x86/amd-iommu: Add function to complete a tlb flush
[linux/fpc-iii.git] / drivers / crypto / mv_cesa.c
blobb21ef635f3521cbf41f61ff5ce7d01fd45902142
1 /*
2 * Support for Marvell's crypto engine which can be found on some Orion5X
3 * boards.
5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6 * License: GPLv2
8 */
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
18 #include "mv_cesa.h"
20 * STM:
21 * /---------------------------------------\
22 * | | request complete
23 * \./ |
24 * IDLE -> new request -> BUSY -> done -> DEQUEUE
25 * /°\ |
26 * | | more scatter entries
27 * \________________/
29 enum engine_status {
30 ENGINE_IDLE,
31 ENGINE_BUSY,
32 ENGINE_W_DEQUEUE,
35 /**
36 * struct req_progress - used for every crypt request
37 * @src_sg_it: sg iterator for src
38 * @dst_sg_it: sg iterator for dst
39 * @sg_src_left: bytes left in src to process (scatter list)
40 * @src_start: offset to add to src start position (scatter list)
41 * @crypt_len: length of current crypt process
42 * @sg_dst_left: bytes left dst to process in this scatter list
43 * @dst_start: offset to add to dst start position (scatter list)
44 * @total_req_bytes: total number of bytes processed (request).
46 * sg helper are used to iterate over the scatterlist. Since the size of the
47 * SRAM may be less than the scatter size, this struct struct is used to keep
48 * track of progress within current scatterlist.
50 struct req_progress {
51 struct sg_mapping_iter src_sg_it;
52 struct sg_mapping_iter dst_sg_it;
54 /* src mostly */
55 int sg_src_left;
56 int src_start;
57 int crypt_len;
58 /* dst mostly */
59 int sg_dst_left;
60 int dst_start;
61 int total_req_bytes;
64 struct crypto_priv {
65 void __iomem *reg;
66 void __iomem *sram;
67 int irq;
68 struct task_struct *queue_th;
70 /* the lock protects queue and eng_st */
71 spinlock_t lock;
72 struct crypto_queue queue;
73 enum engine_status eng_st;
74 struct ablkcipher_request *cur_req;
75 struct req_progress p;
76 int max_req_size;
77 int sram_size;
80 static struct crypto_priv *cpg;
82 struct mv_ctx {
83 u8 aes_enc_key[AES_KEY_LEN];
84 u32 aes_dec_key[8];
85 int key_len;
86 u32 need_calc_aes_dkey;
89 enum crypto_op {
90 COP_AES_ECB,
91 COP_AES_CBC,
94 struct mv_req_ctx {
95 enum crypto_op op;
96 int decrypt;
99 static void compute_aes_dec_key(struct mv_ctx *ctx)
101 struct crypto_aes_ctx gen_aes_key;
102 int key_pos;
104 if (!ctx->need_calc_aes_dkey)
105 return;
107 crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
109 key_pos = ctx->key_len + 24;
110 memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
111 switch (ctx->key_len) {
112 case AES_KEYSIZE_256:
113 key_pos -= 2;
114 /* fall */
115 case AES_KEYSIZE_192:
116 key_pos -= 2;
117 memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
118 4 * 4);
119 break;
121 ctx->need_calc_aes_dkey = 0;
124 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
125 unsigned int len)
127 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
128 struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
130 switch (len) {
131 case AES_KEYSIZE_128:
132 case AES_KEYSIZE_192:
133 case AES_KEYSIZE_256:
134 break;
135 default:
136 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
137 return -EINVAL;
139 ctx->key_len = len;
140 ctx->need_calc_aes_dkey = 1;
142 memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
143 return 0;
146 static void setup_data_in(struct ablkcipher_request *req)
148 int ret;
149 void *buf;
151 if (!cpg->p.sg_src_left) {
152 ret = sg_miter_next(&cpg->p.src_sg_it);
153 BUG_ON(!ret);
154 cpg->p.sg_src_left = cpg->p.src_sg_it.length;
155 cpg->p.src_start = 0;
