x86/amd-iommu: Add function to complete a tlb flush
[linux/fpc-iii.git] / drivers / net / 8139cp.c
blob83a1922e68e0a8750705c03087786c71f4cea084
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
19 See the file COPYING in this distribution for more information.
21 Contributors:
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
27 TODO:
28 * Test Tx checksumming thoroughly
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
49 #define DRV_NAME "8139cp"
50 #define DRV_VERSION "1.3"
51 #define DRV_RELDATE "Mar 22, 2004"
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/kernel.h>
57 #include <linux/compiler.h>
58 #include <linux/netdevice.h>
59 #include <linux/etherdevice.h>
60 #include <linux/init.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/delay.h>
64 #include <linux/ethtool.h>
65 #include <linux/mii.h>
66 #include <linux/if_vlan.h>
67 #include <linux/crc32.h>
68 #include <linux/in.h>
69 #include <linux/ip.h>
70 #include <linux/tcp.h>
71 #include <linux/udp.h>
72 #include <linux/cache.h>
73 #include <asm/io.h>
74 #include <asm/irq.h>
75 #include <asm/uaccess.h>
77 /* VLAN tagging feature enable/disable */
78 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
79 #define CP_VLAN_TAG_USED 1
80 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
81 do { (tx_desc)->opts2 = cpu_to_le32(vlan_tag_value); } while (0)
82 #else
83 #define CP_VLAN_TAG_USED 0
84 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
85 do { (tx_desc)->opts2 = 0; } while (0)
86 #endif
88 /* These identify the driver base version and may not be removed. */
89 static char version[] =
90 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
92 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
93 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
94 MODULE_VERSION(DRV_VERSION);
95 MODULE_LICENSE("GPL");
97 static int debug = -1;
98 module_param(debug, int, 0);
99 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
101 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
102 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
103 static int multicast_filter_limit = 32;
104 module_param(multicast_filter_limit, int, 0);
105 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
107 #define PFX DRV_NAME ": "
109 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
110 NETIF_MSG_PROBE | \
111 NETIF_MSG_LINK)
112 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
113 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
114 #define CP_REGS_SIZE (0xff + 1)
115 #define CP_REGS_VER 1 /* version 1 */
116 #define CP_RX_RING_SIZE 64
117 #define CP_TX_RING_SIZE 64
118 #define CP_RING_BYTES \
119 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
120 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
121 CP_STATS_SIZE)
122 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
123 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
124 #define TX_BUFFS_AVAIL(CP) \
125 (((CP)->tx_tail <= (CP)->tx_head) ? \
126 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
127 (CP)->tx_tail - (CP)->tx_head - 1)
129 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
130 #define CP_INTERNAL_PHY 32
132 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
133 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
134 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
135 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
136 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
138 /* Time in jiffies before concluding the transmitter is hung. */
139 #define TX_TIMEOUT (6*HZ)
141 /* hardware minimum and maximum for a single frame's data payload */
142 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
143 #define CP_MAX_MTU 4096
145 enum {
146 /* NIC register offsets */
147 MAC0 = 0x00, /* Ethernet hardware address. */
148 MAR0 = 0x08, /* Multicast filter. */
149 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
150 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
151 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
152 Cmd = 0x37, /* Command register */
153 IntrMask = 0x3C, /* Interrupt mask */
154 IntrStatus = 0x3E, /* Interrupt status */
155 TxConfig = 0x40, /* Tx configuration */
156 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
157 RxConfig = 0x44, /* Rx configuration */
158 RxMissed = 0x4C, /* 24 bits valid, write clears */
159 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
160 Config1 = 0x52, /* Config1 */
161 Config3 = 0x59, /* Config3 */
162 Config4 = 0x5A, /* Config4 */
163 MultiIntr = 0x5C, /* Multiple interrupt select */
164 BasicModeCtrl = 0x62, /* MII BMCR */
165 BasicModeStatus = 0x64, /* MII BMSR */
166 NWayAdvert = 0x66, /* MII ADVERTISE */
167 NWayLPAR = 0x68, /* MII LPA */
168 NWayExpansion = 0x6A, /* MII Expansion */
169 Config5 = 0xD8, /* Config5 */
170 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
171 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
172 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
173 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
174 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
175 TxThresh = 0xEC, /* Early Tx threshold */
176 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
177 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
179 /* Tx and Rx status descriptors */
180 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
181 RingEnd = (1 << 30), /* End of descriptor ring */
182 FirstFrag = (1 << 29), /* First segment of a packet */
183 LastFrag = (1 << 28), /* Final segment of a packet */
184 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
185 MSSShift = 16, /* MSS value position */
186 MSSMask = 0xfff, /* MSS value: 11 bits */
187 TxError = (1 << 23), /* Tx error summary */
188 RxError = (1 << 20), /* Rx error summary */
189 IPCS = (1 << 18), /* Calculate IP checksum */
190 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
191 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
192 TxVlanTag = (1 << 17), /* Add VLAN tag */
193 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
194 IPFail = (1 << 15), /* IP checksum failed */
195 UDPFail = (1 << 14), /* UDP/IP checksum failed */
196 TCPFail = (1 << 13), /* TCP/IP checksum failed */
197 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
198 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
199 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
200 RxProtoTCP = 1,
201 RxProtoUDP = 2,
202 RxProtoIP = 3,
203 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
204 TxOWC = (1 << 22), /* Tx Out-of-window collision */
205 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
206 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
207 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
208 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
209 RxErrFrame = (1 << 27), /* Rx frame alignment error */
210 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
211 RxErrCRC = (1 << 18), /* Rx CRC error */
212 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
213 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
214 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
216 /* StatsAddr register */
217 DumpStats = (1 << 3), /* Begin stats dump */
219 /* RxConfig register */
220 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
221 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
222 AcceptErr = 0x20, /* Accept packets with CRC errors */
223 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
224 AcceptBroadcast = 0x08, /* Accept broadcast packets */
225 AcceptMulticast = 0x04, /* Accept multicast packets */
226 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
227 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
229 /* IntrMask / IntrStatus registers */
230 PciErr = (1 << 15), /* System error on the PCI bus */
231 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
232 LenChg = (1 << 13), /* Cable length change */
233 SWInt = (1 << 8), /* Software-requested interrupt */
234 TxEmpty = (1 << 7), /* No Tx descriptors available */
235 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
236 LinkChg = (1 << 5), /* Packet underrun, or link change */
237 RxEmpty = (1 << 4), /* No Rx descriptors available */
238 TxErr = (1 << 3), /* Tx error */
239 TxOK = (1 << 2), /* Tx packet sent */
240 RxErr = (1 << 1), /* Rx error */
241 RxOK = (1 << 0), /* Rx packet received */
