto.c
blob6c6656d3b1e2f25c718f85c654a133e21c3090d5
1 /*
2 * Intel IXP4xx NPE-C crypto driver
4 * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
21 #include <crypto/ctr.h>
22 #include <crypto/des.h>
23 #include <crypto/aes.h>
24 #include <crypto/sha.h>
25 #include <crypto/algapi.h>
26 #include <crypto/aead.h>
27 #include <crypto/authenc.h>
28 #include <crypto/scatterwalk.h>
30 #include <mach/npe.h>
31 #include <mach/qmgr.h>
33 #define MAX_KEYLEN 32
35 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
36 #define NPE_CTX_LEN 80
37 #define AES_BLOCK128 16
39 #define NPE_OP_HASH_VERIFY 0x01
40 #define NPE_OP_CCM_ENABLE 0x04
41 #define NPE_OP_CRYPT_ENABLE 0x08
42 #define NPE_OP_HASH_ENABLE 0x10
43 #define NPE_OP_NOT_IN_PLACE 0x20
44 #define NPE_OP_HMAC_DISABLE 0x40
45 #define NPE_OP_CRYPT_ENCRYPT 0x80
47 #define NPE_OP_CCM_GEN_MIC 0xcc
48 #define NPE_OP_HASH_GEN_ICV 0x50
49 #define NPE_OP_ENC_GEN_KEY 0xc9
51 #define MOD_ECB 0x0000
52 #define MOD_CTR 0x1000
53 #define MOD_CBC_ENC 0x2000
54 #define MOD_CBC_DEC 0x3000
55 #define MOD_CCM_ENC 0x4000
56 #define MOD_CCM_DEC 0x5000
58 #define KEYLEN_128 4
59 #define KEYLEN_192 6
60 #define KEYLEN_256 8
62 #define CIPH_DECR 0x0000
63 #define CIPH_ENCR 0x0400
65 #define MOD_DES 0x0000
66 #define MOD_TDEA2 0x0100
67 #define MOD_3DES 0x0200
68 #define MOD_AES 0x0800
69 #define MOD_AES128 (0x0800 | KEYLEN_128)
70 #define MOD_AES192 (0x0900 | KEYLEN_192)
71 #define MOD_AES256 (0x0a00 | KEYLEN_256)
73 #define MAX_IVLEN 16
74 #define NPE_ID 2 /* NPE C */
75 #define NPE_QLEN 16
76 /* Space for registering when the first
77 * NPE_QLEN crypt_ctl are busy */
78 #define NPE_QLEN_TOTAL 64
80 #define SEND_QID 29
81 #define RECV_QID 30
83 #define CTL_FLAG_UNUSED 0x0000
84 #define CTL_FLAG_USED 0x1000
85 #define CTL_FLAG_PERFORM_ABLK 0x0001
86 #define CTL_FLAG_GEN_ICV 0x0002
87 #define CTL_FLAG_GEN_REVAES 0x0004
88 #define CTL_FLAG_PERFORM_AEAD 0x0008
89 #define CTL_FLAG_MASK 0x000f
91 #define HMAC_IPAD_VALUE 0x36
92 #define HMAC_OPAD_VALUE 0x5C
93 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
95 #define MD5_DIGEST_SIZE 16
97 struct buffer_desc {
98 u32 phys_next;
99 u16 buf_len;
100 u16 pkt_len;
101 u32 phys_addr;
102 u32 __reserved[4];
103 struct buffer_desc *next;
104 enum dma_data_direction dir;
107 struct crypt_ctl {
108 u8 mode; /* NPE_OP_* operation mode */
109 u8 init_len;
110 u16 reserved;
111 u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
112 u32 icv_rev_aes; /* icv or rev aes */
113 u32 src_buf;
114 u32 dst_buf;
115 u16 auth_offs; /* Authentication start offset */
116 u16 auth_len; /* Authentication data length */
117 u16 crypt_offs; /* Cryption start offset */
118 u16 crypt_len; /* Cryption data length */
119 u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
120 u32 crypto_ctx; /* NPE Crypto Param structure address */
122 /* Used by Host: 4*4 bytes*/
123 unsigned ctl_flags;
124 union {
125 struct ablkcipher_request *ablk_req;
126 struct aead_request *aead_req;
127 struct crypto_tfm *tfm;
128 } data;
129 struct buffer_desc *regist_buf;
130 u8 *regist_ptr;
133 struct ablk_ctx {
134 struct buffer_desc *src;
135 struct buffer_desc *dst;
138 struct aead_ctx {
139 struct buffer_desc *buffer;
140 struct scatterlist ivlist;
141 /* used when the hmac is not on one sg entry */
142 u8 *hmac_virt;
143 int encrypt;
146 struct ix_hash_algo {
147 u32 cfgword;
148 unsigned char *icv;
151 struct ix_sa_dir {
152 unsigned char *npe_ctx;
153 dma_addr_t npe_ctx_phys;
154 int npe_ctx_idx;
155 u8 npe_mode;
158 struct ixp_ctx {
159 struct ix_sa_dir encrypt;
160 struct ix_sa_dir decrypt;
161 int authkey_len;
162 u8 authkey[MAX_KEYLEN];
163 int enckey_len;
164 u8 enckey[MAX_KEYLEN];
165 u8 salt[MAX_IVLEN];
166 u8 nonce[CTR_RFC3686_NONCE_SIZE];
167 unsigned salted;
168 atomic_t configuring;
169 struct completion completion;
172 struct ixp_alg {
173 struct crypto_alg crypto;
174 const struct ix_hash_algo *hash;
175 u32 cfg_enc;
176 u32 cfg_dec;
178 int registered;
181 static const struct ix_hash_algo hash_alg_md5 = {
182 .cfgword = 0xAA010004,
183 .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
184 "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
186 static const struct ix_hash_algo hash_alg_sha1 = {
187 .cfgword = 0x00000005,
188 .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
189 "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
192 static struct npe *npe_c;
193 static struct dma_pool *buffer_pool = NULL;
194 static struct dma_pool *ctx_pool = NULL;
196 static struct crypt_ctl *crypt_virt = NULL;
197 static dma_addr_t crypt_phys;
199 static int support_aes = 1;
201 static void dev_release(struct device *dev)
203 return;
206 #define DRIVER_NAME "ixp4xx_crypto"
207 static struct platform_device pseudo_dev = {
208 .name = DRIVER_NAME,
209 .id = 0,
210 .num_resources = 0,
211 .dev = {
212 .coherent_dma_mask = DMA_BIT_MASK(32),
213 .release = dev_release,
