1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/if_ether.h>
36 #include "e1000_mac.h"
37 #include "e1000_82575.h"
39 static s32
igb_get_invariants_82575(struct e1000_hw
*);
40 static s32
igb_acquire_phy_82575(struct e1000_hw
*);
41 static void igb_release_phy_82575(struct e1000_hw
*);
42 static s32
igb_acquire_nvm_82575(struct e1000_hw
*);
43 static void igb_release_nvm_82575(struct e1000_hw
*);
44 static s32
igb_check_for_link_82575(struct e1000_hw
*);
45 static s32
igb_get_cfg_done_82575(struct e1000_hw
*);
46 static s32
igb_init_hw_82575(struct e1000_hw
*);
47 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*);
48 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
*);
49 static s32
igb_reset_hw_82575(struct e1000_hw
*);
50 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*, bool);
51 static s32
igb_setup_copper_link_82575(struct e1000_hw
*);
52 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*);
53 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
);
54 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*);
55 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*, u16
);
56 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*, u16
*,
58 static s32
igb_get_phy_id_82575(struct e1000_hw
*);
59 static void igb_release_swfw_sync_82575(struct e1000_hw
*, u16
);
60 static bool igb_sgmii_active_82575(struct e1000_hw
*);
61 static s32
igb_reset_init_script_82575(struct e1000_hw
*);
62 static s32
igb_read_mac_addr_82575(struct e1000_hw
*);
63 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
);
65 static s32
igb_get_invariants_82575(struct e1000_hw
*hw
)
67 struct e1000_phy_info
*phy
= &hw
->phy
;
68 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
69 struct e1000_mac_info
*mac
= &hw
->mac
;
70 struct e1000_dev_spec_82575
* dev_spec
= &hw
->dev_spec
._82575
;
76 switch (hw
->device_id
) {
77 case E1000_DEV_ID_82575EB_COPPER
:
78 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
79 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
80 mac
->type
= e1000_82575
;
82 case E1000_DEV_ID_82576
:
83 case E1000_DEV_ID_82576_NS
:
84 case E1000_DEV_ID_82576_FIBER
:
85 case E1000_DEV_ID_82576_SERDES
:
86 case E1000_DEV_ID_82576_QUAD_COPPER
:
87 case E1000_DEV_ID_82576_SERDES_QUAD
:
88 mac
->type
= e1000_82576
;
91 return -E1000_ERR_MAC_INIT
;
97 * The 82575 uses bits 22:23 for link mode. The mode can be changed
98 * based on the EEPROM. We cannot rely upon device ID. There
99 * is no distinguishable difference between fiber and internal
100 * SerDes mode on the 82575. There can be an external PHY attached
101 * on the SGMII interface. For this, we'll set sgmii_active to true.
103 phy
->media_type
= e1000_media_type_copper
;
104 dev_spec
->sgmii_active
= false;
106 ctrl_ext
= rd32(E1000_CTRL_EXT
);
107 switch (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
108 case E1000_CTRL_EXT_LINK_MODE_SGMII
:
109 dev_spec
->sgmii_active
= true;
110 ctrl_ext
|= E1000_CTRL_I2C_ENA
;
112 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
:
113 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
114 ctrl_ext
|= E1000_CTRL_I2C_ENA
;
117 ctrl_ext
&= ~E1000_CTRL_I2C_ENA
;
121 wr32(E1000_CTRL_EXT
, ctrl_ext
);
123 /* Set mta register count */
124 mac
->mta_reg_count
= 128;
125 /* Set rar entry count */
126 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82575
;
127 if (mac
->type
== e1000_82576
)
128 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82576
;
129 /* Set if part includes ASF firmware */
130 mac
->asf_firmware_present
= true;
131 /* Set if manageability features are enabled. */
132 mac
->arc_subsystem_valid
=
133 (rd32(E1000_FWSM
) & E1000_FWSM_MODE_MASK
)
136 /* physical interface link setup */
137 mac
->ops
.setup_physical_interface
=
138 (hw
->phy
.media_type
== e1000_media_type_copper
)
139 ? igb_setup_copper_link_82575
140 : igb_setup_serdes_link_82575
;
142 /* NVM initialization */
143 eecd
= rd32(E1000_EECD
);
145 nvm
->opcode_bits
= 8;
147 switch (nvm
->override
) {
148 case e1000_nvm_override_spi_large
:
150 nvm
->address_bits
= 16;
152 case e1000_nvm_override_spi_small
:
154 nvm
->address_bits
= 8;
157 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
158 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
162 nvm
->type
= e1000_nvm_eeprom_spi
;
164 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
165 E1000_EECD_SIZE_EX_SHIFT
);
168 * Added to a constant, "size" becomes the left-shift value
169 * for setting word_size.
