1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/netdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/delay.h>
32 #include <linux/pci.h>
37 e1000_mng_mode_none
= 0,
41 e1000_mng_mode_host_if_only
44 #define E1000_FACTPS_MNGCG 0x20000000
46 /* Intel(R) Active Management Technology signature */
47 #define E1000_IAMT_SIGNATURE 0x544D4149
50 * e1000e_get_bus_info_pcie - Get PCIe bus information
51 * @hw: pointer to the HW structure
53 * Determines and stores the system bus information for a particular
54 * network interface. The following bus information is determined and stored:
55 * bus speed, bus width, type (PCIe), and PCIe function.
57 s32
e1000e_get_bus_info_pcie(struct e1000_hw
*hw
)
59 struct e1000_bus_info
*bus
= &hw
->bus
;
60 struct e1000_adapter
*adapter
= hw
->adapter
;
62 u16 pcie_link_status
, pci_header_type
, cap_offset
;
64 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
66 bus
->width
= e1000_bus_width_unknown
;
68 pci_read_config_word(adapter
->pdev
,
69 cap_offset
+ PCIE_LINK_STATUS
,
71 bus
->width
= (enum e1000_bus_width
)((pcie_link_status
&
72 PCIE_LINK_WIDTH_MASK
) >>
73 PCIE_LINK_WIDTH_SHIFT
);
76 pci_read_config_word(adapter
->pdev
, PCI_HEADER_TYPE_REGISTER
,
78 if (pci_header_type
& PCI_HEADER_TYPE_MULTIFUNC
) {
79 status
= er32(STATUS
);
80 bus
->func
= (status
& E1000_STATUS_FUNC_MASK
)
81 >> E1000_STATUS_FUNC_SHIFT
;
90 * e1000e_write_vfta - Write value to VLAN filter table
91 * @hw: pointer to the HW structure
92 * @offset: register offset in VLAN filter table
93 * @value: register value written to VLAN filter table
95 * Writes value at the given offset in the register array which stores
96 * the VLAN filter table.
98 void e1000e_write_vfta(struct e1000_hw
*hw
, u32 offset
, u32 value
)
100 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, value
);
105 * e1000e_init_rx_addrs - Initialize receive address's
106 * @hw: pointer to the HW structure
107 * @rar_count: receive address registers
109 * Setups the receive address registers by setting the base receive address
110 * register to the devices MAC address and clearing all the other receive
111 * address registers to 0.
113 void e1000e_init_rx_addrs(struct e1000_hw
*hw
, u16 rar_count
)
117 /* Setup the receive address */
118 hw_dbg(hw
, "Programming MAC Address into RAR[0]\n");
120 e1000e_rar_set(hw
, hw
->mac
.addr
, 0);
122 /* Zero out the other (rar_entry_count - 1) receive addresses */
123 hw_dbg(hw
, "Clearing RAR[1-%u]\n", rar_count
-1);
124 for (i
= 1; i
< rar_count
; i
++) {
125 E1000_WRITE_REG_ARRAY(hw
, E1000_RA
, (i
<< 1), 0);
127 E1000_WRITE_REG_ARRAY(hw
, E1000_RA
, ((i
<< 1) + 1), 0);
133 * e1000e_rar_set - Set receive address register
134 * @hw: pointer to the HW structure
135 * @addr: pointer to the receive address
136 * @index: receive address array register
138 * Sets the receive address array register at index to the address passed
141 void e1000e_rar_set(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
143 u32 rar_low
, rar_high
;
146 * HW expects these in little endian so we reverse the byte order
147 * from network order (big endian) to little endian
149 rar_low
= ((u32
) addr
[0] |
150 ((u32
) addr
[1] << 8) |
151 ((u32
) addr
[2] << 16) | ((u32
) addr
[3] << 24));
153 rar_high
= ((u32
) addr
[4] | ((u32
) addr
[5] << 8));
155 rar_high
|= E1000_RAH_AV
;
157 E1000_WRITE_REG_ARRAY(hw
, E1000_RA
, (index
<< 1), rar_low
);
158 E1000_WRITE_REG_ARRAY(hw
, E1000_RA
, ((index
<< 1) + 1), rar_high
);
162 * e1000_hash_mc_addr - Generate a multicast hash value
163 * @hw: pointer to the HW structure
164 * @mc_addr: pointer to a multicast address
166 * Generates a multicast address hash value which is used to determine
167 * the multicast filter table array address and new table value. See
168 * e1000_mta_set_generic()
170 static u32
e1000_hash_mc_addr(struct e1000_hw
*hw
, u8
*mc_addr
)
172 u32 hash_value
, hash_mask
;
175 /* Register count multiplied by bits per register */
176 hash_mask
= (hw
->mac
.mta_reg_count
* 32) - 1;
179 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
180 * where 0xFF would still fall within the hash mask.
182 while (hash_mask
>> bit_shift
!= 0xFF)
186 * The portion of the address that is used for the hash table
187 * is determined by the mc_filter_type setting.
188 * The algorithm is such that there is a total of 8 bits of shifting.
189 * The bit_shift for a mc_filter_type of 0 represents the number of
190 * left-shifts where the MSB of mc_addr[5] would still fall within
191 * the hash_mask. Case 0 does this exactly. Since there are a total
192 * of 8 bits of shifting, then mc_addr[4] will shift right the
193 * remaining number of bits. Thus 8 - bit_shift. The rest of the
194 * cases are a variation of this algorithm...essentially raising the
195 * number of bits to shift mc_addr[5] left, while still keeping the
196 * 8-bit shifting total.
198 * For example, given the following Destination MAC Address and an
199 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
200 * we can see that the bit_shift for case 0 is 4. These are the hash
201 * values resulting from each mc_filter_type...
202 * [0] [1] [2] [3] [4] [5]
206 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
207 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
208 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
209 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
211 switch (hw
->mac
.mc_filter_type
) {
226 hash_value
= hash_mask
& (((mc_addr
[4] >> (8 - bit_shift
)) |
227 (((u16
) mc_addr
[5]) << bit_shift
)));
233 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
234 * @hw: pointer to the HW structure
235 * @mc_addr_list: array of multicast addresses to program
236 * @mc_addr_count: number of multicast addresses to program
237 * @rar_used_count: the first RAR register free to program
238 * @rar_count: total number of supported Receive Address Registers
240 * Updates the Receive Address Registers and Multicast Table Array.
241 * The caller must have a packed mc_addr_list of multicast addresses.
242 * The parameter rar_count will usually be hw->mac.rar_entry_count
243 * unless there are workarounds that change this.
245 void e1000e_update_mc_addr_list_generic(struct e1000_hw
*hw
,
246 u8
*mc_addr_list
, u32 mc_addr_count
,
247 u32 rar_used_count
, u32 rar_count
)
250 u32
*mcarray
= kzalloc(hw
->mac
.mta_reg_count
* sizeof(u32
), GFP_ATOMIC
);
253 printk(KERN_ERR
"multicast array memory allocation failed\n");
258 * Load the first set of multicast addresses into the exact
259 * filters (RAR). If there are not enough to fill the RAR
260 * array, clear the filters.
262 for (i
= rar_used_count
; i
< rar_count
; i
++) {
264 e1000e_rar_set(hw
, mc_addr_list
, i
);
266 mc_addr_list
+= ETH_ALEN
;
268 E1000_WRITE_REG_ARRAY(hw
, E1000_RA
, i
<< 1, 0);
270 E1000_WRITE_REG_ARRAY(hw
, E1000_RA
, (i
<< 1) + 1, 0);
275 /* Load any remaining multicast addresses into the hash table. */
276 for (; mc_addr_count
> 0; mc_addr_count
--) {
277 u32 hash_value
, hash_reg
, hash_bit
, mta
;
278 hash_value
= e1000_hash_mc_addr(hw
, mc_addr_list
);
279 hw_dbg(hw
, "Hash value = 0x%03X\n", hash_value
);
280 hash_reg
= (hash_value
>> 5) & (hw
->mac
.mta_reg_count
- 1);
281 hash_bit
= hash_value
& 0x1F;
282 mta
= (1 << hash_bit
);
283 mcarray
[hash_reg
] |= mta
;
284 mc_addr_list
+= ETH_ALEN
;
287 /* write the hash table completely */
288 for (i
= 0; i
< hw
->mac
.mta_reg_count
; i
++)
289 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, mcarray
[i
]);
296 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
297 * @hw: pointer to the HW structure
299 * Clears the base hardware counters by reading the counter registers.