217 static struct device *dev = &pseudo_dev.dev;
219 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
221 return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
224 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
226 return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
229 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
231 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
234 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
236 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
239 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
241 return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
244 static int setup_crypt_desc(void)
246 BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
247 crypt_virt = dma_alloc_coherent(dev,
248 NPE_QLEN * sizeof(struct crypt_ctl),
249 &crypt_phys, GFP_KERNEL);
250 if (!crypt_virt)
251 return -ENOMEM;
252 memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
253 return 0;
256 static spinlock_t desc_lock;
257 static struct crypt_ctl *get_crypt_desc(void)
259 int i;
260 static int idx = 0;
261 unsigned long flags;
263 spin_lock_irqsave(&desc_lock, flags);
265 if (unlikely(!crypt_virt))
266 setup_crypt_desc();
267 if (unlikely(!crypt_virt)) {
268 spin_unlock_irqrestore(&desc_lock, flags);
269 return NULL;
271 i = idx;
272 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
273 if (++idx >= NPE_QLEN)
274 idx = 0;
275 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
276 spin_unlock_irqrestore(&desc_lock, flags);
277 return crypt_virt +i;
278 } else {
279 spin_unlock_irqrestore(&desc_lock, flags);
280 return NULL;
284 static spinlock_t emerg_lock;
285 static struct crypt_ctl *get_crypt_desc_emerg(void)
287 int i;
288 static int idx = NPE_QLEN;
289 struct crypt_ctl *desc;
290 unsigned long flags;
292 desc = get_crypt_desc();
293 if (desc)
294 return desc;
295 if (unlikely(!crypt_virt))
296 return NULL;
298 spin_lock_irqsave(&emerg_lock, flags);
299 i = idx;
300 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
301 if (++idx >= NPE_QLEN_TOTAL)
302 idx = NPE_QLEN;
303 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
304 spin_unlock_irqrestore(&emerg_lock, flags);
305 return crypt_virt +i;
306 } else {
307 spin_unlock_irqrestore(&emerg_lock, flags);
308 return NULL;
312 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
314 while (buf) {
315 struct buffer_desc *buf1;
316 u32 phys1;
318 buf1 = buf->next;
319 phys1 = buf->phys_next;
320 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
321 dma_pool_free(buffer_pool, buf, phys);
322 buf = buf1;
323 phys = phys1;
327 static struct tasklet_struct crypto_done_tasklet;
329 static void finish_scattered_hmac(struct crypt_ctl *crypt)
331 struct aead_request *req = crypt->data.aead_req;
332 struct aead_ctx *req_ctx = aead_request_ctx(req);
333 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
334 int authsize = crypto_aead_authsize(tfm);
335 int decryptlen = req->cryptlen - authsize;
337 if (req_ctx->encrypt) {
338 scatterwalk_map_and_copy(req_ctx->hmac_virt,
339 req->src, decryptlen, authsize, 1);
341 dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
344 static void one_packet(dma_addr_t phys)
346 struct crypt_ctl *crypt;
347 struct ixp_ctx *ctx;
348 int failed;
350 failed = phys & 0x1 ? -EBADMSG : 0;
351 phys &= ~0x3;
352 crypt = crypt_phys2virt(phys);
354 switch (crypt->ctl_flags & CTL_FLAG_MASK) {
355 case CTL_FLAG_PERFORM_AEAD: {
356 struct aead_request *req = crypt->data.aead_req;
357 struct aead_ctx *req_ctx = aead_request_ctx(req);
359 free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
360 if (req_ctx->hmac_virt) {
361 finish_scattered_hmac(crypt);
363 req->base.complete(&req->base, failed);
364 break;
366 case CTL_FLAG_PERFORM_ABLK: {
367 struct ablkcipher_request *req = crypt->data.ablk_req;
368 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
370 if (req_ctx->dst) {
371 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
373 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
374 req->base.complete(&req->base, failed);
375 break;
377 case CTL_FLAG_GEN_ICV:
378 ctx = crypto_tfm_ctx(crypt->data.tfm);
379 dma_pool_free(ctx_pool, crypt->regist_ptr,
380 crypt->regist_buf->phys_addr);
381 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
382 if (atomic_dec_and_test(&ctx->configuring))
383 complete(&ctx->completion);
384 break;
385 case CTL_FLAG_GEN_REVAES:
386 ctx = crypto_tfm_ctx(crypt->data.tfm);
387 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
388 if (atomic_dec_and_test(&ctx->configuring))
389 complete(&ctx->completion);
390 break;
391 default:
392 BUG();
394 crypt->ctl_flags = CTL_FLAG_UNUSED;
397 static void irqhandler(void *_unused)
399 tasklet_schedule(&crypto_done_tasklet);
402 static void crypto_done_action(unsigned long arg)
404 int i;
406 for(i=0; i<4; i++) {
407 dma_addr_t phys = qmgr_get_entry(RECV_QID);
408 if (!phys)
409 return;
