3 * hfcpci.c low level driver for CCD's hfc-pci based cards
5 * Author Werner Cornelius (werner@isdn4linux.de)
6 * based on existing driver for CCD hfc ISA cards
7 * type approval valid for HFC-S PCI A based card
9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008 by Karsten Keil <kkeil@novell.com>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 * NOTE: only one poll value must be given for all cards
30 * See hfc_pci.h for debug flags.
33 * NOTE: only one poll value must be given for all cards
34 * Give the number of samples for each fifo process.
35 * By default 128 is used. Decrease to reduce delay, increase to
36 * reduce cpu load. If unsure, don't mess with it!
37 * A value of 128 will use controller's interrupt. Other values will
38 * use kernel timer, because the controller will not allow lower values
40 * Also note that the value depends on the kernel timer frequency.
41 * If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
42 * If the kernel uses 100 Hz, steps of 80 samples are possible.
43 * If the kernel uses 300 Hz, steps of about 26 samples are possible.
47 #include <linux/module.h>
48 #include <linux/pci.h>
49 #include <linux/delay.h>
50 #include <linux/mISDNhw.h>
54 static const char *hfcpci_revision
= "2.0";
58 static uint poll
, tics
;
59 static struct timer_list hfc_tl
;
60 static unsigned long hfc_jiffies
;
62 MODULE_AUTHOR("Karsten Keil");
63 MODULE_LICENSE("GPL");
64 module_param(debug
, uint
, S_IRUGO
| S_IWUSR
);
65 module_param(poll
, uint
, S_IRUGO
| S_IWUSR
);
100 unsigned char int_m1
;
101 unsigned char int_m2
;
103 unsigned char sctrl_r
;
104 unsigned char sctrl_e
;
106 unsigned char fifo_en
;
107 unsigned char bswapped
;
108 unsigned char protocol
;
110 unsigned char __iomem
*pci_io
; /* start of PCI IO memory */
111 dma_addr_t dmahandle
;
112 void *fifos
; /* FIFO memory */
113 int last_bfifo_cnt
[2];
114 /* marker saving last b-fifo frame count */
115 struct timer_list timer
;
118 #define HFC_CFG_MASTER 1
119 #define HFC_CFG_SLAVE 2
120 #define HFC_CFG_PCM 3
121 #define HFC_CFG_2HFC 4
122 #define HFC_CFG_SLAVEHFC 5
123 #define HFC_CFG_NEG_F0 6
124 #define HFC_CFG_SW_DD_DU 7
126 #define FLG_HFC_TIMER_T1 16
127 #define FLG_HFC_TIMER_T3 17
129 #define NT_T1_COUNT 1120 /* number of 3.125ms interrupts (3.5s) */
130 #define NT_T3_COUNT 31 /* number of 3.125ms interrupts (97 ms) */
131 #define CLKDEL_TE 0x0e /* CLKDEL in TE mode */
132 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode */
142 struct pci_dev
*pdev
;
144 spinlock_t lock
; /* card lock */
146 struct bchannel bch
[2];
149 /* Interface functions */
151 enable_hwirq(struct hfc_pci
*hc
)
153 hc
->hw
.int_m2
|= HFCPCI_IRQ_ENABLE
;
154 Write_hfc(hc
, HFCPCI_INT_M2
, hc
->hw
.int_m2
);
158 disable_hwirq(struct hfc_pci
*hc
)
160 hc
->hw
.int_m2
&= ~((u_char
)HFCPCI_IRQ_ENABLE
);
161 Write_hfc(hc
, HFCPCI_INT_M2
, hc
->hw
.int_m2
);
165 * free hardware resources used by driver
168 release_io_hfcpci(struct hfc_pci
*hc
)
170 /* disable memory mapped ports + busmaster */
171 pci_write_config_word(hc
->pdev
, PCI_COMMAND
, 0);
172 del_timer(&hc
->hw
.timer
);
173 pci_free_consistent(hc
->pdev
, 0x8000, hc
->hw
.fifos
, hc
->hw
.dmahandle
);
174 iounmap(hc
->hw
.pci_io
);
178 * set mode (NT or TE)
181 hfcpci_setmode(struct hfc_pci
*hc
)
183 if (hc
->hw
.protocol
== ISDN_P_NT_S0
) {
184 hc
->hw
.clkdel
= CLKDEL_NT
; /* ST-Bit delay for NT-Mode */
185 hc
->hw
.sctrl
|= SCTRL_MODE_NT
; /* NT-MODE */
186 hc
->hw
.states
= 1; /* G1 */
188 hc
->hw
.clkdel
= CLKDEL_TE
; /* ST-Bit delay for TE-Mode */
189 hc
->hw
.sctrl
&= ~SCTRL_MODE_NT
; /* TE-MODE */
190 hc
->hw
.states
= 2; /* F2 */
192 Write_hfc(hc
, HFCPCI_CLKDEL
, hc
->hw
.clkdel
);
193 Write_hfc(hc
, HFCPCI_STATES
, HFCPCI_LOAD_STATE
| hc
->hw
.states
);
195 Write_hfc(hc
, HFCPCI_STATES
, hc
->hw
.states
| 0x40); /* Deactivate */
196 Write_hfc(hc
, HFCPCI_SCTRL
, hc
->hw
.sctrl
);
200 * function called to reset the HFC PCI chip. A complete software reset of chip
204 reset_hfcpci(struct hfc_pci
*hc
)
209 printk(KERN_DEBUG
"reset_hfcpci: entered\n");
210 val
= Read_hfc(hc
, HFCPCI_CHIP_ID
);
211 printk(KERN_INFO
"HFC_PCI: resetting HFC ChipId(%x)\n", val
);
212 /* enable memory mapped ports, disable busmaster */
213 pci_write_config_word(hc
->pdev
, PCI_COMMAND
, PCI_ENA_MEMIO
);
215 /* enable memory ports + busmaster */
216 pci_write_config_word(hc
->pdev
, PCI_COMMAND
,
217 PCI_ENA_MEMIO
+ PCI_ENA_MASTER
);
218 val
= Read_hfc(hc
, HFCPCI_STATUS
);
219 printk(KERN_DEBUG
"HFC-PCI status(%x) before reset\n", val
);
220 hc
->hw
.cirm
= HFCPCI_RESET
; /* Reset On */
221 Write_hfc(hc
, HFCPCI_CIRM
, hc
->hw
.cirm
);
222 set_current_state(TASK_UNINTERRUPTIBLE
);
223 mdelay(10); /* Timeout 10ms */
224 hc
->hw
.cirm
= 0; /* Reset Off */
225 Write_hfc(hc
, HFCPCI_CIRM
, hc
->hw
.cirm
);
226 val
= Read_hfc(hc
, HFCPCI_STATUS
);
227 printk(KERN_DEBUG
"HFC-PCI status(%x) after reset\n", val
);
228 while (cnt
< 50000) { /* max 50000 us */
231 val
= Read_hfc(hc
, HFCPCI_STATUS
);
235 printk(KERN_DEBUG
"HFC-PCI status(%x) after %dus\n", val
, cnt
);
237 hc
->hw
.fifo_en
= 0x30; /* only D fifos enabled */
239 hc
->hw
.bswapped
= 0; /* no exchange */
240 hc
->hw
.ctmt
= HFCPCI_TIM3_125
| HFCPCI_AUTO_TIMER
;
241 hc
->hw
.trm
= HFCPCI_BTRANS_THRESMASK
; /* no echo connect , threshold */
242 hc
->hw
.sctrl
= 0x40; /* set tx_lo mode, error in datasheet ! */
244 hc
->hw
.sctrl_e
= HFCPCI_AUTO_AWAKE
; /* S/T Auto awake */
246 if (test_bit(HFC_CFG_MASTER
, &hc
->cfg
))
247 hc
->hw
.mst_m
|= HFCPCI_MASTER
; /* HFC Master Mode */
248 if (test_bit(HFC_CFG_NEG_F0
, &hc
->cfg
))
249 hc
->hw
.mst_m
|= HFCPCI_F0_NEGATIV
;
250 Write_hfc(hc
, HFCPCI_FIFO_EN
, hc
->hw
.fifo_en
);
251 Write_hfc(hc
, HFCPCI_TRM
, hc
->hw
.trm
);
252 Write_hfc(hc
, HFCPCI_SCTRL_E
, hc
->hw
.sctrl_e
);
253 Write_hfc(hc
, HFCPCI_CTMT
, hc
->hw
.ctmt
);
255 hc
->hw
.int_m1
= HFCPCI_INTS_DTRANS
| HFCPCI_INTS_DREC
|
256 HFCPCI_INTS_L1STATE
| HFCPCI_INTS_TIMER
;
257 Write_hfc(hc
, HFCPCI_INT_M1
, hc
->hw
.int_m1
);
259 /* Clear already pending ints */
260 val
= Read_hfc(hc
, HFCPCI_INT_S1
);
265 Write_hfc(hc
, HFCPCI_MST_MODE
, hc
->hw
.mst_m
);
266 Write_hfc(hc
, HFCPCI_SCTRL_R
, hc
->hw
.sctrl_r
);
269 * Init GCI/IOM2 in master mode
270 * Slots 0 and 1 are set for B-chan 1 and 2
271 * D- and monitor/CI channel are not enabled
272 * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
273 * STIO2 is used as data input, B1+B2 from IOM->ST
274 * ST B-channel send disabled -> continous 1s
275 * The IOM slots are always enabled
277 if (test_bit(HFC_CFG_PCM
, &hc
->cfg
)) {
278 /* set data flow directions: connect B1,B2: HFC to/from PCM */
281 hc
->hw
.conn
= 0x36; /* set data flow directions */
282 if (test_bit(HFC_CFG_SW_DD_DU
, &hc
->cfg
)) {
283 Write_hfc(hc
, HFCPCI_B1_SSL
, 0xC0);
284 Write_hfc(hc
, HFCPCI_B2_SSL
, 0xC1);
285 Write_hfc(hc
, HFCPCI_B1_RSL
, 0xC0);
286 Write_hfc(hc
, HFCPCI_B2_RSL
, 0xC1);
288 Write_hfc(hc
, HFCPCI_B1_SSL
, 0x80);
289 Write_hfc(hc
, HFCPCI_B2_SSL
, 0x81);
290 Write_hfc(hc
, HFCPCI_B1_RSL
, 0x80);
291 Write_hfc(hc
, HFCPCI_B2_RSL
, 0x81);
294 Write_hfc(hc
, HFCPCI_CONNECT
, hc
->hw
.conn
);
295 val
= Read_hfc(hc
, HFCPCI_INT_S2
);
299 * Timer function called when kernel timer expires
302 hfcpci_Timer(struct hfc_pci
*hc
)
304 hc
->hw
.timer
.expires
= jiffies
+ 75;
307 * WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
308 * add_timer(&hc->hw.timer);
314 * select a b-channel entry matching and active
316 static struct bchannel
*
317 Sel_BCS(struct hfc_pci