171 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
173 /* EEPROM access above 16k is unsupported */
176 nvm
->word_size
= 1 << size
;
178 /* if 82576 then initialize mailbox parameters */
179 if (mac
->type
== e1000_82576
)
180 igb_init_mbx_params_pf(hw
);
182 /* setup PHY parameters */
183 if (phy
->media_type
!= e1000_media_type_copper
) {
184 phy
->type
= e1000_phy_none
;
188 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
189 phy
->reset_delay_us
= 100;
191 /* PHY function pointers */
192 if (igb_sgmii_active_82575(hw
)) {
193 phy
->ops
.reset
= igb_phy_hw_reset_sgmii_82575
;
194 phy
->ops
.read_reg
= igb_read_phy_reg_sgmii_82575
;
195 phy
->ops
.write_reg
= igb_write_phy_reg_sgmii_82575
;
197 phy
->ops
.reset
= igb_phy_hw_reset
;
198 phy
->ops
.read_reg
= igb_read_phy_reg_igp
;
199 phy
->ops
.write_reg
= igb_write_phy_reg_igp
;
203 hw
->bus
.func
= (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_MASK
) >>
204 E1000_STATUS_FUNC_SHIFT
;
206 /* Set phy->phy_addr and phy->id. */
207 ret_val
= igb_get_phy_id_82575(hw
);
211 /* Verify phy id and set remaining function pointers */
213 case M88E1111_I_PHY_ID
:
214 phy
->type
= e1000_phy_m88
;
215 phy
->ops
.get_phy_info
= igb_get_phy_info_m88
;
216 phy
->ops
.get_cable_length
= igb_get_cable_length_m88
;
217 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_m88
;
219 case IGP03E1000_E_PHY_ID
:
220 phy
->type
= e1000_phy_igp_3
;
221 phy
->ops
.get_phy_info
= igb_get_phy_info_igp
;
222 phy
->ops
.get_cable_length
= igb_get_cable_length_igp_2
;
223 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_igp
;
224 phy
->ops
.set_d0_lplu_state
= igb_set_d0_lplu_state_82575
;
225 phy
->ops
.set_d3_lplu_state
= igb_set_d3_lplu_state
;
228 return -E1000_ERR_PHY
;
235 * igb_acquire_phy_82575 - Acquire rights to access PHY
236 * @hw: pointer to the HW structure
238 * Acquire access rights to the correct PHY. This is a
239 * function pointer entry point called by the api module.
241 static s32
igb_acquire_phy_82575(struct e1000_hw
*hw
)
245 mask
= hw
->bus
.func
? E1000_SWFW_PHY1_SM
: E1000_SWFW_PHY0_SM
;
247 return igb_acquire_swfw_sync_82575(hw
, mask
);
251 * igb_release_phy_82575 - Release rights to access PHY
252 * @hw: pointer to the HW structure
254 * A wrapper to release access rights to the correct PHY. This is a
255 * function pointer entry point called by the api module.
257 static void igb_release_phy_82575(struct e1000_hw
*hw
)
261 mask
= hw
->bus
.func
? E1000_SWFW_PHY1_SM
: E1000_SWFW_PHY0_SM
;
262 igb_release_swfw_sync_82575(hw
, mask
);
266 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
267 * @hw: pointer to the HW structure
268 * @offset: register offset to be read
269 * @data: pointer to the read data
271 * Reads the PHY register at offset using the serial gigabit media independent
272 * interface and stores the retrieved information in data.
274 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
277 struct e1000_phy_info
*phy
= &hw
->phy
;
280 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
281 hw_dbg("PHY Address %u is out of range\n", offset
);
282 return -E1000_ERR_PARAM
;
286 * Set up Op-code, Phy Address, and register address in the I2CCMD
287 * register. The MAC will take care of interfacing with the
288 * PHY to retrieve the desired data.
