x86/amd-iommu: Add function to complete a tlb flush
[linux/fpc-iii.git] / drivers / macintosh / therm_pm72.c
blobea32c7e5a9af116c49e885b1e015fe9742f24758
1 /*
2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
5 * (c) Copyright IBM Corp. 2003-2004
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
9 *
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
32 * safe enough ...
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
42 * implementation...
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slewing down CPUs
48 * - Deal with fan and i2c failures in a better way
49 * - Maybe do a generic PID based on params used for
50 * U3 and Drives ? Definitely need to factor code a bit
51 * bettter... also make sensor detection more robust using
52 * the device-tree to probe for them
53 * - Figure out how to get the slots consumption and set the
54 * slots fan accordingly
56 * History:
58 * Nov. 13, 2003 : 0.5
59 * - First release
61 * Nov. 14, 2003 : 0.6
62 * - Read fan speed from FCU, low level fan routines now deal
63 * with errors & check fan status, though higher level don't
64 * do much.
65 * - Move a bunch of definitions to .h file
67 * Nov. 18, 2003 : 0.7
68 * - Fix build on ppc64 kernel
69 * - Move back statics definitions to .c file
70 * - Avoid calling schedule_timeout with a negative number
72 * Dec. 18, 2003 : 0.8
73 * - Fix typo when reading back fan speed on 2 CPU machines
75 * Mar. 11, 2004 : 0.9
76 * - Rework code accessing the ADC chips, make it more robust and
77 * closer to the chip spec. Also make sure it is configured properly,
78 * I've seen yet unexplained cases where on startup, I would have stale
79 * values in the configuration register
80 * - Switch back to use of target fan speed for PID, thus lowering
81 * pressure on i2c
83 * Oct. 20, 2004 : 1.1
84 * - Add device-tree lookup for fan IDs, should detect liquid cooling
85 * pumps when present
86 * - Enable driver for PowerMac7,3 machines
87 * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88 * - Add new CPU cooling algorithm for machines with liquid cooling
89 * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90 * - Fix a signed/unsigned compare issue in some PID loops
92 * Mar. 10, 2005 : 1.2
93 * - Add basic support for Xserve G5
94 * - Retreive pumps min/max from EEPROM image in device-tree (broken)
95 * - Use min/max macros here or there
96 * - Latest darwin updated U3H min fan speed to 20% PWM
98 * July. 06, 2006 : 1.3
99 * - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100 * - Add missing slots fan control loop for Xserve G5
101 * - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102 * still can't properly implement the control loop for these, so let's
103 * reduce the noise a little bit, it appears that 40% still gives us
104 * a pretty good air flow
105 * - Add code to "tickle" the FCU regulary so it doesn't think that
106 * we are gone while in fact, the machine just didn't need any fan
107 * speed change lately
111 #include <linux/types.h>
112 #include <linux/module.h>
113 #include <linux/errno.h>
114 #include <linux/kernel.h>
115 #include <linux/delay.h>
116 #include <linux/sched.h>
117 #include <linux/slab.h>
118 #include <linux/init.h>
119 #include <linux/spinlock.h>
120 #include <linux/wait.h>
121 #include <linux/reboot.h>
122 #include <linux/kmod.h>
123 #include <linux/i2c.h>
124 #include <linux/kthread.h>
125 #include <linux/mutex.h>
126 #include <linux/of_device.h>
127 #include <linux/of_platform.h>
128 #include <asm/prom.h>
129 #include <asm/machdep.h>
130 #include <asm/io.h>
131 #include <asm/system.h>
132 #include <asm/sections.h>
133 #include <asm/macio.h>
135 #include "therm_pm72.h"
137 #define VERSION "1.3"
139 #undef DEBUG
141 #ifdef DEBUG
142 #define DBG(args...) printk(args)
143 #else
144 #define DBG(args...) do { } while(0)
145 #endif
149 * Driver statics
152 static struct of_device * of_dev;
153 static struct i2c_adapter * u3_0;
154 static struct i2c_adapter * u3_1;
155 static struct i2c_adapter * k2;
156 static struct i2c_client * fcu;
157 static struct cpu_pid_state cpu_state[2];
158 static struct basckside_pid_params backside_params;
159 static struct backside_pid_state backside_state;
160 static struct drives_pid_state drives_state;
161 static struct dimm_pid_state dimms_state;
162 static struct slots_pid_state slots_state;
163 static int state;
164 static int cpu_count;
165 static int cpu_pid_type;
166 static struct task_struct *ctrl_task;
167 static struct completion ctrl_complete;
168 static int critical_state;
169 static int rackmac;
170 static s32 dimm_output_clamp;
171 static int fcu_rpm_shift;
172 static int fcu_tickle_ticks;
173 static DEFINE_MUTEX(driver_lock);
176 * We have 3 types of CPU PID control. One is "split" old style control
177 * for intake & exhaust fans, the other is "combined" control for both
178 * CPUs that also deals with the pumps when present. To be "compatible"
179 * with OS X at this point, we only use "COMBINED" on the machines that
180 * are identified as having the pumps (though that identification is at
181 * least dodgy). Ultimately, we could probably switch completely to this
182 * algorithm provided we hack it to deal with the UP case
184 #define CPU_PID_TYPE_SPLIT 0
185 #define CPU_PID_TYPE_COMBINED 1
186 #define CPU_PID_TYPE_RACKMAC 2
189 * This table describes all fans in the FCU. The "id" and "type" values
190 * are defaults valid for all earlier machines. Newer machines will
191 * eventually override the table content based on the device-tree
193 struct fcu_fan_table
195 char* loc; /* location code */
196 int type; /* 0 = rpm, 1 = pwm, 2 = pump */
197 int id; /* id or -1 */
200 #define FCU_FAN_RPM 0
201 #define FCU_FAN_PWM 1
203 #define FCU_FAN_ABSENT_ID -1
205 #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
207 struct fcu_fan_table fcu_fans[] = {
208 [BACKSIDE_FAN_PWM_INDEX] = {
209 .loc = "BACKSIDE,SYS CTRLR FAN",
210 .type = FCU_FAN_PWM,
211 .id = BACKSIDE_FAN_PWM_DEFAULT_ID,
213 [DRIVES_FAN_RPM_INDEX] = {
214 .loc = "DRIVE BAY",
215 .type = FCU_FAN_RPM,
216 .id = DRIVES_FAN_RPM_DEFAULT_ID,
218 [SLOTS_FAN_PWM_INDEX] = {
219 .loc = "SLOT,PCI FAN",
220 .type = FCU_FAN_PWM,
221 .id = SLOTS_FAN_PWM_DEFAULT_ID,
223 [CPUA_INTAKE_FAN_RPM_INDEX] = {
224 .loc = "CPU A INTAKE",
225 .type = FCU_FAN_RPM,
226 .id = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
228 [CPUA_EXHAUST_FAN_RPM_INDEX] = {
229 .loc = "CPU A EXHAUST",
230 .type = FCU_FAN_RPM,
231 .id = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
233 [CPUB_INTAKE_FAN_RPM_INDEX] = {
234 .loc = "CPU B INTAKE",
235 .type = FCU_FAN_RPM,
236 .id = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
238 [CPUB_EXHAUST_FAN_RPM_INDEX] = {
239 .loc = "CPU B EXHAUST",
240 .type = FCU_FAN_RPM,
241 .id = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