*hc
, int channel
)
319 if (test_bit(FLG_ACTIVE
, &hc
->bch
[0].Flags
) &&
320 (hc
->bch
[0].nr
& channel
))
322 else if (test_bit(FLG_ACTIVE
, &hc
->bch
[1].Flags
) &&
323 (hc
->bch
[1].nr
& channel
))
330 * clear the desired B-channel rx fifo
333 hfcpci_clear_fifo_rx(struct hfc_pci
*hc
, int fifo
)
339 bzr
= &((union fifo_area
*)(hc
->hw
.fifos
))->b_chans
.rxbz_b2
;
340 fifo_state
= hc
->hw
.fifo_en
& HFCPCI_FIFOEN_B2RX
;
342 bzr
= &((union fifo_area
*)(hc
->hw
.fifos
))->b_chans
.rxbz_b1
;
343 fifo_state
= hc
->hw
.fifo_en
& HFCPCI_FIFOEN_B1RX
;
346 hc
->hw
.fifo_en
^= fifo_state
;
347 Write_hfc(hc
, HFCPCI_FIFO_EN
, hc
->hw
.fifo_en
);
348 hc
->hw
.last_bfifo_cnt
[fifo
] = 0;
349 bzr
->f1
= MAX_B_FRAMES
;
350 bzr
->f2
= bzr
->f1
; /* init F pointers to remain constant */
351 bzr
->za
[MAX_B_FRAMES
].z1
= cpu_to_le16(B_FIFO_SIZE
+ B_SUB_VAL
- 1);
352 bzr
->za
[MAX_B_FRAMES
].z2
= cpu_to_le16(
353 le16_to_cpu(bzr
->za
[MAX_B_FRAMES
].z1
));
355 hc
->hw
.fifo_en
|= fifo_state
;
356 Write_hfc(hc
, HFCPCI_FIFO_EN
, hc
->hw
.fifo_en
);
360 * clear the desired B-channel tx fifo
362 static void hfcpci_clear_fifo_tx(struct hfc_pci
*hc
, int fifo
)
368 bzt
= &((union fifo_area
*)(hc
->hw
.fifos
))->b_chans
.txbz_b2
;
369 fifo_state
= hc
->hw
.fifo_en
& HFCPCI_FIFOEN_B2TX
;
371 bzt
= &((union fifo_area
*)(hc
->hw
.fifos
))->b_chans
.txbz_b1
;
372 fifo_state
= hc
->hw
.fifo_en
& HFCPCI_FIFOEN_B1TX
;
375 hc
->hw
.fifo_en
^= fifo_state
;
376 Write_hfc(hc
, HFCPCI_FIFO_EN
, hc
->hw
.fifo_en
);
377 if (hc
->bch
[fifo
].debug
& DEBUG_HW_BCHANNEL
)
378 printk(KERN_DEBUG
"hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
379 "z1(%x) z2(%x) state(%x)\n",
380 fifo
, bzt
->f1
, bzt
->f2
,
381 le16_to_cpu(bzt
->za
[MAX_B_FRAMES
].z1
),
382 le16_to_cpu(bzt
->za
[MAX_B_FRAMES
].z2
),
384 bzt
->f2
= MAX_B_FRAMES
;
385 bzt
->f1
= bzt
->f2
; /* init F pointers to remain constant */
386 bzt
->za
[MAX_B_FRAMES
].z1
= cpu_to_le16(B_FIFO_SIZE
+ B_SUB_VAL
- 1);
387 bzt
->za
[MAX_B_FRAMES
].z2
= cpu_to_le16(B_FIFO_SIZE
+ B_SUB_VAL
- 2);
389 hc
->hw
.fifo_en
|= fifo_state
;
390 Write_hfc(hc
, HFCPCI_FIFO_EN
, hc
->hw
.fifo_en
);
391 if (hc
->bch
[fifo
].debug
& DEBUG_HW_BCHANNEL
)
393 "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
394 fifo
, bzt
->f1
, bzt
->f2
,
395 le16_to_cpu(bzt
->za
[MAX_B_FRAMES
].z1
),
396 le16_to_cpu(bzt
->za
[MAX_B_FRAMES
].z2
));
400 * read a complete B-frame out of the buffer
403 hfcpci_empty_bfifo(struct bchannel
*bch
, struct bzfifo
*bz
,
404 u_char
*bdata
, int count
)
406 u_char
*ptr
, *ptr1
, new_f2
;
407 int total
, maxlen
, new_z2
;
410 if ((bch
->debug
& DEBUG_HW_BCHANNEL
) && !(bch
->debug
& DEBUG_HW_BFIFO
))
411 printk(KERN_DEBUG
"hfcpci_empty_fifo\n");
412 zp
= &bz
->za
[bz
->f2
]; /* point to Z-Regs */
413 new_z2
= le16_to_cpu(zp
->z2
) + count
; /* new position in fifo */
414 if (new_z2
>= (B_FIFO_SIZE
+ B_SUB_VAL
))
415 new_z2
-= B_FIFO_SIZE
; /* buffer wrap */
416 new_f2
= (bz
->f2
+ 1) & MAX_B_FRAMES
;
417 if ((count
> MAX_DATA_SIZE
+ 3) || (count
< 4) ||
418 (*(bdata
+ (le16_to_cpu(zp
->z1
) - B_SUB_VAL
)))) {
419 if (bch
->debug
& DEBUG_HW
)
420 printk(KERN_DEBUG
"hfcpci_empty_fifo: incoming packet "
421 "invalid length %d or crc\n", count
);
422 #ifdef ERROR_STATISTIC
425 bz
->za
[new_f2
].z2
= cpu_to_le16(new_z2
);
426 bz
->f2
= new_f2
; /* next buffer */
428 bch
->rx_skb
= mI_alloc_skb(count
- 3, GFP_ATOMIC
);
430 printk(KERN_WARNING
"HFCPCI: receive out of memory\n");
435 ptr
= skb_put(bch
->rx_skb
, count
);
437 if (le16_to_cpu(zp
->z2
) + count
<= B_FIFO_SIZE
+ B_SUB_VAL
)
438 maxlen
= count
; /* complete transfer */
440 maxlen
= B_FIFO_SIZE
+ B_SUB_VAL
-
441 le16_to_cpu(zp
->z2
); /* maximum */
443 ptr1
= bdata
+ (le16_to_cpu(zp
->z2
) - B_SUB_VAL
);
445 memcpy(ptr
, ptr1
, maxlen
); /* copy data */
448 if (count
) { /* rest remaining */
450 ptr1
= bdata
; /* start of buffer */
451 memcpy(ptr
, ptr1
, count
); /* rest */
453 bz
->za
[new_f2
].z2
= cpu_to_le16(new_z2
);
454 bz
->f2
= new_f2
; /* next buffer */
455 recv_Bchannel(bch
, MISDN_ID_ANY
);
460 * D-channel receive procedure
463 receive_dmsg(struct hfc_pci
*hc
)
465 struct dchannel
*dch
= &hc
->dch
;
473 df
= &((union fifo_area
*)(hc
->hw
.fifos
))->d_chan
.d_rx
;
474 while (((df
->f1
& D_FREG_MASK
) != (df
->f2
& D_FREG_MASK
)) && count
--) {
475 zp
= &df
->za
[df
->f2
& D_FREG_MASK
];
476 rcnt
= le16_to_cpu(zp
->z1
) - le16_to_cpu(zp
->z2
);
480 if (dch
->debug
& DEBUG_HW_DCHANNEL
)
482 "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
488 if ((rcnt
> MAX_DFRAME_LEN
+ 3) || (rcnt
< 4) ||
489 (df
->data
[le16_to_cpu(zp
->z1
)])) {
490 if (dch
->debug
& DEBUG_HW
)
492 "empty_fifo hfcpci paket inv. len "
495 df
->data
[le16_to_cpu(zp
->z1
)]);
496 #ifdef ERROR_STATISTIC
499 df
->f2
= ((df
->f2
+ 1) & MAX_D_FRAMES
) |
500 (MAX_D_FRAMES
+ 1); /* next buffer */
501 df
->za
[df
->f2
& D_FREG_MASK
].z2
=
502 cpu_to_le16((le16_to_cpu(zp
->z2
) + rcnt
) &
505 dch
->rx_skb
= mI_alloc_skb(rcnt
- 3, GFP_ATOMIC
);
508 "HFC-PCI: D receive out of memory\n");
513 ptr
= skb_put(dch
->rx_skb
, rcnt
);
515 if (le16_to_cpu(zp
->z2
) + rcnt
<= D_FIFO_SIZE
)
516 maxlen
= rcnt
; /* complete transfer */
518 maxlen
= D_FIFO_SIZE
- le16_to_cpu(zp
->z2
);
521 ptr1
= df
->data
+ le16_to_cpu(zp
->z2
);
523 memcpy(ptr
, ptr1
, maxlen
); /* copy data */
526 if (rcnt
) { /* rest remaining */
528 ptr1
= df
->data
; /* start of buffer */
529 memcpy(ptr
, ptr1
, rcnt
); /* rest */
531 df
->f2
= ((df
->f2
+ 1) & MAX_D_FRAMES
) |
532 (MAX_D_FRAMES
+ 1); /* next buffer */
533 df
->za
[df
->f2
& D_FREG_MASK
].z2
= cpu_to_le16((
534 le16_to_cpu(zp
->z2
) + total
) & (D_FIFO_SIZE
- 1));
542 * check for transparent receive data and read max one 'poll' size if avail
545 hfcpci_empty_fifo_trans(struct bchannel
*bch
, struct bzfifo
*rxbz
,
546 struct bzfifo
*txbz
, u_char
*bdata
)
548 __le16
*z1r
, *z2r
, *z1t
, *z2t
;
549 int new_z2
, fcnt_rx
, fcnt_tx
, maxlen
;
552 z1r
= &rxbz
->za
[MAX_B_FRAMES
].z1
; /* pointer to z reg */
554 z1t
= &txbz
->za
[MAX_B_FRAMES
].z1
;
557 fcnt_rx
= le16_to_cpu(*z1r
) - le16_to_cpu(*z2r
);
559 return; /* no data avail */
562 fcnt_rx
+= B_FIFO_SIZE
; /* bytes actually buffered */
563 new_z2
= le16_to_cpu(*z2r
) + fcnt_rx
; /* new position in fifo */
564 if (new_z2
>= (B_FIFO_SIZE
+ B_SUB_VAL
))
565 new_z2
-= B_FIFO_SIZE
; /* buffer wrap */
567 if (fcnt_rx
> MAX_DATA_SIZE
) { /* flush, if oversized */
568 *z2r
= cpu_to_le16(new_z2
); /* new position */
572 fcnt_tx
= le16_to_cpu(*z2t
) - le16_to_cpu(*z1t
);
574 fcnt_tx
+= B_FIFO_SIZE
;
575 /* fcnt_tx contains available bytes in tx-fifo */
576 fcnt_tx
= B_FIFO_SIZE
- fcnt_tx
;
577 /* remaining bytes to send (bytes in tx-fifo) */
579 bch
->rx_skb
= mI_alloc_skb(fcnt_rx
, GFP_ATOMIC
);
581 ptr
= skb_put(bch
->rx_skb
, fcnt_rx
);
582 if (le16_to_cpu(*z2r
) + fcnt_rx
<= B_FIFO_SIZE
+ B_SUB_VAL
)
583 maxlen
= fcnt_rx
; /* complete transfer */
585 maxlen
= B_FIFO_SIZE
+ B_SUB_VAL
- le16_to_cpu(*z2r
);
588 ptr1
= bdata
+ (le16_to_cpu(*z2r
) - B_SUB_VAL
);
590 memcpy(ptr
, ptr1
, maxlen
); /* copy data */
593 if (fcnt_rx
) { /* rest remaining */
595 ptr1
= bdata
; /* start of buffer */
596 memcpy(ptr
, ptr1
, fcnt_rx
); /* rest */
598 recv_Bchannel(bch
, fcnt_tx
); /* bch, id */
600 printk(KERN_WARNING
"HFCPCI: receive out of memory\n");
602 *z2r
= cpu_to_le16(new_z2
); /* new position */
606 * B-channel main receive routine
609 main_rec_hfcpci(struct bchannel
*bch
)
611 struct hfc_pci
*hc
= bch
->hw
;
613 int receive
= 0, count
= 5;
614 struct bzfifo