410 one_packet(phys);
412 tasklet_schedule(&crypto_done_tasklet);
415 static int init_ixp_crypto(void)
417 int ret = -ENODEV;
418 u32 msg[2] = { 0, 0 };
420 if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
421 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
422 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
423 return ret;
425 npe_c = npe_request(NPE_ID);
426 if (!npe_c)
427 return ret;
429 if (!npe_running(npe_c)) {
430 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
431 if (ret) {
432 return ret;
434 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
435 goto npe_error;
436 } else {
437 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
438 goto npe_error;
440 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
441 goto npe_error;
444 switch ((msg[1]>>16) & 0xff) {
445 case 3:
446 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
447 npe_name(npe_c));
448 support_aes = 0;
449 break;
450 case 4:
451 case 5:
452 support_aes = 1;
453 break;
454 default:
455 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
456 npe_name(npe_c));
457 return -ENODEV;
459 /* buffer_pool will also be used to sometimes store the hmac,
460 * so assure it is large enough
462 BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
463 buffer_pool = dma_pool_create("buffer", dev,
464 sizeof(struct buffer_desc), 32, 0);
465 ret = -ENOMEM;
466 if (!buffer_pool) {
467 goto err;
469 ctx_pool = dma_pool_create("context", dev,
470 NPE_CTX_LEN, 16, 0);
471 if (!ctx_pool) {
472 goto err;
474 ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
475 "ixp_crypto:out", NULL);
476 if (ret)
477 goto err;
478 ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
479 "ixp_crypto:in", NULL);
480 if (ret) {
481 qmgr_release_queue(SEND_QID);
482 goto err;
484 qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
485 tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
487 qmgr_enable_irq(RECV_QID);
488 return 0;
490 npe_error:
491 printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
492 ret = -EIO;
493 err:
494 if (ctx_pool)
495 dma_pool_destroy(ctx_pool);
496 if (buffer_pool)
497 dma_pool_destroy(buffer_pool);
498 npe_release(npe_c);
499 return ret;
502 static void release_ixp_crypto(void)
504 qmgr_disable_irq(RECV_QID);
505 tasklet_kill(&crypto_done_tasklet);
507 qmgr_release_queue(SEND_QID);
508 qmgr_release_queue(RECV_QID);
510 dma_pool_destroy(ctx_pool);
511 dma_pool_destroy(buffer_pool);
513 npe_release(npe_c);
515 if (crypt_virt) {
516 dma_free_coherent(dev,
517 NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
518 crypt_virt, crypt_phys);
520 return;
523 static void reset_sa_dir(struct ix_sa_dir *dir)
525 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
526 dir->npe_ctx_idx = 0;
527 dir->npe_mode = 0;
530 static int init_sa_dir(struct ix_sa_dir *dir)
532 dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
533 if (!dir->npe_ctx) {
534 return -ENOMEM;
536 reset_sa_dir(dir);
537 return 0;
540 static void free_sa_dir(struct ix_sa_dir *dir)
542 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
543 dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
546 static int init_tfm(struct crypto_tfm *tfm)
548 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
549 int ret;
551 atomic_set(&ctx->configuring, 0);
552 ret = init_sa_dir(&ctx->encrypt);
553 if (ret)
554 return ret;
555 ret = init_sa_dir(&ctx->decrypt);
556 if (ret) {
557 free_sa_dir(&ctx->encrypt);
559 return ret;
562 static int init_tfm_ablk(struct crypto_tfm *tfm)
564 tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
565 return init_tfm(tfm);
568 static int init_tfm_aead(struct crypto_tfm *tfm)
570 tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
571 return init_tfm(tfm);
574 static void exit_tfm(struct crypto_tfm *tfm)
576 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
577 free_sa_dir(&ctx->encrypt);
578 free_sa_dir(&ctx->decrypt);
581 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
582 int init_len, u32 ctx_addr, const u8 *key, int key_len)
584 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
585 struct crypt_ctl *crypt;
586 struct buffer_desc *buf;
587 int i;
588 u8 *pad;
589 u32 pad_phys, buf_phys;
591 BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
592 pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
593 if (!pad)
594 return -ENOMEM;
595 buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
596 if (!buf) {
597 dma_pool_free(ctx_pool, pad, pad_phys);
598 return -ENOMEM;
600 crypt = get_crypt_desc_emerg();
601 if (!crypt) {
602 dma_pool_free(ctx_pool, pad, pad_phys);
603 dma_pool_free(buffer_pool, buf, buf_phys);
604 return -EAGAIN;
607 memcpy(pad, key, key_len);
608 memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
609 for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
610 pad[i] ^= xpad;
613 crypt->data.tfm = tfm;
614 crypt->regist_ptr = pad;
615 crypt->regist_buf = buf;
617 crypt->auth_offs = 0;