243 /* pumps aren't present by default, have to be looked up in the
244 * device-tree
246 [CPUA_PUMP_RPM_INDEX] = {
247 .loc = "CPU A PUMP",
248 .type = FCU_FAN_RPM,
249 .id = FCU_FAN_ABSENT_ID,
251 [CPUB_PUMP_RPM_INDEX] = {
252 .loc = "CPU B PUMP",
253 .type = FCU_FAN_RPM,
254 .id = FCU_FAN_ABSENT_ID,
256 /* Xserve fans */
257 [CPU_A1_FAN_RPM_INDEX] = {
258 .loc = "CPU A 1",
259 .type = FCU_FAN_RPM,
260 .id = FCU_FAN_ABSENT_ID,
262 [CPU_A2_FAN_RPM_INDEX] = {
263 .loc = "CPU A 2",
264 .type = FCU_FAN_RPM,
265 .id = FCU_FAN_ABSENT_ID,
267 [CPU_A3_FAN_RPM_INDEX] = {
268 .loc = "CPU A 3",
269 .type = FCU_FAN_RPM,
270 .id = FCU_FAN_ABSENT_ID,
272 [CPU_B1_FAN_RPM_INDEX] = {
273 .loc = "CPU B 1",
274 .type = FCU_FAN_RPM,
275 .id = FCU_FAN_ABSENT_ID,
277 [CPU_B2_FAN_RPM_INDEX] = {
278 .loc = "CPU B 2",
279 .type = FCU_FAN_RPM,
280 .id = FCU_FAN_ABSENT_ID,
282 [CPU_B3_FAN_RPM_INDEX] = {
283 .loc = "CPU B 3",
284 .type = FCU_FAN_RPM,
285 .id = FCU_FAN_ABSENT_ID,
289 static struct i2c_driver therm_pm72_driver;
292 * Utility function to create an i2c_client structure and
293 * attach it to one of u3 adapters
295 static struct i2c_client *attach_i2c_chip(int id, const char *name)
297 struct i2c_client *clt;
298 struct i2c_adapter *adap;
299 struct i2c_board_info info;
301 if (id & 0x200)
302 adap = k2;
303 else if (id & 0x100)
304 adap = u3_1;
305 else
306 adap = u3_0;
307 if (adap == NULL)
308 return NULL;
310 memset(&info, 0, sizeof(struct i2c_board_info));
311 info.addr = (id >> 1) & 0x7f;
312 strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
313 clt = i2c_new_device(adap, &info);
314 if (!clt) {
315 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
316 return NULL;
320 * Let i2c-core delete that device on driver removal.
321 * This is safe because i2c-core holds the core_lock mutex for us.
323 list_add_tail(&clt->detected, &therm_pm72_driver.clients);
324 return clt;
328 * Here are the i2c chip access wrappers
331 static void initialize_adc(struct cpu_pid_state *state)
333 int rc;
334 u8 buf[2];
336 /* Read ADC the configuration register and cache it. We
337 * also make sure Config2 contains proper values, I've seen
338 * cases where we got stale grabage in there, thus preventing
339 * proper reading of conv. values
342 /* Clear Config2 */
343 buf[0] = 5;
344 buf[1] = 0;
345 i2c_master_send(state->monitor, buf, 2);
347 /* Read & cache Config1 */
348 buf[0] = 1;
349 rc = i2c_master_send(state->monitor, buf, 1);
350 if (rc > 0) {
351 rc = i2c_master_recv(state->monitor, buf, 1);
352 if (rc > 0) {
353 state->adc_config = buf[0];
354 DBG("ADC config reg: %02x\n", state->adc_config);
355 /* Disable shutdown mode */
356 state->adc_config &= 0xfe;
357 buf[0] = 1;
358 buf[1] = state->adc_config;
359 rc = i2c_master_send(state->monitor, buf, 2);
362 if (rc <= 0)
363 printk(KERN_ERR "therm_pm72: Error reading ADC config"
364 " register !\n");
367 static int read_smon_adc(struct cpu_pid_state *state, int chan)
369 int rc, data, tries = 0;
370 u8 buf[2];
372 for (;;) {
373 /* Set channel */
374 buf[0] = 1;
375 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
376 rc = i2c_master_send(state->monitor, buf, 2);
377 if (rc <= 0)
378 goto error;
379 /* Wait for convertion */
380 msleep(1);
381 /* Switch to data register */
382 buf[0] = 4;
383 rc = i2c_master_send(state->monitor, buf, 1);
384 if (rc <= 0)
385 goto error;
386 /* Read result */
387 rc = i2c_master_recv(state->monitor, buf, 2);
388 if (rc < 0)
389 goto error;
390 data = ((u16)buf[0]) << 8 | (u16)buf[1];
391 return data >> 6;
392 error:
393 DBG("Error reading ADC, retrying...\n");
394 if (++tries > 10) {
395 printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
396 return -1;
398 msleep(10);
402 static int read_lm87_reg(struct i2c_client * chip, int reg)
404 int rc, tries = 0;
405 u8 buf;
407 for (;;) {
408 /* Set address */
409 buf = (u8)reg;
410 rc = i2c_master_send(chip, &buf, 1);
411 if (rc <= 0)
412 goto error;
413 rc = i2c_master_recv(chip, &buf, 1);
414 if (rc <= 0)
415 goto error;
416 return (int)buf;
417 error:
418 DBG("Error reading LM87, retrying...\n");
419 if (++tries > 10) {
420 printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
421 return -1;
423 msleep(10);
427 static int fan_read_reg(int reg, unsigned char *buf, int nb)
429 int tries, nr, nw;
431 buf[0] = reg;
432 tries = 0;
433 for (;;) {
434 nw = i2c_master_send(fcu, buf, 1);
435 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
436 break;
437 msleep(10);
438 ++tries;
440 if (nw <= 0) {
441 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
442 return -EIO;
444 tries = 0;
445 for (;;) {
446 nr = i2c_master_recv(fcu, buf, nb);
447 if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
448 break;
449 msleep(10);
450 ++tries;
452 if (nr <= 0)
453 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
454 return nr;
457 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
459 int tries, nw;
460 unsigned char buf[16];
462 buf[0] = reg;
463 memcpy(buf+1, ptr, nb);
464 ++nb;
465 tries = 0;
466 for (;;) {
467 nw = i2c_master_send(fcu, buf, nb);
468 if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
469 break;
470 msleep(10);
471 ++tries;
473 if (nw < 0)
474 printk(KERN_ERR "Failure writing to FCU: %d", nw);
475 return nw;
478 static int start_fcu(void)
480 unsigned char buf = 0xff;
481 int rc;
483 rc = fan_write_reg(0xe, &buf, 1);
484 if (rc < 0)
485 return -EIO;
486 rc = fan_write_reg(0x2e, &buf, 1);
487 if (rc < 0)
488 return -EIO;
489 rc = fan_read_reg(0, &buf, 1);
490 if (rc < 0)
491 return -EIO;
492 fcu_rpm_shift = (buf == 1) ? 2 : 3;
493 printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
494 fcu_rpm_shift);
496 return 0;
499 static int set_rpm_fan(int fan_index, int rpm)
501 unsigned char buf[2];
502 int rc, id, min, max;
504 if (fcu_fans[fan_index].type != FCU_FAN_RPM)
505 return -EINVAL;
506 id = fcu_fans[fan_index].id;
507 if (id == FCU_FAN_ABSENT_ID)
508 return -EINVAL;
510 min = 2400 >> fcu_rpm_shift;
511 max = 56000 >> fcu_rpm_shift;
513 if (rpm < min)
514 rpm = min;
515 else if (rpm > max)
516 rpm = max;
517 buf[0] = rpm >> (8 - fcu_rpm_shift);
518 buf[1] = rpm << fcu_rpm_shift;
519 rc = fan_write_reg(0x10 + (id * 2), buf, 2);
520 if (rc < 0)
521 return -EIO;
522 return 0;
525 static int get_rpm_fan(int fan_index, int programmed)
527 unsigned char failure;
528 unsigned char active;
529 unsigned char buf[2];
530 int rc, id, reg_base;
532 if (fcu_fans[fan_index].type != FCU_FAN_RPM)
533 return -EINVAL;
534 id = fcu_fans[fan_index].id;
535 if (id == FCU_FAN_ABSENT_ID)
536 return -EINVAL;
538 rc = fan_read_reg(0xb, &failure, 1);
539 if (rc != 1)
540 return -EIO;
541 if ((failure & (1 << id)) != 0)
542 return -EFAULT;
543 rc = fan_read_reg(0xd, &active, 1);
544 if (rc != 1)
545 return -EIO;
546 if ((active & (1 << id)) == 0)
547 return -ENXIO;