*txbz
, *rxbz
;
618 if ((bch
->nr
& 2) && (!hc
->hw
.bswapped
)) {
619 rxbz
= &((union fifo_area
*)(hc
->hw
.fifos
))->b_chans
.rxbz_b2
;
620 txbz
= &((union fifo_area
*)(hc
->hw
.fifos
))->b_chans
.txbz_b2
;
621 bdata
= ((union fifo_area
*)(hc
->hw
.fifos
))->b_chans
.rxdat_b2
;
624 rxbz
= &((union fifo_area
*)(hc
->hw
.fifos
))->b_chans
.rxbz_b1
;
625 txbz
= &((union fifo_area
*)(hc
->hw
.fifos
))->b_chans
.txbz_b1
;
626 bdata
= ((union fifo_area
*)(hc
->hw
.fifos
))->b_chans
.rxdat_b1
;
631 if (rxbz
->f1
!= rxbz
->f2
) {
632 if (bch
->debug
& DEBUG_HW_BCHANNEL
)
633 printk(KERN_DEBUG
"hfcpci rec ch(%x) f1(%d) f2(%d)\n",
634 bch
->nr
, rxbz
->f1
, rxbz
->f2
);
635 zp
= &rxbz
->za
[rxbz
->f2
];
637 rcnt
= le16_to_cpu(zp
->z1
) - le16_to_cpu(zp
->z2
);
641 if (bch
->debug
& DEBUG_HW_BCHANNEL
)
643 "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
644 bch
->nr
, le16_to_cpu(zp
->z1
),
645 le16_to_cpu(zp
->z2
), rcnt
);
646 hfcpci_empty_bfifo(bch
, rxbz
, bdata
, rcnt
);
647 rcnt
= rxbz
->f1
- rxbz
->f2
;
649 rcnt
+= MAX_B_FRAMES
+ 1;
650 if (hc
->hw
.last_bfifo_cnt
[real_fifo
] > rcnt
+ 1) {
652 hfcpci_clear_fifo_rx(hc
, real_fifo
);
654 hc
->hw
.last_bfifo_cnt
[real_fifo
] = rcnt
;
659 } else if (test_bit(FLG_TRANSPARENT
, &bch
->Flags
)) {
660 hfcpci_empty_fifo_trans(bch
, rxbz
, txbz
, bdata
);
664 if (count
&& receive
)
670 * D-channel send routine
673 hfcpci_fill_dfifo(struct hfc_pci
*hc
)
675 struct dchannel
*dch
= &hc
->dch
;
677 int count
, new_z1
, maxlen
;
679 u_char
*src
, *dst
, new_f1
;
681 if ((dch
->debug
& DEBUG_HW_DCHANNEL
) && !(dch
->debug
& DEBUG_HW_DFIFO
))
682 printk(KERN_DEBUG
"%s\n", __func__
);
686 count
= dch
->tx_skb
->len
- dch
->tx_idx
;
689 df
= &((union fifo_area
*) (hc
->hw
.fifos
))->d_chan
.d_tx
;
691 if (dch
->debug
& DEBUG_HW_DFIFO
)
692 printk(KERN_DEBUG
"%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__
,
694 le16_to_cpu(df
->za
[df
->f1
& D_FREG_MASK
].z1
));
695 fcnt
= df
->f1
- df
->f2
; /* frame count actually buffered */
697 fcnt
+= (MAX_D_FRAMES
+ 1); /* if wrap around */
698 if (fcnt
> (MAX_D_FRAMES
- 1)) {
699 if (dch
->debug
& DEBUG_HW_DCHANNEL
)
701 "hfcpci_fill_Dfifo more as 14 frames\n");
702 #ifdef ERROR_STATISTIC
707 /* now determine free bytes in FIFO buffer */
708 maxlen
= le16_to_cpu(df
->za
[df
->f2
& D_FREG_MASK
].z2
) -
709 le16_to_cpu(df
->za
[df
->f1
& D_FREG_MASK
].z1
) - 1;
711 maxlen
+= D_FIFO_SIZE
; /* count now contains available bytes */
713 if (dch
->debug
& DEBUG_HW_DCHANNEL
)
714 printk(KERN_DEBUG
"hfcpci_fill_Dfifo count(%d/%d)\n",
716 if (count
> maxlen
) {
717 if (dch
->debug
& DEBUG_HW_DCHANNEL
)
718 printk(KERN_DEBUG
"hfcpci_fill_Dfifo no fifo mem\n");
721 new_z1
= (le16_to_cpu(df
->za
[df
->f1
& D_FREG_MASK
].z1
) + count
) &
723 new_f1
= ((df
->f1
+ 1) & D_FREG_MASK
) | (D_FREG_MASK
+ 1);
724 src
= dch
->tx_skb
->data
+ dch
->tx_idx
; /* source pointer */
725 dst
= df
->data
+ le16_to_cpu(df
->za
[df
->f1
& D_FREG_MASK
].z1
);
726 maxlen
= D_FIFO_SIZE
- le16_to_cpu(df
->za
[df
->f1
& D_FREG_MASK
].z1
);
729 maxlen
= count
; /* limit size */
730 memcpy(dst
, src
, maxlen
); /* first copy */
732 count
-= maxlen
; /* remaining bytes */
734 dst
= df
->data
; /* start of buffer */
735 src
+= maxlen
; /* new position */
736 memcpy(dst
, src
, count
);
738 df
->za
[new_f1
& D_FREG_MASK
].z1
= cpu_to_le16(new_z1
);
739 /* for next buffer */
740 df
->za
[df
->f1
& D_FREG_MASK
].z1
= cpu_to_le16(new_z1
);
741 /* new pos actual buffer */
742 df
->f1
= new_f1
; /* next frame */
743 dch
->tx_idx
= dch
->tx_skb
->len
;
747 * B-channel send routine
750 hfcpci_fill_fifo(struct bchannel
*bch
)
752 struct hfc_pci
*hc
= bch
->hw
;
757 u_char new_f1
, *src
, *dst
;
760 if ((bch
->debug
& DEBUG_HW_BCHANNEL
) && !(bch
->debug
& DEBUG_HW_BFIFO
))
761 printk(KERN_DEBUG
"%s\n", __func__
);
762 if ((!bch
->tx_skb
) || bch
->tx_skb
->len
<= 0)
764 count
= bch
->tx_skb
->len
- bch
->tx_idx
;
765 if ((bch
->nr
& 2) && (!hc
->hw
.bswapped
)) {
766 bz
= &((union fifo_area
*)(hc
->hw
.fifos
))->b_chans
.txbz_b2
;
767 bdata
= ((union fifo_area
*)(hc
->hw
.fifos
))->b_chans
.txdat_b2
;
769 bz
= &((union fifo_area
*)(hc
->hw
.fifos
))->b_chans
.txbz_b1
;
770 bdata
= ((union fifo_area
*)(hc
->hw
.fifos
))->b_chans
.txdat_b1
;
773 if (test_bit(FLG_TRANSPARENT
, &bch
->Flags
)) {
774 z1t
= &bz
->za
[MAX_B_FRAMES
].z1
;
776 if (bch
->debug
& DEBUG_HW_BCHANNEL
)
777 printk(KERN_DEBUG
"hfcpci_fill_fifo_trans ch(%x) "
778 "cnt(%d) z1(%x) z2(%x)\n", bch
->nr
, count
,
779 le16_to_cpu(*z1t
), le16_to_cpu(*z2t
));
780 fcnt
= le16_to_cpu(*z2t
) - le16_to_cpu(*z1t
);
783 /* fcnt contains available bytes in fifo */
784 fcnt
= B_FIFO_SIZE
- fcnt
;
785 /* remaining bytes to send (bytes in fifo) */
787 /* "fill fifo if empty" feature */
788 if (test_bit(FLG_FILLEMPTY
, &bch
->Flags
) && !fcnt
) {
789 /* printk(KERN_DEBUG "%s: buffer empty, so we have "
790 "underrun\n", __func__); */
791 /* fill buffer, to prevent future underrun */
792 count
= HFCPCI_FILLEMPTY
;
793 new_z1
= le16_to_cpu(*z1t
) + count
;
794 /* new buffer Position */
795 if (new_z1
>= (B_FIFO_SIZE
+ B_SUB_VAL
))
796 new_z1
-= B_FIFO_SIZE
; /* buffer wrap */
797 dst
= bdata
+ (le16_to_cpu(*z1t
) - B_SUB_VAL
);
798 maxlen
= (B_FIFO_SIZE
+ B_SUB_VAL
) - le16_to_cpu(*z1t
);
800 if (bch
->debug
& DEBUG_HW_BFIFO
)
801 printk(KERN_DEBUG
"hfcpci_FFt fillempty "
802 "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
803 fcnt
, maxlen
, new_z1
, dst
);
806 maxlen
= count
; /* limit size */
807 memset(dst
, 0x2a, maxlen
); /* first copy */
808 count
-= maxlen
; /* remaining bytes */
810 dst
= bdata
; /* start of buffer */
811 memset(dst
, 0x2a, count
);
813 *z1t
= cpu_to_le16(new_z1
); /* now send data */
817 count
= bch
->tx_skb
->len
- bch
->tx_idx
;
818 /* maximum fill shall be poll*2 */
819 if (count
> (poll
<< 1) - fcnt
)
820 count
= (poll
<< 1) - fcnt
;
823 /* data is suitable for fifo */
824 new_z1
= le16_to_cpu(*z1t
) + count
;
825 /* new buffer Position */
826 if (new_z1
>= (B_FIFO_SIZE
+ B_SUB_VAL
))
827 new_z1
-= B_FIFO_SIZE
; /* buffer wrap */
828 src
= bch
->tx_skb
->data
+ bch
->tx_idx
;
830 dst
= bdata
+ (le16_to_cpu(*z1t
) - B_SUB_VAL
);
831 maxlen
= (B_FIFO_SIZE
+ B_SUB_VAL
) - le16_to_cpu(*z1t
);
833 if (bch
->debug
& DEBUG_HW_BFIFO
)
834 printk(KERN_DEBUG
"hfcpci_FFt fcnt(%d) "
835 "maxl(%d) nz1(%x) dst(%p)\n",
836 fcnt
, maxlen
, new_z1
, dst
);
838 bch
->tx_idx
+= count
;
840 maxlen
= count
; /* limit size */
841 memcpy(dst
, src
, maxlen
); /* first copy */
842 count
-= maxlen
; /* remaining bytes */
844 dst
= bdata
; /* start of buffer */
845 src
+= maxlen
; /* new position */
846 memcpy(dst
, src
, count
);
848 *z1t
= cpu_to_le16(new_z1
); /* now send data */
849 if (bch
->tx_idx
< bch
->tx_skb
->len
)
851 /* send confirm, on trans, free on hdlc. */
852 if (test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
854 dev_kfree_skb(bch
->tx_skb
);
855 if (get_next_bframe(bch
))
859 if (bch
->debug
& DEBUG_HW_BCHANNEL
)
861 "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
862 __func__
, bch
->nr
, bz
->f1
, bz
->f2
,
864 fcnt
= bz
->f1
- bz
->f2
; /* frame count actually buffered */
866 fcnt
+= (MAX_B_FRAMES
+ 1); /* if wrap around */
867 if (fcnt
> (MAX_B_FRAMES
- 1)) {
868 if (bch
->debug
& DEBUG_HW_BCHANNEL
)
870 "hfcpci_fill_Bfifo more as 14 frames\n");
873 /* now determine free bytes in FIFO buffer */
874 maxlen
= le16_to_cpu(bz
->za
[bz
->f2
].z2
) -
875 le16_to_cpu(bz
->za
[bz
->f1
].z1
) - 1;
877 maxlen
+= B_FIFO_SIZE
; /* count now contains available bytes */
