2 * mISDN driver for Colognechip HFC-S USB chip
4 * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5 * Copyright 2008 by Martin Bachem (info@bachem-it.com)
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 * debug=<n>, default=0, with n=0xHHHHGGGG
24 * H - l1 driver flags described in hfcsusb.h
25 * G - common mISDN debug flags described at mISDNhw.h
27 * poll=<n>, default 128
28 * n : burst size of PH_DATA_IND at transparent rx data
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/usb.h>
35 #include <linux/mISDNhw.h>
38 static const char *hfcsusb_rev
= "Revision: 0.3.3 (socket), 2008-11-05";
40 static unsigned int debug
;
41 static int poll
= DEFAULT_TRANSP_BURST_SZ
;
43 static LIST_HEAD(HFClist
);
44 static DEFINE_RWLOCK(HFClock
);
47 MODULE_AUTHOR("Martin Bachem");
48 MODULE_LICENSE("GPL");
49 module_param(debug
, uint
, S_IRUGO
| S_IWUSR
);
50 module_param(poll
, int, 0);
52 static int hfcsusb_cnt
;
54 /* some function prototypes */
55 static void hfcsusb_ph_command(struct hfcsusb
*hw
, u_char command
);
56 static void release_hw(struct hfcsusb
*hw
);
57 static void reset_hfcsusb(struct hfcsusb
*hw
);
58 static void setPortMode(struct hfcsusb
*hw
);
59 static void hfcsusb_start_endpoint(struct hfcsusb
*hw
, int channel
);
60 static void hfcsusb_stop_endpoint(struct hfcsusb
*hw
, int channel
);
61 static int hfcsusb_setup_bch(struct bchannel
*bch
, int protocol
);
62 static void deactivate_bchannel(struct bchannel
*bch
);
63 static void hfcsusb_ph_info(struct hfcsusb
*hw
);
65 /* start next background transfer for control channel */
67 ctrl_start_transfer(struct hfcsusb
*hw
)
69 if (debug
& DBG_HFC_CALL_TRACE
)
70 printk(KERN_DEBUG
"%s: %s\n", hw
->name
, __func__
);
73 hw
->ctrl_urb
->pipe
= hw
->ctrl_out_pipe
;
74 hw
->ctrl_urb
->setup_packet
= (u_char
*)&hw
->ctrl_write
;
75 hw
->ctrl_urb
->transfer_buffer
= NULL
;
76 hw
->ctrl_urb
->transfer_buffer_length
= 0;
77 hw
->ctrl_write
.wIndex
=
78 cpu_to_le16(hw
->ctrl_buff
[hw
->ctrl_out_idx
].hfcs_reg
);
79 hw
->ctrl_write
.wValue
=
80 cpu_to_le16(hw
->ctrl_buff
[hw
->ctrl_out_idx
].reg_val
);
82 usb_submit_urb(hw
->ctrl_urb
, GFP_ATOMIC
);
87 * queue a control transfer request to write HFC-S USB
88 * chip register using CTRL resuest queue
90 static int write_reg(struct hfcsusb
*hw
, __u8 reg
, __u8 val
)
94 if (debug
& DBG_HFC_CALL_TRACE
)
95 printk(KERN_DEBUG
"%s: %s reg(0x%02x) val(0x%02x)\n",
96 hw
->name
, __func__
, reg
, val
);
98 spin_lock(&hw
->ctrl_lock
);
99 if (hw
->ctrl_cnt
>= HFC_CTRL_BUFSIZE
)
101 buf
= &hw
->ctrl_buff
[hw
->ctrl_in_idx
];
104 if (++hw
->ctrl_in_idx
>= HFC_CTRL_BUFSIZE
)
106 if (++hw
->ctrl_cnt
== 1)
107 ctrl_start_transfer(hw
);
108 spin_unlock(&hw
->ctrl_lock
);
113 /* control completion routine handling background control cmds */
115 ctrl_complete(struct urb
*urb
)
117 struct hfcsusb
*hw
= (struct hfcsusb
*) urb
->context
;
118 struct ctrl_buf
*buf
;
120 if (debug
& DBG_HFC_CALL_TRACE
)
121 printk(KERN_DEBUG
"%s: %s\n", hw
->name
, __func__
);
125 buf
= &hw
->ctrl_buff
[hw
->ctrl_out_idx
];
126 hw
->ctrl_cnt
--; /* decrement actual count */
127 if (++hw
->ctrl_out_idx
>= HFC_CTRL_BUFSIZE
)
128 hw
->ctrl_out_idx
= 0; /* pointer wrap */
130 ctrl_start_transfer(hw
); /* start next transfer */
134 /* handle LED bits */
136 set_led_bit(struct hfcsusb
*hw
, signed short led_bits
, int set_on
)
140 hw
->led_state
&= ~abs(led_bits
);
142 hw
->led_state
|= led_bits
;
145 hw
->led_state
|= abs(led_bits
);
147 hw
->led_state
&= ~led_bits
;
151 /* handle LED requests */
153 handle_led(struct hfcsusb
*hw
, int event
)
155 struct hfcsusb_vdata
*driver_info
= (struct hfcsusb_vdata
*)
156 hfcsusb_idtab
[hw
->vend_idx
].driver_info
;
159 if (driver_info
->led_scheme
== LED_OFF
)
161 tmpled
= hw
->led_state
;
165 set_led_bit(hw
, driver_info
->led_bits
[0], 1);
166 set_led_bit(hw
, driver_info
->led_bits
[1], 0);
167 set_led_bit(hw
, driver_info
->led_bits
[2], 0);
168 set_led_bit(hw
, driver_info
->led_bits
[3], 0);
171 set_led_bit(hw
, driver_info
->led_bits
[0], 0);
172 set_led_bit(hw
, driver_info
->led_bits
[1], 0);
173 set_led_bit(hw
, driver_info
->led_bits
[2], 0);
174 set_led_bit(hw
, driver_info
->led_bits
[3], 0);
177 set_led_bit(hw
, driver_info
->led_bits
[1], 1);
180 set_led_bit(hw
, driver_info
->led_bits
[1], 0);
183 set_led_bit(hw
, driver_info
->led_bits
[2], 1);
186 set_led_bit(hw
, driver_info
->led_bits
[2], 0);
189 set_led_bit(hw
, driver_info
->led_bits
[3], 1);
192 set_led_bit(hw
, driver_info
->led_bits
[3], 0);
196 if (hw
->led_state
!= tmpled
) {
197 if (debug
& DBG_HFC_CALL_TRACE
)
198 printk(KERN_DEBUG
"%s: %s reg(0x%02x) val(x%02x)\n",
200 HFCUSB_P_DATA
, hw
->led_state
);
202 write_reg(hw
, HFCUSB_P_DATA
, hw
->led_state
);
207 * Layer2 -> Layer 1 Bchannel data
210 hfcusb_l2l1B(struct mISDNchannel
*ch
, struct sk_buff
*skb
)
212 struct bchannel
*bch
= container_of(ch
, struct bchannel
, ch
);
213 struct hfcsusb
*hw
= bch
->hw
;
215 struct mISDNhead
*hh
= mISDN_HEAD_P(skb
);
218 if (debug
& DBG_HFC_CALL_TRACE
)
219 printk(KERN_DEBUG
"%s: %s\n", hw
->name
, __func__
);
223 spin_lock_irqsave(&hw
->lock
, flags
);
224 ret
= bchannel_senddata(bch
, skb
);
225 spin_unlock_irqrestore(&hw
->lock
, flags
);
226 if (debug
& DBG_HFC_CALL_TRACE
)
227 printk(KERN_DEBUG
"%s: %s PH_DATA_REQ ret(%i)\n",
228 hw
->name
, __func__
, ret
);
231 * other l1 drivers don't send early confirms on
232 * transp data, but hfcsusb does because tx_next
233 * skb is needed in tx_iso_complete()
235 queue_ch_frame(ch
, PH_DATA_CNF
, hh
->id
, NULL
);
239 case PH_ACTIVATE_REQ
:
240 if (!test_and_set_bit(FLG_ACTIVE
, &bch
->Flags
)) {
241 hfcsusb_start_endpoint(hw
, bch
->nr
);
242 ret
= hfcsusb_setup_bch(bch
, ch
->protocol
);
246 _queue_data(ch
, PH_ACTIVATE_IND
, MISDN_ID_ANY
,
247 0, NULL
, GFP_KERNEL
);
249 case PH_DEACTIVATE_REQ
:
250 deactivate_bchannel(bch
);
251 _queue_data(ch
, PH_DEACTIVATE_IND
, MISDN_ID_ANY
,
252 0, NULL
, GFP_KERNEL
);
262 * send full D/B channel status information
263 * as MPH_INFORMATION_IND
266 hfcsusb_ph_info(struct hfcsusb
*hw
)
269 struct dchannel
*dch
= &hw
->dch
;
272 phi
= kzalloc(sizeof(struct ph_info
) +
273 dch
->dev
.nrbchan
* sizeof(struct ph_info_ch
), GFP_ATOMIC
);
274 phi
->dch
.ch
.protocol
= hw
->protocol
;
275 phi
->dch
.ch
.Flags
= dch
->Flags
;
276 phi