242 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
243 but hardware likes to raise it */
245 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
246 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
247 RxErr | RxOK | IntrResvd,
249 /* C mode command register */
250 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
251 RxOn = (1 << 3), /* Rx mode enable */
252 TxOn = (1 << 2), /* Tx mode enable */
254 /* C+ mode command register */
255 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
256 RxChkSum = (1 << 5), /* Rx checksum offload enable */
257 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
258 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
259 CpRxOn = (1 << 1), /* Rx mode enable */
260 CpTxOn = (1 << 0), /* Tx mode enable */
262 /* Cfg9436 EEPROM control register */
263 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
264 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
266 /* TxConfig register */
267 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
268 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
270 /* Early Tx Threshold register */
271 TxThreshMask = 0x3f, /* Mask bits 5-0 */
272 TxThreshMax = 2048, /* Max early Tx threshold */
274 /* Config1 register */
275 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
276 LWACT = (1 << 4), /* LWAKE active mode */
277 PMEnable = (1 << 0), /* Enable various PM features of chip */
279 /* Config3 register */
280 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
281 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
282 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
284 /* Config4 register */
285 LWPTN = (1 << 1), /* LWAKE Pattern */
286 LWPME = (1 << 4), /* LANWAKE vs PMEB */
288 /* Config5 register */
289 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
290 MWF = (1 << 5), /* Accept Multicast wakeup frame */
291 UWF = (1 << 4), /* Accept Unicast wakeup frame */
292 LANWake = (1 << 1), /* Enable LANWake signal */
293 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
295 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
296 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
297 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
300 static const unsigned int cp_rx_config =
301 (RX_FIFO_THRESH << RxCfgFIFOShift) |
302 (RX_DMA_BURST << RxCfgDMAShift);
304 struct cp_desc {
305 __le32 opts1;
306 __le32 opts2;
307 __le64 addr;
310 struct cp_dma_stats {
311 __le64 tx_ok;
312 __le64 rx_ok;
313 __le64 tx_err;
314 __le32 rx_err;
315 __le16 rx_fifo;
316 __le16 frame_align;
317 __le32 tx_ok_1col;
318 __le32 tx_ok_mcol;
319 __le64 rx_ok_phys;
320 __le64 rx_ok_bcast;
321 __le32 rx_ok_mcast;
322 __le16 tx_abort;
323 __le16 tx_underrun;
324 } __attribute__((packed));
326 struct cp_extra_stats {
327 unsigned long rx_frags;
330 struct cp_private {
331 void __iomem *regs;
332 struct net_device *dev;
333 spinlock_t lock;
334 u32 msg_enable;
336 struct napi_struct napi;
338 struct pci_dev *pdev;
339 u32 rx_config;
340 u16 cpcmd;
342 struct cp_extra_stats cp_stats;
344 unsigned rx_head ____cacheline_aligned;
345 unsigned rx_tail;
346 struct cp_desc *rx_ring;
347 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
349 unsigned tx_head ____cacheline_aligned;
350 unsigned tx_tail;
351 struct cp_desc *tx_ring;
352 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
354 unsigned rx_buf_sz;
355 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
357 #if CP_VLAN_TAG_USED
358 struct vlan_group *vlgrp;
359 #endif
360 dma_addr_t ring_dma;
362 struct mii_if_info mii_if;
365 #define cpr8(reg) readb(cp->regs + (reg))
366 #define cpr16(reg) readw(cp->regs + (reg))
367 #define cpr32(reg) readl(cp->regs + (reg))
368 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
369 #define cpw16(reg,val) writew((val), cp->regs + (reg))
370 #define cpw32(reg,val) writel((val), cp->regs + (reg))
371 #define cpw8_f(reg,val) do { \
372 writeb((val), cp->regs + (reg)); \
373 readb(cp->regs + (reg)); \
374 } while (0)
375 #define cpw16_f(reg,val) do { \
376 writew((val), cp->regs + (reg)); \
377 readw(cp->regs + (reg)); \
378 } while (0)
379 #define cpw32_f(reg,val) do { \
380 writel((val), cp->regs + (reg)); \
381 readl(cp->regs + (reg)); \
382 } while (0)
385 static void __cp_set_rx_mode (struct net_device *dev);
386 static void cp_tx (struct cp_private *cp);
387 static void cp_clean_rings (struct cp_private *cp);
388 #ifdef CONFIG_NET_POLL_CONTROLLER
389 static void cp_poll_controller(struct net_device *dev);
390 #endif
391 static int cp_get_eeprom_len(struct net_device *dev);
392 static int cp_get_eeprom(struct net_device *dev,
393 struct ethtool_eeprom *eeprom, u8 *data);
394 static int cp_set_eeprom(struct net_device *dev,
395 struct ethtool_eeprom *eeprom, u8 *data);
397 static struct pci_device_id cp_pci_tbl[] = {
398 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
399 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
400 { },
402 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
404 static struct {
405 const char str[ETH_GSTRING_LEN];
406 } ethtool_stats_keys[] = {
407 { "tx_ok" },
408 { "rx_ok" },
409 { "tx_err" },
410 { "rx_err" },
411 { "rx_fifo" },
412 { "frame_align" },
413 { "tx_ok_1col" },
414 { "tx_ok_mcol" },
415 { "rx_ok_phys" },
416 { "rx_ok_bcast" },
417 { "rx_ok_mcast" },
418 { "tx_abort" },
419 { "tx_underrun" },
420 { "rx_frags" },
424 #if CP_VLAN_TAG_USED
425 static void cp_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
427 struct cp_private *cp = netdev_priv(dev);
428 unsigned long flags;
430 spin_lock_irqsave(&cp->lock, flags);
431 cp->vlgrp = grp;
432 if (grp)
433 cp->cpcmd |= RxVlanOn;
434 else
435 cp->cpcmd &= ~RxVlanOn;
437 cpw16(CpCmd, cp->cpcmd);
438 spin_unlock_irqrestore(&cp->lock, flags);
440 #endif /* CP_VLAN_TAG_USED */
442 static inline void cp_set_rxbufsize (struct cp_private *cp)
444 unsigned int mtu = cp->dev->mtu;
446 if (mtu > ETH_DATA_LEN)
447 /* MTU + ethernet header + FCS + optional VLAN tag */
448 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
449 else
450 cp->rx_buf_sz = PKT_BUF_SZ;
453 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
454 struct cp_desc *desc)
456 skb->protocol = eth_type_trans (skb, cp->dev);
458 cp->dev->stats.rx_packets++;
459 cp->dev->stats.rx_bytes += skb->len;
461 #if CP_VLAN_TAG_USED
462 if (cp->vlgrp && (desc->opts2 & cpu_to_le32(RxVlanTagged))) {
463 vlan_hwaccel_receive_skb(skb, cp->vlgrp,
464 swab16(le32_to_cpu(desc->opts2) & 0xffff));
465 } else
466 #endif
467 netif_receive_skb(skb);
470 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
471 u32 status, u32 len)
473 if (netif_msg_rx_err (cp))
474 pr_debug("%s: rx err, slot %d status 0x%x len %d\n",
475 cp->dev->name, rx_tail, status, len);
476 cp->dev->stats.rx_errors++;
477 if (status & RxErrFrame)
478 cp->dev->stats.rx_frame_errors++;
479 if (status & RxErrCRC)
480 cp->dev->stats.rx_crc_errors++;
481 if ((status & RxErrRunt) || (status & RxErrLong))
482 cp->dev->stats.rx_length_errors++;
483 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
484 cp->dev->stats.rx_length_errors++;
485 if (status & RxErrFIFO)
486 cp->dev->stats.rx_fifo_errors++;
489 static inline unsigned int cp_rx_csum_ok (u32 status)
491 unsigned int protocol = (status >> 16) & 0x3;
493 if (likely((protocol == RxProtoTCP) && (!(status & TCPFail))))
494 return 1;
495 else if ((protocol == RxProtoUDP) && (!(status & UDPFail)))
496 return 1;
497 else if ((protocol == RxProtoIP) && (!(status & IPFail)))
498 return 1;
499 return 0;
502 static int cp_rx_poll(struct napi_struct *napi, int budget)
504 struct cp_private *cp = container_of(napi, struct cp_private, napi);
505 struct net_device *dev = cp->dev;
506 unsigned int rx_tail = cp->rx_tail;
507 int rx;
509 rx_status_loop:
510 rx = 0;
511 cpw16(IntrStatus, cp_rx_intr_mask);
513 while (1) {
514 u32 status, len;
515 dma_addr_t mapping;
516 struct sk_buff *skb, *new_skb;
517 struct cp_desc *desc;
518 const unsigned buflen = cp->rx_buf_sz;
520 skb = cp->rx_skb[rx_tail];
521 BUG_ON(!skb);
523 desc = &cp->rx_ring[rx_tail];
524 status = le32_to_cpu(desc->opts1);
525 if (status & DescOwn)
526 break;
528 len = (status & 0x1fff) - 4;
529 mapping = le64_to_cpu(desc->addr);
531 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
532 /* we don't support incoming fragmented frames.