879 if (bch
->debug
& DEBUG_HW_BCHANNEL
)
880 printk(KERN_DEBUG
"hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
881 bch
->nr
, count
, maxlen
);
883 if (maxlen
< count
) {
884 if (bch
->debug
& DEBUG_HW_BCHANNEL
)
885 printk(KERN_DEBUG
"hfcpci_fill_fifo no fifo mem\n");
888 new_z1
= le16_to_cpu(bz
->za
[bz
->f1
].z1
) + count
;
889 /* new buffer Position */
890 if (new_z1
>= (B_FIFO_SIZE
+ B_SUB_VAL
))
891 new_z1
-= B_FIFO_SIZE
; /* buffer wrap */
893 new_f1
= ((bz
->f1
+ 1) & MAX_B_FRAMES
);
894 src
= bch
->tx_skb
->data
+ bch
->tx_idx
; /* source pointer */
895 dst
= bdata
+ (le16_to_cpu(bz
->za
[bz
->f1
].z1
) - B_SUB_VAL
);
896 maxlen
= (B_FIFO_SIZE
+ B_SUB_VAL
) - le16_to_cpu(bz
->za
[bz
->f1
].z1
);
899 maxlen
= count
; /* limit size */
900 memcpy(dst
, src
, maxlen
); /* first copy */
902 count
-= maxlen
; /* remaining bytes */
904 dst
= bdata
; /* start of buffer */
905 src
+= maxlen
; /* new position */
906 memcpy(dst
, src
, count
);
908 bz
->za
[new_f1
].z1
= cpu_to_le16(new_z1
); /* for next buffer */
909 bz
->f1
= new_f1
; /* next frame */
910 dev_kfree_skb(bch
->tx_skb
);
911 get_next_bframe(bch
);
917 * handle L1 state changes TE
921 ph_state_te(struct dchannel
*dch
)
924 printk(KERN_DEBUG
"%s: TE newstate %x\n",
925 __func__
, dch
->state
);
926 switch (dch
->state
) {
928 l1_event(dch
->l1
, HW_RESET_IND
);
931 l1_event(dch
->l1
, HW_DEACT_IND
);
935 l1_event(dch
->l1
, ANYSIGNAL
);
938 l1_event(dch
->l1
, INFO2
);
941 l1_event(dch
->l1
, INFO4_P8
);
947 * handle L1 state changes NT
951 handle_nt_timer3(struct dchannel
*dch
) {
952 struct hfc_pci
*hc
= dch
->hw
;
954 test_and_clear_bit(FLG_HFC_TIMER_T3
, &dch
->Flags
);
955 hc
->hw
.int_m1
&= ~HFCPCI_INTS_TIMER
;
956 Write_hfc(hc
, HFCPCI_INT_M1
, hc
->hw
.int_m1
);
958 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
959 if (test_bit(HFC_CFG_MASTER
, &hc
->cfg
))
960 hc
->hw
.mst_m
|= HFCPCI_MASTER
;
961 Write_hfc(hc
, HFCPCI_MST_MODE
, hc
->hw
.mst_m
);
962 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
,
963 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
967 ph_state_nt(struct dchannel
*dch
)
969 struct hfc_pci
*hc
= dch
->hw
;
973 printk(KERN_DEBUG
"%s: NT newstate %x\n",
974 __func__
, dch
->state
);
975 switch (dch
->state
) {
977 if (hc
->hw
.nt_timer
< 0) {
979 test_and_clear_bit(FLG_HFC_TIMER_T3
, &dch
->Flags
);
980 test_and_clear_bit(FLG_HFC_TIMER_T1
, &dch
->Flags
);
981 hc
->hw
.int_m1
&= ~HFCPCI_INTS_TIMER
;
982 Write_hfc(hc
, HFCPCI_INT_M1
, hc
->hw
.int_m1
);
983 /* Clear already pending ints */
984 val
= Read_hfc(hc
, HFCPCI_INT_S1
);
985 Write_hfc(hc
, HFCPCI_STATES
, 4 | HFCPCI_LOAD_STATE
);
987 Write_hfc(hc
, HFCPCI_STATES
, 4);
989 } else if (hc
->hw
.nt_timer
== 0) {
990 hc
->hw
.int_m1
|= HFCPCI_INTS_TIMER
;
991 Write_hfc(hc
, HFCPCI_INT_M1
, hc
->hw
.int_m1
);
992 hc
->hw
.nt_timer
= NT_T1_COUNT
;
993 hc
->hw
.ctmt
&= ~HFCPCI_AUTO_TIMER
;
994 hc
->hw
.ctmt
|= HFCPCI_TIM3_125
;
995 Write_hfc(hc
, HFCPCI_CTMT
, hc
->hw
.ctmt
|
997 test_and_clear_bit(FLG_HFC_TIMER_T3
, &dch
->Flags
);
998 test_and_set_bit(FLG_HFC_TIMER_T1
, &dch
->Flags
);
999 /* allow G2 -> G3 transition */
1000 Write_hfc(hc
, HFCPCI_STATES
, 2 | HFCPCI_NT_G2_G3
);
1002 Write_hfc(hc
, HFCPCI_STATES
, 2 | HFCPCI_NT_G2_G3
);
1006 hc
->hw
.nt_timer
= 0;
1007 test_and_clear_bit(FLG_HFC_TIMER_T3
, &dch
->Flags
);
1008 test_and_clear_bit(FLG_HFC_TIMER_T1
, &dch
->Flags
);
1009 hc
->hw
.int_m1
&= ~HFCPCI_INTS_TIMER
;
1010 Write_hfc(hc
, HFCPCI_INT_M1
, hc
->hw
.int_m1
);
1011 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
1012 hc
->hw
.mst_m
&= ~HFCPCI_MASTER
;
1013 Write_hfc(hc
, HFCPCI_MST_MODE
, hc
->hw
.mst_m
);
1014 test_and_clear_bit(FLG_L2_ACTIVATED
, &dch
->Flags
);
1015 _queue_data(&dch
->dev
.D
, PH_DEACTIVATE_IND
,
1016 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
1019 hc
->hw
.nt_timer
= 0;
1020 test_and_clear_bit(FLG_HFC_TIMER_T3
, &dch
->Flags
);
1021 test_and_clear_bit(FLG_HFC_TIMER_T1
, &dch
->Flags
);
1022 hc
->hw
.int_m1
&= ~HFCPCI_INTS_TIMER
;
1023 Write_hfc(hc
, HFCPCI_INT_M1
, hc
->hw
.int_m1
);
1026 if (!test_and_set_bit(FLG_HFC_TIMER_T3
, &dch
->Flags
)) {
1027 if (!test_and_clear_bit(FLG_L2_ACTIVATED
,
1029 handle_nt_timer3(dch
);
1032 test_and_clear_bit(FLG_HFC_TIMER_T1
, &dch
->Flags
);
1033 hc
->hw
.int_m1
|= HFCPCI_INTS_TIMER
;
1034 Write_hfc(hc
, HFCPCI_INT_M1
, hc
->hw
.int_m1
);
1035 hc
->hw
.nt_timer
= NT_T3_COUNT
;
1036 hc
->hw
.ctmt
&= ~HFCPCI_AUTO_TIMER
;
1037 hc
->hw
.ctmt
|= HFCPCI_TIM3_125
;
1038 Write_hfc(hc
, HFCPCI_CTMT
, hc
->hw
.ctmt
|
1046 ph_state(struct dchannel
*dch
)
1048 struct hfc_pci
*hc
= dch
->hw
;
1050 if (hc
->hw
.protocol
== ISDN_P_NT_S0
) {
1051 if (test_bit(FLG_HFC_TIMER_T3
, &dch
->Flags
) &&
1052 hc
->hw
.nt_timer
< 0)
1053 handle_nt_timer3(dch
);
1061 * Layer 1 callback function
1064 hfc_l1callback(struct dchannel
*dch
, u_int cmd
)
1066 struct hfc_pci
*hc
= dch
->hw
;
1071 if (test_bit(HFC_CFG_MASTER
, &hc
->cfg
))
1072 hc
->hw
.mst_m
|= HFCPCI_MASTER
;
1073 Write_hfc(hc
, HFCPCI_MST_MODE
, hc
->hw
.mst_m
);
1076 Write_hfc(hc
, HFCPCI_STATES
, HFCPCI_LOAD_STATE
| 3);
1079 Write_hfc(hc
, HFCPCI_STATES
, 3); /* HFC ST 2 */
1080 if (test_bit(HFC_CFG_MASTER
, &hc
->cfg
))
1081 hc
->hw
.mst_m
|= HFCPCI_MASTER
;
1082 Write_hfc(hc
, HFCPCI_MST_MODE
, hc
->hw
.mst_m
);
1083 Write_hfc(hc
, HFCPCI_STATES
, HFCPCI_ACTIVATE
|
1085 l1_event(dch
->l1
, HW_POWERUP_IND
);
1088 hc
->hw
.mst_m
&= ~HFCPCI_MASTER
;
1089 Write_hfc(hc
, HFCPCI_MST_MODE
, hc
->hw
.mst_m
);
1090 skb_queue_purge(&dch
->squeue
);
1092 dev_kfree_skb(dch
->tx_skb
);
1097 dev_kfree_skb(dch
->rx_skb
);
1100 test_and_clear_bit(FLG_TX_BUSY
, &dch
->Flags
);
1101 if (test_and_clear_bit(FLG_BUSY_TIMER
, &dch
->Flags
))
1102 del_timer(&dch
->timer
);
1104 case HW_POWERUP_REQ
:
1105 Write_hfc(hc
, HFCPCI_STATES
, HFCPCI_DO_ACTION
);
1107 case PH_ACTIVATE_IND
:
1108 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
1109 _queue_data(&dch
->dev
.D
, cmd
, MISDN_ID_ANY
, 0, NULL
,
1112 case PH_DEACTIVATE_IND
:
1113 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
1114 _queue_data(&dch
->dev
.D
, cmd
, MISDN_ID_ANY
, 0, NULL
,
1118 if (dch
->debug
& DEBUG_HW
)
1119 printk(KERN_DEBUG
"%s: unknown command %x\n",
1130 tx_birq(struct bchannel
*bch
)
1132 if (bch
->tx_skb
&& bch
->tx_idx
< bch
->tx_skb
->len
)
1133 hfcpci_fill_fifo(bch
);
1136 dev_kfree_skb(bch
->tx_skb
);
1137 if (get_next_bframe(bch
))
1138 hfcpci_fill_fifo(bch
);
1143 tx_dirq(struct dchannel
*dch
)
1145 if (dch
->tx_skb
&& dch
->tx_idx
< dch
->tx_skb
->len
)
1146 hfcpci_fill_dfifo(dch
->hw
);
1149 dev_kfree_skb(dch
->tx_skb
);
1150 if (get_next_dframe(dch
))
1151 hfcpci_fill_dfifo(dch
->hw
);
1156 hfcpci_int(int intno
, void *dev_id
)
1158 struct hfc_pci
*hc
= dev_id
;
1160 struct bchannel
*bch
;
1163 spin_lock(&hc
->lock
);
1164 if (!(hc
->hw
.int_m2
& 0x08)) {
1165 spin_unlock(&hc
->lock
);
1166 return IRQ_NONE
; /* not initialised */
1168 stat
= Read_hfc(hc
, HFCPCI_STATUS
);
1169 if (HFCPCI_ANYINT
& stat
) {
1170 val
= Read_hfc(hc
, HFCPCI_INT_S1
);
1171 if (hc
->dch
.debug
& DEBUG_HW_DCHANNEL
)
1173 "HFC-PCI: stat(%02x) s1(%02x)\n", stat
, val
);
1176 spin_unlock(&hc
->lock
);
1181 if (hc
->dch
.debug
& DEBUG_HW_DCHANNEL
)
1182 printk(KERN_DEBUG
"HFC-PCI irq %x\n", val
);
1183 val
&= hc
->hw
.int_m1
;
1184 if (val
& 0x40) { /* state machine irq */
1185 exval
= Read_hfc(hc
, HFCPCI_STATES
) & 0xf;
1186 if (hc
->dch
.debug
& DEBUG_HW_DCHANNEL
)
1187 printk(KERN_DEBUG
"ph_state chg %d->%d\n",