290 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
291 (phy
->addr
<< E1000_I2CCMD_PHY_ADDR_SHIFT
) |
292 (E1000_I2CCMD_OPCODE_READ
));
294 wr32(E1000_I2CCMD
, i2ccmd
);
296 /* Poll the ready bit to see if the I2C read completed */
297 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
299 i2ccmd
= rd32(E1000_I2CCMD
);
300 if (i2ccmd
& E1000_I2CCMD_READY
)
303 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
304 hw_dbg("I2CCMD Read did not complete\n");
305 return -E1000_ERR_PHY
;
307 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
308 hw_dbg("I2CCMD Error bit set\n");
309 return -E1000_ERR_PHY
;
312 /* Need to byte-swap the 16-bit value. */
313 *data
= ((i2ccmd
>> 8) & 0x00FF) | ((i2ccmd
<< 8) & 0xFF00);
319 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
320 * @hw: pointer to the HW structure
321 * @offset: register offset to write to
322 * @data: data to write at register offset
324 * Writes the data to PHY register at the offset using the serial gigabit
325 * media independent interface.
327 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
330 struct e1000_phy_info
*phy
= &hw
->phy
;
332 u16 phy_data_swapped
;
334 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
335 hw_dbg("PHY Address %d is out of range\n", offset
);
336 return -E1000_ERR_PARAM
;
339 /* Swap the data bytes for the I2C interface */
340 phy_data_swapped
= ((data
>> 8) & 0x00FF) | ((data
<< 8) & 0xFF00);
343 * Set up Op-code, Phy Address, and register address in the I2CCMD
344 * register. The MAC will take care of interfacing with the
345 * PHY to retrieve the desired data.
347 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
348 (phy
->addr
<< E1000_I2CCMD_PHY_ADDR_SHIFT
) |
349 E1000_I2CCMD_OPCODE_WRITE
|
352 wr32(E1000_I2CCMD
, i2ccmd
);
354 /* Poll the ready bit to see if the I2C read completed */
355 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
357 i2ccmd
= rd32(E1000_I2CCMD
);
358 if (i2ccmd
& E1000_I2CCMD_READY
)
361 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
362 hw_dbg("I2CCMD Write did not complete\n");
363 return -E1000_ERR_PHY
;
365 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
366 hw_dbg("I2CCMD Error bit set\n");
367 return -E1000_ERR_PHY
;
374 * igb_get_phy_id_82575 - Retrieve PHY addr and id
375 * @hw: pointer to the HW structure
377 * Retrieves the PHY address and ID for both PHY's which do and do not use
380 static s32
igb_get_phy_id_82575(struct e1000_hw
*hw
)
382 struct e1000_phy_info
*phy
= &hw
->phy
;
388 * For SGMII PHYs, we try the list of possible addresses until
389 * we find one that works. For non-SGMII PHYs
390 * (e.g. integrated copper PHYs), an address of 1 should
391 * work. The result of this function should mean phy->phy_addr
392 * and phy->id are set correctly.
394 if (!(igb_sgmii_active_82575(hw
))) {
396 ret_val
= igb_get_phy_id(hw
);
400 /* Power on sgmii phy if it is disabled */
401 ctrl_ext
= rd32(E1000_CTRL_EXT
);
402 wr32(E1000_CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_SDP3_DATA
);
407 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
408 * Therefore, we need to test 1-7
410 for (phy
->addr
= 1; phy
->addr
< 8; phy
->addr
++) {
411 ret_val
= igb_read_phy_reg_sgmii_82575(hw
, PHY_ID1
, &phy_id
);
413 hw_dbg("Vendor ID 0x%08X read at address %u\n",
416 * At the time of this writing, The M88 part is
417 * the only supported SGMII PHY product.
419 if (phy_id
== M88_VENDOR
)
422 hw_dbg("PHY address %u was unreadable\n", phy
->addr
);
426 /* A valid PHY type couldn't be found. */
427 if (phy
->addr
== 8) {
429 ret_val
= -E1000_ERR_PHY
;
432 ret_val
= igb_get_phy_id(hw
);
435 /* restore previous sfp cage power state */
436 wr32(E1000_CTRL_EXT
, ctrl_ext
);
443 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
444 * @hw: pointer to the HW structure
446 * Resets the PHY using the serial gigabit media independent interface.