158 cpg->p.crypt_len = min(cpg->p.sg_src_left, cpg->max_req_size);
160 buf = cpg->p.src_sg_it.addr;
161 buf += cpg->p.src_start;
163 memcpy(cpg->sram + SRAM_DATA_IN_START, buf, cpg->p.crypt_len);
165 cpg->p.sg_src_left -= cpg->p.crypt_len;
166 cpg->p.src_start += cpg->p.crypt_len;
169 static void mv_process_current_q(int first_block)
171 struct ablkcipher_request *req = cpg->cur_req;
172 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
173 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
174 struct sec_accel_config op;
176 switch (req_ctx->op) {
177 case COP_AES_ECB:
178 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
179 break;
180 case COP_AES_CBC:
181 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
182 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
183 ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
184 if (first_block)
185 memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
186 break;
188 if (req_ctx->decrypt) {
189 op.config |= CFG_DIR_DEC;
190 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
191 AES_KEY_LEN);
192 } else {
193 op.config |= CFG_DIR_ENC;
194 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
195 AES_KEY_LEN);
198 switch (ctx->key_len) {
199 case AES_KEYSIZE_128:
200 op.config |= CFG_AES_LEN_128;
201 break;
202 case AES_KEYSIZE_192:
203 op.config |= CFG_AES_LEN_192;
204 break;
205 case AES_KEYSIZE_256:
206 op.config |= CFG_AES_LEN_256;
207 break;
209 op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
210 ENC_P_DST(SRAM_DATA_OUT_START);
211 op.enc_key_p = SRAM_DATA_KEY_P;
213 setup_data_in(req);
214 op.enc_len = cpg->p.crypt_len;
215 memcpy(cpg->sram + SRAM_CONFIG, &op,
216 sizeof(struct sec_accel_config));
218 writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
219 /* GO */
220 writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
223 * XXX: add timer if the interrupt does not occur for some mystery
224 * reason
228 static void mv_crypto_algo_completion(void)
230 struct ablkcipher_request *req = cpg->cur_req;
231 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
233 if (req_ctx->op != COP_AES_CBC)
234 return ;
236 memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
239 static void dequeue_complete_req(void)
241 struct ablkcipher_request *req = cpg->cur_req;
242 void *buf;
243 int ret;
245 cpg->p.total_req_bytes += cpg->p.crypt_len;
246 do {
247 int dst_copy;
249 if (!cpg->p.sg_dst_left) {
250 ret = sg_miter_next(&cpg->p.dst_sg_it);
251 BUG_ON(!ret);
252 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
253 cpg->p.dst_start = 0;
256 buf = cpg->p.dst_sg_it.addr;
257 buf += cpg->p.dst_start;
259 dst_copy = min(cpg->p.crypt_len, cpg->p.sg_dst_left);
261 memcpy(buf, cpg->sram + SRAM_DATA_OUT_START, dst_copy);
263 cpg->p.sg_dst_left -= dst_copy;
264 cpg->p.crypt_len -= dst_copy;
265 cpg->p.dst_start += dst_copy;
266 } while (cpg->p.crypt_len > 0);
268 BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
269 if (cpg->p.total_req_bytes < req->nbytes) {
270 /* process next scatter list entry */
271 cpg->eng_st = ENGINE_BUSY;
272 mv_process_current_q(0);
273 } else {
274 sg_miter_stop(&cpg->p.src_sg_it);
275 sg_miter_stop(&cpg->p.dst_sg_it);
276 mv_crypto_algo_completion();
277 cpg->eng_st = ENGINE_IDLE;
278 req->base.complete(&req->base, 0);
282 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
284 int i = 0;
286 do {
287 total_bytes -= sl[i].length;
288 i++;
290 } while (total_bytes > 0);
292 return i;
295 static void mv_enqueue_new_req(struct ablkcipher_request *req)
297 int num_sgs;
299 cpg->cur_req = req;
300 memset(&cpg->p, 0, sizeof(struct req_progress));