1188 hc
->dch
.state
, exval
);
1189 hc
->dch
.state
= exval
;
1190 schedule_event(&hc
->dch
, FLG_PHCHANGE
);
1193 if (val
& 0x80) { /* timer irq */
1194 if (hc
->hw
.protocol
== ISDN_P_NT_S0
) {
1195 if ((--hc
->hw
.nt_timer
) < 0)
1196 schedule_event(&hc
->dch
, FLG_PHCHANGE
);
1199 Write_hfc(hc
, HFCPCI_CTMT
, hc
->hw
.ctmt
| HFCPCI_CLTIMER
);
1201 if (val
& 0x08) { /* B1 rx */
1202 bch
= Sel_BCS(hc
, hc
->hw
.bswapped
? 2 : 1);
1204 main_rec_hfcpci(bch
);
1205 else if (hc
->dch
.debug
)
1206 printk(KERN_DEBUG
"hfcpci spurious 0x08 IRQ\n");
1208 if (val
& 0x10) { /* B2 rx */
1209 bch
= Sel_BCS(hc
, 2);
1211 main_rec_hfcpci(bch
);
1212 else if (hc
->dch
.debug
)
1213 printk(KERN_DEBUG
"hfcpci spurious 0x10 IRQ\n");
1215 if (val
& 0x01) { /* B1 tx */
1216 bch
= Sel_BCS(hc
, hc
->hw
.bswapped
? 2 : 1);
1219 else if (hc
->dch
.debug
)
1220 printk(KERN_DEBUG
"hfcpci spurious 0x01 IRQ\n");
1222 if (val
& 0x02) { /* B2 tx */
1223 bch
= Sel_BCS(hc
, 2);
1226 else if (hc
->dch
.debug
)
1227 printk(KERN_DEBUG
"hfcpci spurious 0x02 IRQ\n");
1229 if (val
& 0x20) /* D rx */
1231 if (val
& 0x04) { /* D tx */
1232 if (test_and_clear_bit(FLG_BUSY_TIMER
, &hc
->dch
.Flags
))
1233 del_timer(&hc
->dch
.timer
);
1236 spin_unlock(&hc
->lock
);
1241 * timer callback for D-chan busy resolution. Currently no function
1244 hfcpci_dbusy_timer(struct hfc_pci
*hc
)
1249 * activate/deactivate hardware for selected channels and mode
1252 mode_hfcpci(struct bchannel
*bch
, int bc
, int protocol
)
1254 struct hfc_pci
*hc
= bch
->hw
;
1256 u_char rx_slot
= 0, tx_slot
= 0, pcm_mode
;
1258 if (bch
->debug
& DEBUG_HW_BCHANNEL
)
1260 "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1261 bch
->state
, protocol
, bch
->nr
, bc
);
1264 pcm_mode
= (bc
>>24) & 0xff;
1265 if (pcm_mode
) { /* PCM SLOT USE */
1266 if (!test_bit(HFC_CFG_PCM
, &hc
->cfg
))
1268 "%s: pcm channel id without HFC_CFG_PCM\n",
1270 rx_slot
= (bc
>>8) & 0xff;
1271 tx_slot
= (bc
>>16) & 0xff;
1273 } else if (test_bit(HFC_CFG_PCM
, &hc
->cfg
) && (protocol
> ISDN_P_NONE
))
1274 printk(KERN_WARNING
"%s: no pcm channel id but HFC_CFG_PCM\n",
1276 if (hc
->chanlimit
> 1) {
1277 hc
->hw
.bswapped
= 0; /* B1 and B2 normal mode */
1278 hc
->hw
.sctrl_e
&= ~0x80;
1281 if (protocol
!= ISDN_P_NONE
) {
1282 hc
->hw
.bswapped
= 1; /* B1 and B2 exchanged */
1283 hc
->hw
.sctrl_e
|= 0x80;
1285 hc
->hw
.bswapped
= 0; /* B1 and B2 normal mode */
1286 hc
->hw
.sctrl_e
&= ~0x80;
1290 hc
->hw
.bswapped
= 0; /* B1 and B2 normal mode */
1291 hc
->hw
.sctrl_e
&= ~0x80;
1295 case (-1): /* used for init */
1299 if (bch
->state
== ISDN_P_NONE
)
1302 hc
->hw
.sctrl
&= ~SCTRL_B2_ENA
;
1303 hc
->hw
.sctrl_r
&= ~SCTRL_B2_ENA
;
1305 hc
->hw
.sctrl
&= ~SCTRL_B1_ENA
;
1306 hc
->hw
.sctrl_r
&= ~SCTRL_B1_ENA
;
1309 hc
->hw
.fifo_en
&= ~HFCPCI_FIFOEN_B2
;
1310 hc
->hw
.int_m1
&= ~(HFCPCI_INTS_B2TRANS
+
1313 hc
->hw
.fifo_en
&= ~HFCPCI_FIFOEN_B1
;
1314 hc
->hw
.int_m1
&= ~(HFCPCI_INTS_B1TRANS
+
1317 #ifdef REVERSE_BITORDER
1319 hc
->hw
.cirm
&= 0x7f;
1321 hc
->hw
.cirm
&= 0xbf;
1323 bch
->state
= ISDN_P_NONE
;
1325 test_and_clear_bit(FLG_HDLC
, &bch
->Flags
);
1326 test_and_clear_bit(FLG_TRANSPARENT
, &bch
->Flags
);
1328 case (ISDN_P_B_RAW
):
1329 bch
->state
= protocol
;
1331 hfcpci_clear_fifo_rx(hc
, (fifo2
& 2) ? 1 : 0);
1332 hfcpci_clear_fifo_tx(hc
, (fifo2
& 2) ? 1 : 0);
1334 hc
->hw
.sctrl
|= SCTRL_B2_ENA
;
1335 hc
->hw
.sctrl_r
|= SCTRL_B2_ENA
;
1336 #ifdef REVERSE_BITORDER
1337 hc
->hw
.cirm
|= 0x80;
1340 hc
->hw
.sctrl
|= SCTRL_B1_ENA
;
1341 hc
->hw
.sctrl_r
|= SCTRL_B1_ENA
;
1342 #ifdef REVERSE_BITORDER
1343 hc
->hw
.cirm
|= 0x40;
1347 hc
->hw
.fifo_en
|= HFCPCI_FIFOEN_B2
;
1349 hc
->hw
.int_m1
|= (HFCPCI_INTS_B2TRANS
+
1352 hc
->hw
.conn
&= ~0x18;
1354 hc
->hw
.fifo_en
|= HFCPCI_FIFOEN_B1
;
1356 hc
->hw
.int_m1
|= (HFCPCI_INTS_B1TRANS
+
1359 hc
->hw
.conn
&= ~0x03;
1361 test_and_set_bit(FLG_TRANSPARENT
, &bch
->Flags
);
1363 case (ISDN_P_B_HDLC
):
1364 bch
->state
= protocol
;
1366 hfcpci_clear_fifo_rx(hc
, (fifo2
& 2) ? 1 : 0);
1367 hfcpci_clear_fifo_tx(hc
, (fifo2
& 2) ? 1 : 0);
1369 hc
->hw
.sctrl
|= SCTRL_B2_ENA
;
1370 hc
->hw
.sctrl_r
|= SCTRL_B2_ENA
;
1372 hc
->hw
.sctrl
|= SCTRL_B1_ENA
;
1373 hc
->hw
.sctrl_r
|= SCTRL_B1_ENA
;
1376 hc
->hw
.last_bfifo_cnt
[1] = 0;
1377 hc
->hw
.fifo_en
|= HFCPCI_FIFOEN_B2
;
1378 hc
->hw
.int_m1
|= (HFCPCI_INTS_B2TRANS
+
1381 hc
->hw
.conn
&= ~0x18;
1383 hc
->hw
.last_bfifo_cnt
[0] = 0;
1384 hc
->hw
.fifo_en
|= HFCPCI_FIFOEN_B1
;
1385 hc
->hw
.int_m1
|= (HFCPCI_INTS_B1TRANS
+
1388 hc
->hw
.conn
&= ~0x03;
1390 test_and_set_bit(FLG_HDLC
, &bch
->Flags
);
1393 printk(KERN_DEBUG
"prot not known %x\n", protocol
);
1394 return -ENOPROTOOPT
;
1396 if (test_bit(HFC_CFG_PCM
, &hc
->cfg
)) {
1397 if ((protocol
== ISDN_P_NONE
) ||
1398 (protocol
== -1)) { /* init case */
1402 if (test_bit(HFC_CFG_SW_DD_DU
, &hc
->cfg
)) {
1411 hc
->hw
.conn
&= 0xc7;
1412 hc
->hw
.conn
|= 0x08;
1413 printk(KERN_DEBUG
"%s: Write_hfc: B2_SSL 0x%x\n",
1415 printk(KERN_DEBUG
"%s: Write_hfc: B2_RSL 0x%x\n",
1417 Write_hfc(hc
, HFCPCI_B2_SSL
, tx_slot
);
1418 Write_hfc(hc
, HFCPCI_B2_RSL
, rx_slot
);
1420 hc
->hw
.conn
&= 0xf8;
1421 hc
->hw
.conn
|= 0x01;
1422 printk(KERN_DEBUG
"%s: Write_hfc: B1_SSL 0x%x\n",
1424 printk(KERN_DEBUG
"%s: Write_hfc: B1_RSL 0x%x\n",
1426 Write_hfc(hc
, HFCPCI_B1_SSL
, tx_slot
);
1427 Write_hfc(hc
, HFCPCI_B1_RSL
, rx_slot
);
1430 Write_hfc(hc
, HFCPCI_SCTRL_E
, hc
->hw
.sctrl_e
);
1431 Write_hfc(hc
, HFCPCI_INT_M1
, hc
->hw
.int_m1
);
1432 Write_hfc(hc
, HFCPCI_FIFO_EN
, hc
->hw
.fifo_en
);
1433 Write_hfc(hc
, HFCPCI_SCTRL
, hc
->hw
.sctrl
);
1434 Write_hfc(hc
, HFCPCI_SCTRL_R
, hc
->hw
.sctrl_r
);
1435 Write_hfc(hc
, HFCPCI_CTMT
, hc
->hw
.ctmt
);
1436 Write_hfc(hc
, HFCPCI_CONNECT
, hc
->hw
.conn
);
1437 #ifdef REVERSE_BITORDER
1438 Write_hfc(hc
, HFCPCI_CIRM
, hc
->hw
.cirm
);
1444 set_hfcpci_rxtest(struct bchannel
*bch
, int protocol
, int chan
)
1446 struct hfc_pci
*hc
= bch
->hw
;
1448 if (bch
->debug
& DEBUG_HW_BCHANNEL
)
1450 "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1451 bch
->state
, protocol
, bch
->nr
, chan
);
1452 if (bch
->nr
!= chan
) {
1454 "HFCPCI rxtest wrong channel parameter %x/%x\n",
1459 case (ISDN_P_B_RAW
):
1460 bch
->state
= protocol
;
1461 hfcpci_clear_fifo_rx(hc
, (chan
& 2) ? 1 : 0);
1463 hc
->hw
.sctrl_r
|= SCTRL_B2_ENA
;
1464 hc
->hw
.fifo_en
|= HFCPCI_FIFOEN_B2RX
;
1466 hc
->hw
.int_m1
|= HFCPCI_INTS_B2REC
;
1468 hc
->hw
.conn
&= ~0x18;
1469 #ifdef REVERSE_BITORDER
1470 hc
->hw
.cirm
|= 0x80;
1473 hc
->hw
.sctrl_r
|= SCTRL_B1_ENA
;
1474 hc
->hw
.fifo_en
|= HFCPCI_FIFOEN_B1RX
;
1476 hc
->hw
.int_m1
|= HFCPCI_INTS_B1REC
;
1478 hc
->hw
.conn
&= ~0x03;
1479 #ifdef REVERSE_BITORDER
1480 hc
->hw
.cirm
|= 0x40;
1484 case (ISDN_P_B_HDLC
):
1485 bch
->state
= protocol
;
1486 hfcpci_clear_fifo_rx(hc
, (chan
& 2) ? 1 : 0);
1488 hc
->hw
.sctrl_r
|= SCTRL_B2_ENA
;
1489 hc
->hw
.last_bfifo_cnt
[1] = 0;
1490 hc
->hw
.fifo_en
|= HFCPCI_FIFOEN_B2RX
;
1491 hc
->hw
.int_m1
|= HFCPCI_INTS_B2REC
;
1493 hc
->hw
.conn
&= ~0x18;
1495 hc
->hw
.sctrl_r
|= SCTRL_B1_ENA
;
1496 hc
->hw
.last_bfifo_cnt
[0] = 0;
1497 hc
->hw
.fifo_en
|= HFCPCI_FIFOEN_B1RX
;
1498 hc
->hw
.int_m1
|= HFCPCI_INTS_B1REC
;
1500 hc
->hw
.conn
&= ~0x03;
1504 printk(KERN_DEBUG
"prot not known %x\n", protocol
);
1505 return -ENOPROTOOPT
;
1507 Write_hfc(hc
, HFCPCI_INT_M1
, hc
->hw
.int_m1
);
1508 Write_hfc(hc
, HFCPCI_FIFO_EN
, hc
->hw
.fifo_en
);
1509 Write_hfc(hc
, HFCPCI_SCTRL_R
, hc
->hw
.sctrl_r
);
1510 Write_hfc(hc
, HFCPCI_CTMT
, hc
->hw