618 crypt->auth_len = HMAC_PAD_BLOCKLEN;
619 crypt->crypto_ctx = ctx_addr;
620 crypt->src_buf = buf_phys;
621 crypt->icv_rev_aes = target;
622 crypt->mode = NPE_OP_HASH_GEN_ICV;
623 crypt->init_len = init_len;
624 crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
626 buf->next = 0;
627 buf->buf_len = HMAC_PAD_BLOCKLEN;
628 buf->pkt_len = 0;
629 buf->phys_addr = pad_phys;
631 atomic_inc(&ctx->configuring);
632 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
633 BUG_ON(qmgr_stat_overflow(SEND_QID));
634 return 0;
637 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
638 const u8 *key, int key_len, unsigned digest_len)
640 u32 itarget, otarget, npe_ctx_addr;
641 unsigned char *cinfo;
642 int init_len, ret = 0;
643 u32 cfgword;
644 struct ix_sa_dir *dir;
645 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
646 const struct ix_hash_algo *algo;
648 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
649 cinfo = dir->npe_ctx + dir->npe_ctx_idx;
650 algo = ix_hash(tfm);
652 /* write cfg word to cryptinfo */
653 cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
654 *(u32*)cinfo = cpu_to_be32(cfgword);
655 cinfo += sizeof(cfgword);
657 /* write ICV to cryptinfo */
658 memcpy(cinfo, algo->icv, digest_len);
659 cinfo += digest_len;
661 itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
662 + sizeof(algo->cfgword);
663 otarget = itarget + digest_len;
664 init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
665 npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
667 dir->npe_ctx_idx += init_len;
668 dir->npe_mode |= NPE_OP_HASH_ENABLE;
670 if (!encrypt)
671 dir->npe_mode |= NPE_OP_HASH_VERIFY;
673 ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
674 init_len, npe_ctx_addr, key, key_len);
675 if (ret)
676 return ret;
677 return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
678 init_len, npe_ctx_addr, key, key_len);
681 static int gen_rev_aes_key(struct crypto_tfm *tfm)
683 struct crypt_ctl *crypt;
684 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
685 struct ix_sa_dir *dir = &ctx->decrypt;
687 crypt = get_crypt_desc_emerg();
688 if (!crypt) {
689 return -EAGAIN;
691 *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
693 crypt->data.tfm = tfm;
694 crypt->crypt_offs = 0;
695 crypt->crypt_len = AES_BLOCK128;
696 crypt->src_buf = 0;
697 crypt->crypto_ctx = dir->npe_ctx_phys;
698 crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
699 crypt->mode = NPE_OP_ENC_GEN_KEY;
700 crypt->init_len = dir->npe_ctx_idx;
701 crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
703 atomic_inc(&ctx->configuring);
704 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
705 BUG_ON(qmgr_stat_overflow(SEND_QID));
706 return 0;
709 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
710 const u8 *key, int key_len)
712 u8 *cinfo;
713 u32 cipher_cfg;
714 u32 keylen_cfg = 0;
715 struct ix_sa_dir *dir;
716 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
717 u32 *flags = &tfm->crt_flags;
719 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
720 cinfo = dir->npe_ctx;
722 if (encrypt) {
723 cipher_cfg = cipher_cfg_enc(tfm);
724 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
725 } else {
726 cipher_cfg = cipher_cfg_dec(tfm);
728 if (cipher_cfg & MOD_AES) {
729 switch (key_len) {
730 case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break;
731 case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break;
732 case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break;
733 default:
734 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
735 return -EINVAL;
737 cipher_cfg |= keylen_cfg;
738 } else if (cipher_cfg & MOD_3DES) {
739 const u32 *K = (const u32 *)key;
740 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
741 !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
743 *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
744 return -EINVAL;
746 } else {
747 u32 tmp[DES_EXPKEY_WORDS];
748 if (des_ekey(tmp, key) == 0) {
749 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
752 /* write cfg word to cryptinfo */
753 *(u32*)cinfo = cpu_to_be32(cipher_cfg);
754 cinfo += sizeof(cipher_cfg);
756 /* write cipher key to cryptinfo */
757 memcpy(cinfo, key, key_len);
758 /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
759 if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
760 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
761 key_len = DES3_EDE_KEY_SIZE;
763 dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
764 dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
765 if ((cipher_cfg & MOD_AES) && !encrypt) {
766 return gen_rev_aes_key(tfm);
768 return 0;
771 static struct buffer_desc *chainup_buffers(struct device *dev,
772 struct scatterlist *sg, unsigned nbytes,
773 struct buffer_desc *buf, gfp_t flags,
774 enum dma_data_direction dir)
776 for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) {
777 unsigned len = min(nbytes, sg->length);