301 void e1000e_clear_hw_cntrs_base(struct e1000_hw
*hw
)
305 temp
= er32(CRCERRS
);
306 temp
= er32(SYMERRS
);
311 temp
= er32(LATECOL
);
318 temp
= er32(XOFFRXC
);
319 temp
= er32(XOFFTXC
);
345 * e1000e_check_for_copper_link - Check for link (Copper)
346 * @hw: pointer to the HW structure
348 * Checks to see of the link status of the hardware has changed. If a
349 * change in link status has been detected, then we read the PHY registers
350 * to get the current speed/duplex if link exists.
352 s32
e1000e_check_for_copper_link(struct e1000_hw
*hw
)
354 struct e1000_mac_info
*mac
= &hw
->mac
;
359 * We only want to go out to the PHY registers to see if Auto-Neg
360 * has completed and/or if our link status has changed. The
361 * get_link_status flag is set upon receiving a Link Status
362 * Change or Rx Sequence Error interrupt.
364 if (!mac
->get_link_status
)
368 * First we want to see if the MII Status Register reports
369 * link. If so, then we want to get the current speed/duplex
372 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
377 return ret_val
; /* No link detected */
379 mac
->get_link_status
= 0;
382 * Check if there was DownShift, must be checked
383 * immediately after link-up
385 e1000e_check_downshift(hw
);
388 * If we are forcing speed/duplex, then we simply return since
389 * we have already determined whether we have link or not.
392 ret_val
= -E1000_ERR_CONFIG
;
397 * Auto-Neg is enabled. Auto Speed Detection takes care
398 * of MAC speed/duplex configuration. So we only need to
399 * configure Collision Distance in the MAC.
401 e1000e_config_collision_dist(hw
);
404 * Configure Flow Control now that Auto-Neg has completed.
405 * First, we need to restore the desired flow control
406 * settings because we may have had to re-autoneg with a
407 * different link partner.
409 ret_val
= e1000e_config_fc_after_link_up(hw
);
411 hw_dbg(hw
, "Error configuring flow control\n");
418 * e1000e_check_for_fiber_link - Check for link (Fiber)
419 * @hw: pointer to the HW structure
421 * Checks for link up on the hardware. If link is not up and we have
422 * a signal, then we need to force link up.
424 s32
e1000e_check_for_fiber_link(struct e1000_hw
*hw
)
426 struct e1000_mac_info
*mac
= &hw
->mac
;
433 status
= er32(STATUS
);
437 * If we don't have link (auto-negotiation failed or link partner
438 * cannot auto-negotiate), the cable is plugged in (we have signal),
439 * and our link partner is not trying to auto-negotiate with us (we
440 * are receiving idles or data), we need to force link up. We also
441 * need to give auto-negotiation time to complete, in case the cable
442 * was just plugged in. The autoneg_failed flag does this.
444 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
445 if ((ctrl
& E1000_CTRL_SWDPIN1
) && (!(status
& E1000_STATUS_LU
)) &&
446 (!(rxcw
& E1000_RXCW_C
))) {
447 if (mac
->autoneg_failed
== 0) {
448 mac
->autoneg_failed
= 1;
451 hw_dbg(hw
, "NOT RXing /C/, disable AutoNeg and force link.\n");
453 /* Disable auto-negotiation in the TXCW register */
454 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
456 /* Force link-up and also force full-duplex. */
458 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
461 /* Configure Flow Control after forcing link up. */
462 ret_val
= e1000e_config_fc_after_link_up(hw
);
464 hw_dbg(hw
, "Error configuring flow control\n");
467 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
469 * If we are forcing link and we are receiving /C/ ordered
470 * sets, re-enable auto-negotiation in the TXCW register
471 * and disable forced link in the Device Control register
472 * in an attempt to auto-negotiate with our link partner.
474 hw_dbg(hw
, "RXing /C/, enable AutoNeg and stop forcing link.\n");
475 ew32(TXCW
, mac
->txcw
);
476 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
478 mac
->serdes_has_link
= true;
485 * e1000e_check_for_serdes_link - Check for link (Serdes)
486 * @hw: pointer to the HW structure
488 * Checks for link up on the hardware. If link is not up and we have
489 * a signal, then we need to force link up.
491 s32
e1000e_check_for_serdes_link(struct e1000_hw
*hw
)
493 struct e1000_mac_info
*mac
= &hw
->mac
;
500 status
= er32(STATUS
);
504 * If we don't have link (auto-negotiation failed or link partner
505 * cannot auto-negotiate), and our link partner is not trying to
506 * auto-negotiate with us (we are receiving idles or data),
507 * we need to force link up. We also need to give auto-negotiation
510 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
511 if ((!(status
& E1000_STATUS_LU
)) && (!(rxcw
& E1000_RXCW_C
))) {
512 if (mac
->autoneg_failed
== 0) {
513 mac
->autoneg_failed
= 1;
516 hw_dbg(hw
, "NOT RXing /C/, disable AutoNeg and force link.\n");
518 /* Disable auto-negotiation in the TXCW register */
519 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
521 /* Force link-up and also force full-duplex. */
523 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
526 /* Configure Flow Control after forcing link up. */
527 ret_val
= e1000e_config_fc_after_link_up(hw
);
529 hw_dbg(hw
, "Error configuring flow control\n");
532 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
534 * If we are forcing link and we are receiving /C/ ordered
535 * sets, re-enable auto-negotiation in the TXCW register
536 * and disable forced link in the Device Control register
537 * in an attempt to auto-negotiate with our link partner.
539 hw_dbg(hw
, "RXing /C/, enable AutoNeg and stop forcing link.\n");
540 ew32(TXCW
, mac
->txcw
);
541 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
543 mac
->serdes_has_link
= true;
544 } else if (!(E1000_TXCW_ANE
& er32(TXCW
))) {
546 * If we force link for non-auto-negotiation switch, check
547 * link status based on MAC synchronization for internal
550 /* SYNCH bit and IV bit are sticky. */
553 if (rxcw
& E1000_RXCW_SYNCH
) {
554 if (!(rxcw
& E1000_RXCW_IV
)) {
555 mac
->serdes_has_link
= true;
556 hw_dbg(hw
, "SERDES: Link up - forced.\n");
559 mac
->serdes_has_link
= false;
560 hw_dbg(hw
, "SERDES: Link down - force failed.\n");
564 if (E1000_TXCW_ANE
& er32(TXCW
)) {
565 status
= er32(STATUS
);
566 if (status
& E1000_STATUS_LU
) {
567 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
570 if (rxcw
& E1000_RXCW_SYNCH
) {
571 if (!(rxcw
& E1000_RXCW_IV
)) {
572 mac
->serdes_has_link
= true;
573 hw_dbg(hw
, "SERDES: Link up - autoneg "
574 "completed sucessfully.\n");
576 mac
->serdes_has_link
= false;
577 hw_dbg(hw
, "SERDES: Link down - invalid"
578 "codewords detected in autoneg.\n");
581 mac
->serdes_has_link
= false;
582 hw_dbg(hw
, "SERDES: Link down - no sync.\n");
585 mac
->serdes_has_link
= false;
586 hw_dbg(hw
, "SERDES: Link down - autoneg failed\n");
594 * e1000_set_default_fc_generic - Set flow control default values
595 * @hw: pointer to the HW structure
597 * Read the EEPROM for the default values for flow control and store the
600 static s32
e1000_set_default_fc_generic(struct e1000_hw
*hw
)
606 * Read and store word 0x0F of the EEPROM. This word contains bits
607 * that determine the hardware's default PAUSE (flow control) mode,
608 * a bit that determines whether the HW defaults to enabling or
609 * disabling auto-negotiation, and the direction of the
610 * SW defined pins. If there is no SW over-ride of the flow
611 * control setting, then the variable hw->fc will
612 * be initialized based on a value in the EEPROM.
614 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &nvm_data
);
617 hw_dbg(hw
, "NVM Read Error\n");
621 if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) == 0)
622 hw
->fc
.requested_mode
= e1000_fc_none
;
623 else if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) ==
625 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
627 hw
->fc
.requested_mode
= e1000_fc_full
;
633 * e1000e_setup_link - Setup flow control and link settings
634 * @hw: pointer to the HW structure
636 * Determines which flow control settings to use, then configures flow
637 * control. Calls the appropriate media-specific link configuration
638 * function. Assuming the adapter has a valid link partner, a valid link
639 * should be established. Assumes the hardware has previously been reset
640 * and the transmitter and receiver are not enabled.
642 s32
e1000e_setup_link(struct e1000_hw
*hw
)
644 struct e1000_mac_info
*mac
= &hw
->mac
;
648 * In the case of the phy reset being blocked, we already have a link.
649 * We do not need to set it up again.