->dch
.state
= dch
->state
;
277 phi
->dch
.num_bch
= dch
->dev
.nrbchan
;
278 for (i
= 0; i
< dch
->dev
.nrbchan
; i
++) {
279 phi
->bch
[i
].protocol
= hw
->bch
[i
].ch
.protocol
;
280 phi
->bch
[i
].Flags
= hw
->bch
[i
].Flags
;
282 _queue_data(&dch
->dev
.D
, MPH_INFORMATION_IND
, MISDN_ID_ANY
,
283 sizeof(struct ph_info_dch
) + dch
->dev
.nrbchan
*
284 sizeof(struct ph_info_ch
), phi
, GFP_ATOMIC
);
288 * Layer2 -> Layer 1 Dchannel data
291 hfcusb_l2l1D(struct mISDNchannel
*ch
, struct sk_buff
*skb
)
293 struct mISDNdevice
*dev
= container_of(ch
, struct mISDNdevice
, D
);
294 struct dchannel
*dch
= container_of(dev
, struct dchannel
, dev
);
295 struct mISDNhead
*hh
= mISDN_HEAD_P(skb
);
296 struct hfcsusb
*hw
= dch
->hw
;
302 if (debug
& DBG_HFC_CALL_TRACE
)
303 printk(KERN_DEBUG
"%s: %s: PH_DATA_REQ\n",
306 spin_lock_irqsave(&hw
->lock
, flags
);
307 ret
= dchannel_senddata(dch
, skb
);
308 spin_unlock_irqrestore(&hw
->lock
, flags
);
311 queue_ch_frame(ch
, PH_DATA_CNF
, hh
->id
, NULL
);
315 case PH_ACTIVATE_REQ
:
316 if (debug
& DBG_HFC_CALL_TRACE
)
317 printk(KERN_DEBUG
"%s: %s: PH_ACTIVATE_REQ %s\n",
319 (hw
->protocol
== ISDN_P_NT_S0
) ? "NT" : "TE");
321 if (hw
->protocol
== ISDN_P_NT_S0
) {
323 if (test_bit(FLG_ACTIVE
, &dch
->Flags
)) {
324 _queue_data(&dch
->dev
.D
,
325 PH_ACTIVATE_IND
, MISDN_ID_ANY
, 0,
328 hfcsusb_ph_command(hw
,
330 test_and_set_bit(FLG_L2_ACTIVATED
,
334 hfcsusb_ph_command(hw
, HFC_L1_ACTIVATE_TE
);
335 ret
= l1_event(dch
->l1
, hh
->prim
);
339 case PH_DEACTIVATE_REQ
:
340 if (debug
& DBG_HFC_CALL_TRACE
)
341 printk(KERN_DEBUG
"%s: %s: PH_DEACTIVATE_REQ\n",
343 test_and_clear_bit(FLG_L2_ACTIVATED
, &dch
->Flags
);
345 if (hw
->protocol
== ISDN_P_NT_S0
) {
346 hfcsusb_ph_command(hw
, HFC_L1_DEACTIVATE_NT
);
347 spin_lock_irqsave(&hw
->lock
, flags
);
348 skb_queue_purge(&dch
->squeue
);
350 dev_kfree_skb(dch
->tx_skb
);
355 dev_kfree_skb(dch
->rx_skb
);
358 test_and_clear_bit(FLG_TX_BUSY
, &dch
->Flags
);
359 spin_unlock_irqrestore(&hw
->lock
, flags
);
361 if (test_and_clear_bit(FLG_L1_BUSY
, &dch
->Flags
))
362 dchannel_sched_event(&hc
->dch
, D_CLEARBUSY
);
366 ret
= l1_event(dch
->l1
, hh
->prim
);
368 case MPH_INFORMATION_REQ
:
378 * Layer 1 callback function
381 hfc_l1callback(struct dchannel
*dch
, u_int cmd
)
383 struct hfcsusb
*hw
= dch
->hw
;
385 if (debug
& DBG_HFC_CALL_TRACE
)
386 printk(KERN_DEBUG
"%s: %s cmd 0x%x\n",
387 hw
->name
, __func__
, cmd
);
397 skb_queue_purge(&dch
->squeue
);
399 dev_kfree_skb(dch
->tx_skb
);
404 dev_kfree_skb(dch
->rx_skb
);
407 test_and_clear_bit(FLG_TX_BUSY
, &dch
->Flags
);
409 case PH_ACTIVATE_IND
:
410 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
411 _queue_data(&dch
->dev
.D
, cmd
, MISDN_ID_ANY
, 0, NULL
,
414 case PH_DEACTIVATE_IND
:
415 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
416 _queue_data(&dch
->dev
.D
, cmd
, MISDN_ID_ANY
, 0, NULL
,
420 if (dch
->debug
& DEBUG_HW
)
421 printk(KERN_DEBUG
"%s: %s: unknown cmd %x\n",
422 hw
->name
, __func__
, cmd
);
430 open_dchannel(struct hfcsusb
*hw
, struct mISDNchannel
*ch
,
431 struct channel_req
*rq
)
435 if (debug
& DEBUG_HW_OPEN
)
436 printk(KERN_DEBUG
"%s: %s: dev(%d) open addr(%i) from %p\n",
437 hw
->name
, __func__
, hw
->dch
.dev
.id
, rq
->adr
.channel
,
438 __builtin_return_address(0));
439 if (rq
->protocol
== ISDN_P_NONE
)
442 test_and_clear_bit(FLG_ACTIVE
, &hw
->dch
.Flags
);
443 test_and_clear_bit(FLG_ACTIVE
, &hw
->ech
.Flags
);
444 hfcsusb_start_endpoint(hw
, HFC_CHAN_D
);
446 /* E-Channel logging */
447 if (rq
->adr
.channel
== 1) {
448 if (hw
->fifos
[HFCUSB_PCM_RX
].pipe
) {
449 hfcsusb_start_endpoint(hw
, HFC_CHAN_E
);
450 set_bit(FLG_ACTIVE
, &hw
->ech
.Flags
);
451 _queue_data(&hw
->ech
.dev
.D
, PH_ACTIVATE_IND
,
452 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
458 hw
->protocol
= rq
->protocol
;
459 if (rq
->protocol
== ISDN_P_TE_S0
) {
460 err
= create_l1(&hw
->dch
, hfc_l1callback
);
465 ch
->protocol
= rq
->protocol
;
468 if (rq
->protocol
!= ch
->protocol
)
469 return -EPROTONOSUPPORT
;
472 if (((ch
->protocol
== ISDN_P_NT_S0
) && (hw
->dch
.state
== 3)) ||
473 ((ch
->protocol
== ISDN_P_TE_S0
) && (hw
->dch
.state
== 7)))
474 _queue_data(ch
, PH_ACTIVATE_IND
, MISDN_ID_ANY
,
475 0, NULL
, GFP_KERNEL
);
477 if (!try_module_get(THIS_MODULE
))
478 printk(KERN_WARNING
"%s: %s: cannot get module\n",
484 open_bchannel(struct hfcsusb
*hw
, struct channel_req
*rq
)
486 struct bchannel
*bch
;
488 if (rq
->adr
.channel
> 2)
490 if (rq
->protocol
== ISDN_P_NONE
)
493 if (debug
& DBG_HFC_CALL_TRACE
)
494 printk(KERN_DEBUG
"%s: %s B%i\n",
495 hw
->name
, __func__
, rq
->adr
.channel
);
497 bch
= &hw
->bch
[rq
->adr
.channel
- 1];
498 if (test_and_set_bit(FLG_OPEN
, &bch
->Flags
))
499 return -EBUSY
; /* b-channel can be only open once */
500 test_and_clear_bit(FLG_FILLEMPTY
, &bch
->Flags
);
501 bch
->ch
.protocol
= rq
->protocol
;
504 /* start USB endpoint for bchannel */
505 if (rq
->adr
.channel
== 1)
506 hfcsusb_start_endpoint(hw
, HFC_CHAN_B1
);
508 hfcsusb_start_endpoint(hw
, HFC_CHAN_B2
);
510 if (!try_module_get(THIS_MODULE
))
511 printk(KERN_WARNING
"%s: %s:cannot get module\n",
517 channel_ctrl(struct hfcsusb
*hw
, struct mISDN_ctrl_req
*cq
)
521 if (debug
& DBG_HFC_CALL_TRACE
)
522 printk(KERN_DEBUG
"%s: %s op(0x%x) channel(0x%x)\n",
523 hw
->name
, __func__
, (cq
->op
), (cq
->channel
));
526 case MISDN_CTRL_GETOP
:
527 cq
->op
= MISDN_CTRL_LOOP
| MISDN_CTRL_CONNECT
|
528 MISDN_CTRL_DISCONNECT
;
531 printk(KERN_WARNING
"%s: %s: unknown Op %x\n",
532 hw
->name
, __func__
, cq
->op
);
540 * device control function
543 hfc_dctrl(struct mISDNchannel
*ch
, u_int cmd
, void *arg
)
545 struct mISDNdevice
*dev
= container_of(ch
, struct mISDNdevice
, D
);
546 struct dchannel
*dch
= container_of(dev
, struct dchannel
, dev
);
547 struct hfcsusb
*hw
= dch
->hw
;
548 struct channel_req
*rq
;
551 if (dch
->debug
& DEBUG_HW
)
552 printk(KERN_DEBUG
"%s: %s: cmd:%x %p\n",
553 hw
->name
, __func__
, cmd
, arg
);
557 if ((rq
->protocol
== ISDN_P_TE_S0
) ||
558 (rq
->protocol
== ISDN_P_NT_S0
))
559 err
= open_dchannel(hw
, ch
, rq
);
561 err
= open_bchannel(hw
, rq
);
567 if (debug
& DEBUG_HW_OPEN
)
569 "%s: %s: dev(%d) close from %p (open %d)\n",
570 hw
->name
, __func__
, hw
->dch
.dev
.id
,
571 __builtin_return_address(0), hw