549 /* Programmed value or real current speed */
550 reg_base = programmed ? 0x10 : 0x11;
551 rc = fan_read_reg(reg_base + (id * 2), buf, 2);
552 if (rc != 2)
553 return -EIO;
555 return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
558 static int set_pwm_fan(int fan_index, int pwm)
560 unsigned char buf[2];
561 int rc, id;
563 if (fcu_fans[fan_index].type != FCU_FAN_PWM)
564 return -EINVAL;
565 id = fcu_fans[fan_index].id;
566 if (id == FCU_FAN_ABSENT_ID)
567 return -EINVAL;
569 if (pwm < 10)
570 pwm = 10;
571 else if (pwm > 100)
572 pwm = 100;
573 pwm = (pwm * 2559) / 1000;
574 buf[0] = pwm;
575 rc = fan_write_reg(0x30 + (id * 2), buf, 1);
576 if (rc < 0)
577 return rc;
578 return 0;
581 static int get_pwm_fan(int fan_index)
583 unsigned char failure;
584 unsigned char active;
585 unsigned char buf[2];
586 int rc, id;
588 if (fcu_fans[fan_index].type != FCU_FAN_PWM)
589 return -EINVAL;
590 id = fcu_fans[fan_index].id;
591 if (id == FCU_FAN_ABSENT_ID)
592 return -EINVAL;
594 rc = fan_read_reg(0x2b, &failure, 1);
595 if (rc != 1)
596 return -EIO;
597 if ((failure & (1 << id)) != 0)
598 return -EFAULT;
599 rc = fan_read_reg(0x2d, &active, 1);
600 if (rc != 1)
601 return -EIO;
602 if ((active & (1 << id)) == 0)
603 return -ENXIO;
605 /* Programmed value or real current speed */
606 rc = fan_read_reg(0x30 + (id * 2), buf, 1);
607 if (rc != 1)
608 return -EIO;
610 return (buf[0] * 1000) / 2559;
613 static void tickle_fcu(void)
615 int pwm;
617 pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
619 DBG("FCU Tickle, slots fan is: %d\n", pwm);
620 if (pwm < 0)
621 pwm = 100;
623 if (!rackmac) {
624 pwm = SLOTS_FAN_DEFAULT_PWM;
625 } else if (pwm < SLOTS_PID_OUTPUT_MIN)
626 pwm = SLOTS_PID_OUTPUT_MIN;
628 /* That is hopefully enough to make the FCU happy */
629 set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
634 * Utility routine to read the CPU calibration EEPROM data
635 * from the device-tree
637 static int read_eeprom(int cpu, struct mpu_data *out)
639 struct device_node *np;
640 char nodename[64];
641 const u8 *data;
642 int len;
644 /* prom.c routine for finding a node by path is a bit brain dead
645 * and requires exact @xxx unit numbers. This is a bit ugly but
646 * will work for these machines
648 sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
649 np = of_find_node_by_path(nodename);
650 if (np == NULL) {
651 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
652 return -ENODEV;
654 data = of_get_property(np, "cpuid", &len);
655 if (data == NULL) {
656 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
657 of_node_put(np);
658 return -ENODEV;
660 memcpy(out, data, sizeof(struct mpu_data));
661 of_node_put(np);
663 return 0;
666 static void fetch_cpu_pumps_minmax(void)
668 struct cpu_pid_state *state0 = &cpu_state[0];
669 struct cpu_pid_state *state1 = &cpu_state[1];
670 u16 pump_min = 0, pump_max = 0xffff;
671 u16 tmp[4];
673 /* Try to fetch pumps min/max infos from eeprom */
675 memcpy(&tmp, &state0->mpu.processor_part_num, 8);
676 if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
677 pump_min = max(pump_min, tmp[0]);
678 pump_max = min(pump_max, tmp[1]);
680 if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
681 pump_min = max(pump_min, tmp[2]);
682 pump_max = min(pump_max, tmp[3]);
685 /* Double check the values, this _IS_ needed as the EEPROM on
686 * some dual 2.5Ghz G5s seem, at least, to have both min & max
687 * same to the same value ... (grrrr)
689 if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
690 pump_min = CPU_PUMP_OUTPUT_MIN;
691 pump_max = CPU_PUMP_OUTPUT_MAX;
694 state0->pump_min = state1->pump_min = pump_min;
695 state0->pump_max = state1->pump_max = pump_max;
699 * Now, unfortunately, sysfs doesn't give us a nice void * we could
700 * pass around to the attribute functions, so we don't really have
701 * choice but implement a bunch of them...
703 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
704 * the input twice... I accept patches :)
706 #define BUILD_SHOW_FUNC_FIX(name, data) \
707 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
709 ssize_t r; \
710 mutex_lock(&driver_lock); \
711 r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
712 mutex_unlock(&driver_lock); \
713 return r; \
715 #define BUILD_SHOW_FUNC_INT(name, data) \
716 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
718 return sprintf(buf, "%d", data); \
721 BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
722 BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
723 BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
724 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
725 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
727 BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
728 BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
729 BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
730 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
731 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
733 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
734 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
736 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
737 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
739 BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
740 BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
742 BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
744 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
745 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
746 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
747 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
748 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
750 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
751 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
752 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
753 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
754 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
756 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
757 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
759 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
760 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
762 static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
763 static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
765 static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
768 * CPUs fans control loop
771 static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
773 s32 ltemp, volts, amps;
774 int index, rc = 0;
776 /* Default (in case of error) */
777 *temp = state->cur_temp;
778 *power = state->cur_power;
780 if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
781 index = (state->index == 0) ?
782 CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
783 else
784 index = (state->index == 0) ?