651 if (e1000_check_reset_block(hw
))
655 * If requested flow control is set to default, set flow control
656 * based on the EEPROM flow control settings.
658 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
659 ret_val
= e1000_set_default_fc_generic(hw
);
665 * Save off the requested flow control mode for use later. Depending
666 * on the link partner's capabilities, we may or may not use this mode.
668 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
670 hw_dbg(hw
, "After fix-ups FlowControl is now = %x\n",
671 hw
->fc
.current_mode
);
673 /* Call the necessary media_type subroutine to configure the link. */
674 ret_val
= mac
->ops
.setup_physical_interface(hw
);
679 * Initialize the flow control address, type, and PAUSE timer
680 * registers to their default values. This is done even if flow
681 * control is disabled, because it does not hurt anything to
682 * initialize these registers.
684 hw_dbg(hw
, "Initializing the Flow Control address, type and timer regs\n");
685 ew32(FCT
, FLOW_CONTROL_TYPE
);
686 ew32(FCAH
, FLOW_CONTROL_ADDRESS_HIGH
);
687 ew32(FCAL
, FLOW_CONTROL_ADDRESS_LOW
);
689 ew32(FCTTV
, hw
->fc
.pause_time
);
691 return e1000e_set_fc_watermarks(hw
);
695 * e1000_commit_fc_settings_generic - Configure flow control
696 * @hw: pointer to the HW structure
698 * Write the flow control settings to the Transmit Config Word Register (TXCW)
699 * base on the flow control settings in e1000_mac_info.
701 static s32
e1000_commit_fc_settings_generic(struct e1000_hw
*hw
)
703 struct e1000_mac_info
*mac
= &hw
->mac
;
707 * Check for a software override of the flow control settings, and
708 * setup the device accordingly. If auto-negotiation is enabled, then
709 * software will have to set the "PAUSE" bits to the correct value in
710 * the Transmit Config Word Register (TXCW) and re-start auto-
711 * negotiation. However, if auto-negotiation is disabled, then
712 * software will have to manually configure the two flow control enable
713 * bits in the CTRL register.
715 * The possible values of the "fc" parameter are:
716 * 0: Flow control is completely disabled
717 * 1: Rx flow control is enabled (we can receive pause frames,
718 * but not send pause frames).
719 * 2: Tx flow control is enabled (we can send pause frames but we
720 * do not support receiving pause frames).
721 * 3: Both Rx and Tx flow control (symmetric) are enabled.
723 switch (hw
->fc
.current_mode
) {
725 /* Flow control completely disabled by a software over-ride. */
726 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
);
728 case e1000_fc_rx_pause
:
730 * Rx Flow control is enabled and Tx Flow control is disabled
731 * by a software over-ride. Since there really isn't a way to
732 * advertise that we are capable of Rx Pause ONLY, we will
733 * advertise that we support both symmetric and asymmetric Rx
734 * PAUSE. Later, we will disable the adapter's ability to send
737 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
739 case e1000_fc_tx_pause
:
741 * Tx Flow control is enabled, and Rx Flow control is disabled,
742 * by a software over-ride.
744 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_ASM_DIR
);
748 * Flow control (both Rx and Tx) is enabled by a software
751 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
754 hw_dbg(hw
, "Flow control param set incorrectly\n");
755 return -E1000_ERR_CONFIG
;
766 * e1000_poll_fiber_serdes_link_generic - Poll for link up
767 * @hw: pointer to the HW structure
769 * Polls for link up by reading the status register, if link fails to come
770 * up with auto-negotiation, then the link is forced if a signal is detected.
772 static s32
e1000_poll_fiber_serdes_link_generic(struct e1000_hw
*hw
)
774 struct e1000_mac_info
*mac
= &hw
->mac
;
779 * If we have a signal (the cable is plugged in, or assumed true for
780 * serdes media) then poll for a "Link-Up" indication in the Device
781 * Status Register. Time-out if a link isn't seen in 500 milliseconds
782 * seconds (Auto-negotiation should complete in less than 500
783 * milliseconds even if the other end is doing it in SW).
785 for (i
= 0; i
< FIBER_LINK_UP_LIMIT
; i
++) {
787 status
= er32(STATUS
);
788 if (status
& E1000_STATUS_LU
)
791 if (i
== FIBER_LINK_UP_LIMIT
) {
792 hw_dbg(hw
, "Never got a valid link from auto-neg!!!\n");
793 mac
->autoneg_failed
= 1;
795 * AutoNeg failed to achieve a link, so we'll call
796 * mac->check_for_link. This routine will force the
797 * link up if we detect a signal. This will allow us to
798 * communicate with non-autonegotiating link partners.
800 ret_val
= mac
->ops
.check_for_link(hw
);
802 hw_dbg(hw
, "Error while checking for link\n");
805 mac
->autoneg_failed
= 0;
807 mac
->autoneg_failed
= 0;
808 hw_dbg(hw
, "Valid Link Found\n");
815 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
816 * @hw: pointer to the HW structure
818 * Configures collision distance and flow control for fiber and serdes
819 * links. Upon successful setup, poll for link.
821 s32
e1000e_setup_fiber_serdes_link(struct e1000_hw
*hw
)
828 /* Take the link out of reset */
829 ctrl
&= ~E1000_CTRL_LRST
;
831 e1000e_config_collision_dist(hw
);
833 ret_val
= e1000_commit_fc_settings_generic(hw
);
838 * Since auto-negotiation is enabled, take the link out of reset (the
839 * link will be in reset, because we previously reset the chip). This
840 * will restart auto-negotiation. If auto-negotiation is successful
841 * then the link-up status bit will be set and the flow control enable
842 * bits (RFCE and TFCE) will be set according to their negotiated value.
844 hw_dbg(hw
, "Auto-negotiation enabled\n");
851 * For these adapters, the SW definable pin 1 is set when the optics
852 * detect a signal. If we have a signal, then poll for a "Link-Up"
855 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
856 (er32(CTRL
) & E1000_CTRL_SWDPIN1
)) {
857 ret_val
= e1000_poll_fiber_serdes_link_generic(hw
);
859 hw_dbg(hw
, "No signal detected\n");
866 * e1000e_config_collision_dist - Configure collision distance
867 * @hw: pointer to the HW structure
869 * Configures the collision distance to the default value and is used
870 * during link setup. Currently no func pointer exists and all
871 * implementations are handled in the generic version of this function.
873 void e1000e_config_collision_dist(struct e1000_hw
*hw
)
879 tctl
&= ~E1000_TCTL_COLD
;
880 tctl
|= E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
;
887 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
888 * @hw: pointer to the HW structure
890 * Sets the flow control high/low threshold (watermark) registers. If
891 * flow control XON frame transmission is enabled, then set XON frame
892 * transmission as well.
894 s32
e1000e_set_fc_watermarks(struct e1000_hw
*hw
)
896 u32 fcrtl
= 0, fcrth
= 0;
899 * Set the flow control receive threshold registers. Normally,
900 * these registers will be set to a default threshold that may be
901 * adjusted later by the driver's runtime code. However, if the
902 * ability to transmit pause frames is not enabled, then these
903 * registers will be set to 0.
905 if (hw
->fc
.current_mode
& e1000_fc_tx_pause
) {
907 * We need to set up the Receive Threshold high and low water
908 * marks as well as (optionally) enabling the transmission of
911 fcrtl
= hw
->fc
.low_water
;
912 fcrtl
|= E1000_FCRTL_XONE
;
913 fcrth
= hw
->fc
.high_water
;
922 * e1000e_force_mac_fc - Force the MAC's flow control settings
923 * @hw: pointer to the HW structure
925 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
926 * device control register to reflect the adapter settings. TFCE and RFCE
927 * need to be explicitly set by software when a copper PHY is used because
928 * autonegotiation is managed by the PHY rather than the MAC. Software must
929 * also configure these bits when link is forced on a fiber connection.
931 s32
e1000e_force_mac_fc(struct e1000_hw
*hw
)
938 * Because we didn't get link via the internal auto-negotiation
939 * mechanism (we either forced link or we got link via PHY
940 * auto-neg), we have to manually enable/disable transmit an
941 * receive flow control.
943 * The "Case" statement below enables/disable flow control
944 * according to the "hw->fc.current_mode" parameter.
946 * The possible values of the "fc" parameter are:
947 * 0: Flow control is completely disabled
948 * 1: Rx flow control is enabled (we can receive pause
949 * frames but not send pause frames).
950 * 2: Tx flow control is enabled (we can send pause frames
951 * frames but we do not receive pause frames).
952 * 3: Both Rx and Tx flow control (symmetric) is enabled.