->open
);
573 hfcsusb_stop_endpoint(hw
, HFC_CHAN_D
);
574 if (hw
->fifos
[HFCUSB_PCM_RX
].pipe
)
575 hfcsusb_stop_endpoint(hw
, HFC_CHAN_E
);
576 handle_led(hw
, LED_POWER_ON
);
578 module_put(THIS_MODULE
);
580 case CONTROL_CHANNEL
:
581 err
= channel_ctrl(hw
, arg
);
584 if (dch
->debug
& DEBUG_HW
)
585 printk(KERN_DEBUG
"%s: %s: unknown command %x\n",
586 hw
->name
, __func__
, cmd
);
593 * S0 TE state change event handler
596 ph_state_te(struct dchannel
*dch
)
598 struct hfcsusb
*hw
= dch
->hw
;
600 if (debug
& DEBUG_HW
) {
601 if (dch
->state
<= HFC_MAX_TE_LAYER1_STATE
)
602 printk(KERN_DEBUG
"%s: %s: %s\n", hw
->name
, __func__
,
603 HFC_TE_LAYER1_STATES
[dch
->state
]);
605 printk(KERN_DEBUG
"%s: %s: TE F%d\n",
606 hw
->name
, __func__
, dch
->state
);
609 switch (dch
->state
) {
611 l1_event(dch
->l1
, HW_RESET_IND
);
614 l1_event(dch
->l1
, HW_DEACT_IND
);
618 l1_event(dch
->l1
, ANYSIGNAL
);
621 l1_event(dch
->l1
, INFO2
);
624 l1_event(dch
->l1
, INFO4_P8
);
628 handle_led(hw
, LED_S0_ON
);
630 handle_led(hw
, LED_S0_OFF
);
634 * S0 NT state change event handler
637 ph_state_nt(struct dchannel
*dch
)
639 struct hfcsusb
*hw
= dch
->hw
;
641 if (debug
& DEBUG_HW
) {
642 if (dch
->state
<= HFC_MAX_NT_LAYER1_STATE
)
643 printk(KERN_DEBUG
"%s: %s: %s\n",
645 HFC_NT_LAYER1_STATES
[dch
->state
]);
648 printk(KERN_INFO DRIVER_NAME
"%s: %s: NT G%d\n",
649 hw
->name
, __func__
, dch
->state
);
652 switch (dch
->state
) {
654 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
655 test_and_clear_bit(FLG_L2_ACTIVATED
, &dch
->Flags
);
657 hw
->timers
&= ~NT_ACTIVATION_TIMER
;
658 handle_led(hw
, LED_S0_OFF
);
662 if (hw
->nt_timer
< 0) {
664 hw
->timers
&= ~NT_ACTIVATION_TIMER
;
665 hfcsusb_ph_command(dch
->hw
, HFC_L1_DEACTIVATE_NT
);
667 hw
->timers
|= NT_ACTIVATION_TIMER
;
668 hw
->nt_timer
= NT_T1_COUNT
;
669 /* allow G2 -> G3 transition */
670 write_reg(hw
, HFCUSB_STATES
, 2 | HFCUSB_NT_G2_G3
);
675 hw
->timers
&= ~NT_ACTIVATION_TIMER
;
676 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
677 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
,
678 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
679 handle_led(hw
, LED_S0_ON
);
683 hw
->timers
&= ~NT_ACTIVATION_TIMER
;
692 ph_state(struct dchannel
*dch
)
694 struct hfcsusb
*hw
= dch
->hw
;
696 if (hw
->protocol
== ISDN_P_NT_S0
)
698 else if (hw
->protocol
== ISDN_P_TE_S0
)
703 * disable/enable BChannel for desired protocoll
706 hfcsusb_setup_bch(struct bchannel
*bch
, int protocol
)
708 struct hfcsusb
*hw
= bch
->hw
;
709 __u8 conhdlc
, sctrl
, sctrl_r
;
711 if (debug
& DEBUG_HW
)
712 printk(KERN_DEBUG
"%s: %s: protocol %x-->%x B%d\n",
713 hw
->name
, __func__
, bch
->state
, protocol
,
716 /* setup val for CON_HDLC */
718 if (protocol
> ISDN_P_NONE
)
719 conhdlc
= 8; /* enable FIFO */
722 case (-1): /* used for init */
726 if (bch
->state
== ISDN_P_NONE
)
727 return 0; /* already in idle state */
728 bch
->state
= ISDN_P_NONE
;
729 clear_bit(FLG_HDLC
, &bch
->Flags
);
730 clear_bit(FLG_TRANSPARENT
, &bch
->Flags
);
734 bch
->state
= protocol
;
735 set_bit(FLG_TRANSPARENT
, &bch
->Flags
);
737 case (ISDN_P_B_HDLC
):
738 bch
->state
= protocol
;
739 set_bit(FLG_HDLC
, &bch
->Flags
);
742 if (debug
& DEBUG_HW
)
743 printk(KERN_DEBUG
"%s: %s: prot not known %x\n",
744 hw
->name
, __func__
, protocol
);
748 if (protocol
>= ISDN_P_NONE
) {
749 write_reg(hw
, HFCUSB_FIFO
, (bch
->nr
== 1) ? 0 : 2);
750 write_reg(hw
, HFCUSB_CON_HDLC
, conhdlc
);
751 write_reg(hw
, HFCUSB_INC_RES_F
, 2);
752 write_reg(hw
, HFCUSB_FIFO
, (bch
->nr
== 1) ? 1 : 3);
753 write_reg(hw
, HFCUSB_CON_HDLC
, conhdlc
);
754 write_reg(hw
, HFCUSB_INC_RES_F
, 2);
756 sctrl
= 0x40 + ((hw
->protocol
== ISDN_P_TE_S0
) ? 0x00 : 0x04);
758 if (test_bit(FLG_ACTIVE
, &hw
->bch
[0].Flags
)) {
762 if (test_bit(FLG_ACTIVE
, &hw
->bch
[1].Flags
)) {
766 write_reg(hw
, HFCUSB_SCTRL
, sctrl
);
767 write_reg(hw
, HFCUSB_SCTRL_R
, sctrl_r
);
769 if (protocol
> ISDN_P_NONE
)
770 handle_led(hw
, (bch
->nr
== 1) ? LED_B1_ON
: LED_B2_ON
);
772 handle_led(hw
, (bch
->nr
== 1) ? LED_B1_OFF
:
780 hfcsusb_ph_command(struct hfcsusb
*hw
, u_char command
)
782 if (debug
& DEBUG_HW
)
783 printk(KERN_DEBUG
"%s: %s: %x\n",
784 hw
->name
, __func__
, command
);
787 case HFC_L1_ACTIVATE_TE
:
788 /* force sending sending INFO1 */
789 write_reg(hw
, HFCUSB_STATES
, 0x14);
790 /* start l1 activation */
791 write_reg(hw
, HFCUSB_STATES
, 0x04);
794 case HFC_L1_FORCE_DEACTIVATE_TE
:
795 write_reg(hw
, HFCUSB_STATES
, 0x10);
796 write_reg(hw
, HFCUSB_STATES
, 0x03);
799 case HFC_L1_ACTIVATE_NT
:
800 if (hw
->dch
.state
== 3)
801 _queue_data(&hw
->dch
.dev
.D
, PH_ACTIVATE_IND
,
802 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
804 write_reg(hw
, HFCUSB_STATES
, HFCUSB_ACTIVATE
|
805 HFCUSB_DO_ACTION
| HFCUSB_NT_G2_G3
);
808 case HFC_L1_DEACTIVATE_NT
:
809 write_reg(hw
, HFCUSB_STATES
,
816 * Layer 1 B-channel hardware access
819 channel_bctrl(struct bchannel
*bch
, struct mISDN_ctrl_req
*cq
)
824 case MISDN_CTRL_GETOP
:
825 cq
->op
= MISDN_CTRL_FILL_EMPTY
;
827 case MISDN_CTRL_FILL_EMPTY
: /* fill fifo, if empty */
828 test_and_set_bit(FLG_FILLEMPTY
, &bch
->Flags
);
829 if (debug
& DEBUG_HW_OPEN
)
830 printk(KERN_DEBUG
"%s: FILL_EMPTY request (nr=%d "
831 "off=%d)\n", __func__
, bch
->nr
, !!cq
->p1
);
834 printk(KERN_WARNING
"%s: unknown Op %x\n", __func__
, cq
->op
);
841 /* collect data from incoming interrupt or isochron USB data */
843 hfcsusb_rx_frame(struct usb_fifo
*fifo
, __u8
*data
, unsigned int len
,
846 struct hfcsusb
*hw
= fifo
->hw
;
847 struct sk_buff
*rx_skb
= NULL
;
849 int fifon
= fifo
->fifonum
;
853 if (debug
& DBG_HFC_CALL_TRACE
)
854 printk(KERN_DEBUG
"%s: %s: fifo(%i) len(%i) "
855 "dch(%p) bch(%p) ech(%p)\n",
856 hw
->name
, __func__
, fifon
, len
,
857 fifo
->dch
, fifo
->bch
, fifo
->ech
);
862 if ((!!fifo
->dch
+ !!fifo
->bch
+ !!fifo
->ech
) != 1) {
863 printk(KERN_DEBUG
"%s: %s: undefined channel\n",
868 spin_lock(&hw
->lock
);
870 rx_skb
= fifo
->dch
->rx_skb
;
871 maxlen
= fifo
->dch
->maxlen
;
875 rx_skb
= fifo
->bch
->rx_skb
;
876 maxlen
= fifo
->bch
->maxlen
;
877 hdlc
= test_bit(FLG_HDLC
, &fifo
->bch
->Flags
);
880 rx_skb
= fifo
->ech
->rx_skb
;
881 maxlen
= fifo
->ech
->maxlen
;
886 rx_skb
= mI_alloc_skb(maxlen
, GFP_ATOMIC