.ctmt
);
1511 Write_hfc(hc
, HFCPCI_CONNECT
, hc
->hw
.conn
);
1512 #ifdef REVERSE_BITORDER
1513 Write_hfc(hc
, HFCPCI_CIRM
, hc
->hw
.cirm
);
1519 deactivate_bchannel(struct bchannel
*bch
)
1521 struct hfc_pci
*hc
= bch
->hw
;
1524 spin_lock_irqsave(&hc
->lock
, flags
);
1525 mISDN_clear_bchannel(bch
);
1526 mode_hfcpci(bch
, bch
->nr
, ISDN_P_NONE
);
1527 spin_unlock_irqrestore(&hc
->lock
, flags
);
1531 * Layer 1 B-channel hardware access
1534 channel_bctrl(struct bchannel
*bch
, struct mISDN_ctrl_req
*cq
)
1539 case MISDN_CTRL_GETOP
:
1540 cq
->op
= MISDN_CTRL_FILL_EMPTY
;
1542 case MISDN_CTRL_FILL_EMPTY
: /* fill fifo, if empty */
1543 test_and_set_bit(FLG_FILLEMPTY
, &bch
->Flags
);
1544 if (debug
& DEBUG_HW_OPEN
)
1545 printk(KERN_DEBUG
"%s: FILL_EMPTY request (nr=%d "
1546 "off=%d)\n", __func__
, bch
->nr
, !!cq
->p1
);
1549 printk(KERN_WARNING
"%s: unknown Op %x\n", __func__
, cq
->op
);
1556 hfc_bctrl(struct mISDNchannel
*ch
, u_int cmd
, void *arg
)
1558 struct bchannel
*bch
= container_of(ch
, struct bchannel
, ch
);
1559 struct hfc_pci
*hc
= bch
->hw
;
1563 if (bch
->debug
& DEBUG_HW
)
1564 printk(KERN_DEBUG
"%s: cmd:%x %p\n", __func__
, cmd
, arg
);
1567 spin_lock_irqsave(&hc
->lock
, flags
);
1568 ret
= set_hfcpci_rxtest(bch
, ISDN_P_B_RAW
, (int)(long)arg
);
1569 spin_unlock_irqrestore(&hc
->lock
, flags
);
1571 case HW_TESTRX_HDLC
:
1572 spin_lock_irqsave(&hc
->lock
, flags
);
1573 ret
= set_hfcpci_rxtest(bch
, ISDN_P_B_HDLC
, (int)(long)arg
);
1574 spin_unlock_irqrestore(&hc
->lock
, flags
);
1577 spin_lock_irqsave(&hc
->lock
, flags
);
1578 mode_hfcpci(bch
, bch
->nr
, ISDN_P_NONE
);
1579 spin_unlock_irqrestore(&hc
->lock
, flags
);
1583 test_and_clear_bit(FLG_OPEN
, &bch
->Flags
);
1584 if (test_bit(FLG_ACTIVE
, &bch
->Flags
))
1585 deactivate_bchannel(bch
);
1586 ch
->protocol
= ISDN_P_NONE
;
1588 module_put(THIS_MODULE
);
1591 case CONTROL_CHANNEL
:
1592 ret
= channel_bctrl(bch
, arg
);
1595 printk(KERN_WARNING
"%s: unknown prim(%x)\n",
1602 * Layer2 -> Layer 1 Dchannel data
1605 hfcpci_l2l1D(struct mISDNchannel
*ch
, struct sk_buff
*skb
)
1607 struct mISDNdevice
*dev
= container_of(ch
, struct mISDNdevice
, D
);
1608 struct dchannel
*dch
= container_of(dev
, struct dchannel
, dev
);
1609 struct hfc_pci
*hc
= dch
->hw
;
1611 struct mISDNhead
*hh
= mISDN_HEAD_P(skb
);
1617 spin_lock_irqsave(&hc
->lock
, flags
);
1618 ret
= dchannel_senddata(dch
, skb
);
1619 if (ret
> 0) { /* direct TX */
1620 id
= hh
->id
; /* skb can be freed */
1621 hfcpci_fill_dfifo(dch
->hw
);
1623 spin_unlock_irqrestore(&hc
->lock
, flags
);
1624 queue_ch_frame(ch
, PH_DATA_CNF
, id
, NULL
);
1626 spin_unlock_irqrestore(&hc
->lock
, flags
);
1628 case PH_ACTIVATE_REQ
:
1629 spin_lock_irqsave(&hc
->lock
, flags
);
1630 if (hc
->hw
.protocol
== ISDN_P_NT_S0
) {
1632 if (test_bit(HFC_CFG_MASTER
, &hc
->cfg
))
1633 hc
->hw
.mst_m
|= HFCPCI_MASTER
;
1634 Write_hfc(hc
, HFCPCI_MST_MODE
, hc
->hw
.mst_m
);
1635 if (test_bit(FLG_ACTIVE
, &dch
->Flags
)) {
1636 spin_unlock_irqrestore(&hc
->lock
, flags
);
1637 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
,
1638 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
1641 test_and_set_bit(FLG_L2_ACTIVATED
, &dch
->Flags
);
1642 Write_hfc(hc
, HFCPCI_STATES
, HFCPCI_ACTIVATE
|
1643 HFCPCI_DO_ACTION
| 1);
1645 ret
= l1_event(dch
->l1
, hh
->prim
);
1646 spin_unlock_irqrestore(&hc
->lock
, flags
);
1648 case PH_DEACTIVATE_REQ
:
1649 test_and_clear_bit(FLG_L2_ACTIVATED
, &dch
->Flags
);
1650 spin_lock_irqsave(&hc
->lock
, flags
);
1651 if (hc
->hw
.protocol
== ISDN_P_NT_S0
) {
1652 /* prepare deactivation */
1653 Write_hfc(hc
, HFCPCI_STATES
, 0x40);
1654 skb_queue_purge(&dch
->squeue
);
1656 dev_kfree_skb(dch
->tx_skb
);
1661 dev_kfree_skb(dch
->rx_skb
);
1664 test_and_clear_bit(FLG_TX_BUSY
, &dch
->Flags
);
1665 if (test_and_clear_bit(FLG_BUSY_TIMER
, &dch
->Flags
))
1666 del_timer(&dch
->timer
);
1668 if (test_and_clear_bit(FLG_L1_BUSY
, &dch
->Flags
))
1669 dchannel_sched_event(&hc
->dch
, D_CLEARBUSY
);
1671 hc
->hw
.mst_m
&= ~HFCPCI_MASTER
;
1672 Write_hfc(hc
, HFCPCI_MST_MODE
, hc
->hw
.mst_m
);
1675 ret
= l1_event(dch
->l1
, hh
->prim
);
1677 spin_unlock_irqrestore(&hc
->lock
, flags
);
1686 * Layer2 -> Layer 1 Bchannel data
1689 hfcpci_l2l1B(struct mISDNchannel
*ch
, struct sk_buff
*skb
)
1691 struct bchannel
*bch
= container_of(ch
, struct bchannel
, ch
);
1692 struct hfc_pci
*hc
= bch
->hw
;
1694 struct mISDNhead
*hh
= mISDN_HEAD_P(skb
);
1700 spin_lock_irqsave(&hc
->lock
, flags
);
1701 ret
= bchannel_senddata(bch
, skb
);
1702 if (ret
> 0) { /* direct TX */
1703 id
= hh
->id
; /* skb can be freed */
1704 hfcpci_fill_fifo(bch
);
1706 spin_unlock_irqrestore(&hc
->lock
, flags
);
1707 if (!test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
1708 queue_ch_frame(ch
, PH_DATA_CNF
, id
, NULL
);
1710 spin_unlock_irqrestore(&hc
->lock
, flags
);
1712 case PH_ACTIVATE_REQ
:
1713 spin_lock_irqsave(&hc
->lock
, flags
);
1714 if (!test_and_set_bit(FLG_ACTIVE
, &bch
->Flags
))
1715 ret
= mode_hfcpci(bch
, bch
->nr
, ch
->protocol
);
1718 spin_unlock_irqrestore(&hc
->lock
, flags
);
1720 _queue_data(ch
, PH_ACTIVATE_IND
, MISDN_ID_ANY
, 0,
1723 case PH_DEACTIVATE_REQ
:
1724 deactivate_bchannel(bch
);
1725 _queue_data(ch
, PH_DEACTIVATE_IND
, MISDN_ID_ANY
, 0,
1736 * called for card init message
1740 inithfcpci(struct hfc_pci
*hc
)
1742 printk(KERN_DEBUG
"inithfcpci: entered\n");
1743 hc
->dch
.timer
.function
= (void *) hfcpci_dbusy_timer
;
1744 hc
->dch
.timer
.data
= (long) &hc
->dch
;
1745 init_timer(&hc
->dch
.timer
);
1747 mode_hfcpci(&hc
->bch
[0], 1, -1);
1748 mode_hfcpci(&hc
->bch
[1], 2, -1);
1753 init_card(struct hfc_pci
*hc
)
1758 printk(KERN_DEBUG
"init_card: entered\n");
1761 spin_lock_irqsave(&hc
->lock
, flags
);
1763 spin_unlock_irqrestore(&hc
->lock
, flags
);
1764 if (request_irq(hc
->irq
, hfcpci_int
, IRQF_SHARED
, "HFC PCI", hc
)) {
1766 "mISDN: couldn't get interrupt %d\n", hc
->irq
);
1769 spin_lock_irqsave(&hc
->lock
, flags
);
1774 * Finally enable IRQ output
1775 * this is only allowed, if an IRQ routine is allready
1776 * established for this HFC, so don't do that earlier
1779 spin_unlock_irqrestore(&hc
->lock
, flags
);
1781 current
->state
= TASK_UNINTERRUPTIBLE
;
1782 schedule_timeout((80*HZ
)/1000);
1783 printk(KERN_INFO
"HFC PCI: IRQ %d count %d\n",
1784 hc
->irq
, hc
->irqcnt
);
1785 /* now switch timer interrupt off */
1786 spin_lock_irqsave(&hc
->lock
, flags
);
1787 hc
->hw
.int_m1
&= ~HFCPCI_INTS_TIMER
;
1788 Write_hfc(hc
, HFCPCI_INT_M1
, hc
->hw
.int_m1
);
1789 /* reinit mode reg */
1790 Write_hfc(hc
, HFCPCI_MST_MODE
, hc
->hw
.mst_m
);
1793 "HFC PCI: IRQ(%d) getting no interrupts "
1794 "during init %d\n", hc
->irq
, 4 - cnt
);
1802 spin_unlock_irqrestore(&hc
->lock
, flags
);
1808 spin_unlock_irqrestore(&hc
->lock
, flags
);
1809 free_irq(hc
->irq
, hc
);
1814 channel_ctrl(struct hfc_pci
*hc
, struct mISDN_ctrl_req
*cq
)
1820 case MISDN_CTRL_GETOP
:
1821 cq
->op
= MISDN_CTRL_LOOP
| MISDN_CTRL_CONNECT
|
1822 MISDN_CTRL_DISCONNECT
;
1824 case MISDN_CTRL_LOOP
:
1825 /* channel 0 disabled loop */
1826 if (cq
->channel
< 0 || cq
->channel
> 2) {
1830 if (cq
->channel
& 1) {
1831 if (test_bit(HFC_CFG_SW_DD_DU
, &hc
->cfg
))
1835 printk(KERN_DEBUG
"%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1837 Write_hfc(hc
, HFCPCI_B1_SSL
, slot
);
1838 Write_hfc(hc
, HFCPCI_B1_RSL
, slot
);
1839 hc
->hw
.conn
= (hc
->hw
.conn
& ~7) | 6;
1840 Write_hfc(hc
, HFCPCI_CONNECT
, hc
->hw
.conn
);
1842 if (cq