953 * other: No other values should be possible at this point.
955 hw_dbg(hw
, "hw->fc.current_mode = %u\n", hw
->fc
.current_mode
);
957 switch (hw
->fc
.current_mode
) {
959 ctrl
&= (~(E1000_CTRL_TFCE
| E1000_CTRL_RFCE
));
961 case e1000_fc_rx_pause
:
962 ctrl
&= (~E1000_CTRL_TFCE
);
963 ctrl
|= E1000_CTRL_RFCE
;
965 case e1000_fc_tx_pause
:
966 ctrl
&= (~E1000_CTRL_RFCE
);
967 ctrl
|= E1000_CTRL_TFCE
;
970 ctrl
|= (E1000_CTRL_TFCE
| E1000_CTRL_RFCE
);
973 hw_dbg(hw
, "Flow control param set incorrectly\n");
974 return -E1000_ERR_CONFIG
;
983 * e1000e_config_fc_after_link_up - Configures flow control after link
984 * @hw: pointer to the HW structure
986 * Checks the status of auto-negotiation after link up to ensure that the
987 * speed and duplex were not forced. If the link needed to be forced, then
988 * flow control needs to be forced also. If auto-negotiation is enabled
989 * and did not fail, then we configure flow control based on our link
992 s32
e1000e_config_fc_after_link_up(struct e1000_hw
*hw
)
994 struct e1000_mac_info
*mac
= &hw
->mac
;
996 u16 mii_status_reg
, mii_nway_adv_reg
, mii_nway_lp_ability_reg
;
1000 * Check for the case where we have fiber media and auto-neg failed
1001 * so we had to force link. In this case, we need to force the
1002 * configuration of the MAC to match the "fc" parameter.
1004 if (mac
->autoneg_failed
) {
1005 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1006 hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1007 ret_val
= e1000e_force_mac_fc(hw
);
1009 if (hw
->phy
.media_type
== e1000_media_type_copper
)
1010 ret_val
= e1000e_force_mac_fc(hw
);
1014 hw_dbg(hw
, "Error forcing flow control settings\n");
1019 * Check for the case where we have copper media and auto-neg is
1020 * enabled. In this case, we need to check and see if Auto-Neg
1021 * has completed, and if so, how the PHY and link partner has
1022 * flow control configured.
1024 if ((hw
->phy
.media_type
== e1000_media_type_copper
) && mac
->autoneg
) {
1026 * Read the MII Status Register and check to see if AutoNeg
1027 * has completed. We read this twice because this reg has
1028 * some "sticky" (latched) bits.
1030 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &mii_status_reg
);
1033 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &mii_status_reg
);
1037 if (!(mii_status_reg
& MII_SR_AUTONEG_COMPLETE
)) {
1038 hw_dbg(hw
, "Copper PHY and Auto Neg "
1039 "has not completed.\n");
1044 * The AutoNeg process has completed, so we now need to
1045 * read both the Auto Negotiation Advertisement
1046 * Register (Address 4) and the Auto_Negotiation Base
1047 * Page Ability Register (Address 5) to determine how
1048 * flow control was negotiated.
1050 ret_val
= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &mii_nway_adv_reg
);
1053 ret_val
= e1e_rphy(hw
, PHY_LP_ABILITY
, &mii_nway_lp_ability_reg
);
1058 * Two bits in the Auto Negotiation Advertisement Register
1059 * (Address 4) and two bits in the Auto Negotiation Base
1060 * Page Ability Register (Address 5) determine flow control
1061 * for both the PHY and the link partner. The following
1062 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1063 * 1999, describes these PAUSE resolution bits and how flow
1064 * control is determined based upon these settings.
1065 * NOTE: DC = Don't Care
1067 * LOCAL DEVICE | LINK PARTNER
1068 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1069 *-------|---------|-------|---------|--------------------
1070 * 0 | 0 | DC | DC | e1000_fc_none
1071 * 0 | 1 | 0 | DC | e1000_fc_none
1072 * 0 | 1 | 1 | 0 | e1000_fc_none
1073 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1074 * 1 | 0 | 0 | DC | e1000_fc_none
1075 * 1 | DC | 1 | DC | e1000_fc_full
1076 * 1 | 1 | 0 | 0 | e1000_fc_none
1077 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1080 * Are both PAUSE bits set to 1? If so, this implies
1081 * Symmetric Flow Control is enabled at both ends. The
1082 * ASM_DIR bits are irrelevant per the spec.
1084 * For Symmetric Flow Control:
1086 * LOCAL DEVICE | LINK PARTNER
1087 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1088 *-------|---------|-------|---------|--------------------
1089 * 1 | DC | 1 | DC | E1000_fc_full
1092 if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1093 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
)) {
1095 * Now we need to check if the user selected Rx ONLY
1096 * of pause frames. In this case, we had to advertise
1097 * FULL flow control because we could not advertise Rx
1098 * ONLY. Hence, we must now check to see if we need to
1099 * turn OFF the TRANSMISSION of PAUSE frames.
1101 if (hw
->fc
.requested_mode
== e1000_fc_full
) {
1102 hw
->fc
.current_mode
= e1000_fc_full
;
1103 hw_dbg(hw
, "Flow Control = FULL.\r\n");
1105 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1106 hw_dbg(hw
, "Flow Control = "
1107 "RX PAUSE frames only.\r\n");
1111 * For receiving PAUSE frames ONLY.
1113 * LOCAL DEVICE | LINK PARTNER
1114 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1115 *-------|---------|-------|---------|--------------------
1116 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1119 else if (!(mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1120 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
1121 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
1122 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
1123 hw
->fc
.current_mode
= e1000_fc_tx_pause
;
1124 hw_dbg(hw
, "Flow Control = Tx PAUSE frames only.\r\n");
1127 * For transmitting PAUSE frames ONLY.
1129 * LOCAL DEVICE | LINK PARTNER
1130 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1131 *-------|---------|-------|---------|--------------------
1132 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1135 else if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1136 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
1137 !(mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
1138 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
1139 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1140 hw_dbg(hw
, "Flow Control = Rx PAUSE frames only.\r\n");
1143 * Per the IEEE spec, at this point flow control
1144 * should be disabled.
1146 hw
->fc
.current_mode
= e1000_fc_none
;
1147 hw_dbg(hw
, "Flow Control = NONE.\r\n");
1151 * Now we need to do one last check... If we auto-
1152 * negotiated to HALF DUPLEX, flow control should not be
1153 * enabled per IEEE 802.3 spec.
1155 ret_val
= mac
->ops
.get_link_up_info(hw
, &speed
, &duplex
);
1157 hw_dbg(hw
, "Error getting link speed and duplex\n");
1161 if (duplex
== HALF_DUPLEX
)
1162 hw
->fc
.current_mode
= e1000_fc_none
;
1165 * Now we call a subroutine to actually force the MAC
1166 * controller to use the correct flow control settings.
1168 ret_val
= e1000e_force_mac_fc(hw
);
1170 hw_dbg(hw
, "Error forcing flow control settings\n");
1179 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1180 * @hw: pointer to the HW structure
1181 * @speed: stores the current speed
1182 * @duplex: stores the current duplex
1184 * Read the status register for the current speed/duplex and store the current
1185 * speed and duplex for copper connections.
1187 s32
e1000e_get_speed_and_duplex_copper(struct e1000_hw
*hw
, u16
*speed
, u16
*duplex
)
1191 status
= er32(STATUS
);
1192 if (status
& E1000_STATUS_SPEED_1000
) {
1193 *speed
= SPEED_1000
;
1194 hw_dbg(hw
, "1000 Mbs, ");
1195 } else if (status
& E1000_STATUS_SPEED_100
) {
1197 hw_dbg(hw
, "100 Mbs, ");
1200 hw_dbg(hw
, "10 Mbs, ");
1203 if (status
& E1000_STATUS_FD
) {
1204 *duplex
= FULL_DUPLEX
;
1205 hw_dbg(hw
, "Full Duplex\n");
1207 *duplex
= HALF_DUPLEX
;
1208 hw_dbg(hw
, "Half Duplex\n");
1215 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1216 * @hw: pointer to the HW structure
1217 * @speed: stores the current speed
1218 * @duplex: stores the current duplex
1220 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1221 * for fiber/serdes links.