778 struct buffer_desc *next_buf;
779 u32 next_buf_phys;
780 void *ptr;
782 nbytes -= len;
783 ptr = page_address(sg_page(sg)) + sg->offset;
784 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
785 if (!next_buf) {
786 buf = NULL;
787 break;
789 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
790 buf->next = next_buf;
791 buf->phys_next = next_buf_phys;
792 buf = next_buf;
794 buf->phys_addr = sg_dma_address(sg);
795 buf->buf_len = len;
796 buf->dir = dir;
798 buf->next = NULL;
799 buf->phys_next = 0;
800 return buf;
803 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
804 unsigned int key_len)
806 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
807 u32 *flags = &tfm->base.crt_flags;
808 int ret;
810 init_completion(&ctx->completion);
811 atomic_inc(&ctx->configuring);
813 reset_sa_dir(&ctx->encrypt);
814 reset_sa_dir(&ctx->decrypt);
816 ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
817 ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
819 ret = setup_cipher(&tfm->base, 0, key, key_len);
820 if (ret)
821 goto out;
822 ret = setup_cipher(&tfm->base, 1, key, key_len);
823 if (ret)
824 goto out;
826 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
827 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
828 ret = -EINVAL;
829 } else {
830 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
833 out:
834 if (!atomic_dec_and_test(&ctx->configuring))
835 wait_for_completion(&ctx->completion);
836 return ret;
839 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
840 unsigned int key_len)
842 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
844 /* the nonce is stored in bytes at end of key */
845 if (key_len < CTR_RFC3686_NONCE_SIZE)
846 return -EINVAL;
848 memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
849 CTR_RFC3686_NONCE_SIZE);
851 key_len -= CTR_RFC3686_NONCE_SIZE;
852 return ablk_setkey(tfm, key, key_len);
855 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
857 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
858 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
859 unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
860 struct ix_sa_dir *dir;
861 struct crypt_ctl *crypt;
862 unsigned int nbytes = req->nbytes;
863 enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
864 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
865 struct buffer_desc src_hook;
866 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
867 GFP_KERNEL : GFP_ATOMIC;
869 if (qmgr_stat_full(SEND_QID))
870 return -EAGAIN;
871 if (atomic_read(&ctx->configuring))
872 return -EAGAIN;
874 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
876 crypt = get_crypt_desc();
877 if (!crypt)
878 return -ENOMEM;
880 crypt->data.ablk_req = req;
881 crypt->crypto_ctx = dir->npe_ctx_phys;
882 crypt->mode = dir->npe_mode;
883 crypt->init_len = dir->npe_ctx_idx;
885 crypt->crypt_offs = 0;
886 crypt->crypt_len = nbytes;
888 BUG_ON(ivsize && !req->info);
889 memcpy(crypt->iv, req->info, ivsize);
890 if (req->src != req->dst) {
891 struct buffer_desc dst_hook;
892 crypt->mode |= NPE_OP_NOT_IN_PLACE;
893 /* This was never tested by Intel
894 * for more than one dst buffer, I think. */
895 BUG_ON(req->dst->length < nbytes);
896 req_ctx->dst = NULL;
897 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
898 flags, DMA_FROM_DEVICE))
899 goto free_buf_dest;
900 src_direction = DMA_TO_DEVICE;
901 req_ctx->dst = dst_hook.next;
902 crypt->dst_buf = dst_hook.phys_next;
903 } else {
904 req_ctx->dst = NULL;
906 req_ctx->src = NULL;
907 if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
908 flags, src_direction))
909 goto free_buf_src;
911 req_ctx->src = src_hook.next;
912 crypt->src_buf = src_hook.phys_next;
913 crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
914 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
915 BUG_ON(qmgr_stat_overflow(SEND_QID));
916 return -EINPROGRESS;
918 free_buf_src:
919 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
920 free_buf_dest:
921 if (req->src != req->dst) {
922 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
924 crypt->ctl_flags = CTL_FLAG_UNUSED;
925 return -ENOMEM;
928 static int ablk_encrypt(struct ablkcipher_request *req)
930 return ablk_perform(req, 1);
933 static int ablk_decrypt(struct ablkcipher_request *req)
935 return ablk_perform(req, 0);
938 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
940 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
941 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
942 u8 iv[CTR_RFC3686_BLOCK_SIZE];
943 u8 *info = req->info;
944 int ret;
946 /* set up counter block */
947 memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
948 memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
950 /* initialize counter portion of counter block */
951 *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
952 cpu_to_be32(1);
954 req->info = iv;
955 ret = ablk_perform(req, 1);