533 * instead, we attempt to ensure that the
534 * pre-allocated RX skbs are properly sized such
535 * that RX fragments are never encountered
537 cp_rx_err_acct(cp, rx_tail, status, len);
538 dev->stats.rx_dropped++;
539 cp->cp_stats.rx_frags++;
540 goto rx_next;
543 if (status & (RxError | RxErrFIFO)) {
544 cp_rx_err_acct(cp, rx_tail, status, len);
545 goto rx_next;
548 if (netif_msg_rx_status(cp))
549 pr_debug("%s: rx slot %d status 0x%x len %d\n",
550 dev->name, rx_tail, status, len);
552 new_skb = netdev_alloc_skb(dev, buflen + NET_IP_ALIGN);
553 if (!new_skb) {
554 dev->stats.rx_dropped++;
555 goto rx_next;
558 skb_reserve(new_skb, NET_IP_ALIGN);
560 dma_unmap_single(&cp->pdev->dev, mapping,
561 buflen, PCI_DMA_FROMDEVICE);
563 /* Handle checksum offloading for incoming packets. */
564 if (cp_rx_csum_ok(status))
565 skb->ip_summed = CHECKSUM_UNNECESSARY;
566 else
567 skb->ip_summed = CHECKSUM_NONE;
569 skb_put(skb, len);
571 mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
572 PCI_DMA_FROMDEVICE);
573 cp->rx_skb[rx_tail] = new_skb;
575 cp_rx_skb(cp, skb, desc);
576 rx++;
578 rx_next:
579 cp->rx_ring[rx_tail].opts2 = 0;
580 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
581 if (rx_tail == (CP_RX_RING_SIZE - 1))
582 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
583 cp->rx_buf_sz);
584 else
585 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
586 rx_tail = NEXT_RX(rx_tail);
588 if (rx >= budget)
589 break;
592 cp->rx_tail = rx_tail;
594 /* if we did not reach work limit, then we're done with
595 * this round of polling
597 if (rx < budget) {
598 unsigned long flags;
600 if (cpr16(IntrStatus) & cp_rx_intr_mask)
601 goto rx_status_loop;
603 spin_lock_irqsave(&cp->lock, flags);
604 cpw16_f(IntrMask, cp_intr_mask);
605 __napi_complete(napi);
606 spin_unlock_irqrestore(&cp->lock, flags);
609 return rx;
612 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
614 struct net_device *dev = dev_instance;
615 struct cp_private *cp;
616 u16 status;
618 if (unlikely(dev == NULL))
619 return IRQ_NONE;
620 cp = netdev_priv(dev);
622 status = cpr16(IntrStatus);
623 if (!status || (status == 0xFFFF))
624 return IRQ_NONE;
626 if (netif_msg_intr(cp))
627 pr_debug("%s: intr, status %04x cmd %02x cpcmd %04x\n",
628 dev->name, status, cpr8(Cmd), cpr16(CpCmd));
630 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
632 spin_lock(&cp->lock);
634 /* close possible race's with dev_close */
635 if (unlikely(!netif_running(dev))) {
636 cpw16(IntrMask, 0);
637 spin_unlock(&cp->lock);
638 return IRQ_HANDLED;
641 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
642 if (napi_schedule_prep(&cp->napi)) {
643 cpw16_f(IntrMask, cp_norx_intr_mask);
644 __napi_schedule(&cp->napi);
647 if (status & (TxOK | TxErr | TxEmpty | SWInt))
648 cp_tx(cp);
649 if (status & LinkChg)
650 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
652 spin_unlock(&cp->lock);
654 if (status & PciErr) {
655 u16 pci_status;
657 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
658 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
659 pr_err("%s: PCI bus error, status=%04x, PCI status=%04x\n",
660 dev->name, status, pci_status);
662 /* TODO: reset hardware */
665 return IRQ_HANDLED;
668 #ifdef CONFIG_NET_POLL_CONTROLLER
670 * Polling receive - used by netconsole and other diagnostic tools
671 * to allow network i/o with interrupts disabled.
673 static void cp_poll_controller(struct net_device *dev)
675 disable_irq(dev->irq);
676 cp_interrupt(dev->irq, dev);
677 enable_irq(dev->irq);
679 #endif
681 static void cp_tx (struct cp_private *cp)
683 unsigned tx_head = cp->tx_head;
684 unsigned tx_tail = cp->tx_tail;
686 while (tx_tail != tx_head) {
687 struct cp_desc *txd = cp->tx_ring + tx_tail;
688 struct sk_buff *skb;
689 u32 status;
691 rmb();
692 status = le32_to_cpu(txd->opts1);
693 if (status & DescOwn)
694 break;
696 skb = cp->tx_skb[tx_tail];
697 BUG_ON(!skb);
699 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
700 le32_to_cpu(txd->opts1) & 0xffff,
701 PCI_DMA_TODEVICE);
703 if (status & LastFrag) {
704 if (status & (TxError | TxFIFOUnder)) {
705 if (netif_msg_tx_err(cp))
706 pr_debug("%s: tx err, status 0x%x\n",
707 cp->dev->name, status);
708 cp->dev->stats.tx_errors++;
709 if (status & TxOWC)
710 cp->dev->stats.tx_window_errors++;
711 if (status & TxMaxCol)
712 cp->dev->stats.tx_aborted_errors++;
713 if (status & TxLinkFail)
714 cp->dev->stats.tx_carrier_errors++;
715 if (status & TxFIFOUnder)
716 cp->dev->stats.tx_fifo_errors++;
717 } else {
718 cp->dev->stats.collisions +=
719 ((status >> TxColCntShift) & TxColCntMask);
720 cp->dev->stats.tx_packets++;
721 cp->dev->stats.tx_bytes += skb->len;
722 if (netif_msg_tx_done(cp))
723 pr_debug("%s: tx done, slot %d\n", cp->dev->name, tx_tail);
725 dev_kfree_skb_irq(skb);
728 cp->tx_skb[tx_tail] = NULL;
730 tx_tail = NEXT_TX(tx_tail);
733 cp->tx_tail = tx_tail;
735 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
736 netif_wake_queue(cp->dev);
739 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
740 struct net_device *dev)
742 struct cp_private *cp = netdev_priv(dev);
743 unsigned entry;
744 u32 eor, flags;
745 unsigned long intr_flags;
746 #if CP_VLAN_TAG_USED
747 u32 vlan_tag = 0;
748 #endif
749 int mss = 0;
751 spin_lock_irqsave(&cp->lock, intr_flags);
753 /* This is a hard error, log it. */
754 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
755 netif_stop_queue(dev);
756 spin_unlock_irqrestore(&cp->lock, intr_flags);
757 pr_err(PFX "%s: BUG! Tx Ring full when queue awake!\n",
758 dev->name);
759 return NETDEV_TX_BUSY;
762 #if CP_VLAN_TAG_USED
763 if (cp->vlgrp && vlan_tx_tag_present(skb))
764 vlan_tag = TxVlanTag | swab16(vlan_tx_tag_get(skb));
765 #endif
767 entry = cp->tx_head;
768 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
769 if (dev->features & NETIF_F_TSO)
770 mss = skb_shinfo(skb)->gso_size;
772 if (skb_shinfo(skb)->nr_frags == 0) {
773 struct cp_desc *txd = &cp->tx_ring[entry];
774 u32 len;
775 dma_addr_t mapping;
777 len = skb->len;
778 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
779 CP_VLAN_TX_TAG(txd, vlan_tag);
780 txd->addr = cpu_to_le64(mapping);
781 wmb();
783 flags = eor | len | DescOwn | FirstFrag | LastFrag;
785 if (mss)
786 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
787 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
788 const struct iphdr *ip = ip_hdr(skb);
789 if (ip->protocol == IPPROTO_TCP)
790 flags |= IPCS | TCPCS;
791 else if (ip->protocol == IPPROTO_UDP)
792 flags |= IPCS | UDPCS;
793 else
794 WARN_ON(1); /* we need a WARN() */
797 txd->opts1 = cpu_to_le32(flags);
798 wmb();
800 cp->tx_skb[entry] = skb;
801 entry = NEXT_TX(entry);
802 } else {
803 struct cp_desc *txd;
804 u32 first_len, first_eor;
805 dma_addr_t first_mapping;
806 int frag, first_entry = entry;
807 const struct iphdr *ip = ip_hdr(skb);
809 /* We must give this initial chunk to the device last.