1223 s32
e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw
*hw
, u16
*speed
, u16
*duplex
)
1225 *speed
= SPEED_1000
;
1226 *duplex
= FULL_DUPLEX
;
1232 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1233 * @hw: pointer to the HW structure
1235 * Acquire the HW semaphore to access the PHY or NVM
1237 s32
e1000e_get_hw_semaphore(struct e1000_hw
*hw
)
1240 s32 timeout
= hw
->nvm
.word_size
+ 1;
1243 /* Get the SW semaphore */
1244 while (i
< timeout
) {
1246 if (!(swsm
& E1000_SWSM_SMBI
))
1254 hw_dbg(hw
, "Driver can't access device - SMBI bit is set.\n");
1255 return -E1000_ERR_NVM
;
1258 /* Get the FW semaphore. */
1259 for (i
= 0; i
< timeout
; i
++) {
1261 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
1263 /* Semaphore acquired if bit latched */
1264 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
1271 /* Release semaphores */
1272 e1000e_put_hw_semaphore(hw
);
1273 hw_dbg(hw
, "Driver can't access the NVM\n");
1274 return -E1000_ERR_NVM
;
1281 * e1000e_put_hw_semaphore - Release hardware semaphore
1282 * @hw: pointer to the HW structure
1284 * Release hardware semaphore used to access the PHY or NVM
1286 void e1000e_put_hw_semaphore(struct e1000_hw
*hw
)
1291 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
1296 * e1000e_get_auto_rd_done - Check for auto read completion
1297 * @hw: pointer to the HW structure
1299 * Check EEPROM for Auto Read done bit.
1301 s32
e1000e_get_auto_rd_done(struct e1000_hw
*hw
)
1305 while (i
< AUTO_READ_DONE_TIMEOUT
) {
1306 if (er32(EECD
) & E1000_EECD_AUTO_RD
)
1312 if (i
== AUTO_READ_DONE_TIMEOUT
) {
1313 hw_dbg(hw
, "Auto read by HW from NVM has not completed.\n");
1314 return -E1000_ERR_RESET
;
1321 * e1000e_valid_led_default - Verify a valid default LED config
1322 * @hw: pointer to the HW structure
1323 * @data: pointer to the NVM (EEPROM)
1325 * Read the EEPROM for the current default LED configuration. If the
1326 * LED configuration is not valid, set to a valid LED configuration.
1328 s32
e1000e_valid_led_default(struct e1000_hw
*hw
, u16
*data
)
1332 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1334 hw_dbg(hw
, "NVM Read Error\n");
1338 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
)
1339 *data
= ID_LED_DEFAULT
;
1345 * e1000e_id_led_init -
1346 * @hw: pointer to the HW structure
1349 s32
e1000e_id_led_init(struct e1000_hw
*hw
)
1351 struct e1000_mac_info
*mac
= &hw
->mac
;
1353 const u32 ledctl_mask
= 0x000000FF;
1354 const u32 ledctl_on
= E1000_LEDCTL_MODE_LED_ON
;
1355 const u32 ledctl_off
= E1000_LEDCTL_MODE_LED_OFF
;
1357 const u16 led_mask
= 0x0F;
1359 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
1363 mac
->ledctl_default
= er32(LEDCTL
);
1364 mac
->ledctl_mode1
= mac
->ledctl_default
;
1365 mac
->ledctl_mode2
= mac
->ledctl_default
;
1367 for (i
= 0; i
< 4; i
++) {
1368 temp
= (data
>> (i
<< 2)) & led_mask
;
1370 case ID_LED_ON1_DEF2
:
1371 case ID_LED_ON1_ON2
:
1372 case ID_LED_ON1_OFF2
:
1373 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1374 mac
->ledctl_mode1
|= ledctl_on
<< (i
<< 3);
1376 case ID_LED_OFF1_DEF2
:
1377 case ID_LED_OFF1_ON2
:
1378 case ID_LED_OFF1_OFF2
:
1379 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1380 mac
->ledctl_mode1
|= ledctl_off
<< (i
<< 3);
1387 case ID_LED_DEF1_ON2
:
1388 case ID_LED_ON1_ON2
:
1389 case ID_LED_OFF1_ON2
:
1390 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1391 mac
->ledctl_mode2
|= ledctl_on
<< (i
<< 3);
1393 case ID_LED_DEF1_OFF2
:
1394 case ID_LED_ON1_OFF2
:
1395 case ID_LED_OFF1_OFF2
:
1396 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1397 mac
->ledctl_mode2
|= ledctl_off
<< (i
<< 3);
1409 * e1000e_setup_led_generic - Configures SW controllable LED
1410 * @hw: pointer to the HW structure
1412 * This prepares the SW controllable LED for use and saves the current state
1413 * of the LED so it can be later restored.
1415 s32
e1000e_setup_led_generic(struct e1000_hw
*hw
)
1419 if (hw
->mac
.ops
.setup_led
!= e1000e_setup_led_generic
) {
1420 return -E1000_ERR_CONFIG
;
1423 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1424 ledctl
= er32(LEDCTL
);
1425 hw
->mac
.ledctl_default
= ledctl
;
1427 ledctl
&= ~(E1000_LEDCTL_LED0_IVRT
|
1428 E1000_LEDCTL_LED0_BLINK
|
1429 E1000_LEDCTL_LED0_MODE_MASK
);
1430 ledctl
|= (E1000_LEDCTL_MODE_LED_OFF
<<
1431 E1000_LEDCTL_LED0_MODE_SHIFT
);
1432 ew32(LEDCTL
, ledctl
);
1433 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1434 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
1441 * e1000e_cleanup_led_generic - Set LED config to default operation
1442 * @hw: pointer to the HW structure
1444 * Remove the current LED configuration and set the LED configuration
1445 * to the default value, saved from the EEPROM.
1447 s32
e1000e_cleanup_led_generic(struct e1000_hw
*hw
)
1449 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
1454 * e1000e_blink_led - Blink LED
1455 * @hw: pointer to the HW structure
1457 * Blink the LEDs which are set to be on.
1459 s32
e1000e_blink_led(struct e1000_hw
*hw
)
1461 u32 ledctl_blink
= 0;
1464 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1465 /* always blink LED0 for PCI-E fiber */
1466 ledctl_blink
= E1000_LEDCTL_LED0_BLINK
|
1467 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED0_MODE_SHIFT
);
1470 * set the blink bit for each LED that's "on" (0x0E)
1473 ledctl_blink
= hw
->mac
.ledctl_mode2
;
1474 for (i
= 0; i
< 4; i
++)
1475 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1476 E1000_LEDCTL_MODE_LED_ON
)
1477 ledctl_blink
|= (E1000_LEDCTL_LED0_BLINK
<<
1481 ew32(LEDCTL
, ledctl_blink
);
1487 * e1000e_led_on_generic - Turn LED on
1488 * @hw: pointer to the HW structure
1492 s32
e1000e_led_on_generic(struct e1000_hw
*hw
)
1496 switch (hw
->phy
.media_type
) {
1497 case e1000_media_type_fiber
:
1499 ctrl
&= ~E1000_CTRL_SWDPIN0
;
1500 ctrl
|= E1000_CTRL_SWDPIO0
;
1503 case e1000_media_type_copper
:
1504 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
1514 * e1000e_led_off_generic - Turn LED off
1515 * @hw: pointer to the HW structure
1519 s32
e1000e_led_off_generic(struct e1000_hw
*hw
)
1523 switch (hw
->phy
.media_type
) {
1524 case e1000_media_type_fiber
:
1526 ctrl
|= E1000_CTRL_SWDPIN0
;
1527 ctrl
|= E1000_CTRL_SWDPIO0
;
1530 case e1000_media_type_copper
:
1531 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
1541 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1542 * @hw: pointer to the HW structure
1543 * @no_snoop: bitmap of snoop events
1545 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1547 void e1000e_set_pcie_no_snoop(struct e1000_hw
*hw
, u32 no_snoop
)
1553 gcr
&= ~(PCIE_NO_SNOOP_ALL
);
1560 * e1000e_disable_pcie_master - Disables PCI-express master access
1561 * @hw: pointer to the HW structure
1563 * Returns 0 if successful, else returns -10
1564 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1565 * the master requests to be disabled.
1567 * Disables PCI-Express master access and verifies there are no pending
1570 s32
e1000e_disable_pcie_master(struct e1000_hw
*hw
)
1573 s32 timeout
= MASTER_DISABLE_TIMEOUT
;
1576 ctrl
|= E1000_CTRL_GIO_MASTER_DISABLE
;
1580 if (!(er32(STATUS
) &
1581 E1000_STATUS_GIO_MASTER_ENABLE
))
1588 hw_dbg(hw
, "Master requests are pending.\n");
1589 return -E1000_ERR_MASTER_REQUESTS_PENDING
;
1596 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1597 * @hw: pointer to the HW structure
1599 * Reset the Adaptive Interframe Spacing throttle to default values.