448 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*hw
)
453 * This isn't a true "hard" reset, but is the only reset
454 * available to us at this time.
457 hw_dbg("Soft resetting SGMII attached PHY...\n");
460 * SFP documentation requires the following to configure the SPF module
461 * to work on SGMII. No further documentation is given.
463 ret_val
= hw
->phy
.ops
.write_reg(hw
, 0x1B, 0x8084);
467 ret_val
= igb_phy_sw_reset(hw
);
474 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
475 * @hw: pointer to the HW structure
476 * @active: true to enable LPLU, false to disable
478 * Sets the LPLU D0 state according to the active flag. When
479 * activating LPLU this function also disables smart speed
480 * and vice versa. LPLU will not be activated unless the
481 * device autonegotiation advertisement meets standards of
482 * either 10 or 10/100 or 10/100/1000 at all duplexes.
483 * This is a function pointer entry point only called by
484 * PHY setup routines.
486 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*hw
, bool active
)
488 struct e1000_phy_info
*phy
= &hw
->phy
;
492 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
497 data
|= IGP02E1000_PM_D0_LPLU
;
498 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
503 /* When LPLU is enabled, we should disable SmartSpeed */
504 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
506 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
507 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
512 data
&= ~IGP02E1000_PM_D0_LPLU
;
513 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
516 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
517 * during Dx states where the power conservation is most
518 * important. During driver activity we should enable
519 * SmartSpeed, so performance is maintained.
521 if (phy
->smart_speed
== e1000_smart_speed_on
) {
522 ret_val
= phy
->ops
.read_reg(hw
,
523 IGP01E1000_PHY_PORT_CONFIG
, &data
);
527 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
528 ret_val
= phy
->ops
.write_reg(hw
,
529 IGP01E1000_PHY_PORT_CONFIG
, data
);
532 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
533 ret_val
= phy
->ops
.read_reg(hw
,
534 IGP01E1000_PHY_PORT_CONFIG
, &data
);
538 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
539 ret_val
= phy
->ops
.write_reg(hw
,
540 IGP01E1000_PHY_PORT_CONFIG
, data
);
551 * igb_acquire_nvm_82575 - Request for access to EEPROM
552 * @hw: pointer to the HW structure
554 * Acquire the necessary semaphores for exclusive access to the EEPROM.
555 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
556 * Return successful if access grant bit set, else clear the request for
557 * EEPROM access and return -E1000_ERR_NVM (-1).
559 static s32
igb_acquire_nvm_82575(struct e1000_hw
*hw
)
563 ret_val
= igb_acquire_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
567 ret_val
= igb_acquire_nvm(hw
);
570 igb_release_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
577 * igb_release_nvm_82575 - Release exclusive access to EEPROM
578 * @hw: pointer to the HW structure
580 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
581 * then release the semaphores acquired.
583 static void igb_release_nvm_82575(struct e1000_hw
*hw
)
586 igb_release_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
590 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
591 * @hw: pointer to the HW structure
592 * @mask: specifies which semaphore to acquire
594 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
595 * will also specify which port we're acquiring the lock for.
597 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
601 u32 fwmask
= mask
<< 16;
603 s32 i
= 0, timeout
= 200; /* FIXME: find real value to use here */
605 while (i
< timeout
) {
606 if (igb_get_hw_semaphore(hw
)) {
607 ret_val
= -E1000_ERR_SWFW_SYNC
;
611 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
612 if (!(swfw_sync
& (fwmask
| swmask
)))
616 * Firmware currently using resource (fwmask)
617 * or other software thread using resource (swmask)
619 igb_put_hw_semaphore(hw
);
625 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
626 ret_val
= -E1000_ERR_SWFW_SYNC
;
631 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
633 igb_put_hw_semaphore(hw
);
640 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
641 * @hw: pointer to the HW structure
642 * @mask: specifies which semaphore to acquire
644 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
645 * will also specify which port we're releasing the lock for.
647 static void igb_release_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
651 while (igb_get_hw_semaphore(hw
) != 0);
654 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
656 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
658 igb_put_hw_semaphore(hw
);
662 * igb_get_cfg_done_82575 - Read config done bit
663 * @hw: pointer to the HW structure
665 * Read the management control register for the config done bit for
666 * completion status. NOTE: silicon which is EEPROM-less will fail trying
667 * to read the config done bit, so an error is *ONLY* logged and returns
668 * 0. If we were to return with error, EEPROM-less silicon
669 * would not be able to be reset or change link.