302 num_sgs = count_sgs(req->src, req->nbytes);
303 sg_miter_start(&cpg->p.src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
305 num_sgs = count_sgs(req->dst, req->nbytes);
306 sg_miter_start(&cpg->p.dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
307 mv_process_current_q(1);
310 static int queue_manag(void *data)
312 cpg->eng_st = ENGINE_IDLE;
313 do {
314 struct ablkcipher_request *req;
315 struct crypto_async_request *async_req = NULL;
316 struct crypto_async_request *backlog;
318 __set_current_state(TASK_INTERRUPTIBLE);
320 if (cpg->eng_st == ENGINE_W_DEQUEUE)
321 dequeue_complete_req();
323 spin_lock_irq(&cpg->lock);
324 if (cpg->eng_st == ENGINE_IDLE) {
325 backlog = crypto_get_backlog(&cpg->queue);
326 async_req = crypto_dequeue_request(&cpg->queue);
327 if (async_req) {
328 BUG_ON(cpg->eng_st != ENGINE_IDLE);
329 cpg->eng_st = ENGINE_BUSY;
332 spin_unlock_irq(&cpg->lock);
334 if (backlog) {
335 backlog->complete(backlog, -EINPROGRESS);
336 backlog = NULL;
339 if (async_req) {
340 req = container_of(async_req,
341 struct ablkcipher_request, base);
342 mv_enqueue_new_req(req);
343 async_req = NULL;
346 schedule();
348 } while (!kthread_should_stop());
349 return 0;
352 static int mv_handle_req(struct ablkcipher_request *req)
354 unsigned long flags;
355 int ret;
357 spin_lock_irqsave(&cpg->lock, flags);
358 ret = ablkcipher_enqueue_request(&cpg->queue, req);
359 spin_unlock_irqrestore(&cpg->lock, flags);
360 wake_up_process(cpg->queue_th);
361 return ret;
364 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
366 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
368 req_ctx->op = COP_AES_ECB;
369 req_ctx->decrypt = 0;
371 return mv_handle_req(req);
374 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
376 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
377 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
379 req_ctx->op = COP_AES_ECB;
380 req_ctx->decrypt = 1;
382 compute_aes_dec_key(ctx);
383 return mv_handle_req(req);
386 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
388 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
390 req_ctx->op = COP_AES_CBC;
391 req_ctx->decrypt = 0;
393 return mv_handle_req(req);
396 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
398 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
399 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
401 req_ctx->op = COP_AES_CBC;
402 req_ctx->decrypt = 1;
404 compute_aes_dec_key(ctx);
405 return mv_handle_req(req);
408 static int mv_cra_init(struct crypto_tfm *tfm)
410 tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
411 return 0;
414 irqreturn_t crypto_int(int irq, void *priv)
416 u32 val;
418 val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
419 if (!(val & SEC_INT_ACCEL0_DONE))
420 return IRQ_NONE;
422 val &= ~SEC_INT_ACCEL0_DONE;
423 writel(val, cpg->reg + FPGA_INT_STATUS);
424 writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
425 BUG_ON(cpg->eng_st != ENGINE_BUSY);
426 cpg->eng_st = ENGINE_W_DEQUEUE;
427 wake_up_process(cpg->queue_th);
428 return IRQ_HANDLED;
431 struct crypto_alg mv_aes_alg_ecb = {
432 .cra_name = "ecb(aes)",
433 .cra_driver_name = "mv-ecb-aes",
434 .cra_priority = 300,
435 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
436 .cra_blocksize = 16,
437 .cra_ctxsize = sizeof(struct mv_ctx),
438 .cra_alignmask = 0,
439 .cra_type = &crypto_ablkcipher_type,
440 .cra_module = THIS_MODULE,
441 .cra_init = mv_cra_init,
442 .cra_u = {
443 .ablkcipher = {
444 .min_keysize = AES_MIN_KEY_SIZE,
445 .max_keysize = AES_MAX_KEY_SIZE,
446 .setkey = mv_setkey_aes,
447 .encrypt = mv_enc_aes_ecb,