1601 void e1000e_reset_adaptive(struct e1000_hw
*hw
)
1603 struct e1000_mac_info
*mac
= &hw
->mac
;
1605 mac
->current_ifs_val
= 0;
1606 mac
->ifs_min_val
= IFS_MIN
;
1607 mac
->ifs_max_val
= IFS_MAX
;
1608 mac
->ifs_step_size
= IFS_STEP
;
1609 mac
->ifs_ratio
= IFS_RATIO
;
1611 mac
->in_ifs_mode
= 0;
1616 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1617 * @hw: pointer to the HW structure
1619 * Update the Adaptive Interframe Spacing Throttle value based on the
1620 * time between transmitted packets and time between collisions.
1622 void e1000e_update_adaptive(struct e1000_hw
*hw
)
1624 struct e1000_mac_info
*mac
= &hw
->mac
;
1626 if ((mac
->collision_delta
* mac
->ifs_ratio
) > mac
->tx_packet_delta
) {
1627 if (mac
->tx_packet_delta
> MIN_NUM_XMITS
) {
1628 mac
->in_ifs_mode
= 1;
1629 if (mac
->current_ifs_val
< mac
->ifs_max_val
) {
1630 if (!mac
->current_ifs_val
)
1631 mac
->current_ifs_val
= mac
->ifs_min_val
;
1633 mac
->current_ifs_val
+=
1635 ew32(AIT
, mac
->current_ifs_val
);
1639 if (mac
->in_ifs_mode
&&
1640 (mac
->tx_packet_delta
<= MIN_NUM_XMITS
)) {
1641 mac
->current_ifs_val
= 0;
1642 mac
->in_ifs_mode
= 0;
1649 * e1000_raise_eec_clk - Raise EEPROM clock
1650 * @hw: pointer to the HW structure
1651 * @eecd: pointer to the EEPROM
1653 * Enable/Raise the EEPROM clock bit.
1655 static void e1000_raise_eec_clk(struct e1000_hw
*hw
, u32
*eecd
)
1657 *eecd
= *eecd
| E1000_EECD_SK
;
1660 udelay(hw
->nvm
.delay_usec
);
1664 * e1000_lower_eec_clk - Lower EEPROM clock
1665 * @hw: pointer to the HW structure
1666 * @eecd: pointer to the EEPROM
1668 * Clear/Lower the EEPROM clock bit.
1670 static void e1000_lower_eec_clk(struct e1000_hw
*hw
, u32
*eecd
)
1672 *eecd
= *eecd
& ~E1000_EECD_SK
;
1675 udelay(hw
->nvm
.delay_usec
);
1679 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
1680 * @hw: pointer to the HW structure
1681 * @data: data to send to the EEPROM
1682 * @count: number of bits to shift out
1684 * We need to shift 'count' bits out to the EEPROM. So, the value in the
1685 * "data" parameter will be shifted out to the EEPROM one bit at a time.
1686 * In order to do this, "data" must be broken down into bits.
1688 static void e1000_shift_out_eec_bits(struct e1000_hw
*hw
, u16 data
, u16 count
)
1690 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1691 u32 eecd
= er32(EECD
);
1694 mask
= 0x01 << (count
- 1);
1695 if (nvm
->type
== e1000_nvm_eeprom_spi
)
1696 eecd
|= E1000_EECD_DO
;
1699 eecd
&= ~E1000_EECD_DI
;
1702 eecd
|= E1000_EECD_DI
;
1707 udelay(nvm
->delay_usec
);
1709 e1000_raise_eec_clk(hw
, &eecd
);
1710 e1000_lower_eec_clk(hw
, &eecd
);
1715 eecd
&= ~E1000_EECD_DI
;
1720 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
1721 * @hw: pointer to the HW structure
1722 * @count: number of bits to shift in
1724 * In order to read a register from the EEPROM, we need to shift 'count' bits
1725 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
1726 * the EEPROM (setting the SK bit), and then reading the value of the data out
1727 * "DO" bit. During this "shifting in" process the data in "DI" bit should
1730 static u16
e1000_shift_in_eec_bits(struct e1000_hw
*hw
, u16 count
)
1738 eecd
&= ~(E1000_EECD_DO
| E1000_EECD_DI
);
1741 for (i
= 0; i
< count
; i
++) {
1743 e1000_raise_eec_clk(hw
, &eecd
);
1747 eecd
&= ~E1000_EECD_DI
;
1748 if (eecd
& E1000_EECD_DO
)
1751 e1000_lower_eec_clk(hw
, &eecd
);
1758 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
1759 * @hw: pointer to the HW structure
1760 * @ee_reg: EEPROM flag for polling
1762 * Polls the EEPROM status bit for either read or write completion based
1763 * upon the value of 'ee_reg'.
1765 s32
e1000e_poll_eerd_eewr_done(struct e1000_hw
*hw
, int ee_reg
)
1767 u32 attempts
= 100000;
1770 for (i
= 0; i
< attempts
; i
++) {
1771 if (ee_reg
== E1000_NVM_POLL_READ
)
1776 if (reg
& E1000_NVM_RW_REG_DONE
)
1782 return -E1000_ERR_NVM
;
1786 * e1000e_acquire_nvm - Generic request for access to EEPROM
1787 * @hw: pointer to the HW structure
1789 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1790 * Return successful if access grant bit set, else clear the request for
1791 * EEPROM access and return -E1000_ERR_NVM (-1).
1793 s32
e1000e_acquire_nvm(struct e1000_hw
*hw
)
1795 u32 eecd
= er32(EECD
);
1796 s32 timeout
= E1000_NVM_GRANT_ATTEMPTS
;
1798 ew32(EECD
, eecd
| E1000_EECD_REQ
);
1802 if (eecd
& E1000_EECD_GNT
)
1810 eecd
&= ~E1000_EECD_REQ
;
1812 hw_dbg(hw
, "Could not acquire NVM grant\n");
1813 return -E1000_ERR_NVM
;
1820 * e1000_standby_nvm - Return EEPROM to standby state
1821 * @hw: pointer to the HW structure
1823 * Return the EEPROM to a standby state.
1825 static void e1000_standby_nvm(struct e1000_hw
*hw
)
1827 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1828 u32 eecd
= er32(EECD
);
1830 if (nvm
->type
== e1000_nvm_eeprom_spi
) {
1831 /* Toggle CS to flush commands */
1832 eecd
|= E1000_EECD_CS
;
1835 udelay(nvm
->delay_usec
);
1836 eecd
&= ~E1000_EECD_CS
;
1839 udelay(nvm
->delay_usec
);
1844 * e1000_stop_nvm - Terminate EEPROM command
1845 * @hw: pointer to the HW structure
1847 * Terminates the current command by inverting the EEPROM's chip select pin.
1849 static void e1000_stop_nvm(struct e1000_hw
*hw
)
1854 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
1856 eecd
|= E1000_EECD_CS
;
1857 e1000_lower_eec_clk(hw
, &eecd
);
1862 * e1000e_release_nvm - Release exclusive access to EEPROM
1863 * @hw: pointer to the HW structure
1865 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
1867 void e1000e_release_nvm(struct e1000_hw
*hw
)
1874 eecd
&= ~E1000_EECD_REQ
;
1879 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
1880 * @hw: pointer to the HW structure
1882 * Setups the EEPROM for reading and writing.
1884 static s32
e1000_ready_nvm_eeprom(struct e1000_hw
*hw
)
1886 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1887 u32 eecd
= er32(EECD
);
1891 if (nvm
->type
== e1000_nvm_eeprom_spi
) {
1892 /* Clear SK and CS */
1893 eecd
&= ~(E1000_EECD_CS
| E1000_EECD_SK
);
1896 timeout
= NVM_MAX_RETRY_SPI
;
1899 * Read "Status Register" repeatedly until the LSB is cleared.
1900 * The EEPROM will signal that the command has been completed
1901 * by clearing bit 0 of the internal status register. If it's
1902 * not cleared within 'timeout', then error out.
1905 e1000_shift_out_eec_bits(hw
, NVM_RDSR_OPCODE_SPI
,
1906 hw
->nvm
.opcode_bits
);
1907 spi_stat_reg
= (u8
)e1000_shift_in_eec_bits(hw
, 8);
1908 if (!(spi_stat_reg
& NVM_STATUS_RDY_SPI
))
1912 e1000_standby_nvm(hw
);
1917 hw_dbg(hw
, "SPI NVM Status error\n");
1918 return -E1000_ERR_NVM
;
1926 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
1927 * @hw: pointer to the HW structure
1928 * @offset: offset of word in the EEPROM to read
1929 * @words: number of words to read
1930 * @data: word read from the EEPROM
1932 * Reads a 16 bit word from the EEPROM using the EERD register.