671 static s32
igb_get_cfg_done_82575(struct e1000_hw
*hw
)
673 s32 timeout
= PHY_CFG_TIMEOUT
;
675 u32 mask
= E1000_NVM_CFG_DONE_PORT_0
;
677 if (hw
->bus
.func
== 1)
678 mask
= E1000_NVM_CFG_DONE_PORT_1
;
681 if (rd32(E1000_EEMNGCTL
) & mask
)
687 hw_dbg("MNG configuration cycle has not completed.\n");
689 /* If EEPROM is not marked present, init the PHY manually */
690 if (((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0) &&
691 (hw
->phy
.type
== e1000_phy_igp_3
))
692 igb_phy_init_script_igp3(hw
);
698 * igb_check_for_link_82575 - Check for link
699 * @hw: pointer to the HW structure
701 * If sgmii is enabled, then use the pcs register to determine link, otherwise
702 * use the generic interface for determining link.
704 static s32
igb_check_for_link_82575(struct e1000_hw
*hw
)
709 /* SGMII link check is done through the PCS register. */
710 if ((hw
->phy
.media_type
!= e1000_media_type_copper
) ||
711 (igb_sgmii_active_82575(hw
))) {
712 ret_val
= igb_get_pcs_speed_and_duplex_82575(hw
, &speed
,
715 * Use this flag to determine if link needs to be checked or
716 * not. If we have link clear the flag so that we do not
717 * continue to check for link.
719 hw
->mac
.get_link_status
= !hw
->mac
.serdes_has_link
;
721 ret_val
= igb_check_for_copper_link(hw
);
727 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
728 * @hw: pointer to the HW structure
729 * @speed: stores the current speed
730 * @duplex: stores the current duplex
732 * Using the physical coding sub-layer (PCS), retrieve the current speed and
733 * duplex, then store the values in the pointers provided.
735 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*hw
, u16
*speed
,
738 struct e1000_mac_info
*mac
= &hw
->mac
;
741 /* Set up defaults for the return values of this function */
742 mac
->serdes_has_link
= false;
747 * Read the PCS Status register for link state. For non-copper mode,
748 * the status register is not accurate. The PCS status register is
751 pcs
= rd32(E1000_PCS_LSTAT
);
754 * The link up bit determines when link is up on autoneg. The sync ok
755 * gets set once both sides sync up and agree upon link. Stable link
756 * can be determined by checking for both link up and link sync ok
758 if ((pcs
& E1000_PCS_LSTS_LINK_OK
) && (pcs
& E1000_PCS_LSTS_SYNK_OK
)) {
759 mac
->serdes_has_link
= true;
761 /* Detect and store PCS speed */
762 if (pcs
& E1000_PCS_LSTS_SPEED_1000
) {
764 } else if (pcs
& E1000_PCS_LSTS_SPEED_100
) {
770 /* Detect and store PCS duplex */
771 if (pcs
& E1000_PCS_LSTS_DUPLEX_FULL
) {
772 *duplex
= FULL_DUPLEX
;
774 *duplex
= HALF_DUPLEX
;
782 * igb_shutdown_serdes_link_82575 - Remove link during power down
783 * @hw: pointer to the HW structure
785 * In the case of fiber serdes, shut down optics and PCS on driver unload
786 * when management pass thru is not enabled.
788 void igb_shutdown_serdes_link_82575(struct e1000_hw
*hw
)
792 if (hw
->phy
.media_type
!= e1000_media_type_internal_serdes
||
793 igb_sgmii_active_82575(hw
))
796 /* if the management interface is not enabled, then power down */
797 if (!igb_enable_mng_pass_thru(hw
)) {
798 /* Disable PCS to turn off link */
799 reg
= rd32(E1000_PCS_CFG0
);
800 reg
&= ~E1000_PCS_CFG_PCS_EN
;
801 wr32(E1000_PCS_CFG0
, reg
);
803 /* shutdown the laser */
804 reg
= rd32(E1000_CTRL_EXT
);
805 reg
|= E1000_CTRL_EXT_SDP3_DATA
;
806 wr32(E1000_CTRL_EXT
, reg
);
808 /* flush the write to verify completion */
817 * igb_reset_hw_82575 - Reset hardware
818 * @hw: pointer to the HW structure
820 * This resets the hardware into a known state. This is a
821 * function pointer entry point called by the api module.