810 * Otherwise we could race with the device.
812 first_eor = eor;
813 first_len = skb_headlen(skb);
814 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
815 first_len, PCI_DMA_TODEVICE);
816 cp->tx_skb[entry] = skb;
817 entry = NEXT_TX(entry);
819 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
820 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
821 u32 len;
822 u32 ctrl;
823 dma_addr_t mapping;
825 len = this_frag->size;
826 mapping = dma_map_single(&cp->pdev->dev,
827 ((void *) page_address(this_frag->page) +
828 this_frag->page_offset),
829 len, PCI_DMA_TODEVICE);
830 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
832 ctrl = eor | len | DescOwn;
834 if (mss)
835 ctrl |= LargeSend |
836 ((mss & MSSMask) << MSSShift);
837 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
838 if (ip->protocol == IPPROTO_TCP)
839 ctrl |= IPCS | TCPCS;
840 else if (ip->protocol == IPPROTO_UDP)
841 ctrl |= IPCS | UDPCS;
842 else
843 BUG();
846 if (frag == skb_shinfo(skb)->nr_frags - 1)
847 ctrl |= LastFrag;
849 txd = &cp->tx_ring[entry];
850 CP_VLAN_TX_TAG(txd, vlan_tag);
851 txd->addr = cpu_to_le64(mapping);
852 wmb();
854 txd->opts1 = cpu_to_le32(ctrl);
855 wmb();
857 cp->tx_skb[entry] = skb;
858 entry = NEXT_TX(entry);
861 txd = &cp->tx_ring[first_entry];
862 CP_VLAN_TX_TAG(txd, vlan_tag);
863 txd->addr = cpu_to_le64(first_mapping);
864 wmb();
866 if (skb->ip_summed == CHECKSUM_PARTIAL) {
867 if (ip->protocol == IPPROTO_TCP)
868 txd->opts1 = cpu_to_le32(first_eor | first_len |
869 FirstFrag | DescOwn |
870 IPCS | TCPCS);
871 else if (ip->protocol == IPPROTO_UDP)
872 txd->opts1 = cpu_to_le32(first_eor | first_len |
873 FirstFrag | DescOwn |
874 IPCS | UDPCS);
875 else
876 BUG();
877 } else
878 txd->opts1 = cpu_to_le32(first_eor | first_len |
879 FirstFrag | DescOwn);
880 wmb();
882 cp->tx_head = entry;
883 if (netif_msg_tx_queued(cp))
884 pr_debug("%s: tx queued, slot %d, skblen %d\n",
885 dev->name, entry, skb->len);
886 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
887 netif_stop_queue(dev);
889 spin_unlock_irqrestore(&cp->lock, intr_flags);
891 cpw8(TxPoll, NormalTxPoll);
892 dev->trans_start = jiffies;
894 return NETDEV_TX_OK;
897 /* Set or clear the multicast filter for this adaptor.
898 This routine is not state sensitive and need not be SMP locked. */
900 static void __cp_set_rx_mode (struct net_device *dev)
902 struct cp_private *cp = netdev_priv(dev);
903 u32 mc_filter[2]; /* Multicast hash filter */
904 int i, rx_mode;
905 u32 tmp;
907 /* Note: do not reorder, GCC is clever about common statements. */
908 if (dev->flags & IFF_PROMISC) {
909 /* Unconditionally log net taps. */
910 rx_mode =
911 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
912 AcceptAllPhys;
913 mc_filter[1] = mc_filter[0] = 0xffffffff;
914 } else if ((dev->mc_count > multicast_filter_limit)
915 || (dev->flags & IFF_ALLMULTI)) {
916 /* Too many to filter perfectly -- accept all multicasts. */
917 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
918 mc_filter[1] = mc_filter[0] = 0xffffffff;
919 } else {
920 struct dev_mc_list *mclist;
921 rx_mode = AcceptBroadcast | AcceptMyPhys;
922 mc_filter[1] = mc_filter[0] = 0;
923 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
924 i++, mclist = mclist->next) {
925 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
927 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
928 rx_mode |= AcceptMulticast;
932 /* We can safely update without stopping the chip. */
933 tmp = cp_rx_config | rx_mode;
934 if (cp->rx_config != tmp) {
935 cpw32_f (RxConfig, tmp);
936 cp->rx_config = tmp;
938 cpw32_f (MAR0 + 0, mc_filter[0]);
939 cpw32_f (MAR0 + 4, mc_filter[1]);
942 static void cp_set_rx_mode (struct net_device *dev)
944 unsigned long flags;
945 struct cp_private *cp = netdev_priv(dev);
947 spin_lock_irqsave (&cp->lock, flags);
948 __cp_set_rx_mode(dev);
949 spin_unlock_irqrestore (&cp->lock, flags);
952 static void __cp_get_stats(struct cp_private *cp)
954 /* only lower 24 bits valid; write any value to clear */
955 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
956 cpw32 (RxMissed, 0);
959 static struct net_device_stats *cp_get_stats(struct net_device *dev)
961 struct cp_private *cp = netdev_priv(dev);
962 unsigned long flags;
964 /* The chip only need report frame silently dropped. */
965 spin_lock_irqsave(&cp->lock, flags);
966 if (netif_running(dev) && netif_device_present(dev))
967 __cp_get_stats(cp);
968 spin_unlock_irqrestore(&cp->lock, flags);
970 return &dev->stats;
973 static void cp_stop_hw (struct cp_private *cp)
975 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
976 cpw16_f(IntrMask, 0);
977 cpw8(Cmd, 0);
978 cpw16_f(CpCmd, 0);
979 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
981 cp->rx_tail = 0;
982 cp->tx_head = cp->tx_tail = 0;
985 static void cp_reset_hw (struct cp_private *cp)
987 unsigned work = 1000;
989 cpw8(Cmd, CmdReset);
991 while (work--) {
992 if (!(cpr8(Cmd) & CmdReset))
993 return;
995 schedule_timeout_uninterruptible(10);
998 pr_err("%s: hardware reset timeout\n", cp->dev->name);
1001 static inline void cp_start_hw (struct cp_private *cp)
1003 cpw16(CpCmd, cp->cpcmd);
1004 cpw8(Cmd, RxOn | TxOn);
1007 static void cp_init_hw (struct cp_private *cp)
1009 struct net_device *dev = cp->dev;
1010 dma_addr_t ring_dma;
1012 cp_reset_hw(cp);
1014 cpw8_f (Cfg9346, Cfg9346_Unlock);
1016 /* Restore our idea of the MAC address. */
1017 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1018 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1020 cp_start_hw(cp);
1021 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1023 __cp_set_rx_mode(dev);
1024 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1026 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1027 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1028 cpw8(Config3, PARMEnable);
1029 cp->wol_enabled = 0;
1031 cpw8(Config5, cpr8(Config5) & PMEStatus);
1033 cpw32_f(HiTxRingAddr, 0);
1034 cpw32_f(HiTxRingAddr + 4, 0);