1934 s32
e1000e_read_nvm_eerd(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
1936 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1941 * A check for invalid values: offset too large, too many words,
1942 * too many words for the offset, and not enough words.
1944 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
1946 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
1947 return -E1000_ERR_NVM
;
1950 for (i
= 0; i
< words
; i
++) {
1951 eerd
= ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) +
1952 E1000_NVM_RW_REG_START
;
1955 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_READ
);
1959 data
[i
] = (er32(EERD
) >> E1000_NVM_RW_REG_DATA
);
1966 * e1000e_write_nvm_spi - Write to EEPROM using SPI
1967 * @hw: pointer to the HW structure
1968 * @offset: offset within the EEPROM to be written to
1969 * @words: number of words to write
1970 * @data: 16 bit word(s) to be written to the EEPROM
1972 * Writes data to EEPROM at offset using SPI interface.
1974 * If e1000e_update_nvm_checksum is not called after this function , the
1975 * EEPROM will most likely contain an invalid checksum.
1977 s32
e1000e_write_nvm_spi(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
1979 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1984 * A check for invalid values: offset too large, too many words,
1985 * and not enough words.
1987 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
1989 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
1990 return -E1000_ERR_NVM
;
1993 ret_val
= nvm
->ops
.acquire_nvm(hw
);
1999 while (widx
< words
) {
2000 u8 write_opcode
= NVM_WRITE_OPCODE_SPI
;
2002 ret_val
= e1000_ready_nvm_eeprom(hw
);
2004 nvm
->ops
.release_nvm(hw
);
2008 e1000_standby_nvm(hw
);
2010 /* Send the WRITE ENABLE command (8 bit opcode) */
2011 e1000_shift_out_eec_bits(hw
, NVM_WREN_OPCODE_SPI
,
2014 e1000_standby_nvm(hw
);
2017 * Some SPI eeproms use the 8th address bit embedded in the
2020 if ((nvm
->address_bits
== 8) && (offset
>= 128))
2021 write_opcode
|= NVM_A8_OPCODE_SPI
;
2023 /* Send the Write command (8-bit opcode + addr) */
2024 e1000_shift_out_eec_bits(hw
, write_opcode
, nvm
->opcode_bits
);
2025 e1000_shift_out_eec_bits(hw
, (u16
)((offset
+ widx
) * 2),
2028 /* Loop to allow for up to whole page write of eeprom */
2029 while (widx
< words
) {
2030 u16 word_out
= data
[widx
];
2031 word_out
= (word_out
>> 8) | (word_out
<< 8);
2032 e1000_shift_out_eec_bits(hw
, word_out
, 16);
2035 if ((((offset
+ widx
) * 2) % nvm
->page_size
) == 0) {
2036 e1000_standby_nvm(hw
);
2043 nvm
->ops
.release_nvm(hw
);
2048 * e1000e_read_mac_addr - Read device MAC address
2049 * @hw: pointer to the HW structure
2051 * Reads the device MAC address from the EEPROM and stores the value.
2052 * Since devices with two ports use the same EEPROM, we increment the
2053 * last bit in the MAC address for the second port.
2055 s32
e1000e_read_mac_addr(struct e1000_hw
*hw
)
2058 u16 offset
, nvm_data
, i
;
2059 u16 mac_addr_offset
= 0;
2061 if (hw
->mac
.type
== e1000_82571
) {
2062 /* Check for an alternate MAC address. An alternate MAC
2063 * address can be setup by pre-boot software and must be
2064 * treated like a permanent address and must override the
2065 * actual permanent MAC address.*/
2066 ret_val
= e1000_read_nvm(hw
, NVM_ALT_MAC_ADDR_PTR
, 1,
2069 hw_dbg(hw
, "NVM Read Error\n");
2072 if (mac_addr_offset
== 0xFFFF)
2073 mac_addr_offset
= 0;
2075 if (mac_addr_offset
) {
2076 if (hw
->bus
.func
== E1000_FUNC_1
)
2077 mac_addr_offset
+= ETH_ALEN
/sizeof(u16
);
2079 /* make sure we have a valid mac address here
2080 * before using it */
2081 ret_val
= e1000_read_nvm(hw
, mac_addr_offset
, 1,
2084 hw_dbg(hw
, "NVM Read Error\n");
2087 if (nvm_data
& 0x0001)
2088 mac_addr_offset
= 0;
2091 if (mac_addr_offset
)
2092 hw
->dev_spec
.e82571
.alt_mac_addr_is_present
= 1;
2095 for (i
= 0; i
< ETH_ALEN
; i
+= 2) {
2096 offset
= mac_addr_offset
+ (i
>> 1);
2097 ret_val
= e1000_read_nvm(hw
, offset
, 1, &nvm_data
);
2099 hw_dbg(hw
, "NVM Read Error\n");
2102 hw
->mac
.perm_addr
[i
] = (u8
)(nvm_data
& 0xFF);
2103 hw
->mac
.perm_addr
[i
+1] = (u8
)(nvm_data
>> 8);
2106 /* Flip last bit of mac address if we're on second port */
2107 if (!mac_addr_offset
&& hw
->bus
.func
== E1000_FUNC_1
)
2108 hw
->mac
.perm_addr
[5] ^= 1;
2110 for (i
= 0; i
< ETH_ALEN
; i
++)
2111 hw
->mac
.addr
[i
] = hw
->mac
.perm_addr
[i
];
2117 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
2118 * @hw: pointer to the HW structure
2120 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2121 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2123 s32
e1000e_validate_nvm_checksum_generic(struct e1000_hw
*hw
)
2129 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
2130 ret_val
= e1000_read_nvm(hw
, i
, 1, &nvm_data
);
2132 hw_dbg(hw
, "NVM Read Error\n");
2135 checksum
+= nvm_data
;
2138 if (checksum
!= (u16
) NVM_SUM
) {
2139 hw_dbg(hw
, "NVM Checksum Invalid\n");
2140 return -E1000_ERR_NVM
;
2147 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
2148 * @hw: pointer to the HW structure
2150 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2151 * up to the checksum. Then calculates the EEPROM checksum and writes the
2152 * value to the EEPROM.
2154 s32
e1000e_update_nvm_checksum_generic(struct e1000_hw
*hw
)
2160 for (i
= 0; i
< NVM_CHECKSUM_REG
; i
++) {
2161 ret_val
= e1000_read_nvm(hw
, i
, 1, &nvm_data
);
2163 hw_dbg(hw
, "NVM Read Error while updating checksum.\n");
2166 checksum
+= nvm_data
;
2168 checksum
= (u16
) NVM_SUM
- checksum
;
2169 ret_val
= e1000_write_nvm(hw
, NVM_CHECKSUM_REG
, 1, &checksum
);
2171 hw_dbg(hw
, "NVM Write Error while updating checksum.\n");
2177 * e1000e_reload_nvm - Reloads EEPROM
2178 * @hw: pointer to the HW structure
2180 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
2181 * extended control register.
2183 void e1000e_reload_nvm(struct e1000_hw
*hw
)
2188 ctrl_ext
= er32(CTRL_EXT
);
2189 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
2190 ew32(CTRL_EXT
, ctrl_ext
);
2195 * e1000_calculate_checksum - Calculate checksum for buffer
2196 * @buffer: pointer to EEPROM
2197 * @length: size of EEPROM to calculate a checksum for
2199 * Calculates the checksum for some buffer on a specified length. The
2200 * checksum calculated is returned.
2202 static u8
e1000_calculate_checksum(u8
*buffer
, u32 length
)
2210 for (i
= 0; i
< length
; i
++)
2213 return (u8
) (0 - sum
);
2217 * e1000_mng_enable_host_if - Checks host interface is enabled
2218 * @hw: pointer to the HW structure
2220 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
2222 * This function checks whether the HOST IF is enabled for command operation
2223 * and also checks whether the previous command is completed. It busy waits
2224 * in case of previous command is not completed.
2226 static s32
e1000_mng_enable_host_if(struct e1000_hw
*hw
)
2231 /* Check that the host interface is enabled. */
2233 if ((hicr
& E1000_HICR_EN
) == 0) {
2234 hw_dbg(hw
, "E1000_HOST_EN bit disabled.\n");
2235 return -E1000_ERR_HOST_INTERFACE_COMMAND
;
2237 /* check the previous command is completed */
2238 for (i
= 0; i
< E1000_MNG_DHCP_COMMAND_TIMEOUT
; i
++) {
2240 if (!(hicr
& E1000_HICR_C
))
2245 if (i
== E1000_MNG_DHCP_COMMAND_TIMEOUT
) {
2246 hw_dbg(hw
, "Previous command timeout failed .\n");
2247 return -E1000_ERR_HOST_INTERFACE_COMMAND
;
2254 * e1000e_check_mng_mode_generic - check management mode
2255 * @hw: pointer to the HW structure
2257 * Reads the firmware semaphore register and returns true (>0) if
2258 * manageability is enabled, else false (0).