823 static s32
igb_reset_hw_82575(struct e1000_hw
*hw
)
829 * Prevent the PCI-E bus from sticking if there is no TLP connection
830 * on the last TLP read/write transaction when MAC is reset.
832 ret_val
= igb_disable_pcie_master(hw
);
834 hw_dbg("PCI-E Master disable polling has failed.\n");
836 /* set the completion timeout for interface */
837 ret_val
= igb_set_pcie_completion_timeout(hw
);
839 hw_dbg("PCI-E Set completion timeout has failed.\n");
842 hw_dbg("Masking off all interrupts\n");
843 wr32(E1000_IMC
, 0xffffffff);
846 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
851 ctrl
= rd32(E1000_CTRL
);
853 hw_dbg("Issuing a global reset to MAC\n");
854 wr32(E1000_CTRL
, ctrl
| E1000_CTRL_RST
);
856 ret_val
= igb_get_auto_rd_done(hw
);
859 * When auto config read does not complete, do not
860 * return with an error. This can happen in situations
861 * where there is no eeprom and prevents getting link.
863 hw_dbg("Auto Read Done did not complete\n");
866 /* If EEPROM is not present, run manual init scripts */
867 if ((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0)
868 igb_reset_init_script_82575(hw
);
870 /* Clear any pending interrupt events. */
871 wr32(E1000_IMC
, 0xffffffff);
872 icr
= rd32(E1000_ICR
);
874 /* Install any alternate MAC address into RAR0 */
875 ret_val
= igb_check_alt_mac_addr(hw
);
881 * igb_init_hw_82575 - Initialize hardware
882 * @hw: pointer to the HW structure
884 * This inits the hardware readying it for operation.
886 static s32
igb_init_hw_82575(struct e1000_hw
*hw
)
888 struct e1000_mac_info
*mac
= &hw
->mac
;
890 u16 i
, rar_count
= mac
->rar_entry_count
;
892 /* Initialize identification LED */
893 ret_val
= igb_id_led_init(hw
);
895 hw_dbg("Error initializing identification LED\n");
896 /* This is not fatal and we should not stop init due to this */
899 /* Disabling VLAN filtering */
900 hw_dbg("Initializing the IEEE VLAN\n");
903 /* Setup the receive address */
904 igb_init_rx_addrs(hw
, rar_count
);
906 /* Zero out the Multicast HASH table */
907 hw_dbg("Zeroing the MTA\n");
908 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
909 array_wr32(E1000_MTA
, i
, 0);
911 /* Setup link and flow control */
912 ret_val
= igb_setup_link(hw
);
915 * Clear all of the statistics registers (clear on read). It is
916 * important that we do this after we have tried to establish link
917 * because the symbol error count will increment wildly if there
920 igb_clear_hw_cntrs_82575(hw
);
926 * igb_setup_copper_link_82575 - Configure copper link settings
927 * @hw: pointer to the HW structure
929 * Configures the link for auto-neg or forced speed and duplex. Then we check
930 * for link, once link is established calls to configure collision distance
931 * and flow control are called.
933 static s32
igb_setup_copper_link_82575(struct e1000_hw
*hw
)
939 ctrl
= rd32(E1000_CTRL
);
940 ctrl
|= E1000_CTRL_SLU
;
941 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
942 wr32(E1000_CTRL
, ctrl
);
944 ret_val
= igb_setup_serdes_link_82575(hw
);
948 if (igb_sgmii_active_82575(hw
) && !hw
->phy
.reset_disable
) {
949 ret_val
= hw
->phy
.ops
.reset(hw
);
951 hw_dbg("Error resetting the PHY.\n");
955 switch (hw
->phy
.type
) {
957 ret_val
= igb_copper_link_setup_m88(hw
);
959 case e1000_phy_igp_3
:
960 ret_val
= igb_copper_link_setup_igp(hw
);
963 ret_val
= -E1000_ERR_PHY
;
970 if (hw
->mac
.autoneg
) {
972 * Setup autoneg and flow control advertisement
973 * and perform autonegotiation.