->channel
& 2) {
1843 if (test_bit(HFC_CFG_SW_DD_DU
, &hc
->cfg
))
1847 printk(KERN_DEBUG
"%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1849 Write_hfc(hc
, HFCPCI_B2_SSL
, slot
);
1850 Write_hfc(hc
, HFCPCI_B2_RSL
, slot
);
1851 hc
->hw
.conn
= (hc
->hw
.conn
& ~0x38) | 0x30;
1852 Write_hfc(hc
, HFCPCI_CONNECT
, hc
->hw
.conn
);
1854 if (cq
->channel
& 3)
1855 hc
->hw
.trm
|= 0x80; /* enable IOM-loop */
1857 hc
->hw
.conn
= (hc
->hw
.conn
& ~0x3f) | 0x09;
1858 Write_hfc(hc
, HFCPCI_CONNECT
, hc
->hw
.conn
);
1859 hc
->hw
.trm
&= 0x7f; /* disable IOM-loop */
1861 Write_hfc(hc
, HFCPCI_TRM
, hc
->hw
.trm
);
1863 case MISDN_CTRL_CONNECT
:
1864 if (cq
->channel
== cq
->p1
) {
1868 if (cq
->channel
< 1 || cq
->channel
> 2 ||
1869 cq
->p1
< 1 || cq
->p1
> 2) {
1873 if (test_bit(HFC_CFG_SW_DD_DU
, &hc
->cfg
))
1877 printk(KERN_DEBUG
"%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1879 Write_hfc(hc
, HFCPCI_B1_SSL
, slot
);
1880 Write_hfc(hc
, HFCPCI_B2_RSL
, slot
);
1881 if (test_bit(HFC_CFG_SW_DD_DU
, &hc
->cfg
))
1885 printk(KERN_DEBUG
"%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1887 Write_hfc(hc
, HFCPCI_B2_SSL
, slot
);
1888 Write_hfc(hc
, HFCPCI_B1_RSL
, slot
);
1889 hc
->hw
.conn
= (hc
->hw
.conn
& ~0x3f) | 0x36;
1890 Write_hfc(hc
, HFCPCI_CONNECT
, hc
->hw
.conn
);
1892 Write_hfc(hc
, HFCPCI_TRM
, hc
->hw
.trm
);
1894 case MISDN_CTRL_DISCONNECT
:
1895 hc
->hw
.conn
= (hc
->hw
.conn
& ~0x3f) | 0x09;
1896 Write_hfc(hc
, HFCPCI_CONNECT
, hc
->hw
.conn
);
1897 hc
->hw
.trm
&= 0x7f; /* disable IOM-loop */
1900 printk(KERN_WARNING
"%s: unknown Op %x\n",
1909 open_dchannel(struct hfc_pci
*hc
, struct mISDNchannel
*ch
,
1910 struct channel_req
*rq
)
1914 if (debug
& DEBUG_HW_OPEN
)
1915 printk(KERN_DEBUG
"%s: dev(%d) open from %p\n", __func__
,
1916 hc
->dch
.dev
.id
, __builtin_return_address(0));
1917 if (rq
->protocol
== ISDN_P_NONE
)
1919 if (rq
->adr
.channel
== 1) {
1920 /* TODO: E-Channel */
1923 if (!hc
->initdone
) {
1924 if (rq
->protocol
== ISDN_P_TE_S0
) {
1925 err
= create_l1(&hc
->dch
, hfc_l1callback
);
1929 hc
->hw
.protocol
= rq
->protocol
;
1930 ch
->protocol
= rq
->protocol
;
1931 err
= init_card(hc
);
1935 if (rq
->protocol
!= ch
->protocol
) {
1936 if (hc
->hw
.protocol
== ISDN_P_TE_S0
)
1937 l1_event(hc
->dch
.l1
, CLOSE_CHANNEL
);
1938 if (rq
->protocol
== ISDN_P_TE_S0
) {
1939 err
= create_l1(&hc
->dch
, hfc_l1callback
);
1943 hc
->hw
.protocol
= rq
->protocol
;
1944 ch
->protocol
= rq
->protocol
;
1949 if (((ch
->protocol
== ISDN_P_NT_S0
) && (hc
->dch
.state
== 3)) ||
1950 ((ch
->protocol
== ISDN_P_TE_S0
) && (hc
->dch
.state
== 7))) {
1951 _queue_data(ch
, PH_ACTIVATE_IND
, MISDN_ID_ANY
,
1952 0, NULL
, GFP_KERNEL
);
1955 if (!try_module_get(THIS_MODULE
))
1956 printk(KERN_WARNING
"%s:cannot get module\n", __func__
);
1961 open_bchannel(struct hfc_pci
*hc
, struct channel_req
*rq
)
1963 struct bchannel
*bch
;
1965 if (rq
->adr
.channel
> 2)
1967 if (rq
->protocol
== ISDN_P_NONE
)
1969 bch
= &hc
->bch
[rq
->adr
.channel
- 1];
1970 if (test_and_set_bit(FLG_OPEN
, &bch
->Flags
))
1971 return -EBUSY
; /* b-channel can be only open once */
1972 test_and_clear_bit(FLG_FILLEMPTY
, &bch
->Flags
);
1973 bch
->ch
.protocol
= rq
->protocol
;
1974 rq
->ch
= &bch
->ch
; /* TODO: E-channel */
1975 if (!try_module_get(THIS_MODULE
))
1976 printk(KERN_WARNING
"%s:cannot get module\n", __func__
);
1981 * device control function
1984 hfc_dctrl(struct mISDNchannel
*ch
, u_int cmd
, void *arg
)
1986 struct mISDNdevice
*dev
= container_of(ch
, struct mISDNdevice
, D
);
1987 struct dchannel
*dch
= container_of(dev
, struct dchannel
, dev
);
1988 struct hfc_pci
*hc
= dch
->hw
;
1989 struct channel_req
*rq
;
1992 if (dch
->debug
& DEBUG_HW
)
1993 printk(KERN_DEBUG
"%s: cmd:%x %p\n",
1994 __func__
, cmd
, arg
);
1998 if ((rq
->protocol
== ISDN_P_TE_S0
) ||
1999 (rq
->protocol
== ISDN_P_NT_S0
))
2000 err
= open_dchannel(hc
, ch
, rq
);
2002 err
= open_bchannel(hc
, rq
);
2005 if (debug
& DEBUG_HW_OPEN
)
2006 printk(KERN_DEBUG
"%s: dev(%d) close from %p\n",
2007 __func__
, hc
->dch
.dev
.id
,
2008 __builtin_return_address(0));
2009 module_put(THIS_MODULE
);
2011 case CONTROL_CHANNEL
:
2012 err
= channel_ctrl(hc
, arg
);
2015 if (dch
->debug
& DEBUG_HW
)
2016 printk(KERN_DEBUG
"%s: unknown command %x\n",
2024 setup_hw(struct hfc_pci
*hc
)
2028 printk(KERN_INFO
"mISDN: HFC-PCI driver %s\n", hfcpci_revision
);
2031 pci_set_master(hc
->pdev
);
2033 printk(KERN_WARNING
"HFC-PCI: No IRQ for PCI card found\n");
2037 (char __iomem
*)(unsigned long)hc
->pdev
->resource
[1].start
;
2039 if (!hc
->hw
.pci_io
) {
2040 printk(KERN_WARNING
"HFC-PCI: No IO-Mem for PCI card found\n");
2043 /* Allocate memory for FIFOS */
2044 /* the memory needs to be on a 32k boundary within the first 4G */
2045 pci_set_dma_mask(hc
->pdev
, 0xFFFF8000);
2046 buffer
= pci_alloc_consistent(hc
->pdev
, 0x8000, &hc
->hw
.dmahandle
);
2047 /* We silently assume the address is okay if nonzero */
2050 "HFC-PCI: Error allocating memory for FIFO!\n");
2053 hc
->hw
.fifos
= buffer
;
2054 pci_write_config_dword(hc
->pdev
, 0x80, hc
->hw
.dmahandle
);
2055 hc
->hw
.pci_io
= ioremap((ulong
) hc
->hw
.pci_io
, 256);
2057 "HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n",
2058 (u_long
) hc
->hw
.pci_io
, (u_long
) hc
->hw
.fifos
,
2059 (u_long
) hc
->hw
.dmahandle
, hc
->irq
, HZ
);
2060 /* enable memory mapped ports, disable busmaster */
2061 pci_write_config_word(hc
->pdev
, PCI_COMMAND
, PCI_ENA_MEMIO
);
2065 Write_hfc(hc
, HFCPCI_INT_M1
, hc
->hw
.int_m1
);
2066 /* At this point the needed PCI config is done */
2067 /* fifos are still not enabled */
2068 hc
->hw
.timer
.function
= (void *) hfcpci_Timer
;
2069 hc
->hw
.timer
.data
= (long) hc
;
2070 init_timer(&hc
->hw
.timer
);
2071 /* default PCM master */
2072 test_and_set_bit(HFC_CFG_MASTER
, &hc
->cfg
);
2077 release_card(struct hfc_pci
*hc
) {
2080 spin_lock_irqsave(&hc
->lock
, flags
);
2081 hc
->hw
.int_m2
= 0; /* interrupt output off ! */
2083 mode_hfcpci(&hc
->bch
[0], 1, ISDN_P_NONE
);
2084 mode_hfcpci(&hc
->bch
[1], 2, ISDN_P_NONE
);
2085 if (hc
->dch
.timer
.function
!= NULL
) {
2086 del_timer(&hc
->dch
.timer
);
2087 hc
->dch
.timer
.function
= NULL
;
2089 spin_unlock_irqrestore(&hc
->lock
, flags
);
2090 if (hc
->hw
.protocol
== ISDN_P_TE_S0
)
2091 l1_event(hc
->dch
.l1
, CLOSE_CHANNEL
);
2093 free_irq(hc
->irq
, hc
);
2094 release_io_hfcpci(hc
); /* must release after free_irq! */
2095 mISDN_unregister_device(&hc
->dch
.dev
);
2096 mISDN_freebchannel(&hc
->bch
[1]);
2097 mISDN_freebchannel(&hc
->bch
[0]);
2098 mISDN_freedchannel(&hc
->dch
);
2099 pci_set_drvdata(hc
->pdev
, NULL
);
2104 setup_card(struct hfc_pci
*card
)
2108 char name
[MISDN_MAX_IDLEN
];
2110 card
->dch
.debug
= debug
;
2111 spin_lock_init(&card
->lock
);
2112 mISDN_initdchannel(&card
->dch
, MAX_DFRAME_LEN_L1
, ph_state
);
2113 card
->dch
.hw
= card
;
2114 card
->dch
.dev
.Dprotocols
= (1 << ISDN_P_TE_S0
) | (1 << ISDN_P_NT_S0
);
2115 card
->dch
.dev
.Bprotocols
= (1 << (ISDN_P_B_RAW
& ISDN_P_B_MASK
)) |
2116 (1 << (ISDN_P_B_HDLC
& ISDN_P_B_MASK
));
2117 card
->dch
.dev
.D
.send
= hfcpci_l2l1D
;
2118 card
->dch
.dev
.D
.ctrl
= hfc_dctrl
;
2119 card
->dch
.dev
.nrbchan
= 2;
2120 for (i
= 0; i
< 2; i
++) {
2121 card
->bch
[i
].nr
= i
+ 1;
2122 set_channelmap(i
+ 1, card
->dch
.dev
.channelmap
);
2123 card
->bch
[i
].debug
= debug
;
2124 mISDN_initbchannel(&card
->bch
[i
], MAX_DATA_MEM
);
2125 card
->bch
[i
].hw
= card
;
2126 card
->bch
[i
].ch
.send
= hfcpci_l2l1B