2260 bool e1000e_check_mng_mode_generic(struct e1000_hw
*hw
)
2262 u32 fwsm
= er32(FWSM
);
2264 return (fwsm
& E1000_FWSM_MODE_MASK
) ==
2265 (E1000_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
);
2269 * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
2270 * @hw: pointer to the HW structure
2272 * Enables packet filtering on transmit packets if manageability is enabled
2273 * and host interface is enabled.
2275 bool e1000e_enable_tx_pkt_filtering(struct e1000_hw
*hw
)
2277 struct e1000_host_mng_dhcp_cookie
*hdr
= &hw
->mng_cookie
;
2278 u32
*buffer
= (u32
*)&hw
->mng_cookie
;
2280 s32 ret_val
, hdr_csum
, csum
;
2283 /* No manageability, no filtering */
2284 if (!e1000e_check_mng_mode(hw
)) {
2285 hw
->mac
.tx_pkt_filtering
= 0;
2290 * If we can't read from the host interface for whatever
2291 * reason, disable filtering.
2293 ret_val
= e1000_mng_enable_host_if(hw
);
2295 hw
->mac
.tx_pkt_filtering
= 0;
2299 /* Read in the header. Length and offset are in dwords. */
2300 len
= E1000_MNG_DHCP_COOKIE_LENGTH
>> 2;
2301 offset
= E1000_MNG_DHCP_COOKIE_OFFSET
>> 2;
2302 for (i
= 0; i
< len
; i
++)
2303 *(buffer
+ i
) = E1000_READ_REG_ARRAY(hw
, E1000_HOST_IF
, offset
+ i
);
2304 hdr_csum
= hdr
->checksum
;
2306 csum
= e1000_calculate_checksum((u8
*)hdr
,
2307 E1000_MNG_DHCP_COOKIE_LENGTH
);
2309 * If either the checksums or signature don't match, then
2310 * the cookie area isn't considered valid, in which case we
2311 * take the safe route of assuming Tx filtering is enabled.
2313 if ((hdr_csum
!= csum
) || (hdr
->signature
!= E1000_IAMT_SIGNATURE
)) {
2314 hw
->mac
.tx_pkt_filtering
= 1;
2318 /* Cookie area is valid, make the final check for filtering. */
2319 if (!(hdr
->status
& E1000_MNG_DHCP_COOKIE_STATUS_PARSING
)) {
2320 hw
->mac
.tx_pkt_filtering
= 0;
2324 hw
->mac
.tx_pkt_filtering
= 1;
2329 * e1000_mng_write_cmd_header - Writes manageability command header
2330 * @hw: pointer to the HW structure
2331 * @hdr: pointer to the host interface command header
2333 * Writes the command header after does the checksum calculation.
2335 static s32
e1000_mng_write_cmd_header(struct e1000_hw
*hw
,
2336 struct e1000_host_mng_command_header
*hdr
)
2338 u16 i
, length
= sizeof(struct e1000_host_mng_command_header
);
2340 /* Write the whole command header structure with new checksum. */
2342 hdr
->checksum
= e1000_calculate_checksum((u8
*)hdr
, length
);
2345 /* Write the relevant command block into the ram area. */
2346 for (i
= 0; i
< length
; i
++) {
2347 E1000_WRITE_REG_ARRAY(hw
, E1000_HOST_IF
, i
,
2348 *((u32
*) hdr
+ i
));
2356 * e1000_mng_host_if_write - Writes to the manageability host interface
2357 * @hw: pointer to the HW structure
2358 * @buffer: pointer to the host interface buffer
2359 * @length: size of the buffer
2360 * @offset: location in the buffer to write to
2361 * @sum: sum of the data (not checksum)
2363 * This function writes the buffer content at the offset given on the host if.
2364 * It also does alignment considerations to do the writes in most efficient
2365 * way. Also fills up the sum of the buffer in *buffer parameter.
2367 static s32
e1000_mng_host_if_write(struct e1000_hw
*hw
, u8
*buffer
,
2368 u16 length
, u16 offset
, u8
*sum
)
2371 u8
*bufptr
= buffer
;
2373 u16 remaining
, i
, j
, prev_bytes
;
2375 /* sum = only sum of the data and it is not checksum */
2377 if (length
== 0 || offset
+ length
> E1000_HI_MAX_MNG_DATA_LENGTH
)
2378 return -E1000_ERR_PARAM
;
2381 prev_bytes
= offset
& 0x3;
2385 data
= E1000_READ_REG_ARRAY(hw
, E1000_HOST_IF
, offset
);
2386 for (j
= prev_bytes
; j
< sizeof(u32
); j
++) {
2387 *(tmp
+ j
) = *bufptr
++;
2390 E1000_WRITE_REG_ARRAY(hw
, E1000_HOST_IF
, offset
, data
);
2391 length
-= j
- prev_bytes
;
2395 remaining
= length
& 0x3;
2396 length
-= remaining
;
2398 /* Calculate length in DWORDs */
2402 * The device driver writes the relevant command block into the
2405 for (i
= 0; i
< length
; i
++) {
2406 for (j
= 0; j
< sizeof(u32
); j
++) {
2407 *(tmp
+ j
) = *bufptr
++;
2411 E1000_WRITE_REG_ARRAY(hw
, E1000_HOST_IF
, offset
+ i
, data
);
2414 for (j
= 0; j
< sizeof(u32
); j
++) {
2416 *(tmp
+ j
) = *bufptr
++;
2422 E1000_WRITE_REG_ARRAY(hw
, E1000_HOST_IF
, offset
+ i
, data
);
2429 * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
2430 * @hw: pointer to the HW structure
2431 * @buffer: pointer to the host interface
2432 * @length: size of the buffer
2434 * Writes the DHCP information to the host interface.
2436 s32
e1000e_mng_write_dhcp_info(struct e1000_hw
*hw
, u8
*buffer
, u16 length
)
2438 struct e1000_host_mng_command_header hdr
;
2442 hdr
.command_id
= E1000_MNG_DHCP_TX_PAYLOAD_CMD
;
2443 hdr
.command_length
= length
;
2448 /* Enable the host interface */
2449 ret_val
= e1000_mng_enable_host_if(hw
);
2453 /* Populate the host interface with the contents of "buffer". */
2454 ret_val
= e1000_mng_host_if_write(hw
, buffer
, length
,
2455 sizeof(hdr
), &(hdr
.checksum
));
2459 /* Write the manageability command header */
2460 ret_val
= e1000_mng_write_cmd_header(hw
, &hdr
);
2464 /* Tell the ARC a new command is pending. */
2466 ew32(HICR
, hicr
| E1000_HICR_C
);
2472 * e1000e_enable_mng_pass_thru - Enable processing of ARP's
2473 * @hw: pointer to the HW structure
2475 * Verifies the hardware needs to allow ARPs to be processed by the host.
2477 bool e1000e_enable_mng_pass_thru(struct e1000_hw
*hw
)
2485 if (!(manc
& E1000_MANC_RCV_TCO_EN
) ||
2486 !(manc
& E1000_MANC_EN_MAC_ADDR_FILTER
))
2489 if (hw
->mac
.arc_subsystem_valid
) {
2491 factps
= er32(FACTPS
);
2493 if (!(factps
& E1000_FACTPS_MNGCG
) &&
2494 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
2495 (e1000_mng_mode_pt
<< E1000_FWSM_MODE_SHIFT
))) {
2500 if ((manc
& E1000_MANC_SMBUS_EN
) &&
2501 !(manc
& E1000_MANC_ASF_EN
)) {
2510 s32
e1000e_read_pba_num(struct e1000_hw
*hw
, u32
*pba_num
)
2515 ret_val
= e1000_read_nvm(hw
, NVM_PBA_OFFSET_0
, 1, &nvm_data
);
2517 hw_dbg(hw
, "NVM Read Error\n");
2520 *pba_num
= (u32
)(nvm_data
<< 16);
2522 ret_val
= e1000_read_nvm(hw
, NVM_PBA_OFFSET_1
, 1, &nvm_data
);
2524 hw_dbg(hw
, "NVM Read Error\n");
2527 *pba_num
|= nvm_data
;