);
889 fifo
->dch
->rx_skb
= rx_skb
;
891 fifo
->bch
->rx_skb
= rx_skb
;
893 fifo
->ech
->rx_skb
= rx_skb
;
896 printk(KERN_DEBUG
"%s: %s: No mem for rx_skb\n",
898 spin_unlock(&hw
->lock
);
903 if (fifo
->dch
|| fifo
->ech
) {
904 /* D/E-Channel SKB range check */
905 if ((rx_skb
->len
+ len
) >= MAX_DFRAME_LEN_L1
) {
906 printk(KERN_DEBUG
"%s: %s: sbk mem exceeded "
907 "for fifo(%d) HFCUSB_D_RX\n",
908 hw
->name
, __func__
, fifon
);
910 spin_unlock(&hw
->lock
);
913 } else if (fifo
->bch
) {
914 /* B-Channel SKB range check */
915 if ((rx_skb
->len
+ len
) >= (MAX_BCH_SIZE
+ 3)) {
916 printk(KERN_DEBUG
"%s: %s: sbk mem exceeded "
917 "for fifo(%d) HFCUSB_B_RX\n",
918 hw
->name
, __func__
, fifon
);
920 spin_unlock(&hw
->lock
);
925 memcpy(skb_put(rx_skb
, len
), data
, len
);
928 /* we have a complete hdlc packet */
930 if ((rx_skb
->len
> 3) &&
931 (!(rx_skb
->data
[rx_skb
->len
- 1]))) {
932 if (debug
& DBG_HFC_FIFO_VERBOSE
) {
933 printk(KERN_DEBUG
"%s: %s: fifon(%i)"
935 hw
->name
, __func__
, fifon
,
938 while (i
< rx_skb
->len
)
944 /* remove CRC & status */
945 skb_trim(rx_skb
, rx_skb
->len
- 3);
948 recv_Dchannel(fifo
->dch
);
950 recv_Bchannel(fifo
->bch
, MISDN_ID_ANY
);
952 recv_Echannel(fifo
->ech
,
955 if (debug
& DBG_HFC_FIFO_VERBOSE
) {
957 "%s: CRC or minlen ERROR fifon(%i) "
959 hw
->name
, fifon
, rx_skb
->len
);
961 while (i
< rx_skb
->len
)
970 /* deliver transparent data to layer2 */
971 if (rx_skb
->len
>= poll
)
972 recv_Bchannel(fifo
->bch
, MISDN_ID_ANY
);
974 spin_unlock(&hw
->lock
);
978 fill_isoc_urb(struct urb
*urb
, struct usb_device
*dev
, unsigned int pipe
,
979 void *buf
, int num_packets
, int packet_size
, int interval
,
980 usb_complete_t complete
, void *context
)
984 usb_fill_bulk_urb(urb
, dev
, pipe
, buf
, packet_size
* num_packets
,
987 urb
->number_of_packets
= num_packets
;
988 urb
->transfer_flags
= URB_ISO_ASAP
;
989 urb
->actual_length
= 0;
990 urb
->interval
= interval
;
992 for (k
= 0; k
< num_packets
; k
++) {
993 urb
->iso_frame_desc
[k
].offset
= packet_size
* k
;
994 urb
->iso_frame_desc
[k
].length
= packet_size
;
995 urb
->iso_frame_desc
[k
].actual_length
= 0;
999 /* receive completion routine for all ISO tx fifos */
1001 rx_iso_complete(struct urb
*urb
)
1003 struct iso_urb
*context_iso_urb
= (struct iso_urb
*) urb
->context
;
1004 struct usb_fifo
*fifo
= context_iso_urb
->owner_fifo
;
1005 struct hfcsusb
*hw
= fifo
->hw
;
1006 int k
, len
, errcode
, offset
, num_isoc_packets
, fifon
, maxlen
,
1007 status
, iso_status
, i
;
1012 fifon
= fifo
->fifonum
;
1013 status
= urb
->status
;
1015 spin_lock(&hw
->lock
);
1016 if (fifo
->stop_gracefull
) {
1017 fifo
->stop_gracefull
= 0;
1019 spin_unlock(&hw
->lock
);
1022 spin_unlock(&hw
->lock
);
1025 * ISO transfer only partially completed,
1026 * look at individual frame status for details
1028 if (status
== -EXDEV
) {
1029 if (debug
& DEBUG_HW
)
1030 printk(KERN_DEBUG
"%s: %s: with -EXDEV "
1031 "urb->status %d, fifonum %d\n",
1032 hw
->name
, __func__
, status
, fifon
);
1034 /* clear status, so go on with ISO transfers */
1039 if (fifo
->active
&& !status
) {
1040 num_isoc_packets
= iso_packets
[fifon
];
1041 maxlen
= fifo
->usb_packet_maxlen
;
1043 for (k
= 0; k
< num_isoc_packets
; ++k
) {
1044 len
= urb
->iso_frame_desc
[k
].actual_length
;
1045 offset
= urb
->iso_frame_desc
[k
].offset
;
1046 buf
= context_iso_urb
->buffer
+ offset
;
1047 iso_status
= urb
->iso_frame_desc
[k
].status
;
1049 if (iso_status
&& (debug
& DBG_HFC_FIFO_VERBOSE
)) {
1050 printk(KERN_DEBUG
"%s: %s: "
1051 "ISO packet %i, status: %i\n",
1052 hw
->name
, __func__
, k
, iso_status
);
1055 /* USB data log for every D ISO in */
1056 if ((fifon
== HFCUSB_D_RX
) &&
1057 (debug
& DBG_HFC_USB_VERBOSE
)) {
1059 "%s: %s: %d (%d/%d) len(%d) ",
1060 hw
->name
, __func__
, urb
->start_frame
,
1061 k
, num_isoc_packets
-1,
1063 for (i
= 0; i
< len
; i
++)
1064 printk("%x ", buf
[i
]);
1069 if (fifo
->last_urblen
!= maxlen
) {
1071 * save fifo fill-level threshold bits
1072 * to use them later in TX ISO URB
1075 hw
->threshold_mask
= buf
[1];
1077 if (fifon
== HFCUSB_D_RX
)
1078 s0_state
= (buf
[0] >> 4);
1080 eof
[fifon
] = buf
[0] & 1;
1082 hfcsusb_rx_frame(fifo
, buf
+ 2,
1083 len
- 2, (len
< maxlen
)
1086 hfcsusb_rx_frame(fifo
, buf
, len
,
1089 fifo
->last_urblen
= len
;
1093 /* signal S0 layer1 state change */
1094 if ((s0_state
) && (hw
->initdone
) &&
1095 (s0_state
!= hw
->dch
.state
)) {
1096 hw
->dch
.state
= s0_state
;
1097 schedule_event(&hw
->dch
, FLG_PHCHANGE
);
1100 fill_isoc_urb(urb
, fifo
->hw
->dev
, fifo
->pipe
,
1101 context_iso_urb
->buffer
, num_isoc_packets
,
1102 fifo
->usb_packet_maxlen
, fifo
->intervall
,
1103 (usb_complete_t
)rx_iso_complete
, urb
->context
);
1104 errcode
= usb_submit_urb(urb
, GFP_ATOMIC
);
1106 if (debug
& DEBUG_HW
)
1107 printk(KERN_DEBUG
"%s: %s: error submitting "
1109 hw
->name
, __func__
, errcode
);
1112 if (status
&& (debug
& DBG_HFC_URB_INFO
))
1113 printk(KERN_DEBUG
"%s: %s: rx_iso_complete : "
1114 "urb->status %d, fifonum %d\n",
1115 hw
->name
, __func__
, status
, fifon
);
1119 /* receive completion routine for all interrupt rx fifos */
1121 rx_int_complete(struct urb
*urb
)
1124 __u8
*buf
, maxlen
, fifon
;
1125 struct usb_fifo
*fifo
= (struct usb_fifo
*) urb
->context
;
1126 struct hfcsusb
*hw
= fifo
->hw
;
1129 spin_lock(&hw
->lock
);
1130 if (fifo
->stop_gracefull
) {
1131 fifo
->stop_gracefull
= 0;
1133 spin_unlock(&hw
->lock
);
1136 spin_unlock(&hw
->lock
);
1138 fifon
= fifo
->fifonum
;
1139 if ((!fifo
->active
) || (urb
->status
)) {
1140 if (debug
& DBG_HFC_URB_ERROR
)
1142 "%s: %s: RX-Fifo %i is going down (%i)\n",
1143 hw
->name
, __func__
, fifon
, urb
->status
);
1145 fifo
->urb
->interval
= 0; /* cancel automatic rescheduling */
1148 len
= urb
->actual_length
;
1150 maxlen
= fifo
->usb_packet_maxlen
;
1152 /* USB data log for every D INT in */
1153 if ((fifon
== HFCUSB_D_RX
) && (debug
& DBG_HFC_USB_VERBOSE
)) {
1154 printk(KERN_DEBUG
"%s: %s: D RX INT len(%d) ",
1155 hw
->name
, __func__
, len
);
1156 for (i
= 0; i
< len
; i
++)
1157 printk("%02x ", buf
[i
]);
1161 if (fifo
->last_urblen
!= fifo
->usb_packet_maxlen
) {
1162 /* the threshold mask is in the 2nd status byte */
1163 hw
->threshold_mask
= buf
[1];
1165 /* signal S0 layer1 state change */