785 CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
787 /* Read current fan status */
788 rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
789 if (rc < 0) {
790 /* XXX What do we do now ? Nothing for now, keep old value, but
791 * return error upstream
793 DBG(" cpu %d, fan reading error !\n", state->index);
794 } else {
795 state->rpm = rc;
796 DBG(" cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
799 /* Get some sensor readings and scale it */
800 ltemp = read_smon_adc(state, 1);
801 if (ltemp == -1) {
802 /* XXX What do we do now ? */
803 state->overtemp++;
804 if (rc == 0)
805 rc = -EIO;
806 DBG(" cpu %d, temp reading error !\n", state->index);
807 } else {
808 /* Fixup temperature according to diode calibration
810 DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
811 state->index,
812 ltemp, state->mpu.mdiode, state->mpu.bdiode);
813 *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
814 state->last_temp = *temp;
815 DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp)));
819 * Read voltage & current and calculate power
821 volts = read_smon_adc(state, 3);
822 amps = read_smon_adc(state, 4);
824 /* Scale voltage and current raw sensor values according to fixed scales
825 * obtained in Darwin and calculate power from I and V
827 volts *= ADC_CPU_VOLTAGE_SCALE;
828 amps *= ADC_CPU_CURRENT_SCALE;
829 *power = (((u64)volts) * ((u64)amps)) >> 16;
830 state->voltage = volts;
831 state->current_a = amps;
832 state->last_power = *power;
834 DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
835 state->index, FIX32TOPRINT(state->current_a),
836 FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
838 return 0;
841 static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
843 s32 power_target, integral, derivative, proportional, adj_in_target, sval;
844 s64 integ_p, deriv_p, prop_p, sum;
845 int i;
847 /* Calculate power target value (could be done once for all)
848 * and convert to a 16.16 fp number
850 power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
851 DBG(" power target: %d.%03d, error: %d.%03d\n",
852 FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
854 /* Store temperature and power in history array */
855 state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
856 state->temp_history[state->cur_temp] = temp;
857 state->cur_power = (state->cur_power + 1) % state->count_power;
858 state->power_history[state->cur_power] = power;
859 state->error_history[state->cur_power] = power_target - power;
861 /* If first loop, fill the history table */
862 if (state->first) {
863 for (i = 0; i < (state->count_power - 1); i++) {
864 state->cur_power = (state->cur_power + 1) % state->count_power;
865 state->power_history[state->cur_power] = power;
866 state->error_history[state->cur_power] = power_target - power;
868 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
869 state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
870 state->temp_history[state->cur_temp] = temp;
872 state->first = 0;
875 /* Calculate the integral term normally based on the "power" values */
876 sum = 0;
877 integral = 0;
878 for (i = 0; i < state->count_power; i++)
879 integral += state->error_history[i];
880 integral *= CPU_PID_INTERVAL;
881 DBG(" integral: %08x\n", integral);
883 /* Calculate the adjusted input (sense value).
884 * G_r is 12.20
885 * integ is 16.16
886 * so the result is 28.36
888 * input target is mpu.ttarget, input max is mpu.tmax
890 integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
891 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
892 sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
893 adj_in_target = (state->mpu.ttarget << 16);
894 if (adj_in_target > sval)
895 adj_in_target = sval;
896 DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
897 state->mpu.ttarget);
899 /* Calculate the derivative term */
900 derivative = state->temp_history[state->cur_temp] -
901 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
902 % CPU_TEMP_HISTORY_SIZE];
903 derivative /= CPU_PID_INTERVAL;
904 deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
905 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
906 sum += deriv_p;
908 /* Calculate the proportional term */
909 proportional = temp - adj_in_target;
910 prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
911 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
912 sum += prop_p;
914 /* Scale sum */
915 sum >>= 36;
917 DBG(" sum: %d\n", (int)sum);
918 state->rpm += (s32)sum;
921 static void do_monitor_cpu_combined(void)
923 struct cpu_pid_state *state0 = &cpu_state[0];
924 struct cpu_pid_state *state1 = &cpu_state[1];
925 s32 temp0, power0, temp1, power1;
926 s32 temp_combi, power_combi;
927 int rc, intake, pump;
929 rc = do_read_one_cpu_values(state0, &temp0, &power0);
930 if (rc < 0) {
931 /* XXX What do we do now ? */
933 state1->overtemp = 0;
934 rc = do_read_one_cpu_values(state1, &temp1, &power1);
935 if (rc < 0) {
936 /* XXX What do we do now ? */
938 if (state1->overtemp)
939 state0->overtemp++;
941 temp_combi = max(temp0, temp1);
942 power_combi = max(power0, power1);
944 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
945 * full blown immediately and try to trigger a shutdown
947 if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
948 printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
949 temp_combi >> 16);
950 state0->overtemp += CPU_MAX_OVERTEMP / 4;
951 } else if (temp_combi > (state0->mpu.tmax << 16))
952 state0->overtemp++;
953 else
954 state0->overtemp = 0;
955 if (state0->overtemp >= CPU_MAX_OVERTEMP)
956 critical_state = 1;
957 if (state0->overtemp > 0) {
958 state0->rpm = state0->mpu.rmaxn_exhaust_fan;
959 state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
960 pump = state0->pump_max;
961 goto do_set_fans;
964 /* Do the PID */
965 do_cpu_pid(state0, temp_combi, power_combi);
967 /* Range check */
968 state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
969 state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
971 /* Calculate intake fan speed */
972 intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
973 intake = max(intake, (int)state0->mpu.rminn_intake_fan);
974 intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
975 state0->intake_rpm = intake;
977 /* Calculate pump speed */
978 pump = (state0->rpm * state0->pump_max) /
979 state0->mpu.rmaxn_exhaust_fan;
980 pump = min(pump, state0->pump_max);
981 pump = max(pump, state0->pump_min);
983 do_set_fans:
984 /* We copy values from state 0 to state 1 for /sysfs */
985 state1->rpm = state0->rpm;
986 state1->intake_rpm = state0->intake_rpm;
988 DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
989 state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
991 /* We should check for errors, shouldn't we ? But then, what
992 * do we do once the error occurs ? For FCU notified fan
993 * failures (-EFAULT) we probably want to notify userland
994 * some way...
996 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
997 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
998 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
999 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1001 if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1002 set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1003 if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1004 set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1007 static void do_monitor_cpu_split(struct cpu_pid_state *state)
1009 s32 temp, power;
1010 int rc, intake;
1012 /* Read current fan status */
1013 rc = do_read_one_cpu_values(state, &temp, &power);
1014 if (rc < 0) {
1015 /* XXX What do we do now ? */
1018 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1019 * full blown immediately and try to trigger a shutdown
1021 if (temp >= ((state->mpu.tmax + 8) << 16)) {
1022 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1023 " (%d) !\n",
1024 state->index, temp >> 16);
1025 state->overtemp += CPU_MAX_OVERTEMP / 4;
1026 } else if (temp > (state->mpu.tmax << 16))
1027 state->overtemp++;
1028 else
1029 state->overtemp = 0;
1030 if (state->overtemp >= CPU_MAX_OVERTEMP)
1031 critical_state = 1;
1032 if (state->overtemp > 0) {
1033 state->rpm = state->mpu.rmaxn_exhaust_fan;
1034 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1035 goto do_set_fans;
1038 /* Do the PID */
1039 do_cpu_pid(state, temp, power);
1041 /* Range check */
1042 state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1043 state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1045 /* Calculate intake fan */
1046 intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1047 intake = max(intake, (int)state->mpu.rminn_intake_fan);
1048 intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1049 state->intake_rpm = intake;
1051 do_set_fans:
1052 DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1053 state->index, (int)state->rpm, intake, state->overtemp);
1055 /* We should check for errors, shouldn't we ? But then, what
1056 * do we do once the error occurs ? For FCU notified fan
1057 * failures (-EFAULT) we probably want to notify userland
1058 * some way...