1036 ring_dma = cp->ring_dma;
1037 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1038 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1040 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1041 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1042 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1044 cpw16(MultiIntr, 0);
1046 cpw16_f(IntrMask, cp_intr_mask);
1048 cpw8_f(Cfg9346, Cfg9346_Lock);
1051 static int cp_refill_rx(struct cp_private *cp)
1053 struct net_device *dev = cp->dev;
1054 unsigned i;
1056 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1057 struct sk_buff *skb;
1058 dma_addr_t mapping;
1060 skb = netdev_alloc_skb(dev, cp->rx_buf_sz + NET_IP_ALIGN);
1061 if (!skb)
1062 goto err_out;
1064 skb_reserve(skb, NET_IP_ALIGN);
1066 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1067 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1068 cp->rx_skb[i] = skb;
1070 cp->rx_ring[i].opts2 = 0;
1071 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1072 if (i == (CP_RX_RING_SIZE - 1))
1073 cp->rx_ring[i].opts1 =
1074 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1075 else
1076 cp->rx_ring[i].opts1 =
1077 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1080 return 0;
1082 err_out:
1083 cp_clean_rings(cp);
1084 return -ENOMEM;
1087 static void cp_init_rings_index (struct cp_private *cp)
1089 cp->rx_tail = 0;
1090 cp->tx_head = cp->tx_tail = 0;
1093 static int cp_init_rings (struct cp_private *cp)
1095 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1096 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1098 cp_init_rings_index(cp);
1100 return cp_refill_rx (cp);
1103 static int cp_alloc_rings (struct cp_private *cp)
1105 void *mem;
1107 mem = dma_alloc_coherent(&cp->pdev->dev, CP_RING_BYTES,
1108 &cp->ring_dma, GFP_KERNEL);
1109 if (!mem)
1110 return -ENOMEM;
1112 cp->rx_ring = mem;
1113 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1115 return cp_init_rings(cp);
1118 static void cp_clean_rings (struct cp_private *cp)
1120 struct cp_desc *desc;
1121 unsigned i;
1123 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1124 if (cp->rx_skb[i]) {
1125 desc = cp->rx_ring + i;
1126 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1127 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1128 dev_kfree_skb(cp->rx_skb[i]);
1132 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1133 if (cp->tx_skb[i]) {
1134 struct sk_buff *skb = cp->tx_skb[i];
1136 desc = cp->tx_ring + i;
1137 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1138 le32_to_cpu(desc->opts1) & 0xffff,
1139 PCI_DMA_TODEVICE);
1140 if (le32_to_cpu(desc->opts1) & LastFrag)
1141 dev_kfree_skb(skb);
1142 cp->dev->stats.tx_dropped++;
1146 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1147 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1149 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1150 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1153 static void cp_free_rings (struct cp_private *cp)
1155 cp_clean_rings(cp);
1156 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1157 cp->ring_dma);
1158 cp->rx_ring = NULL;
1159 cp->tx_ring = NULL;
1162 static int cp_open (struct net_device *dev)
1164 struct cp_private *cp = netdev_priv(dev);
1165 int rc;
1167 if (netif_msg_ifup(cp))
1168 pr_debug("%s: enabling interface\n", dev->name);
1170 rc = cp_alloc_rings(cp);
1171 if (rc)
1172 return rc;
1174 napi_enable(&cp->napi);
1176 cp_init_hw(cp);
1178 rc = request_irq(dev->irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1179 if (rc)
1180 goto err_out_hw;
1182 netif_carrier_off(dev);
1183 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1184 netif_start_queue(dev);
1186 return 0;
1188 err_out_hw:
1189 napi_disable(&cp->napi);
1190 cp_stop_hw(cp);
1191 cp_free_rings(cp);
1192 return rc;
1195 static int cp_close (struct net_device *dev)
1197 struct cp_private *cp = netdev_priv(dev);
1198 unsigned long flags;
1200 napi_disable(&cp->napi);
1202 if (netif_msg_ifdown(cp))
1203 pr_debug("%s: disabling interface\n", dev->name);
1205 spin_lock_irqsave(&cp->lock, flags);
1207 netif_stop_queue(dev);
1208 netif_carrier_off(dev);
1210 cp_stop_hw(cp);
1212 spin_unlock_irqrestore(&cp->lock, flags);
1214 free_irq(dev->irq, dev);
1216 cp_free_rings(cp);
1217 return 0;
1220 static void cp_tx_timeout(struct net_device *dev)
1222 struct cp_private *cp = netdev_priv(dev);
1223 unsigned long flags;
1224 int rc;
1226 pr_warning("%s: Transmit timeout, status %2x %4x %4x %4x\n",
1227 dev->name, cpr8(Cmd), cpr16(CpCmd),
1228 cpr16(IntrStatus), cpr16(IntrMask));
1230 spin_lock_irqsave(&cp->lock, flags);
1232 cp_stop_hw(cp);
1233 cp_clean_rings(cp);
1234 rc = cp_init_rings(cp);
1235 cp_start_hw(cp);
1237 netif_wake_queue(dev);
1239 spin_unlock_irqrestore(&cp->lock, flags);
1241 return;
1244 #ifdef BROKEN
1245 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1247 struct cp_private *cp = netdev_priv(dev);
1248 int rc;
1249 unsigned long flags;
1251 /* check for invalid MTU, according to hardware limits */
1252 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1253 return -EINVAL;
1255 /* if network interface not up, no need for complexity */
1256 if (!netif_running(dev)) {
1257 dev->mtu = new_mtu;
1258 cp_set_rxbufsize(cp); /* set new rx buf size */
1259 return 0;
1262 spin_lock_irqsave(&cp->lock, flags);
1264 cp_stop_hw(cp); /* stop h/w and free rings */
1265 cp_clean_rings(cp);
1267 dev->mtu = new_mtu;
1268 cp_set_rxbufsize(cp); /* set new rx buf size */
1270 rc = cp_init_rings(cp); /* realloc and restart h/w */
1271 cp_start_hw(cp);
1273 spin_unlock_irqrestore(&cp->lock, flags);
1275 return rc;
1277 #endif /* BROKEN */
1279 static const char mii_2_8139_map[8] = {
1280 BasicModeCtrl,
1281 BasicModeStatus,
1284 NWayAdvert,
1285 NWayLPAR,
1286 NWayExpansion,
1290 static int mdio_read(struct net_device *dev, int phy_id, int location)
1292 struct cp_private *cp = netdev_priv(dev);
1294 return location < 8 && mii_2_8139_map[location] ?