448 .decrypt = mv_dec_aes_ecb,
453 struct crypto_alg mv_aes_alg_cbc = {
454 .cra_name = "cbc(aes)",
455 .cra_driver_name = "mv-cbc-aes",
456 .cra_priority = 300,
457 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
458 .cra_blocksize = AES_BLOCK_SIZE,
459 .cra_ctxsize = sizeof(struct mv_ctx),
460 .cra_alignmask = 0,
461 .cra_type = &crypto_ablkcipher_type,
462 .cra_module = THIS_MODULE,
463 .cra_init = mv_cra_init,
464 .cra_u = {
465 .ablkcipher = {
466 .ivsize = AES_BLOCK_SIZE,
467 .min_keysize = AES_MIN_KEY_SIZE,
468 .max_keysize = AES_MAX_KEY_SIZE,
469 .setkey = mv_setkey_aes,
470 .encrypt = mv_enc_aes_cbc,
471 .decrypt = mv_dec_aes_cbc,
476 static int mv_probe(struct platform_device *pdev)
478 struct crypto_priv *cp;
479 struct resource *res;
480 int irq;
481 int ret;
483 if (cpg) {
484 printk(KERN_ERR "Second crypto dev?\n");
485 return -EEXIST;
488 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
489 if (!res)
490 return -ENXIO;
492 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
493 if (!cp)
494 return -ENOMEM;
496 spin_lock_init(&cp->lock);
497 crypto_init_queue(&cp->queue, 50);
498 cp->reg = ioremap(res->start, res->end - res->start + 1);
499 if (!cp->reg) {
500 ret = -ENOMEM;
501 goto err;
504 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
505 if (!res) {
506 ret = -ENXIO;
507 goto err_unmap_reg;
509 cp->sram_size = res->end - res->start + 1;
510 cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
511 cp->sram = ioremap(res->start, cp->sram_size);
512 if (!cp->sram) {
513 ret = -ENOMEM;
514 goto err_unmap_reg;
517 irq = platform_get_irq(pdev, 0);
518 if (irq < 0 || irq == NO_IRQ) {
519 ret = irq;
520 goto err_unmap_sram;
522 cp->irq = irq;
524 platform_set_drvdata(pdev, cp);
525 cpg = cp;
527 cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
528 if (IS_ERR(cp->queue_th)) {
529 ret = PTR_ERR(cp->queue_th);
530 goto err_thread;
533 ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
534 cp);
535 if (ret)
536 goto err_unmap_sram;
538 writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
539 writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
541 ret = crypto_register_alg(&mv_aes_alg_ecb);
542 if (ret)
543 goto err_reg;
545 ret = crypto_register_alg(&mv_aes_alg_cbc);
546 if (ret)
547 goto err_unreg_ecb;
548 return 0;
549 err_unreg_ecb:
550 crypto_unregister_alg(&mv_aes_alg_ecb);
551 err_thread:
552 free_irq(irq, cp);
553 err_reg:
554 kthread_stop(cp->queue_th);
555 err_unmap_sram:
556 iounmap(cp->sram);
557 err_unmap_reg:
558 iounmap(cp->reg);
559 err:
560 kfree(cp);
561 cpg = NULL;
562 platform_set_drvdata(pdev, NULL);
563 return ret;
566 static int mv_remove(struct platform_device *pdev)
568 struct crypto_priv *cp = platform_get_drvdata(pdev);
570 crypto_unregister_alg(&mv_aes_alg_ecb);
571 crypto_unregister_alg(&mv_aes_alg_cbc);
572 kthread_stop(cp->queue_th);
573 free_irq(cp->irq, cp);
574 memset(cp->sram, 0, cp->sram_size);
575 iounmap(cp->sram);
576 iounmap(cp->reg);
577 kfree(cp);
578 cpg = NULL;
579 return 0;
582 static struct platform_driver marvell_crypto = {
583 .probe = mv_probe,
584 .remove = mv_remove,
585 .driver = {
586 .owner = THIS_MODULE,
587 .name = "mv_crypto",
590 MODULE_ALIAS("platform:mv_crypto");
592 static int __init mv_crypto_init(void)
594 return platform_driver_register(&marvell_crypto);
596 module_init(mv_crypto_init);
598 static void __exit mv_crypto_exit(void)
600 platform_driver_unregister(&marvell_crypto);
602 module_exit(mv_crypto_exit);
604 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
605 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
606 MODULE_LICENSE("GPL");