956 req->info = info;
957 return ret;
960 static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
961 unsigned int nbytes)
963 int offset = 0;
965 if (!nbytes)
966 return 0;
968 for (;;) {
969 if (start < offset + sg->length)
970 break;
972 offset += sg->length;
973 sg = scatterwalk_sg_next(sg);
975 return (start + nbytes > offset + sg->length);
978 static int aead_perform(struct aead_request *req, int encrypt,
979 int cryptoffset, int eff_cryptlen, u8 *iv)
981 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
982 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
983 unsigned ivsize = crypto_aead_ivsize(tfm);
984 unsigned authsize = crypto_aead_authsize(tfm);
985 struct ix_sa_dir *dir;
986 struct crypt_ctl *crypt;
987 unsigned int cryptlen;
988 struct buffer_desc *buf, src_hook;
989 struct aead_ctx *req_ctx = aead_request_ctx(req);
990 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
991 GFP_KERNEL : GFP_ATOMIC;
993 if (qmgr_stat_full(SEND_QID))
994 return -EAGAIN;
995 if (atomic_read(&ctx->configuring))
996 return -EAGAIN;
998 if (encrypt) {
999 dir = &ctx->encrypt;
1000 cryptlen = req->cryptlen;
1001 } else {
1002 dir = &ctx->decrypt;
1003 /* req->cryptlen includes the authsize when decrypting */
1004 cryptlen = req->cryptlen -authsize;
1005 eff_cryptlen -= authsize;
1007 crypt = get_crypt_desc();
1008 if (!crypt)
1009 return -ENOMEM;
1011 crypt->data.aead_req = req;
1012 crypt->crypto_ctx = dir->npe_ctx_phys;
1013 crypt->mode = dir->npe_mode;
1014 crypt->init_len = dir->npe_ctx_idx;
1016 crypt->crypt_offs = cryptoffset;
1017 crypt->crypt_len = eff_cryptlen;
1019 crypt->auth_offs = 0;
1020 crypt->auth_len = req->assoclen + ivsize + cryptlen;
1021 BUG_ON(ivsize && !req->iv);
1022 memcpy(crypt->iv, req->iv, ivsize);
1024 if (req->src != req->dst) {
1025 BUG(); /* -ENOTSUP because of my lazyness */
1028 /* ASSOC data */
1029 buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
1030 flags, DMA_TO_DEVICE);
1031 req_ctx->buffer = src_hook.next;
1032 crypt->src_buf = src_hook.phys_next;
1033 if (!buf)
1034 goto out;
1035 /* IV */
1036 sg_init_table(&req_ctx->ivlist, 1);
1037 sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1038 buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
1039 DMA_BIDIRECTIONAL);
1040 if (!buf)
1041 goto free_chain;
1042 if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1043 /* The 12 hmac bytes are scattered,
1044 * we need to copy them into a safe buffer */
1045 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1046 &crypt->icv_rev_aes);
1047 if (unlikely(!req_ctx->hmac_virt))
1048 goto free_chain;
1049 if (!encrypt) {
1050 scatterwalk_map_and_copy(req_ctx->hmac_virt,
1051 req->src, cryptlen, authsize, 0);
1053 req_ctx->encrypt = encrypt;
1054 } else {
1055 req_ctx->hmac_virt = NULL;
1057 /* Crypt */
1058 buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
1059 DMA_BIDIRECTIONAL);
1060 if (!buf)
1061 goto free_hmac_virt;
1062 if (!req_ctx->hmac_virt) {
1063 crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1066 crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1067 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1068 BUG_ON(qmgr_stat_overflow(SEND_QID));
1069 return -EINPROGRESS;
1070 free_hmac_virt:
1071 if (req_ctx->hmac_virt) {
1072 dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1073 crypt->icv_rev_aes);
1075 free_chain:
1076 free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
1077 out:
1078 crypt->ctl_flags = CTL_FLAG_UNUSED;
1079 return -ENOMEM;
1082 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1084 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1085 u32 *flags = &tfm->base.crt_flags;
1086 unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1087 int ret;
1089 if (!ctx->enckey_len && !ctx->authkey_len)
1090 return 0;
1091 init_completion(&ctx->completion);
1092 atomic_inc(&ctx->configuring);
1094 reset_sa_dir(&ctx->encrypt);
1095 reset_sa_dir(&ctx->decrypt);
1097 ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1098 if (ret)
1099 goto out;
1100 ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1101 if (ret)
1102 goto out;
1103 ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1104 ctx->authkey_len, digest_len);
1105 if (ret)
1106 goto out;
1107 ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
1108 ctx->authkey_len, digest_len);
1109 if (ret)
1110 goto out;
1112 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1113 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1114 ret = -EINVAL;
1115 goto out;
1116 } else {
1117 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1120 out:
1121 if (!atomic_dec_and_test(&ctx->configuring))
1122 wait_for_completion(&ctx->completion);
1123 return ret;
1126 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1128 int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1130 if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1131 return -EINVAL;