1295 readw(cp->regs + mii_2_8139_map[location]) : 0;
1299 static void mdio_write(struct net_device *dev, int phy_id, int location,
1300 int value)
1302 struct cp_private *cp = netdev_priv(dev);
1304 if (location == 0) {
1305 cpw8(Cfg9346, Cfg9346_Unlock);
1306 cpw16(BasicModeCtrl, value);
1307 cpw8(Cfg9346, Cfg9346_Lock);
1308 } else if (location < 8 && mii_2_8139_map[location])
1309 cpw16(mii_2_8139_map[location], value);
1312 /* Set the ethtool Wake-on-LAN settings */
1313 static int netdev_set_wol (struct cp_private *cp,
1314 const struct ethtool_wolinfo *wol)
1316 u8 options;
1318 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1319 /* If WOL is being disabled, no need for complexity */
1320 if (wol->wolopts) {
1321 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1322 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1325 cpw8 (Cfg9346, Cfg9346_Unlock);
1326 cpw8 (Config3, options);
1327 cpw8 (Cfg9346, Cfg9346_Lock);
1329 options = 0; /* Paranoia setting */
1330 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1331 /* If WOL is being disabled, no need for complexity */
1332 if (wol->wolopts) {
1333 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1334 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1335 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1338 cpw8 (Config5, options);
1340 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1342 return 0;
1345 /* Get the ethtool Wake-on-LAN settings */
1346 static void netdev_get_wol (struct cp_private *cp,
1347 struct ethtool_wolinfo *wol)
1349 u8 options;
1351 wol->wolopts = 0; /* Start from scratch */
1352 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1353 WAKE_MCAST | WAKE_UCAST;
1354 /* We don't need to go on if WOL is disabled */
1355 if (!cp->wol_enabled) return;
1357 options = cpr8 (Config3);
1358 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1359 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1361 options = 0; /* Paranoia setting */
1362 options = cpr8 (Config5);
1363 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1364 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1365 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1368 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1370 struct cp_private *cp = netdev_priv(dev);
1372 strcpy (info->driver, DRV_NAME);
1373 strcpy (info->version, DRV_VERSION);
1374 strcpy (info->bus_info, pci_name(cp->pdev));
1377 static int cp_get_regs_len(struct net_device *dev)
1379 return CP_REGS_SIZE;
1382 static int cp_get_sset_count (struct net_device *dev, int sset)
1384 switch (sset) {
1385 case ETH_SS_STATS:
1386 return CP_NUM_STATS;
1387 default:
1388 return -EOPNOTSUPP;
1392 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1394 struct cp_private *cp = netdev_priv(dev);
1395 int rc;
1396 unsigned long flags;
1398 spin_lock_irqsave(&cp->lock, flags);
1399 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1400 spin_unlock_irqrestore(&cp->lock, flags);
1402 return rc;
1405 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1407 struct cp_private *cp = netdev_priv(dev);
1408 int rc;
1409 unsigned long flags;
1411 spin_lock_irqsave(&cp->lock, flags);
1412 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1413 spin_unlock_irqrestore(&cp->lock, flags);
1415 return rc;
1418 static int cp_nway_reset(struct net_device *dev)
1420 struct cp_private *cp = netdev_priv(dev);
1421 return mii_nway_restart(&cp->mii_if);
1424 static u32 cp_get_msglevel(struct net_device *dev)
1426 struct cp_private *cp = netdev_priv(dev);
1427 return cp->msg_enable;
1430 static void cp_set_msglevel(struct net_device *dev, u32 value)
1432 struct cp_private *cp = netdev_priv(dev);
1433 cp->msg_enable = value;
1436 static u32 cp_get_rx_csum(struct net_device *dev)
1438 struct cp_private *cp = netdev_priv(dev);
1439 return (cpr16(CpCmd) & RxChkSum) ? 1 : 0;
1442 static int cp_set_rx_csum(struct net_device *dev, u32 data)
1444 struct cp_private *cp = netdev_priv(dev);
1445 u16 cmd = cp->cpcmd, newcmd;
1447 newcmd = cmd;
1449 if (data)
1450 newcmd |= RxChkSum;
1451 else
1452 newcmd &= ~RxChkSum;
1454 if (newcmd != cmd) {
1455 unsigned long flags;
1457 spin_lock_irqsave(&cp->lock, flags);
1458 cp->cpcmd = newcmd;
1459 cpw16_f(CpCmd, newcmd);
1460 spin_unlock_irqrestore(&cp->lock, flags);
1463 return 0;
1466 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1467 void *p)
1469 struct cp_private *cp = netdev_priv(dev);
1470 unsigned long flags;
1472 if (regs->len < CP_REGS_SIZE)
1473 return /* -EINVAL */;
1475 regs->version = CP_REGS_VER;
1477 spin_lock_irqsave(&cp->lock, flags);
1478 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1479 spin_unlock_irqrestore(&cp->lock, flags);
1482 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1484 struct cp_private *cp = netdev_priv(dev);
1485 unsigned long flags;
1487 spin_lock_irqsave (&cp->lock, flags);
1488 netdev_get_wol (cp, wol);
1489 spin_unlock_irqrestore (&cp->lock, flags);
1492 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1494 struct cp_private *cp = netdev_priv(dev);
1495 unsigned long flags;
1496 int rc;
1498 spin_lock_irqsave (&cp->lock, flags);
1499 rc = netdev_set_wol (cp, wol);
1500 spin_unlock_irqrestore (&cp->lock, flags);
1502 return rc;
1505 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1507 switch (stringset) {
1508 case ETH_SS_STATS:
1509 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1510 break;
1511 default:
1512 BUG();
1513 break;
1517 static void cp_get_ethtool_stats (struct net_device *dev,
1518 struct ethtool_stats *estats, u64 *tmp_stats)
1520 struct cp_private *cp = netdev_priv(dev);
1521 struct cp_dma_stats *nic_stats;
1522 dma_addr_t dma;
1523 int i;
1525 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1526 &dma, GFP_KERNEL);
1527 if (!nic_stats)
1528 return;
1530 /* begin NIC statistics dump */
1531 cpw32(StatsAddr + 4, (u64)dma >> 32);
1532 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1533 cpr32(StatsAddr);
1535 for (i = 0; i < 1000; i++) {
1536 if ((cpr32(StatsAddr) & DumpStats) == 0)
1537 break;
1538 udelay(10);
1540 cpw32(StatsAddr, 0);
1541 cpw32(StatsAddr + 4, 0);
1542 cpr32(StatsAddr);
1544 i = 0;
1545 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1546 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1547 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1548 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1549 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1550 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1551 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1552 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1553 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1554 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1555 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1556 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1557 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1558 tmp_stats[i++] = cp->cp_stats.rx_frags;
1559 BUG_ON(i != CP_NUM_STATS);
1561 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1564 static const struct ethtool_ops cp_ethtool_ops = {
1565 .get_drvinfo = cp_get_drvinfo,
1566 .get_regs_len = cp_get_regs_len,
1567 .get_sset_count = cp_get_sset_count,
1568 .get_settings = cp_get_settings,
1569 .set_settings = cp_set_settings,
1570 .nway_reset = cp_nway_reset,
1571 .get_link = ethtool_op_get_link,
1572 .get_msglevel = cp_get_msglevel,
1573 .set_msglevel = cp_set_msglevel,
1574 .get_rx_csum = cp_get_rx_csum,
1575 .set_rx_csum = cp_set_rx_csum,
1576 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
1577 .set_sg = ethtool_op_set_sg,
1578 .set_tso = ethtool_op_set_tso,
1579 .get_regs = cp_get_regs,
1580 .get_wol = cp_get_wol,
1581 .set_wol = cp_set_wol,
1582 .get_strings = cp_get_strings,
1583 .get_ethtool_stats = cp_get_ethtool_stats,
1584 .get_eeprom_len = cp_get_eeprom_len,
1585 .get_eeprom = cp_get_eeprom,
1586 .set_eeprom = cp_set_eeprom,
1589 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1591 struct cp_private *cp = netdev_priv(dev);
1592 int rc;
1593 unsigned long flags;
1595 if (!netif_running(dev))
1596 return -EINVAL;
1598 spin_lock_irqsave(&cp->lock, flags);
1599 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1600 spin_unlock_irqrestore(&cp->lock, flags);
1601 return rc;
1604 static int cp_set_mac_address(struct net_device *dev, void *p)
1606 struct cp_private *cp = netdev_priv(dev);
1607 struct sockaddr *addr = p;
1609 if (!is_valid_ether_addr(addr->sa_data))
1610 return -EADDRNOTAVAIL;
1612 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1614 spin_lock_irq(&cp->lock);
1616 cpw8_f(Cfg9346, Cfg9346_Unlock);
1617 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1618 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1619 cpw8_f(Cfg9346, Cfg9346_Lock);
1621 spin_unlock_irq(&cp->lock);
1623 return 0;
1626 /* Serial EEPROM section. */
1628 /* EEPROM_Ctrl bits. */
1629 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1630 #define EE_CS 0x08 /* EEPROM chip select. */
1631 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1632 #define EE_WRITE_0 0x00
1633 #define EE_WRITE_1 0x02
1634 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1635 #define EE_ENB (0x80 | EE_CS)
1637 /* Delay between EEPROM clock transitions.