1060 if (state->index == 0) {
1061 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1062 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1063 } else {
1064 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1065 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1069 static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1071 s32 temp, power, fan_min;
1072 int rc;
1074 /* Read current fan status */
1075 rc = do_read_one_cpu_values(state, &temp, &power);
1076 if (rc < 0) {
1077 /* XXX What do we do now ? */
1080 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1081 * full blown immediately and try to trigger a shutdown
1083 if (temp >= ((state->mpu.tmax + 8) << 16)) {
1084 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1085 " (%d) !\n",
1086 state->index, temp >> 16);
1087 state->overtemp = CPU_MAX_OVERTEMP / 4;
1088 } else if (temp > (state->mpu.tmax << 16))
1089 state->overtemp++;
1090 else
1091 state->overtemp = 0;
1092 if (state->overtemp >= CPU_MAX_OVERTEMP)
1093 critical_state = 1;
1094 if (state->overtemp > 0) {
1095 state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1096 goto do_set_fans;
1099 /* Do the PID */
1100 do_cpu_pid(state, temp, power);
1102 /* Check clamp from dimms */
1103 fan_min = dimm_output_clamp;
1104 fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1106 DBG(" CPU min mpu = %d, min dimm = %d\n",
1107 state->mpu.rminn_intake_fan, dimm_output_clamp);
1109 state->rpm = max(state->rpm, (int)fan_min);
1110 state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1111 state->intake_rpm = state->rpm;
1113 do_set_fans:
1114 DBG("** CPU %d RPM: %d overtemp: %d\n",
1115 state->index, (int)state->rpm, state->overtemp);
1117 /* We should check for errors, shouldn't we ? But then, what
1118 * do we do once the error occurs ? For FCU notified fan
1119 * failures (-EFAULT) we probably want to notify userland
1120 * some way...
1122 if (state->index == 0) {
1123 set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1124 set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1125 set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1126 } else {
1127 set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1128 set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1129 set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1134 * Initialize the state structure for one CPU control loop
1136 static int init_cpu_state(struct cpu_pid_state *state, int index)
1138 int err;
1140 state->index = index;
1141 state->first = 1;
1142 state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1143 state->overtemp = 0;
1144 state->adc_config = 0x00;
1147 if (index == 0)
1148 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1149 else if (index == 1)
1150 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1151 if (state->monitor == NULL)
1152 goto fail;
1154 if (read_eeprom(index, &state->mpu))
1155 goto fail;
1157 state->count_power = state->mpu.tguardband;
1158 if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1159 printk(KERN_WARNING "Warning ! too many power history slots\n");
1160 state->count_power = CPU_POWER_HISTORY_SIZE;
1162 DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1164 if (index == 0) {
1165 err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1166 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1167 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1168 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1169 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1170 } else {
1171 err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1172 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1173 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1174 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1175 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1177 if (err)
1178 printk(KERN_WARNING "Failed to create some of the atribute"
1179 "files for CPU %d\n", index);
1181 return 0;
1182 fail:
1183 state->monitor = NULL;
1185 return -ENODEV;
1189 * Dispose of the state data for one CPU control loop
1191 static void dispose_cpu_state(struct cpu_pid_state *state)
1193 if (state->monitor == NULL)
1194 return;
1196 if (state->index == 0) {
1197 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1198 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1199 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1200 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1201 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1202 } else {
1203 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1204 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1205 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1206 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1207 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1210 state->monitor = NULL;
1214 * Motherboard backside & U3 heatsink fan control loop
1216 static void do_monitor_backside(struct backside_pid_state *state)
1218 s32 temp, integral, derivative, fan_min;
1219 s64 integ_p, deriv_p, prop_p, sum;
1220 int i, rc;
1222 if (--state->ticks != 0)
1223 return;
1224 state->ticks = backside_params.interval;
1226 DBG("backside:\n");
1228 /* Check fan status */
1229 rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1230 if (rc < 0) {
1231 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1232 /* XXX What do we do now ? */
1233 } else
1234 state->pwm = rc;
1235 DBG(" current pwm: %d\n", state->pwm);
1237 /* Get some sensor readings */
1238 temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1239 state->last_temp = temp;
1240 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1241 FIX32TOPRINT(backside_params.input_target));
1243 /* Store temperature and error in history array */
1244 state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1245 state->sample_history[state->cur_sample] = temp;
1246 state->error_history[state->cur_sample] = temp - backside_params.input_target;
1248 /* If first loop, fill the history table */
1249 if (state->first) {
1250 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1251 state->cur_sample = (state->cur_sample + 1) %
1252 BACKSIDE_PID_HISTORY_SIZE;
1253 state->sample_history[state->cur_sample] = temp;
1254 state->error_history[state->cur_sample] =
1255 temp - backside_params.input_target;
1257 state->first = 0;
1260 /* Calculate the integral term */
1261 sum = 0;
1262 integral = 0;
1263 for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1264 integral += state->error_history[i];
1265 integral *= backside_params.interval;
1266 DBG(" integral: %08x\n", integral);
1267 integ_p = ((s64)backside_params.G_r) * (s64)integral;
1268 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1269 sum += integ_p;
1271 /* Calculate the derivative term */
1272 derivative = state->error_history[state->cur_sample] -
1273 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1274 % BACKSIDE_PID_HISTORY_SIZE];
1275 derivative /= backside_params.interval;
1276 deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1277 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1278 sum += deriv_p;
1280 /* Calculate the proportional term */
1281 prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1282 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1283 sum += prop_p;
1285 /* Scale sum */
1286 sum >>= 36;
1288 DBG(" sum: %d\n", (int)sum);
1289 if (backside_params.additive)
1290 state->pwm += (s32)sum;
1291 else
1292 state->pwm = sum;
1294 /* Check for clamp */
1295 fan_min = (dimm_output_clamp * 100) / 14000;
1296 fan_min = max(fan_min, backside_params.output_min);
1298 state->pwm = max(state->pwm, fan_min);
1299 state->pwm = min(state->pwm, backside_params.output_max);
1301 DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1302 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1306 * Initialize the state structure for the backside fan control loop
1308 static int init_backside_state(struct backside_pid_state *state)
1310 struct device_node *u3;
1311 int u3h = 1; /* conservative by default */
1312 int err;
1315 * There are different PID params for machines with U3 and machines
1316 * with U3H, pick the right ones now
1318 u3 = of_find_node_by_path("/u3@0,f8000000");
1319 if (u3 != NULL) {
1320 const u32 *vers = of_get_property(u3, "device-rev", NULL);
1321 if (vers)
1322 if (((*vers) & 0x3f) < 0x34)
1323 u3h = 0;
1324 of_node_put(u3);
1327 if (rackmac) {
1328 backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1329 backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1330 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1331 backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1332 backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1333 backside_params.G_r = BACKSIDE_PID_G_r;
1334 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1335 backside_params.additive = 0;
1336 } else if (u3h) {
1337 backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1338 backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1339 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1340 backside_params.interval = BACKSIDE_PID_INTERVAL;
1341 backside_params.G_p = BACKSIDE_PID_G_p;
1342 backside_params.G_r = BACKSIDE_PID_G_r;
1343 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1344 backside_params.additive = 1;
1345 } else {
1346 backside_params.G_d = BACKSIDE_PID_U3_G_d;
1347 backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1348 backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1349 backside_params.interval = BACKSIDE_PID_INTERVAL;
1350 backside_params.G_p = BACKSIDE_PID_G_p;