1166 if (hw
->initdone
&& ((buf
[0] >> 4) != hw
->dch
.state
)) {
1167 hw
->dch
.state
= (buf
[0] >> 4);
1168 schedule_event(&hw
->dch
, FLG_PHCHANGE
);
1171 eof
[fifon
] = buf
[0] & 1;
1172 /* if we have more than the 2 status bytes -> collect data */
1174 hfcsusb_rx_frame(fifo
, buf
+ 2,
1175 urb
->actual_length
- 2,
1176 (len
< maxlen
) ? eof
[fifon
] : 0);
1178 hfcsusb_rx_frame(fifo
, buf
, urb
->actual_length
,
1179 (len
< maxlen
) ? eof
[fifon
] : 0);
1181 fifo
->last_urblen
= urb
->actual_length
;
1183 status
= usb_submit_urb(urb
, GFP_ATOMIC
);
1185 if (debug
& DEBUG_HW
)
1186 printk(KERN_DEBUG
"%s: %s: error resubmitting USB\n",
1187 hw
->name
, __func__
);
1191 /* transmit completion routine for all ISO tx fifos */
1193 tx_iso_complete(struct urb
*urb
)
1195 struct iso_urb
*context_iso_urb
= (struct iso_urb
*) urb
->context
;
1196 struct usb_fifo
*fifo
= context_iso_urb
->owner_fifo
;
1197 struct hfcsusb
*hw
= fifo
->hw
;
1198 struct sk_buff
*tx_skb
;
1199 int k
, tx_offset
, num_isoc_packets
, sink
, remain
, current_len
,
1202 int frame_complete
, fifon
, status
;
1205 spin_lock(&hw
->lock
);
1206 if (fifo
->stop_gracefull
) {
1207 fifo
->stop_gracefull
= 0;
1209 spin_unlock(&hw
->lock
);
1214 tx_skb
= fifo
->dch
->tx_skb
;
1215 tx_idx
= &fifo
->dch
->tx_idx
;
1217 } else if (fifo
->bch
) {
1218 tx_skb
= fifo
->bch
->tx_skb
;
1219 tx_idx
= &fifo
->bch
->tx_idx
;
1220 hdlc
= test_bit(FLG_HDLC
, &fifo
->bch
->Flags
);
1222 printk(KERN_DEBUG
"%s: %s: neither BCH nor DCH\n",
1223 hw
->name
, __func__
);
1224 spin_unlock(&hw
->lock
);
1228 fifon
= fifo
->fifonum
;
1229 status
= urb
->status
;
1234 * ISO transfer only partially completed,
1235 * look at individual frame status for details
1237 if (status
== -EXDEV
) {
1238 if (debug
& DBG_HFC_URB_ERROR
)
1239 printk(KERN_DEBUG
"%s: %s: "
1240 "-EXDEV (%i) fifon (%d)\n",
1241 hw
->name
, __func__
, status
, fifon
);
1243 /* clear status, so go on with ISO transfers */
1247 if (fifo
->active
&& !status
) {
1248 /* is FifoFull-threshold set for our channel? */
1249 threshbit
= (hw
->threshold_mask
& (1 << fifon
));
1250 num_isoc_packets
= iso_packets
[fifon
];
1252 /* predict dataflow to avoid fifo overflow */
1253 if (fifon
>= HFCUSB_D_TX
)
1254 sink
= (threshbit
) ? SINK_DMIN
: SINK_DMAX
;
1256 sink
= (threshbit
) ? SINK_MIN
: SINK_MAX
;
1257 fill_isoc_urb(urb
, fifo
->hw
->dev
, fifo
->pipe
,
1258 context_iso_urb
->buffer
, num_isoc_packets
,
1259 fifo
->usb_packet_maxlen
, fifo
->intervall
,
1260 (usb_complete_t
)tx_iso_complete
, urb
->context
);
1261 memset(context_iso_urb
->buffer
, 0,
1262 sizeof(context_iso_urb
->buffer
));
1265 for (k
= 0; k
< num_isoc_packets
; ++k
) {
1266 /* analyze tx success of previous ISO packets */
1267 if (debug
& DBG_HFC_URB_ERROR
) {
1268 errcode
= urb
->iso_frame_desc
[k
].status
;
1270 printk(KERN_DEBUG
"%s: %s: "
1271 "ISO packet %i, status: %i\n",
1272 hw
->name
, __func__
, k
, errcode
);
1276 /* Generate next ISO Packets */
1278 remain
= tx_skb
->len
- *tx_idx
;
1283 fifo
->bit_line
-= sink
;
1284 current_len
= (0 - fifo
->bit_line
) / 8;
1285 if (current_len
> 14)
1287 if (current_len
< 0)
1289 if (remain
< current_len
)
1290 current_len
= remain
;
1292 /* how much bit do we put on the line? */
1293 fifo
->bit_line
+= current_len
* 8;
1295 context_iso_urb
->buffer
[tx_offset
] = 0;
1296 if (current_len
== remain
) {
1298 /* signal frame completion */
1300 buffer
[tx_offset
] = 1;
1301 /* add 2 byte flags and 16bit
1302 * CRC at end of ISDN frame */
1303 fifo
->bit_line
+= 32;
1308 /* copy tx data to iso-urb buffer */
1309 memcpy(context_iso_urb
->buffer
+ tx_offset
+ 1,
1310 (tx_skb
->data
+ *tx_idx
), current_len
);
1311 *tx_idx
+= current_len
;
1313 urb
->iso_frame_desc
[k
].offset
= tx_offset
;
1314 urb
->iso_frame_desc
[k
].length
= current_len
+ 1;
1316 /* USB data log for every D ISO out */
1317 if ((fifon
== HFCUSB_D_RX
) &&
1318 (debug
& DBG_HFC_USB_VERBOSE
)) {
1320 "%s: %s (%d/%d) offs(%d) len(%d) ",
1322 k
, num_isoc_packets
-1,
1323 urb
->iso_frame_desc
[k
].offset
,
1324 urb
->iso_frame_desc
[k
].length
);
1326 for (i
= urb
->iso_frame_desc
[k
].offset
;
1327 i
< (urb
->iso_frame_desc
[k
].offset
1328 + urb
->iso_frame_desc
[k
].length
);
1331 context_iso_urb
->buffer
[i
]);
1333 printk(" skb->len(%i) tx-idx(%d)\n",
1334 tx_skb
->len
, *tx_idx
);
1337 tx_offset
+= (current_len
+ 1);
1339 urb
->iso_frame_desc
[k
].offset
= tx_offset
++;
1340 urb
->iso_frame_desc
[k
].length
= 1;
1341 /* we lower data margin every msec */
1342 fifo
->bit_line
-= sink
;
1343 if (fifo
->bit_line
< BITLINE_INF
)
1344 fifo
->bit_line
= BITLINE_INF
;
1347 if (frame_complete
) {
1350 if (debug
& DBG_HFC_FIFO_VERBOSE
) {
1351 printk(KERN_DEBUG
"%s: %s: "
1352 "fifon(%i) new TX len(%i): ",
1354 fifon
, tx_skb
->len
);
1356 while (i
< tx_skb
->len
)
1362 dev_kfree_skb(tx_skb
);
1364 if (fifo
->dch
&& get_next_dframe(fifo
->dch
))
1365 tx_skb
= fifo
->dch
->tx_skb
;
1366 else if (fifo
->bch
&&
1367 get_next_bframe(fifo
->bch
)) {
1368 if (test_bit(FLG_TRANSPARENT
,
1370 confirm_Bsend(fifo
->bch
);
1371 tx_skb
= fifo
->bch
->tx_skb
;
1375 errcode
= usb_submit_urb(urb
, GFP_ATOMIC
);
1377 if (debug
& DEBUG_HW
)
1379 "%s: %s: error submitting ISO URB: %d \n",
1380 hw
->name
, __func__
, errcode
);
1384 * abuse DChannel tx iso completion to trigger NT mode state
1385 * changes tx_iso_complete is assumed to be called every
1386 * fifo->intervall (ms)
1388 if ((fifon
== HFCUSB_D_TX
) && (hw
->protocol
== ISDN_P_NT_S0
)
1389 && (hw
->timers
& NT_ACTIVATION_TIMER
)) {
1390 if ((--hw
->nt_timer
) < 0)
1391 schedule_event(&hw
->dch
, FLG_PHCHANGE
);
1395 if (status
&& (debug
& DBG_HFC_URB_ERROR
))
1396 printk(KERN_DEBUG
"%s: %s: urb->status %s (%i)"
1399 symbolic(urb_errlist
, status
), status
, fifon
);
1401 spin_unlock(&hw
->lock
);
1405 * allocs urbs and start isoc transfer with two pending urbs to avoid
1406 * gaps in the transfer chain
1409 start_isoc_chain(struct usb_fifo
*fifo
, int num_packets_per_urb
,
1410 usb_complete_t complete
, int packet_size
)
1412 struct hfcsusb
*hw
= fifo
->hw
;
1416 printk(KERN_DEBUG
"%s: %s: fifo %i\n",
1417 hw
->name
, __func__
, fifo
->fifonum
);
1419 /* allocate Memory for Iso out Urbs */
1420 for (i
= 0; i
< 2; i
++) {
1421 if (!(fifo
->iso
[i
].urb
)) {