1638 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1641 #define eeprom_delay() readl(ee_addr)
1643 /* The EEPROM commands include the alway-set leading bit. */
1644 #define EE_EXTEND_CMD (4)
1645 #define EE_WRITE_CMD (5)
1646 #define EE_READ_CMD (6)
1647 #define EE_ERASE_CMD (7)
1649 #define EE_EWDS_ADDR (0)
1650 #define EE_WRAL_ADDR (1)
1651 #define EE_ERAL_ADDR (2)
1652 #define EE_EWEN_ADDR (3)
1654 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1656 static void eeprom_cmd_start(void __iomem *ee_addr)
1658 writeb (EE_ENB & ~EE_CS, ee_addr);
1659 writeb (EE_ENB, ee_addr);
1660 eeprom_delay ();
1663 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1665 int i;
1667 /* Shift the command bits out. */
1668 for (i = cmd_len - 1; i >= 0; i--) {
1669 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1670 writeb (EE_ENB | dataval, ee_addr);
1671 eeprom_delay ();
1672 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1673 eeprom_delay ();
1675 writeb (EE_ENB, ee_addr);
1676 eeprom_delay ();
1679 static void eeprom_cmd_end(void __iomem *ee_addr)
1681 writeb (~EE_CS, ee_addr);
1682 eeprom_delay ();
1685 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1686 int addr_len)
1688 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1690 eeprom_cmd_start(ee_addr);
1691 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1692 eeprom_cmd_end(ee_addr);
1695 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1697 int i;
1698 u16 retval = 0;
1699 void __iomem *ee_addr = ioaddr + Cfg9346;
1700 int read_cmd = location | (EE_READ_CMD << addr_len);
1702 eeprom_cmd_start(ee_addr);
1703 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1705 for (i = 16; i > 0; i--) {
1706 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1707 eeprom_delay ();
1708 retval =
1709 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1711 writeb (EE_ENB, ee_addr);
1712 eeprom_delay ();
1715 eeprom_cmd_end(ee_addr);
1717 return retval;
1720 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1721 int addr_len)
1723 int i;
1724 void __iomem *ee_addr = ioaddr + Cfg9346;
1725 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1727 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1729 eeprom_cmd_start(ee_addr);
1730 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1731 eeprom_cmd(ee_addr, val, 16);
1732 eeprom_cmd_end(ee_addr);
1734 eeprom_cmd_start(ee_addr);
1735 for (i = 0; i < 20000; i++)
1736 if (readb(ee_addr) & EE_DATA_READ)
1737 break;
1738 eeprom_cmd_end(ee_addr);
1740 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1743 static int cp_get_eeprom_len(struct net_device *dev)
1745 struct cp_private *cp = netdev_priv(dev);
1746 int size;
1748 spin_lock_irq(&cp->lock);
1749 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1750 spin_unlock_irq(&cp->lock);
1752 return size;
1755 static int cp_get_eeprom(struct net_device *dev,
1756 struct ethtool_eeprom *eeprom, u8 *data)
1758 struct cp_private *cp = netdev_priv(dev);
1759 unsigned int addr_len;
1760 u16 val;
1761 u32 offset = eeprom->offset >> 1;
1762 u32 len = eeprom->len;
1763 u32 i = 0;
1765 eeprom->magic = CP_EEPROM_MAGIC;
1767 spin_lock_irq(&cp->lock);
1769 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1771 if (eeprom->offset & 1) {
1772 val = read_eeprom(cp->regs, offset, addr_len);
1773 data[i++] = (u8)(val >> 8);
1774 offset++;
1777 while (i < len - 1) {
1778 val = read_eeprom(cp->regs, offset, addr_len);
1779 data[i++] = (u8)val;
1780 data[i++] = (u8)(val >> 8);
1781 offset++;
1784 if (i < len) {
1785 val = read_eeprom(cp->regs, offset, addr_len);
1786 data[i] = (u8)val;
1789 spin_unlock_irq(&cp->lock);
1790 return 0;
1793 static int cp_set_eeprom(struct net_device *dev,
1794 struct ethtool_eeprom *eeprom, u8 *data)
1796 struct cp_private *cp = netdev_priv(dev);
1797 unsigned int addr_len;
1798 u16 val;
1799 u32 offset = eeprom->offset >> 1;
1800 u32 len = eeprom->len;
1801 u32 i = 0;
1803 if (eeprom->magic != CP_EEPROM_MAGIC)
1804 return -EINVAL;
1806 spin_lock_irq(&cp->lock);
1808 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1810 if (eeprom->offset & 1) {
1811 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1812 val |= (u16)data[i++] << 8;
1813 write_eeprom(cp->regs, offset, val, addr_len);
1814 offset++;
1817 while (i < len - 1) {
1818 val = (u16)data[i++];
1819 val |= (u16)data[i++] << 8;
1820 write_eeprom(cp->regs, offset, val, addr_len);
1821 offset++;
1824 if (i < len) {
1825 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1826 val |= (u16)data[i];
1827 write_eeprom(cp->regs, offset, val, addr_len);
1830 spin_unlock_irq(&cp->lock);
1831 return 0;
1834 /* Put the board into D3cold state and wait for WakeUp signal */
1835 static void cp_set_d3_state (struct cp_private *cp)
1837 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1838 pci_set_power_state (cp->pdev, PCI_D3hot);
1841 static const struct net_device_ops cp_netdev_ops = {
1842 .ndo_open = cp_open,
1843 .ndo_stop = cp_close,
1844 .ndo_validate_addr = eth_validate_addr,
1845 .ndo_set_mac_address = cp_set_mac_address,
1846 .ndo_set_multicast_list = cp_set_rx_mode,
1847 .ndo_get_stats = cp_get_stats,
1848 .ndo_do_ioctl = cp_ioctl,
1849 .ndo_start_xmit = cp_start_xmit,
1850 .ndo_tx_timeout = cp_tx_timeout,
1851 #if CP_VLAN_TAG_USED
1852 .ndo_vlan_rx_register = cp_vlan_rx_register,
1853 #endif
1854 #ifdef BROKEN
1855 .ndo_change_mtu = cp_change_mtu,
1856 #endif
1858 #ifdef CONFIG_NET_POLL_CONTROLLER
1859 .ndo_poll_controller = cp_poll_controller,
1860 #endif
1863 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1865 struct net_device *dev;
1866 struct cp_private *cp;
1867 int rc;
1868 void __iomem *regs;
1869 resource_size_t pciaddr;
1870 unsigned int addr_len, i, pci_using_dac;
1872 #ifndef MODULE
1873 static int version_printed;
1874 if (version_printed++ == 0)
1875 pr_info("%s", version);
1876 #endif
1878 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1879 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1880 dev_info(&pdev->dev,