;
2127 card
->bch
[i
].ch
.ctrl
= hfc_bctrl
;
2128 card
->bch
[i
].ch
.nr
= i
+ 1;
2129 list_add(&card
->bch
[i
].ch
.list
, &card
->dch
.dev
.bchannels
);
2131 err
= setup_hw(card
);
2134 snprintf(name
, MISDN_MAX_IDLEN
- 1, "hfc-pci.%d", HFC_cnt
+ 1);
2135 err
= mISDN_register_device(&card
->dch
.dev
, &card
->pdev
->dev
, name
);
2139 printk(KERN_INFO
"HFC %d cards installed\n", HFC_cnt
);
2142 mISDN_freebchannel(&card
->bch
[1]);
2143 mISDN_freebchannel(&card
->bch
[0]);
2144 mISDN_freedchannel(&card
->dch
);
2149 /* private data in the PCI devices list */
2156 static const struct _hfc_map hfc_map
[] =
2158 {HFC_CCD_2BD0
, 0, "CCD/Billion/Asuscom 2BD0"},
2159 {HFC_CCD_B000
, 0, "Billion B000"},
2160 {HFC_CCD_B006
, 0, "Billion B006"},
2161 {HFC_CCD_B007
, 0, "Billion B007"},
2162 {HFC_CCD_B008
, 0, "Billion B008"},
2163 {HFC_CCD_B009
, 0, "Billion B009"},
2164 {HFC_CCD_B00A
, 0, "Billion B00A"},
2165 {HFC_CCD_B00B
, 0, "Billion B00B"},
2166 {HFC_CCD_B00C
, 0, "Billion B00C"},
2167 {HFC_CCD_B100
, 0, "Seyeon B100"},
2168 {HFC_CCD_B700
, 0, "Primux II S0 B700"},
2169 {HFC_CCD_B701
, 0, "Primux II S0 NT B701"},
2170 {HFC_ABOCOM_2BD1
, 0, "Abocom/Magitek 2BD1"},
2171 {HFC_ASUS_0675
, 0, "Asuscom/Askey 675"},
2172 {HFC_BERKOM_TCONCEPT
, 0, "German telekom T-Concept"},
2173 {HFC_BERKOM_A1T
, 0, "German telekom A1T"},
2174 {HFC_ANIGMA_MC145575
, 0, "Motorola MC145575"},
2175 {HFC_ZOLTRIX_2BD0
, 0, "Zoltrix 2BD0"},
2176 {HFC_DIGI_DF_M_IOM2_E
, 0,
2177 "Digi International DataFire Micro V IOM2 (Europe)"},
2178 {HFC_DIGI_DF_M_E
, 0,
2179 "Digi International DataFire Micro V (Europe)"},
2180 {HFC_DIGI_DF_M_IOM2_A
, 0,
2181 "Digi International DataFire Micro V IOM2 (North America)"},
2182 {HFC_DIGI_DF_M_A
, 0,
2183 "Digi International DataFire Micro V (North America)"},
2184 {HFC_SITECOM_DC105V2
, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2188 static struct pci_device_id hfc_ids
[] =
2190 {PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_2BD0
,
2191 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[0]},
2192 {PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_B000
,
2193 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[1]},
2194 {PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_B006
,
2195 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[2]},
2196 {PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_B007
,
2197 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[3]},
2198 {PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_B008
,
2199 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[4]},
2200 {PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_B009
,
2201 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[5]},
2202 {PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_B00A
,
2203 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[6]},
2204 {PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_B00B
,
2205 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[7]},
2206 {PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_B00C
,
2207 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[8]},
2208 {PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_B100
,
2209 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[9]},
2210 {PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_B700
,
2211 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[10]},
2212 {PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_B701
,
2213 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[11]},
2214 {PCI_VENDOR_ID_ABOCOM
, PCI_DEVICE_ID_ABOCOM_2BD1
,
2215 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[12]},
2216 {PCI_VENDOR_ID_ASUSTEK
, PCI_DEVICE_ID_ASUSTEK_0675
,
2217 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[13]},
2218 {PCI_VENDOR_ID_BERKOM
, PCI_DEVICE_ID_BERKOM_T_CONCEPT
,
2219 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[14]},
2220 {PCI_VENDOR_ID_BERKOM
, PCI_DEVICE_ID_BERKOM_A1T
,
2221 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[15]},
2222 {PCI_VENDOR_ID_ANIGMA
, PCI_DEVICE_ID_ANIGMA_MC145575
,
2223 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[16]},
2224 {PCI_VENDOR_ID_ZOLTRIX
, PCI_DEVICE_ID_ZOLTRIX_2BD0
,
2225 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[17]},
2226 {PCI_VENDOR_ID_DIGI
, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E
,
2227 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[18]},
2228 {PCI_VENDOR_ID_DIGI
, PCI_DEVICE_ID_DIGI_DF_M_E
,
2229 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[19]},
2230 {PCI_VENDOR_ID_DIGI
, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A
,
2231 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[20]},
2232 {PCI_VENDOR_ID_DIGI
, PCI_DEVICE_ID_DIGI_DF_M_A
,
2233 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[21]},
2234 {PCI_VENDOR_ID_SITECOM
, PCI_DEVICE_ID_SITECOM_DC105V2
,
2235 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, (unsigned long) &hfc_map
[22]},
2239 static int __devinit
2240 hfc_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
2243 struct hfc_pci
*card
;
2244 struct _hfc_map
*m
= (struct _hfc_map
*)ent
->driver_data
;
2246 card
= kzalloc(sizeof(struct hfc_pci
), GFP_ATOMIC
);
2248 printk(KERN_ERR
"No kmem for HFC card\n");
2252 card
->subtype
= m
->subtype
;
2253 err
= pci_enable_device(pdev
);
2259 printk(KERN_INFO
"mISDN_hfcpci: found adapter %s at %s\n",
2260 m
->name
, pci_name(pdev
));
2262 card
->irq
= pdev
->irq
;
2263 pci_set_drvdata(pdev
, card
);
2264 err
= setup_card(card
);
2266 pci_set_drvdata(pdev
, NULL
);
2270 static void __devexit
2271 hfc_remove_pci(struct pci_dev
*pdev
)
2273 struct hfc_pci
*card
= pci_get_drvdata(pdev
);
2279 printk(KERN_DEBUG
"%s: drvdata already removed\n",
2284 static struct pci_driver hfc_driver
= {
2287 .remove
= __devexit_p(hfc_remove_pci
),
2288 .id_table
= hfc_ids
,
2292 _hfcpci_softirq(struct device
*dev
, void *arg
)
2294 struct hfc_pci
*hc
= dev_get_drvdata(dev
);
2295 struct bchannel
*bch
;
2299 if (hc
->hw
.int_m2
& HFCPCI_IRQ_ENABLE
) {
2300 spin_lock(&hc
->lock
);
2301 bch
= Sel_BCS(hc
, hc
->hw
.bswapped
? 2 : 1);
2302 if (bch
&& bch
->state
== ISDN_P_B_RAW
) { /* B1 rx&tx */
2303 main_rec_hfcpci(bch
);
2306 bch
= Sel_BCS(hc
, hc
->hw
.bswapped
? 1 : 2);
2307 if (bch
&& bch
->state
== ISDN_P_B_RAW
) { /* B2 rx&tx */
2308 main_rec_hfcpci(bch
);
2311 spin_unlock(&hc
->lock
);
2317 hfcpci_softirq(void *arg
)
2319 (void) driver_for_each_device(&hfc_driver
.driver
, NULL
, arg
,
2322 /* if next event would be in the past ... */
2323 if ((s32
)(hfc_jiffies
+ tics
- jiffies
) <= 0)
2324 hfc_jiffies
= jiffies
+ 1;
2326 hfc_jiffies
+= tics
;
2327 hfc_tl
.expires
= hfc_jiffies
;
2337 poll
= HFCPCI_BTRANS_THRESHOLD
;
2339 if (poll
!= HFCPCI_BTRANS_THRESHOLD
) {
2340 tics
= (poll
* HZ
) / 8000;
2343 poll
= (tics
* 8000) / HZ
;
2344 if (poll
> 256 || poll
< 8) {
2345 printk(KERN_ERR
"%s: Wrong poll value %d not in range "
2346 "of 8..256.\n", __func__
, poll
);
2351 if (poll
!= HFCPCI_BTRANS_THRESHOLD
) {
2352 printk(KERN_INFO
"%s: Using alternative poll value of %d\n",
2354 hfc_tl
.function
= (void *)hfcpci_softirq
;
2356 init_timer(&hfc_tl
);
2357 hfc_tl
.expires
= jiffies
+ tics
;
2358 hfc_jiffies
= hfc_tl
.expires
;
2361 tics
= 0; /* indicate the use of controller's timer */
2363 err
= pci_register_driver(&hfc_driver
);
2365 if (timer_pending(&hfc_tl
))
2375 if (timer_pending(&hfc_tl
))
2378 pci_unregister_driver(&hfc_driver
);
2381 module_init(HFC_init
);
2382 module_exit(HFC_cleanup
);
2384 MODULE_DEVICE_TABLE(pci
, hfc_ids
);