1423 usb_alloc_urb(num_packets_per_urb
, GFP_KERNEL
);
1424 if (!(fifo
->iso
[i
].urb
)) {
1426 "%s: %s: alloc urb for fifo %i failed",
1427 hw
->name
, __func__
, fifo
->fifonum
);
1429 fifo
->iso
[i
].owner_fifo
= (struct usb_fifo
*) fifo
;
1430 fifo
->iso
[i
].indx
= i
;
1432 /* Init the first iso */
1433 if (ISO_BUFFER_SIZE
>=
1434 (fifo
->usb_packet_maxlen
*
1435 num_packets_per_urb
)) {
1436 fill_isoc_urb(fifo
->iso
[i
].urb
,
1437 fifo
->hw
->dev
, fifo
->pipe
,
1438 fifo
->iso
[i
].buffer
,
1439 num_packets_per_urb
,
1440 fifo
->usb_packet_maxlen
,
1441 fifo
->intervall
, complete
,
1443 memset(fifo
->iso
[i
].buffer
, 0,
1444 sizeof(fifo
->iso
[i
].buffer
));
1446 for (k
= 0; k
< num_packets_per_urb
; k
++) {
1448 iso_frame_desc
[k
].offset
=
1451 iso_frame_desc
[k
].length
=
1456 "%s: %s: ISO Buffer size to small!\n",
1457 hw
->name
, __func__
);
1460 fifo
->bit_line
= BITLINE_INF
;
1462 errcode
= usb_submit_urb(fifo
->iso
[i
].urb
, GFP_KERNEL
);
1463 fifo
->active
= (errcode
>= 0) ? 1 : 0;
1464 fifo
->stop_gracefull
= 0;
1466 printk(KERN_DEBUG
"%s: %s: %s URB nr:%d\n",
1468 symbolic(urb_errlist
, errcode
), i
);
1471 return fifo
->active
;
1475 stop_iso_gracefull(struct usb_fifo
*fifo
)
1477 struct hfcsusb
*hw
= fifo
->hw
;
1481 for (i
= 0; i
< 2; i
++) {
1482 spin_lock_irqsave(&hw
->lock
, flags
);
1484 printk(KERN_DEBUG
"%s: %s for fifo %i.%i\n",
1485 hw
->name
, __func__
, fifo
->fifonum
, i
);
1486 fifo
->stop_gracefull
= 1;
1487 spin_unlock_irqrestore(&hw
->lock
, flags
);
1490 for (i
= 0; i
< 2; i
++) {
1492 while (fifo
->stop_gracefull
&& timeout
--)
1493 schedule_timeout_interruptible((HZ
/1000)*16);
1494 if (debug
&& fifo
->stop_gracefull
)
1495 printk(KERN_DEBUG
"%s: ERROR %s for fifo %i.%i\n",
1496 hw
->name
, __func__
, fifo
->fifonum
, i
);
1501 stop_int_gracefull(struct usb_fifo
*fifo
)
1503 struct hfcsusb
*hw
= fifo
->hw
;
1507 spin_lock_irqsave(&hw
->lock
, flags
);
1509 printk(KERN_DEBUG
"%s: %s for fifo %i\n",
1510 hw
->name
, __func__
, fifo
->fifonum
);
1511 fifo
->stop_gracefull
= 1;
1512 spin_unlock_irqrestore(&hw
->lock
, flags
);
1515 while (fifo
->stop_gracefull
&& timeout
--)
1516 schedule_timeout_interruptible((HZ
/1000)*3);
1517 if (debug
&& fifo
->stop_gracefull
)
1518 printk(KERN_DEBUG
"%s: ERROR %s for fifo %i\n",
1519 hw
->name
, __func__
, fifo
->fifonum
);
1522 /* start the interrupt transfer for the given fifo */
1524 start_int_fifo(struct usb_fifo
*fifo
)
1526 struct hfcsusb
*hw
= fifo
->hw
;
1530 printk(KERN_DEBUG
"%s: %s: INT IN fifo:%d\n",
1531 hw
->name
, __func__
, fifo
->fifonum
);
1534 fifo
->urb
= usb_alloc_urb(0, GFP_KERNEL
);
1538 usb_fill_int_urb(fifo
->urb
, fifo
->hw
->dev
, fifo
->pipe
,
1539 fifo
->buffer
, fifo
->usb_packet_maxlen
,
1540 (usb_complete_t
)rx_int_complete
, fifo
, fifo
->intervall
);
1542 fifo
->stop_gracefull
= 0;
1543 errcode
= usb_submit_urb(fifo
->urb
, GFP_KERNEL
);
1545 printk(KERN_DEBUG
"%s: %s: submit URB: status:%i\n",
1546 hw
->name
, __func__
, errcode
);
1552 setPortMode(struct hfcsusb
*hw
)
1554 if (debug
& DEBUG_HW
)
1555 printk(KERN_DEBUG
"%s: %s %s\n", hw
->name
, __func__
,
1556 (hw
->protocol
== ISDN_P_TE_S0
) ? "TE" : "NT");
1558 if (hw
->protocol
== ISDN_P_TE_S0
) {
1559 write_reg(hw
, HFCUSB_SCTRL
, 0x40);
1560 write_reg(hw
, HFCUSB_SCTRL_E
, 0x00);
1561 write_reg(hw
, HFCUSB_CLKDEL
, CLKDEL_TE
);
1562 write_reg(hw
, HFCUSB_STATES
, 3 | 0x10);
1563 write_reg(hw
, HFCUSB_STATES
, 3);
1565 write_reg(hw
, HFCUSB_SCTRL
, 0x44);
1566 write_reg(hw
, HFCUSB_SCTRL_E
, 0x09);
1567 write_reg(hw
, HFCUSB_CLKDEL
, CLKDEL_NT
);
1568 write_reg(hw
, HFCUSB_STATES
, 1 | 0x10);
1569 write_reg(hw
, HFCUSB_STATES
, 1);
1574 reset_hfcsusb(struct hfcsusb
*hw
)
1576 struct usb_fifo
*fifo
;
1579 if (debug
& DEBUG_HW
)
1580 printk(KERN_DEBUG
"%s: %s\n", hw
->name
, __func__
);
1583 write_reg(hw
, HFCUSB_CIRM
, 8);
1585 /* aux = output, reset off */
1586 write_reg(hw
, HFCUSB_CIRM
, 0x10);
1588 /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1589 write_reg(hw
, HFCUSB_USB_SIZE
, (hw
->packet_size
/ 8) |
1590 ((hw
->packet_size
/ 8) << 4));
1592 /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1593 write_reg(hw
, HFCUSB_USB_SIZE_I
, hw
->iso_packet_size
);
1595 /* enable PCM/GCI master mode */
1596 write_reg(hw
, HFCUSB_MST_MODE1
, 0); /* set default values */
1597 write_reg(hw
, HFCUSB_MST_MODE0
, 1); /* enable master mode */
1599 /* init the fifos */
1600 write_reg(hw
, HFCUSB_F_THRES
,
1601 (HFCUSB_TX_THRESHOLD
/ 8) | ((HFCUSB_RX_THRESHOLD
/ 8) << 4));
1604 for (i
= 0; i
< HFCUSB_NUM_FIFOS
; i
++) {
1605 write_reg(hw
, HFCUSB_FIFO
, i
); /* select the desired fifo */
1607 (i
<= HFCUSB_B2_RX
) ? MAX_BCH_SIZE
: MAX_DFRAME_LEN
;
1608 fifo
[i
].last_urblen
= 0;
1610 /* set 2 bit for D- & E-channel */
1611 write_reg(hw
, HFCUSB_HDLC_PAR
, ((i
<= HFCUSB_B2_RX
) ? 0 : 2));
1613 /* enable all fifos */
1614 if (i
== HFCUSB_D_TX
)
1615 write_reg(hw
, HFCUSB_CON_HDLC
,
1616 (hw
->protocol
== ISDN_P_NT_S0
) ? 0x08 : 0x09);
1618 write_reg(hw
, HFCUSB_CON_HDLC
, 0x08);
1619 write_reg(hw
, HFCUSB_INC_RES_F
, 2); /* reset the fifo */
1622 write_reg(hw
, HFCUSB_SCTRL_R
, 0); /* disable both B receivers */
1623 handle_led(hw
, LED_POWER_ON
);
1626 /* start USB data pipes dependand on device's endpoint configuration */
1628 hfcsusb_start_endpoint(struct hfcsusb
*hw
, int channel
)
1630 /* quick check if endpoint already running */
1631 if ((channel
== HFC_CHAN_D
) && (hw
->fifos
[HFCUSB_D_RX
].active
))
1633 if ((channel
== HFC_CHAN_B1
) && (hw
->fifos
[HFCUSB_B1_RX
].active
))
1635 if ((channel
== HFC_CHAN_B2
) && (hw
->fifos
[HFCUSB_B2_RX
].active
))
1637 if ((channel
== HFC_CHAN_E
) && (hw
->fifos
[HFCUSB_PCM_RX
].active
))
1640 /* start rx endpoints using USB INT IN method */
1641 if (hw
->cfg_used
== CNF_3INT3ISO
|| hw
->cfg_used
== CNF_4INT3ISO
)
1642 start_int_fifo(hw
->fifos
+ channel
*2 + 1);
1644 /* start rx endpoints using USB ISO IN method */
1645 if (hw
->cfg_used
== CNF_3ISO3ISO
|| hw
->cfg_used
== CNF_4ISO3ISO
) {
1648 start_isoc_chain(hw
->fifos
+ HFCUSB_D_RX
,
1650 (usb_complete_t
)rx_iso_complete
,
1654 start_isoc_chain(hw
->fifos
+ HFCUSB_PCM_RX
,
1656 (usb_complete_t
)rx_iso_complete
,
1660 start_isoc_chain(hw
->fifos
+ HFCUSB_B1_RX
,
1662 (usb_complete_t
)rx_iso_complete
,
1666 start_isoc_chain(hw
->fifos