1351 backside_params.G_r = BACKSIDE_PID_G_r;
1352 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1353 backside_params.additive = 1;
1356 state->ticks = 1;
1357 state->first = 1;
1358 state->pwm = 50;
1360 state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1361 if (state->monitor == NULL)
1362 return -ENODEV;
1364 err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1365 err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1366 if (err)
1367 printk(KERN_WARNING "Failed to create attribute file(s)"
1368 " for backside fan\n");
1370 return 0;
1374 * Dispose of the state data for the backside control loop
1376 static void dispose_backside_state(struct backside_pid_state *state)
1378 if (state->monitor == NULL)
1379 return;
1381 device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1382 device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1384 state->monitor = NULL;
1388 * Drives bay fan control loop
1390 static void do_monitor_drives(struct drives_pid_state *state)
1392 s32 temp, integral, derivative;
1393 s64 integ_p, deriv_p, prop_p, sum;
1394 int i, rc;
1396 if (--state->ticks != 0)
1397 return;
1398 state->ticks = DRIVES_PID_INTERVAL;
1400 DBG("drives:\n");
1402 /* Check fan status */
1403 rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1404 if (rc < 0) {
1405 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1406 /* XXX What do we do now ? */
1407 } else
1408 state->rpm = rc;
1409 DBG(" current rpm: %d\n", state->rpm);
1411 /* Get some sensor readings */
1412 temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1413 DS1775_TEMP)) << 8;
1414 state->last_temp = temp;
1415 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1416 FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1418 /* Store temperature and error in history array */
1419 state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1420 state->sample_history[state->cur_sample] = temp;
1421 state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1423 /* If first loop, fill the history table */
1424 if (state->first) {
1425 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1426 state->cur_sample = (state->cur_sample + 1) %
1427 DRIVES_PID_HISTORY_SIZE;
1428 state->sample_history[state->cur_sample] = temp;
1429 state->error_history[state->cur_sample] =
1430 temp - DRIVES_PID_INPUT_TARGET;
1432 state->first = 0;
1435 /* Calculate the integral term */
1436 sum = 0;
1437 integral = 0;
1438 for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1439 integral += state->error_history[i];
1440 integral *= DRIVES_PID_INTERVAL;
1441 DBG(" integral: %08x\n", integral);
1442 integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1443 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1444 sum += integ_p;
1446 /* Calculate the derivative term */
1447 derivative = state->error_history[state->cur_sample] -
1448 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1449 % DRIVES_PID_HISTORY_SIZE];
1450 derivative /= DRIVES_PID_INTERVAL;
1451 deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1452 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1453 sum += deriv_p;
1455 /* Calculate the proportional term */
1456 prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1457 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1458 sum += prop_p;
1460 /* Scale sum */
1461 sum >>= 36;
1463 DBG(" sum: %d\n", (int)sum);
1464 state->rpm += (s32)sum;
1466 state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1467 state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1469 DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1470 set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1474 * Initialize the state structure for the drives bay fan control loop
1476 static int init_drives_state(struct drives_pid_state *state)
1478 int err;
1480 state->ticks = 1;
1481 state->first = 1;
1482 state->rpm = 1000;
1484 state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1485 if (state->monitor == NULL)
1486 return -ENODEV;
1488 err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1489 err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1490 if (err)
1491 printk(KERN_WARNING "Failed to create attribute file(s)"
1492 " for drives bay fan\n");
1494 return 0;
1498 * Dispose of the state data for the drives control loop
1500 static void dispose_drives_state(struct drives_pid_state *state)
1502 if (state->monitor == NULL)
1503 return;
1505 device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1506 device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1508 state->monitor = NULL;
1512 * DIMMs temp control loop
1514 static void do_monitor_dimms(struct dimm_pid_state *state)
1516 s32 temp, integral, derivative, fan_min;
1517 s64 integ_p, deriv_p, prop_p, sum;
1518 int i;
1520 if (--state->ticks != 0)
1521 return;
1522 state->ticks = DIMM_PID_INTERVAL;
1524 DBG("DIMM:\n");
1526 DBG(" current value: %d\n", state->output);
1528 temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1529 if (temp < 0)
1530 return;
1531 temp <<= 16;
1532 state->last_temp = temp;
1533 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1534 FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1536 /* Store temperature and error in history array */
1537 state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1538 state->sample_history[state->cur_sample] = temp;
1539 state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1541 /* If first loop, fill the history table */
1542 if (state->first) {
1543 for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1544 state->cur_sample = (state->cur_sample + 1) %
1545 DIMM_PID_HISTORY_SIZE;
1546 state->sample_history[state->cur_sample] = temp;
1547 state->error_history[state->cur_sample] =
1548 temp - DIMM_PID_INPUT_TARGET;
1550 state->first = 0;
1553 /* Calculate the integral term */
1554 sum = 0;
1555 integral = 0;
1556 for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1557 integral += state->error_history[i];
1558 integral *= DIMM_PID_INTERVAL;
1559 DBG(" integral: %08x\n", integral);
1560 integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1561 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1562 sum += integ_p;
1564 /* Calculate the derivative term */
1565 derivative = state->error_history[state->cur_sample] -
1566 state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1567 % DIMM_PID_HISTORY_SIZE];
1568 derivative /= DIMM_PID_INTERVAL;
1569 deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1570 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1571 sum += deriv_p;
1573 /* Calculate the proportional term */
1574 prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1575 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1576 sum += prop_p;
1578 /* Scale sum */
1579 sum >>= 36;
1581 DBG(" sum: %d\n", (int)sum);
1582 state->output = (s32)sum;
1583 state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1584 state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1585 dimm_output_clamp = state->output;
1587 DBG("** DIMM clamp value: %d\n", (int)state->output);
1589 /* Backside PID is only every 5 seconds, force backside fan clamping now */
1590 fan_min = (dimm_output_clamp * 100) / 14000;
1591 fan_min = max(fan_min, backside_params.output_min);
1592 if (backside_state.pwm < fan_min) {
1593 backside_state.pwm = fan_min;
1594 DBG(" -> applying clamp to backside fan now: %d !\n", fan_min);
1595 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1600 * Initialize the state structure for the DIMM temp control loop
1602 static int init_dimms_state(struct dimm_pid_state *state)
1604 state->ticks = 1;
1605 state->first = 1;
1606 state->output = 4000;
1608 state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1609 if (state->monitor == NULL)
1610 return -ENODEV;
1612 if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
1613 printk(KERN_WARNING "Failed to create attribute file"
1614 " for DIMM temperature\n");
1616 return 0;
1620 * Dispose of the state data for the DIMM control loop
1622 static void dispose_dimms_state(struct dimm_pid_state *state)
1624 if (state->monitor == NULL)
1625 return;
1627 device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1629 state->monitor = NULL;
1633 * Slots fan control loop
1635 static void do_monitor_slots(struct slots_pid_state *state)
1637 s32 temp, integral, derivative;
1638 s64 integ_p, deriv_p, prop_p, sum;
1639 int i, rc;
1641 if (--state->ticks != 0)
1642 return;
1643 state->ticks = SLOTS_PID_INTERVAL;
1645 DBG("slots:\n");
1647 /* Check fan status */
1648 rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1649 if (rc < 0) {
1650 printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1651 /* XXX What do we do now ? */
1652 } else
1653 state->pwm = rc;
1654 DBG(" current pwm: %d\n", state->pwm);
1656 /* Get some sensor readings */
1657 temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1658 DS1775_TEMP)) << 8;
1659 state->last_temp = temp;
1660 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1661 FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1663 /* Store temperature and error in history array */
1664 state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1665 state->sample_history[state->cur_sample] = temp;
1666 state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1668 /* If first loop, fill the history table */
1669 if (state->first) {
1670 for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1671 state->cur_sample = (state->cur_sample + 1) %
1672 SLOTS_PID_HISTORY_SIZE;
1673 state->sample_history[state->cur_sample] = temp;