1132 return aead_setup(tfm, authsize);
1135 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1136 unsigned int keylen)
1138 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1139 struct rtattr *rta = (struct rtattr *)key;
1140 struct crypto_authenc_key_param *param;
1142 if (!RTA_OK(rta, keylen))
1143 goto badkey;
1144 if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
1145 goto badkey;
1146 if (RTA_PAYLOAD(rta) < sizeof(*param))
1147 goto badkey;
1149 param = RTA_DATA(rta);
1150 ctx->enckey_len = be32_to_cpu(param->enckeylen);
1152 key += RTA_ALIGN(rta->rta_len);
1153 keylen -= RTA_ALIGN(rta->rta_len);
1155 if (keylen < ctx->enckey_len)
1156 goto badkey;
1158 ctx->authkey_len = keylen - ctx->enckey_len;
1159 memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
1160 memcpy(ctx->authkey, key, ctx->authkey_len);
1162 return aead_setup(tfm, crypto_aead_authsize(tfm));
1163 badkey:
1164 ctx->enckey_len = 0;
1165 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1166 return -EINVAL;
1169 static int aead_encrypt(struct aead_request *req)
1171 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1172 return aead_perform(req, 1, req->assoclen + ivsize,
1173 req->cryptlen, req->iv);
1176 static int aead_decrypt(struct aead_request *req)
1178 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1179 return aead_perform(req, 0, req->assoclen + ivsize,
1180 req->cryptlen, req->iv);
1183 static int aead_givencrypt(struct aead_givcrypt_request *req)
1185 struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1186 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1187 unsigned len, ivsize = crypto_aead_ivsize(tfm);
1188 __be64 seq;
1190 /* copied from eseqiv.c */
1191 if (!ctx->salted) {
1192 get_random_bytes(ctx->salt, ivsize);
1193 ctx->salted = 1;
1195 memcpy(req->areq.iv, ctx->salt, ivsize);
1196 len = ivsize;
1197 if (ivsize > sizeof(u64)) {
1198 memset(req->giv, 0, ivsize - sizeof(u64));
1199 len = sizeof(u64);
1201 seq = cpu_to_be64(req->seq);
1202 memcpy(req->giv + ivsize - len, &seq, len);
1203 return aead_perform(&req->areq, 1, req->areq.assoclen,
1204 req->areq.cryptlen +ivsize, req->giv);
1207 static struct ixp_alg ixp4xx_algos[] = {
1209 .crypto = {
1210 .cra_name = "cbc(des)",
1211 .cra_blocksize = DES_BLOCK_SIZE,
1212 .cra_u = { .ablkcipher = {
1213 .min_keysize = DES_KEY_SIZE,
1214 .max_keysize = DES_KEY_SIZE,
1215 .ivsize = DES_BLOCK_SIZE,
1216 .geniv = "eseqiv",
1220 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1221 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1223 }, {
1224 .crypto = {
1225 .cra_name = "ecb(des)",
1226 .cra_blocksize = DES_BLOCK_SIZE,
1227 .cra_u = { .ablkcipher = {
1228 .min_keysize = DES_KEY_SIZE,
1229 .max_keysize = DES_KEY_SIZE,
1233 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1234 .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1235 }, {
1236 .crypto = {
1237 .cra_name = "cbc(des3_ede)",
1238 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1239 .cra_u = { .ablkcipher = {
1240 .min_keysize = DES3_EDE_KEY_SIZE,
1241 .max_keysize = DES3_EDE_KEY_SIZE,
1242 .ivsize = DES3_EDE_BLOCK_SIZE,
1243 .geniv = "eseqiv",
1247 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1248 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1249 }, {
1250 .crypto = {
1251 .cra_name = "ecb(des3_ede)",
1252 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1253 .cra_u = { .ablkcipher = {
1254 .min_keysize = DES3_EDE_KEY_SIZE,
1255 .max_keysize = DES3_EDE_KEY_SIZE,
1259 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1260 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1261 }, {
1262 .crypto = {
1263 .cra_name = "cbc(aes)",
1264 .cra_blocksize = AES_BLOCK_SIZE,
1265 .cra_u = { .ablkcipher = {
1266 .min_keysize = AES_MIN_KEY_SIZE,
1267 .max_keysize = AES_MAX_KEY_SIZE,
1268 .ivsize = AES_BLOCK_SIZE,
1269 .geniv = "eseqiv",
1273 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1274 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1275 }, {
1276 .crypto = {
1277 .cra_name = "ecb(aes)",
1278 .cra_blocksize = AES_BLOCK_SIZE,
1279 .cra_u = { .ablkcipher = {
1280 .min_keysize = AES_MIN_KEY_SIZE,
1281 .max_keysize = AES_MAX_KEY_SIZE,
1285 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1286 .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1287 }, {
1288 .crypto = {
1289 .cra_name = "ctr(aes)",
1290 .cra_blocksize = AES_BLOCK_SIZE,
1291 .cra_u = { .ablkcipher = {
1292 .min_keysize = AES_MIN_KEY_SIZE,
1293 .max_keysize = AES_MAX_KEY_SIZE,
1294 .ivsize = AES_BLOCK_SIZE,
1295 .geniv = "eseqiv",
1299 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1300 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1301 }, {
1302 .crypto = {
1303 .cra_name = "rfc3686(ctr(aes))",
1304 .cra_blocksize = AES_BLOCK_SIZE,
1305 .cra_u = { .ablkcipher = {
1306 .min_keysize = AES_MIN_KEY_SIZE,
1307 .max_keysize = AES_MAX_KEY_SIZE,
1308 .ivsize = AES_BLOCK_SIZE,