1881 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1882 pdev->vendor, pdev->device, pdev->revision);
1883 return -ENODEV;
1886 dev = alloc_etherdev(sizeof(struct cp_private));
1887 if (!dev)
1888 return -ENOMEM;
1889 SET_NETDEV_DEV(dev, &pdev->dev);
1891 cp = netdev_priv(dev);
1892 cp->pdev = pdev;
1893 cp->dev = dev;
1894 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1895 spin_lock_init (&cp->lock);
1896 cp->mii_if.dev = dev;
1897 cp->mii_if.mdio_read = mdio_read;
1898 cp->mii_if.mdio_write = mdio_write;
1899 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1900 cp->mii_if.phy_id_mask = 0x1f;
1901 cp->mii_if.reg_num_mask = 0x1f;
1902 cp_set_rxbufsize(cp);
1904 rc = pci_enable_device(pdev);
1905 if (rc)
1906 goto err_out_free;
1908 rc = pci_set_mwi(pdev);
1909 if (rc)
1910 goto err_out_disable;
1912 rc = pci_request_regions(pdev, DRV_NAME);
1913 if (rc)
1914 goto err_out_mwi;
1916 pciaddr = pci_resource_start(pdev, 1);
1917 if (!pciaddr) {
1918 rc = -EIO;
1919 dev_err(&pdev->dev, "no MMIO resource\n");
1920 goto err_out_res;
1922 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1923 rc = -EIO;
1924 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1925 (unsigned long long)pci_resource_len(pdev, 1));
1926 goto err_out_res;
1929 /* Configure DMA attributes. */
1930 if ((sizeof(dma_addr_t) > 4) &&
1931 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1932 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1933 pci_using_dac = 1;
1934 } else {
1935 pci_using_dac = 0;
1937 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1938 if (rc) {
1939 dev_err(&pdev->dev,
1940 "No usable DMA configuration, aborting.\n");
1941 goto err_out_res;
1943 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1944 if (rc) {
1945 dev_err(&pdev->dev,
1946 "No usable consistent DMA configuration, "
1947 "aborting.\n");
1948 goto err_out_res;
1952 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1953 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1955 regs = ioremap(pciaddr, CP_REGS_SIZE);
1956 if (!regs) {
1957 rc = -EIO;
1958 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1959 (unsigned long long)pci_resource_len(pdev, 1),
1960 (unsigned long long)pciaddr);
1961 goto err_out_res;
1963 dev->base_addr = (unsigned long) regs;
1964 cp->regs = regs;
1966 cp_stop_hw(cp);
1968 /* read MAC address from EEPROM */
1969 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1970 for (i = 0; i < 3; i++)
1971 ((__le16 *) (dev->dev_addr))[i] =
1972 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1973 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1975 dev->netdev_ops = &cp_netdev_ops;
1976 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1977 dev->ethtool_ops = &cp_ethtool_ops;
1978 dev->watchdog_timeo = TX_TIMEOUT;
1980 #if CP_VLAN_TAG_USED
1981 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1982 #endif
1984 if (pci_using_dac)
1985 dev->features |= NETIF_F_HIGHDMA;
1987 #if 0 /* disabled by default until verified */
1988 dev->features |= NETIF_F_TSO;
1989 #endif
1991 dev->irq = pdev->irq;
1993 rc = register_netdev(dev);
1994 if (rc)
1995 goto err_out_iomap;
1997 pr_info("%s: RTL-8139C+ at 0x%lx, %pM, IRQ %d\n",
1998 dev->name,
1999 dev->base_addr,
2000 dev->dev_addr,
2001 dev->irq);
2003 pci_set_drvdata(pdev, dev);
2005 /* enable busmastering and memory-write-invalidate */
2006 pci_set_master(pdev);
2008 if (cp->wol_enabled)
2009 cp_set_d3_state (cp);
2011 return 0;
2013 err_out_iomap:
2014 iounmap(regs);
2015 err_out_res:
2016 pci_release_regions(pdev);
2017 err_out_mwi:
2018 pci_clear_mwi(pdev);
2019 err_out_disable:
2020 pci_disable_device(pdev);
2021 err_out_free:
2022 free_netdev(dev);
2023 return rc;
2026 static void cp_remove_one (struct pci_dev *pdev)
2028 struct net_device *dev = pci_get_drvdata(pdev);
2029 struct cp_private *cp = netdev_priv(dev);
2031 unregister_netdev(dev);
2032 iounmap(cp->regs);
2033 if (cp->wol_enabled)
2034 pci_set_power_state (pdev, PCI_D0);
2035 pci_release_regions(pdev);
2036 pci_clear_mwi(pdev);
2037 pci_disable_device(pdev);
2038 pci_set_drvdata(pdev, NULL);
2039 free_netdev(dev);
2042 #ifdef CONFIG_PM
2043 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2045 struct net_device *dev = pci_get_drvdata(pdev);
2046 struct cp_private *cp = netdev_priv(dev);
2047 unsigned long flags;
2049 if (!netif_running(dev))
2050 return 0;
2052 netif_device_detach (dev);
2053 netif_stop_queue (dev);
2055 spin_lock_irqsave (&cp->lock, flags);
2057 /* Disable Rx and Tx */
2058 cpw16 (IntrMask, 0);
2059 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2061 spin_unlock_irqrestore (&cp->lock, flags);
2063 pci_save_state(pdev);
2064 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2065 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2067 return 0;
2070 static int cp_resume (struct pci_dev *pdev)
2072 struct net_device *dev = pci_get_drvdata (pdev);
2073 struct cp_private *cp = netdev_priv(dev);
2074 unsigned long flags;
2076 if (!netif_running(dev))
2077 return 0;
2079 netif_device_attach (dev);
2081 pci_set_power_state(pdev, PCI_D0);
2082 pci_restore_state(pdev);
2083 pci_enable_wake(pdev, PCI_D0, 0);
2085 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2086 cp_init_rings_index (cp);
2087 cp_init_hw (cp);
2088 netif_start_queue (dev);
2090 spin_lock_irqsave (&cp->lock, flags);
2092 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2094 spin_unlock_irqrestore (&cp->lock, flags);
2096 return 0;
2098 #endif /* CONFIG_PM */
2100 static struct pci_driver cp_driver = {
2101 .name = DRV_NAME,
2102 .id_table = cp_pci_tbl,
2103 .probe = cp_init_one,
2104 .remove = cp_remove_one,
2105 #ifdef CONFIG_PM
2106 .resume = cp_resume,
2107 .suspend = cp_suspend,
2108 #endif
2111 static int __init cp_init (void)
2113 #ifdef MODULE
2114 pr_info("%s", version);
2115 #endif
2116 return pci_register_driver(&cp_driver);
2119 static void __exit cp_exit (void)
2121 pci_unregister_driver (&cp_driver);
2124 module_init(cp_init);
2125 module_exit(cp_exit);