1674 state->error_history[state->cur_sample] =
1675 temp - SLOTS_PID_INPUT_TARGET;
1677 state->first = 0;
1680 /* Calculate the integral term */
1681 sum = 0;
1682 integral = 0;
1683 for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1684 integral += state->error_history[i];
1685 integral *= SLOTS_PID_INTERVAL;
1686 DBG(" integral: %08x\n", integral);
1687 integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1688 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1689 sum += integ_p;
1691 /* Calculate the derivative term */
1692 derivative = state->error_history[state->cur_sample] -
1693 state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1694 % SLOTS_PID_HISTORY_SIZE];
1695 derivative /= SLOTS_PID_INTERVAL;
1696 deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1697 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1698 sum += deriv_p;
1700 /* Calculate the proportional term */
1701 prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1702 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1703 sum += prop_p;
1705 /* Scale sum */
1706 sum >>= 36;
1708 DBG(" sum: %d\n", (int)sum);
1709 state->pwm = (s32)sum;
1711 state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1712 state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1714 DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1715 set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1719 * Initialize the state structure for the slots bay fan control loop
1721 static int init_slots_state(struct slots_pid_state *state)
1723 int err;
1725 state->ticks = 1;
1726 state->first = 1;
1727 state->pwm = 50;
1729 state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1730 if (state->monitor == NULL)
1731 return -ENODEV;
1733 err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1734 err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1735 if (err)
1736 printk(KERN_WARNING "Failed to create attribute file(s)"
1737 " for slots bay fan\n");
1739 return 0;
1743 * Dispose of the state data for the slots control loop
1745 static void dispose_slots_state(struct slots_pid_state *state)
1747 if (state->monitor == NULL)
1748 return;
1750 device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1751 device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1753 state->monitor = NULL;
1757 static int call_critical_overtemp(void)
1759 char *argv[] = { critical_overtemp_path, NULL };
1760 static char *envp[] = { "HOME=/",
1761 "TERM=linux",
1762 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1763 NULL };
1765 return call_usermodehelper(critical_overtemp_path,
1766 argv, envp, UMH_WAIT_EXEC);
1771 * Here's the kernel thread that calls the various control loops
1773 static int main_control_loop(void *x)
1775 DBG("main_control_loop started\n");
1777 mutex_lock(&driver_lock);
1779 if (start_fcu() < 0) {
1780 printk(KERN_ERR "kfand: failed to start FCU\n");
1781 mutex_unlock(&driver_lock);
1782 goto out;
1785 /* Set the PCI fan once for now on non-RackMac */
1786 if (!rackmac)
1787 set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1789 /* Initialize ADCs */
1790 initialize_adc(&cpu_state[0]);
1791 if (cpu_state[1].monitor != NULL)
1792 initialize_adc(&cpu_state[1]);
1794 fcu_tickle_ticks = FCU_TICKLE_TICKS;
1796 mutex_unlock(&driver_lock);
1798 while (state == state_attached) {
1799 unsigned long elapsed, start;
1801 start = jiffies;
1803 mutex_lock(&driver_lock);
1805 /* Tickle the FCU just in case */
1806 if (--fcu_tickle_ticks < 0) {
1807 fcu_tickle_ticks = FCU_TICKLE_TICKS;
1808 tickle_fcu();
1811 /* First, we always calculate the new DIMMs state on an Xserve */
1812 if (rackmac)
1813 do_monitor_dimms(&dimms_state);
1815 /* Then, the CPUs */
1816 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1817 do_monitor_cpu_combined();
1818 else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1819 do_monitor_cpu_rack(&cpu_state[0]);
1820 if (cpu_state[1].monitor != NULL)
1821 do_monitor_cpu_rack(&cpu_state[1]);
1822 // better deal with UP
1823 } else {
1824 do_monitor_cpu_split(&cpu_state[0]);
1825 if (cpu_state[1].monitor != NULL)
1826 do_monitor_cpu_split(&cpu_state[1]);
1827 // better deal with UP
1829 /* Then, the rest */
1830 do_monitor_backside(&backside_state);
1831 if (rackmac)
1832 do_monitor_slots(&slots_state);
1833 else
1834 do_monitor_drives(&drives_state);
1835 mutex_unlock(&driver_lock);
1837 if (critical_state == 1) {
1838 printk(KERN_WARNING "Temperature control detected a critical condition\n");
1839 printk(KERN_WARNING "Attempting to shut down...\n");
1840 if (call_critical_overtemp()) {
1841 printk(KERN_WARNING "Can't call %s, power off now!\n",
1842 critical_overtemp_path);
1843 machine_power_off();
1846 if (critical_state > 0)
1847 critical_state++;
1848 if (critical_state > MAX_CRITICAL_STATE) {
1849 printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1850 machine_power_off();
1853 // FIXME: Deal with signals
1854 elapsed = jiffies - start;
1855 if (elapsed < HZ)
1856 schedule_timeout_interruptible(HZ - elapsed);
1859 out:
1860 DBG("main_control_loop ended\n");
1862 ctrl_task = 0;
1863 complete_and_exit(&ctrl_complete, 0);
1867 * Dispose the control loops when tearing down
1869 static void dispose_control_loops(void)
1871 dispose_cpu_state(&cpu_state[0]);
1872 dispose_cpu_state(&cpu_state[1]);
1873 dispose_backside_state(&backside_state);
1874 dispose_drives_state(&drives_state);
1875 dispose_slots_state(&slots_state);
1876 dispose_dimms_state(&dimms_state);
1880 * Create the control loops. U3-0 i2c bus is up, so we can now
1881 * get to the various sensors
1883 static int create_control_loops(void)
1885 struct device_node *np;
1887 /* Count CPUs from the device-tree, we don't care how many are
1888 * actually used by Linux
1890 cpu_count = 0;
1891 for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1892 cpu_count++;
1894 DBG("counted %d CPUs in the device-tree\n", cpu_count);
1896 /* Decide the type of PID algorithm to use based on the presence of
1897 * the pumps, though that may not be the best way, that is good enough
1898 * for now
1900 if (rackmac)
1901 cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1902 else if (machine_is_compatible("PowerMac7,3")
1903 && (cpu_count > 1)
1904 && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1905 && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1906 printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1907 cpu_pid_type = CPU_PID_TYPE_COMBINED;
1908 } else
1909 cpu_pid_type = CPU_PID_TYPE_SPLIT;
1911 /* Create control loops for everything. If any fail, everything
1912 * fails
1914 if (init_cpu_state(&cpu_state[0], 0))
1915 goto fail;
1916 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1917 fetch_cpu_pumps_minmax();
1919 if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
1920 goto fail;
1921 if (init_backside_state(&backside_state))
1922 goto fail;
1923 if (rackmac && init_dimms_state(&dimms_state))
1924 goto fail;
1925 if (rackmac && init_slots_state(&slots_state))
1926 goto fail;
1927 if (!rackmac && init_drives_state(&drives_state))
1928 goto fail;
1930 DBG("all control loops up !\n");
1932 return 0;
1934 fail:
1935 DBG("failure creating control loops, disposing\n");
1937 dispose_control_loops();
1939 return -ENODEV;
1943 * Start the control loops after everything is up, that is create
1944 * the thread that will make them run
1946 static void start_control_loops(void)
1948 init_completion(&ctrl_complete);
1950 ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
1954 * Stop the control loops when tearing down
1956 static void stop_control_loops(void)
1958 if (ctrl_task)
1959 wait_for_completion(&ctrl_complete);
1963 * Attach to the i2c FCU after detecting U3-1 bus
1965 static int attach_fcu(void)
1967 fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1968 if (fcu == NULL)
1969 return -ENODEV;
1971 DBG("FCU attached\n");
1973 return 0;
1977 * Detach from the i2c FCU when tearing down
1979 static void detach_fcu(void)
1981 fcu = NULL;
1985 * Attach to the i2c controller. We probe the various chips based
1986 * on the device-tree nodes and build everything for the driver to
1987 * run, we then kick the driver monitoring thread
1989 static int therm_pm72_attach(struct i2c_adapter *adapter)
1991 mutex_lock(&driver_lock);
1993 /* Check state */
1994 if (state == state_detached)
1995 state = state_attaching;
1996 if (state != state_attaching) {
1997 mutex_unlock(&driver_lock);
1998 return 0;
2001 /* Check if we are looking for one of these */
2002 if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2003 u3_0 = adapter;
2004 DBG("found U3-0\n");
2005 if (k2 || !rackmac)
2006 if (create_control_loops())
2007 u3_0 = NULL;
2008 } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2009 u3_1 = adapter;
2010 DBG("found U3-1, attaching FCU\n");
2011 if (attach_fcu())
2012 u3_1 = NULL;
2013 } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2014 k2 = adapter;
2015 DBG("Found K2\n");
2016 if (u3_0 && rackmac)
2017 if (create_control_loops())
2018 k2 = NULL;
2020 /* We got all we need, start control loops */
2021 if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2022 DBG("everything up, starting control loops\n");
2023 state = state_attached;
2024 start_control_loops();
2026 mutex_unlock(&driver_lock);
2028 return 0;
2031 static int therm_pm72_probe(struct i2c_client *client,
2032 const struct i2c_device_id *id)
2034 /* Always succeed, the real work was done in therm_pm72_attach() */
2035 return 0;
2039 * Called when any of the devices which participates into thermal management
2040 * is going away.