1309 .geniv = "eseqiv",
1310 .setkey = ablk_rfc3686_setkey,
1311 .encrypt = ablk_rfc3686_crypt,
1312 .decrypt = ablk_rfc3686_crypt }
1315 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1316 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1317 }, {
1318 .crypto = {
1319 .cra_name = "authenc(hmac(md5),cbc(des))",
1320 .cra_blocksize = DES_BLOCK_SIZE,
1321 .cra_u = { .aead = {
1322 .ivsize = DES_BLOCK_SIZE,
1323 .maxauthsize = MD5_DIGEST_SIZE,
1327 .hash = &hash_alg_md5,
1328 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1329 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1330 }, {
1331 .crypto = {
1332 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1333 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1334 .cra_u = { .aead = {
1335 .ivsize = DES3_EDE_BLOCK_SIZE,
1336 .maxauthsize = MD5_DIGEST_SIZE,
1340 .hash = &hash_alg_md5,
1341 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1342 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1343 }, {
1344 .crypto = {
1345 .cra_name = "authenc(hmac(sha1),cbc(des))",
1346 .cra_blocksize = DES_BLOCK_SIZE,
1347 .cra_u = { .aead = {
1348 .ivsize = DES_BLOCK_SIZE,
1349 .maxauthsize = SHA1_DIGEST_SIZE,
1353 .hash = &hash_alg_sha1,
1354 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1355 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1356 }, {
1357 .crypto = {
1358 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1359 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1360 .cra_u = { .aead = {
1361 .ivsize = DES3_EDE_BLOCK_SIZE,
1362 .maxauthsize = SHA1_DIGEST_SIZE,
1366 .hash = &hash_alg_sha1,
1367 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1368 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1369 }, {
1370 .crypto = {
1371 .cra_name = "authenc(hmac(md5),cbc(aes))",
1372 .cra_blocksize = AES_BLOCK_SIZE,
1373 .cra_u = { .aead = {
1374 .ivsize = AES_BLOCK_SIZE,
1375 .maxauthsize = MD5_DIGEST_SIZE,
1379 .hash = &hash_alg_md5,
1380 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1381 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1382 }, {
1383 .crypto = {
1384 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1385 .cra_blocksize = AES_BLOCK_SIZE,
1386 .cra_u = { .aead = {
1387 .ivsize = AES_BLOCK_SIZE,
1388 .maxauthsize = SHA1_DIGEST_SIZE,
1392 .hash = &hash_alg_sha1,
1393 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1394 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1395 } };
1397 #define IXP_POSTFIX "-ixp4xx"
1398 static int __init ixp_module_init(void)
1400 int num = ARRAY_SIZE(ixp4xx_algos);
1401 int i,err ;
1403 if (platform_device_register(&pseudo_dev))
1404 return -ENODEV;
1406 spin_lock_init(&desc_lock);
1407 spin_lock_init(&emerg_lock);
1409 err = init_ixp_crypto();
1410 if (err) {
1411 platform_device_unregister(&pseudo_dev);
1412 return err;
1414 for (i=0; i< num; i++) {
1415 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1417 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1418 "%s"IXP_POSTFIX, cra->cra_name) >=
1419 CRYPTO_MAX_ALG_NAME)
1421 continue;
1423 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1424 continue;
1426 if (!ixp4xx_algos[i].hash) {
1427 /* block ciphers */
1428 cra->cra_type = &crypto_ablkcipher_type;
1429 cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1430 CRYPTO_ALG_ASYNC;
1431 if (!cra->cra_ablkcipher.setkey)
1432 cra->cra_ablkcipher.setkey = ablk_setkey;
1433 if (!cra->cra_ablkcipher.encrypt)
1434 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1435 if (!cra->cra_ablkcipher.decrypt)
1436 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1437 cra->cra_init = init_tfm_ablk;
1438 } else {
1439 /* authenc */
1440 cra->cra_type = &crypto_aead_type;
1441 cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
1442 CRYPTO_ALG_ASYNC;
1443 cra->cra_aead.setkey = aead_setkey;
1444 cra->cra_aead.setauthsize = aead_setauthsize;
1445 cra->cra_aead.encrypt = aead_encrypt;
1446 cra->cra_aead.decrypt = aead_decrypt;
1447 cra->cra_aead.givencrypt = aead_givencrypt;
1448 cra->cra_init = init_tfm_aead;
1450 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1451 cra->cra_module = THIS_MODULE;
1452 cra->cra_alignmask = 3;
1453 cra->cra_priority = 300;
1454 cra->cra_exit = exit_tfm;
1455 if (crypto_register_alg(cra))
1456 printk(KERN_ERR "Failed to register '%s'\n",
1457 cra->cra_name);
1458 else
1459 ixp4xx_algos[i].registered = 1;
1461 return 0;
1464 static void __exit ixp_module_exit(void)
1466 int num = ARRAY_SIZE(ixp4xx_algos);
1467 int i;
1469 for (i=0; i< num; i++) {
1470 if (ixp4xx_algos[i].registered)
1471 crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1473 release_ixp_crypto();
1474 platform_device_unregister(&pseudo_dev);
1477 module_init(ixp_module_init);
1478 module_exit(ixp_module_exit);
1480 MODULE_LICENSE("GPL");
1481 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1482 MODULE_DESCRIPTION("IXP4xx hardware crypto");