+ HFCUSB_B2_RX
,
1668 (usb_complete_t
)rx_iso_complete
,
1674 /* start tx endpoints using USB ISO OUT method */
1677 start_isoc_chain(hw
->fifos
+ HFCUSB_D_TX
,
1679 (usb_complete_t
)tx_iso_complete
, 1);
1682 start_isoc_chain(hw
->fifos
+ HFCUSB_B1_TX
,
1684 (usb_complete_t
)tx_iso_complete
, 1);
1687 start_isoc_chain(hw
->fifos
+ HFCUSB_B2_TX
,
1689 (usb_complete_t
)tx_iso_complete
, 1);
1694 /* stop USB data pipes dependand on device's endpoint configuration */
1696 hfcsusb_stop_endpoint(struct hfcsusb
*hw
, int channel
)
1698 /* quick check if endpoint currently running */
1699 if ((channel
== HFC_CHAN_D
) && (!hw
->fifos
[HFCUSB_D_RX
].active
))
1701 if ((channel
== HFC_CHAN_B1
) && (!hw
->fifos
[HFCUSB_B1_RX
].active
))
1703 if ((channel
== HFC_CHAN_B2
) && (!hw
->fifos
[HFCUSB_B2_RX
].active
))
1705 if ((channel
== HFC_CHAN_E
) && (!hw
->fifos
[HFCUSB_PCM_RX
].active
))
1708 /* rx endpoints using USB INT IN method */
1709 if (hw
->cfg_used
== CNF_3INT3ISO
|| hw
->cfg_used
== CNF_4INT3ISO
)
1710 stop_int_gracefull(hw
->fifos
+ channel
*2 + 1);
1712 /* rx endpoints using USB ISO IN method */
1713 if (hw
->cfg_used
== CNF_3ISO3ISO
|| hw
->cfg_used
== CNF_4ISO3ISO
)
1714 stop_iso_gracefull(hw
->fifos
+ channel
*2 + 1);
1716 /* tx endpoints using USB ISO OUT method */
1717 if (channel
!= HFC_CHAN_E
)
1718 stop_iso_gracefull(hw
->fifos
+ channel
*2);
1722 /* Hardware Initialization */
1724 setup_hfcsusb(struct hfcsusb
*hw
)
1729 if (debug
& DBG_HFC_CALL_TRACE
)
1730 printk(KERN_DEBUG
"%s: %s\n", hw
->name
, __func__
);
1732 /* check the chip id */
1733 if (read_reg_atomic(hw
, HFCUSB_CHIP_ID
, &b
) != 1) {
1734 printk(KERN_DEBUG
"%s: %s: cannot read chip id\n",
1735 hw
->name
, __func__
);
1738 if (b
!= HFCUSB_CHIPID
) {
1739 printk(KERN_DEBUG
"%s: %s: Invalid chip id 0x%02x\n",
1740 hw
->name
, __func__
, b
);
1744 /* first set the needed config, interface and alternate */
1745 err
= usb_set_interface(hw
->dev
, hw
->if_used
, hw
->alt_used
);
1749 /* init the background machinery for control requests */
1750 hw
->ctrl_read
.bRequestType
= 0xc0;
1751 hw
->ctrl_read
.bRequest
= 1;
1752 hw
->ctrl_read
.wLength
= cpu_to_le16(1);
1753 hw
->ctrl_write
.bRequestType
= 0x40;
1754 hw
->ctrl_write
.bRequest
= 0;
1755 hw
->ctrl_write
.wLength
= 0;
1756 usb_fill_control_urb(hw
->ctrl_urb
, hw
->dev
, hw
->ctrl_out_pipe
,
1757 (u_char
*)&hw
->ctrl_write
, NULL
, 0,
1758 (usb_complete_t
)ctrl_complete
, hw
);
1765 release_hw(struct hfcsusb
*hw
)
1767 if (debug
& DBG_HFC_CALL_TRACE
)
1768 printk(KERN_DEBUG
"%s: %s\n", hw
->name
, __func__
);
1771 * stop all endpoints gracefully
1772 * TODO: mISDN_core should generate CLOSE_CHANNEL
1773 * signals after calling mISDN_unregister_device()
1775 hfcsusb_stop_endpoint(hw
, HFC_CHAN_D
);
1776 hfcsusb_stop_endpoint(hw
, HFC_CHAN_B1
);
1777 hfcsusb_stop_endpoint(hw
, HFC_CHAN_B2
);
1778 if (hw
->fifos
[HFCUSB_PCM_RX
].pipe
)
1779 hfcsusb_stop_endpoint(hw
, HFC_CHAN_E
);
1780 if (hw
->protocol
== ISDN_P_TE_S0
)
1781 l1_event(hw
->dch
.l1
, CLOSE_CHANNEL
);
1783 mISDN_unregister_device(&hw
->dch
.dev
);
1784 mISDN_freebchannel(&hw
->bch
[1]);
1785 mISDN_freebchannel(&hw
->bch
[0]);
1786 mISDN_freedchannel(&hw
->dch
);
1789 usb_kill_urb(hw
->ctrl_urb
);
1790 usb_free_urb(hw
->ctrl_urb
);
1791 hw
->ctrl_urb
= NULL
;
1795 usb_set_intfdata(hw
->intf
, NULL
);
1796 list_del(&hw
->list
);
1802 deactivate_bchannel(struct bchannel
*bch
)
1804 struct hfcsusb
*hw
= bch
->hw
;
1807 if (bch
->debug
& DEBUG_HW
)
1808 printk(KERN_DEBUG
"%s: %s: bch->nr(%i)\n",
1809 hw
->name
, __func__
, bch
->nr
);
1811 spin_lock_irqsave(&hw
->lock
, flags
);
1812 mISDN_clear_bchannel(bch
);
1813 spin_unlock_irqrestore(&hw
->lock
, flags
);
1814 hfcsusb_setup_bch(bch
, ISDN_P_NONE
);
1815 hfcsusb_stop_endpoint(hw
, bch
->nr
);
1819 * Layer 1 B-channel hardware access
1822 hfc_bctrl(struct mISDNchannel
*ch
, u_int cmd
, void *arg
)
1824 struct bchannel
*bch
= container_of(ch
, struct bchannel
, ch
);
1827 if (bch
->debug
& DEBUG_HW
)
1828 printk(KERN_DEBUG
"%s: cmd:%x %p\n", __func__
, cmd
, arg
);
1832 case HW_TESTRX_HDLC
:
1838 test_and_clear_bit(FLG_OPEN
, &bch
->Flags
);
1839 if (test_bit(FLG_ACTIVE
, &bch
->Flags
))
1840 deactivate_bchannel(bch
);
1841 ch
->protocol
= ISDN_P_NONE
;
1843 module_put(THIS_MODULE
);
1846 case CONTROL_CHANNEL
:
1847 ret
= channel_bctrl(bch
, arg
);
1850 printk(KERN_WARNING
"%s: unknown prim(%x)\n",
1857 setup_instance(struct hfcsusb
*hw
, struct device
*parent
)
1862 if (debug
& DBG_HFC_CALL_TRACE
)
1863 printk(KERN_DEBUG
"%s: %s\n", hw
->name
, __func__
);
1865 spin_lock_init(&hw
->ctrl_lock
);
1866 spin_lock_init(&hw
->lock
);
1868 mISDN_initdchannel(&hw
->dch
, MAX_DFRAME_LEN_L1
, ph_state
);
1869 hw
->dch
.debug
= debug
& 0xFFFF;
1871 hw
->dch
.dev
.Dprotocols
= (1 << ISDN_P_TE_S0
) | (1 << ISDN_P_NT_S0
);
1872 hw
->dch
.dev
.D
.send
= hfcusb_l2l1D
;
1873 hw
->dch
.dev
.D
.ctrl
= hfc_dctrl
;
1875 /* enable E-Channel logging */
1876 if (hw
->fifos
[HFCUSB_PCM_RX
].pipe
)
1877 mISDN_initdchannel(&hw
->ech
, MAX_DFRAME_LEN_L1
, NULL
);
1879 hw
->dch
.dev
.Bprotocols
= (1 << (ISDN_P_B_RAW
& ISDN_P_B_MASK
)) |
1880 (1 << (ISDN_P_B_HDLC
& ISDN_P_B_MASK
));
1881 hw
->dch
.dev
.nrbchan
= 2;
1882 for (i
= 0; i
< 2; i
++) {
1883 hw
->bch
[i
].nr
= i
+ 1;
1884 set_channelmap(i
+ 1, hw
->dch
.dev
.channelmap
);
1885 hw
->bch
[i
].debug
= debug
;
1886 mISDN_initbchannel(&hw
->bch
[i
], MAX_DATA_MEM
);
1888 hw
->bch
[i
].ch
.send
= hfcusb_l2l1B
;
1889 hw
->bch
[i
].ch
.ctrl
= hfc_bctrl
;
1890 hw
->bch
[i
].ch
.nr
= i
+ 1;
1891 list_add(&hw
->bch
[i
].ch
.list
, &hw
->dch
.dev
.bchannels
);
1894 hw
->fifos
[HFCUSB_B1_TX
].bch
= &hw
->bch
[0];
1895 hw
->fifos
[HFCUSB_B1_RX
].bch
= &hw
->bch
[0];
1896 hw
->fifos
[HFCUSB_B2_TX
].bch
= &hw
->bch
[1];
1897 hw
->fifos
[HFCUSB_B2_RX
].bch
= &hw
->bch
[1];
1898 hw
->fifos
[HFCUSB_D_TX
].dch
= &hw
->dch
;
1899 hw
->fifos
[HFCUSB_D_RX
].dch
= &hw
->dch
;
1900 hw
->fifos
[HFCUSB_PCM_RX
].ech
= &hw
->ech
;
1901 hw
->fifos
[HFCUSB_PCM_TX
].ech
= &hw
->ech
;
1903 err
= setup_hfcsusb(hw
);
1907 snprintf(hw
->name
, MISDN_MAX_IDLEN
- 1, "%s.%d", DRIVER_NAME
,
1909 printk(KERN_INFO
"%s: registered as '%s'\n",
1910 DRIVER_NAME
, hw
->name
);
1912 err
= mISDN_register_device(&hw
->dch
.dev
, parent
, hw
->name
);
1917 write_lock_irqsave(&HFClock