2042 static int therm_pm72_remove(struct i2c_client *client)
2044 struct i2c_adapter *adapter = client->adapter;
2046 mutex_lock(&driver_lock);
2048 if (state != state_detached)
2049 state = state_detaching;
2051 /* Stop control loops if any */
2052 DBG("stopping control loops\n");
2053 mutex_unlock(&driver_lock);
2054 stop_control_loops();
2055 mutex_lock(&driver_lock);
2057 if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2058 DBG("lost U3-0, disposing control loops\n");
2059 dispose_control_loops();
2060 u3_0 = NULL;
2063 if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2064 DBG("lost U3-1, detaching FCU\n");
2065 detach_fcu();
2066 u3_1 = NULL;
2068 if (u3_0 == NULL && u3_1 == NULL)
2069 state = state_detached;
2071 mutex_unlock(&driver_lock);
2073 return 0;
2077 * i2c_driver structure to attach to the host i2c controller
2080 static const struct i2c_device_id therm_pm72_id[] = {
2082 * Fake device name, thermal management is done by several
2083 * chips but we don't need to differentiate between them at
2084 * this point.
2086 { "therm_pm72", 0 },
2090 static struct i2c_driver therm_pm72_driver = {
2091 .driver = {
2092 .name = "therm_pm72",
2094 .attach_adapter = therm_pm72_attach,
2095 .probe = therm_pm72_probe,
2096 .remove = therm_pm72_remove,
2097 .id_table = therm_pm72_id,
2100 static int fan_check_loc_match(const char *loc, int fan)
2102 char tmp[64];
2103 char *c, *e;
2105 strlcpy(tmp, fcu_fans[fan].loc, 64);
2107 c = tmp;
2108 for (;;) {
2109 e = strchr(c, ',');
2110 if (e)
2111 *e = 0;
2112 if (strcmp(loc, c) == 0)
2113 return 1;
2114 if (e == NULL)
2115 break;
2116 c = e + 1;
2118 return 0;
2121 static void fcu_lookup_fans(struct device_node *fcu_node)
2123 struct device_node *np = NULL;
2124 int i;
2126 /* The table is filled by default with values that are suitable
2127 * for the old machines without device-tree informations. We scan
2128 * the device-tree and override those values with whatever is
2129 * there
2132 DBG("Looking up FCU controls in device-tree...\n");
2134 while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2135 int type = -1;
2136 const char *loc;
2137 const u32 *reg;
2139 DBG(" control: %s, type: %s\n", np->name, np->type);
2141 /* Detect control type */
2142 if (!strcmp(np->type, "fan-rpm-control") ||
2143 !strcmp(np->type, "fan-rpm"))
2144 type = FCU_FAN_RPM;
2145 if (!strcmp(np->type, "fan-pwm-control") ||
2146 !strcmp(np->type, "fan-pwm"))
2147 type = FCU_FAN_PWM;
2148 /* Only care about fans for now */
2149 if (type == -1)
2150 continue;
2152 /* Lookup for a matching location */
2153 loc = of_get_property(np, "location", NULL);
2154 reg = of_get_property(np, "reg", NULL);
2155 if (loc == NULL || reg == NULL)
2156 continue;
2157 DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2159 for (i = 0; i < FCU_FAN_COUNT; i++) {
2160 int fan_id;
2162 if (!fan_check_loc_match(loc, i))
2163 continue;
2164 DBG(" location match, index: %d\n", i);
2165 fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2166 if (type != fcu_fans[i].type) {
2167 printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2168 "in device-tree for %s\n", np->full_name);
2169 break;
2171 if (type == FCU_FAN_RPM)
2172 fan_id = ((*reg) - 0x10) / 2;
2173 else
2174 fan_id = ((*reg) - 0x30) / 2;
2175 if (fan_id > 7) {
2176 printk(KERN_WARNING "therm_pm72: Can't parse "
2177 "fan ID in device-tree for %s\n", np->full_name);
2178 break;
2180 DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2181 fcu_fans[i].id = fan_id;
2185 /* Now dump the array */
2186 printk(KERN_INFO "Detected fan controls:\n");
2187 for (i = 0; i < FCU_FAN_COUNT; i++) {
2188 if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2189 continue;
2190 printk(KERN_INFO " %d: %s fan, id %d, location: %s\n", i,
2191 fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2192 fcu_fans[i].id, fcu_fans[i].loc);
2196 static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
2198 state = state_detached;
2200 /* Lookup the fans in the device tree */
2201 fcu_lookup_fans(dev->node);
2203 /* Add the driver */
2204 return i2c_add_driver(&therm_pm72_driver);
2207 static int fcu_of_remove(struct of_device* dev)
2209 i2c_del_driver(&therm_pm72_driver);
2211 return 0;
2214 static struct of_device_id fcu_match[] =
2217 .type = "fcu",
2222 static struct of_platform_driver fcu_of_platform_driver =
2224 .name = "temperature",
2225 .match_table = fcu_match,
2226 .probe = fcu_of_probe,
2227 .remove = fcu_of_remove
2231 * Check machine type, attach to i2c controller
2233 static int __init therm_pm72_init(void)
2235 struct device_node *np;
2237 rackmac = machine_is_compatible("RackMac3,1");
2239 if (!machine_is_compatible("PowerMac7,2") &&
2240 !machine_is_compatible("PowerMac7,3") &&
2241 !rackmac)
2242 return -ENODEV;
2244 printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
2246 np = of_find_node_by_type(NULL, "fcu");
2247 if (np == NULL) {
2248 /* Some machines have strangely broken device-tree */
2249 np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2250 if (np == NULL) {
2251 printk(KERN_ERR "Can't find FCU in device-tree !\n");
2252 return -ENODEV;
2255 of_dev = of_platform_device_create(np, "temperature", NULL);
2256 if (of_dev == NULL) {
2257 printk(KERN_ERR "Can't register FCU platform device !\n");
2258 return -ENODEV;
2261 of_register_platform_driver(&fcu_of_platform_driver);
2263 return 0;
2266 static void __exit therm_pm72_exit(void)
2268 of_unregister_platform_driver(&fcu_of_platform_driver);
2270 if (of_dev)
2271 of_device_unregister(of_dev);
2274 module_init(therm_pm72_init);
2275 module_exit(therm_pm72_exit);
2277 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2278 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2279 MODULE_LICENSE("GPL");