, flags
);
1918 list_add_tail(&hw
->list
, &HFClist
);
1919 write_unlock_irqrestore(&HFClock
, flags
);
1923 mISDN_freebchannel(&hw
->bch
[1]);
1924 mISDN_freebchannel(&hw
->bch
[0]);
1925 mISDN_freedchannel(&hw
->dch
);
1931 hfcsusb_probe(struct usb_interface
*intf
, const struct usb_device_id
*id
)
1934 struct usb_device
*dev
= interface_to_usbdev(intf
);
1935 struct usb_host_interface
*iface
= intf
->cur_altsetting
;
1936 struct usb_host_interface
*iface_used
= NULL
;
1937 struct usb_host_endpoint
*ep
;
1938 struct hfcsusb_vdata
*driver_info
;
1939 int ifnum
= iface
->desc
.bInterfaceNumber
, i
, idx
, alt_idx
,
1940 probe_alt_setting
, vend_idx
, cfg_used
, *vcf
, attr
, cfg_found
,
1941 ep_addr
, cmptbl
[16], small_match
, iso_packet_size
, packet_size
,
1945 for (i
= 0; hfcsusb_idtab
[i
].idVendor
; i
++) {
1946 if ((le16_to_cpu(dev
->descriptor
.idVendor
)
1947 == hfcsusb_idtab
[i
].idVendor
) &&
1948 (le16_to_cpu(dev
->descriptor
.idProduct
)
1949 == hfcsusb_idtab
[i
].idProduct
)) {
1956 "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1957 __func__
, ifnum
, iface
->desc
.bAlternateSetting
,
1958 intf
->minor
, vend_idx
);
1960 if (vend_idx
== 0xffff) {
1962 "%s: no valid vendor found in USB descriptor\n",
1966 /* if vendor and product ID is OK, start probing alternate settings */
1970 /* default settings */
1971 iso_packet_size
= 16;
1974 while (alt_idx
< intf
->num_altsetting
) {
1975 iface
= intf
->altsetting
+ alt_idx
;
1976 probe_alt_setting
= iface
->desc
.bAlternateSetting
;
1979 while (validconf
[cfg_used
][0]) {
1981 vcf
= validconf
[cfg_used
];
1982 ep
= iface
->endpoint
;
1983 memcpy(cmptbl
, vcf
, 16 * sizeof(int));
1985 /* check for all endpoints in this alternate setting */
1986 for (i
= 0; i
< iface
->desc
.bNumEndpoints
; i
++) {
1987 ep_addr
= ep
->desc
.bEndpointAddress
;
1989 /* get endpoint base */
1990 idx
= ((ep_addr
& 0x7f) - 1) * 2;
1993 attr
= ep
->desc
.bmAttributes
;
1995 if (cmptbl
[idx
] != EP_NOP
) {
1996 if (cmptbl
[idx
] == EP_NUL
)
1998 if (attr
== USB_ENDPOINT_XFER_INT
1999 && cmptbl
[idx
] == EP_INT
)
2000 cmptbl
[idx
] = EP_NUL
;
2001 if (attr
== USB_ENDPOINT_XFER_BULK
2002 && cmptbl
[idx
] == EP_BLK
)
2003 cmptbl
[idx
] = EP_NUL
;
2004 if (attr
== USB_ENDPOINT_XFER_ISOC
2005 && cmptbl
[idx
] == EP_ISO
)
2006 cmptbl
[idx
] = EP_NUL
;
2008 if (attr
== USB_ENDPOINT_XFER_INT
&&
2009 ep
->desc
.bInterval
< vcf
[17]) {
2016 for (i
= 0; i
< 16; i
++)
2017 if (cmptbl
[i
] != EP_NOP
&& cmptbl
[i
] != EP_NUL
)
2021 if (small_match
< cfg_used
) {
2022 small_match
= cfg_used
;
2023 alt_used
= probe_alt_setting
;
2030 } /* (alt_idx < intf->num_altsetting) */
2032 /* not found a valid USB Ta Endpoint config */
2033 if (small_match
== -1)
2037 hw
= kzalloc(sizeof(struct hfcsusb
), GFP_KERNEL
);
2039 return -ENOMEM
; /* got no mem */
2040 snprintf(hw
->name
, MISDN_MAX_IDLEN
- 1, "%s", DRIVER_NAME
);
2042 ep
= iface
->endpoint
;
2043 vcf
= validconf
[small_match
];
2045 for (i
= 0; i
< iface
->desc
.bNumEndpoints
; i
++) {
2048 ep_addr
= ep
->desc
.bEndpointAddress
;
2049 /* get endpoint base */
2050 idx
= ((ep_addr
& 0x7f) - 1) * 2;
2053 f
= &hw
->fifos
[idx
& 7];
2055 /* init Endpoints */
2056 if (vcf
[idx
] == EP_NOP
|| vcf
[idx
] == EP_NUL
) {
2060 switch (ep
->desc
.bmAttributes
) {
2061 case USB_ENDPOINT_XFER_INT
:
2062 f
->pipe
= usb_rcvintpipe(dev
,
2063 ep
->desc
.bEndpointAddress
);
2064 f
->usb_transfer_mode
= USB_INT
;
2065 packet_size
= le16_to_cpu(ep
->desc
.wMaxPacketSize
);
2067 case USB_ENDPOINT_XFER_BULK
:
2069 f
->pipe
= usb_rcvbulkpipe(dev
,
2070 ep
->desc
.bEndpointAddress
);
2072 f
->pipe
= usb_sndbulkpipe(dev
,
2073 ep
->desc
.bEndpointAddress
);
2074 f
->usb_transfer_mode
= USB_BULK
;
2075 packet_size
= le16_to_cpu(ep
->desc
.wMaxPacketSize
);
2077 case USB_ENDPOINT_XFER_ISOC
:
2079 f
->pipe
= usb_rcvisocpipe(dev
,
2080 ep
->desc
.bEndpointAddress
);
2082 f
->pipe
= usb_sndisocpipe(dev
,
2083 ep
->desc
.bEndpointAddress
);
2084 f
->usb_transfer_mode
= USB_ISOC
;
2085 iso_packet_size
= le16_to_cpu(ep
->desc
.wMaxPacketSize
);
2092 f
->fifonum
= idx
& 7;
2094 f
->usb_packet_maxlen
=
2095 le16_to_cpu(ep
->desc
.wMaxPacketSize
);
2096 f
->intervall
= ep
->desc
.bInterval
;
2100 hw
->dev
= dev
; /* save device */
2101 hw
->if_used
= ifnum
; /* save used interface */
2102 hw
->alt_used
= alt_used
; /* and alternate config */
2103 hw
->ctrl_paksize
= dev
->descriptor
.bMaxPacketSize0
; /* control size */
2104 hw
->cfg_used
= vcf
[16]; /* store used config */
2105 hw
->vend_idx
= vend_idx
; /* store found vendor */
2106 hw
->packet_size
= packet_size
;
2107 hw
->iso_packet_size
= iso_packet_size
;
2109 /* create the control pipes needed for register access */
2110 hw
->ctrl_in_pipe
= usb_rcvctrlpipe(hw
->dev
, 0);
2111 hw
->ctrl_out_pipe
= usb_sndctrlpipe(hw
->dev
, 0);
2112 hw
->ctrl_urb
= usb_alloc_urb(0, GFP_KERNEL
);
2115 (struct hfcsusb_vdata
*)hfcsusb_idtab
[vend_idx
].driver_info
;
2116 printk(KERN_DEBUG
"%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2117 hw
->name
, __func__
, driver_info
->vend_name
,
2118 conf_str
[small_match
], ifnum
, alt_used
);
2120 if (setup_instance(hw
, dev
->dev
.parent
))
2124 usb_set_intfdata(hw
->intf
, hw
);
2128 /* function called when an active device is removed */
2130 hfcsusb_disconnect(struct usb_interface
*intf
)
2132 struct hfcsusb
*hw
= usb_get_intfdata(intf
);
2133 struct hfcsusb
*next
;
2136 printk(KERN_INFO
"%s: device disconnected\n", hw
->name
);
2138 handle_led(hw
, LED_POWER_OFF
);
2141 list_for_each_entry_safe(hw
, next
, &HFClist
, list
)
2146 usb_set_intfdata(intf
, NULL
);
2149 static struct usb_driver hfcsusb_drv
= {
2150 .name
= DRIVER_NAME
,
2151 .id_table
= hfcsusb_idtab
,
2152 .probe
= hfcsusb_probe
,
2153 .disconnect
= hfcsusb_disconnect
,
2159 printk(KERN_INFO DRIVER_NAME
" driver Rev. %s debug(0x%x) poll(%i)\n",
2160 hfcsusb_rev
, debug
, poll
);
2162 if (usb_register(&hfcsusb_drv
)) {
2163 printk(KERN_INFO DRIVER_NAME
2164 ": Unable to register hfcsusb module at usb stack\n");
2172 hfcsusb_cleanup(void)
2174 if (debug
& DBG_HFC_CALL_TRACE
)
2175 printk(KERN_INFO DRIVER_NAME
": %s\n", __func__
);
2177 /* unregister Hardware */
2178 usb_deregister(&hfcsusb_drv
); /* release our driver */
2181 module_init(hfcsusb_init
);
2182 module_exit(hfcsusb_cleanup
);