975 ret_val
= igb_copper_link_autoneg(hw
);
980 * PHY will be set to 10H, 10F, 100H or 100F
981 * depending on user settings.
983 hw_dbg("Forcing Speed and Duplex\n");
984 ret_val
= hw
->phy
.ops
.force_speed_duplex(hw
);
986 hw_dbg("Error Forcing Speed and Duplex\n");
992 * Check link status. Wait up to 100 microseconds for link to become
995 ret_val
= igb_phy_has_link(hw
, COPPER_LINK_UP_LIMIT
, 10, &link
);
1000 hw_dbg("Valid link established!!!\n");
1001 /* Config the MAC and PHY after link is up */
1002 igb_config_collision_dist(hw
);
1003 ret_val
= igb_config_fc_after_link_up(hw
);
1005 hw_dbg("Unable to establish link!!!\n");
1013 * igb_setup_serdes_link_82575 - Setup link for fiber/serdes
1014 * @hw: pointer to the HW structure
1016 * Configures speed and duplex for fiber and serdes links.
1018 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*hw
)
1022 if ((hw
->phy
.media_type
!= e1000_media_type_internal_serdes
) &&
1023 !igb_sgmii_active_82575(hw
))
1027 * On the 82575, SerDes loopback mode persists until it is
1028 * explicitly turned off or a power cycle is performed. A read to
1029 * the register does not indicate its status. Therefore, we ensure
1030 * loopback mode is disabled during initialization.
1032 wr32(E1000_SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1034 /* power on the sfp cage if present */
1035 reg
= rd32(E1000_CTRL_EXT
);
1036 reg
&= ~E1000_CTRL_EXT_SDP3_DATA
;
1037 wr32(E1000_CTRL_EXT
, reg
);
1039 ctrl_reg
= rd32(E1000_CTRL
);
1040 ctrl_reg
|= E1000_CTRL_SLU
;
1042 if (hw
->mac
.type
== e1000_82575
|| hw
->mac
.type
== e1000_82576
) {
1043 /* set both sw defined pins */
1044 ctrl_reg
|= E1000_CTRL_SWDPIN0
| E1000_CTRL_SWDPIN1
;
1046 /* Set switch control to serdes energy detect */
1047 reg
= rd32(E1000_CONNSW
);
1048 reg
|= E1000_CONNSW_ENRGSRC
;
1049 wr32(E1000_CONNSW
, reg
);
1052 reg
= rd32(E1000_PCS_LCTL
);
1054 if (igb_sgmii_active_82575(hw
)) {
1055 /* allow time for SFP cage to power up phy */
1058 /* AN time out should be disabled for SGMII mode */
1059 reg
&= ~(E1000_PCS_LCTL_AN_TIMEOUT
);
1061 ctrl_reg
|= E1000_CTRL_SPD_1000
| E1000_CTRL_FRCSPD
|
1062 E1000_CTRL_FD
| E1000_CTRL_FRCDPX
;
1065 wr32(E1000_CTRL
, ctrl_reg
);
1068 * New SerDes mode allows for forcing speed or autonegotiating speed
1069 * at 1gb. Autoneg should be default set by most drivers. This is the
1070 * mode that will be compatible with older link partners and switches.
1071 * However, both are supported by the hardware and some drivers/tools.
1074 reg
&= ~(E1000_PCS_LCTL_AN_ENABLE
| E1000_PCS_LCTL_FLV_LINK_UP
|
1075 E1000_PCS_LCTL_FSD
| E1000_PCS_LCTL_FORCE_LINK
);
1078 * We force flow control to prevent the CTRL register values from being
1079 * overwritten by the autonegotiated flow control values
1081 reg
|= E1000_PCS_LCTL_FORCE_FCTRL
;
1084 * we always set sgmii to autoneg since it is the phy that will be
1085 * forcing the link and the serdes is just a go-between
1087 if (hw
->mac
.autoneg
|| igb_sgmii_active_82575(hw
)) {
1088 /* Set PCS register for autoneg */
1089 reg
|= E1000_PCS_LCTL_FSV_1000
| /* Force 1000 */
1090 E1000_PCS_LCTL_FDV_FULL
| /* SerDes Full duplex */
1091 E1000_PCS_LCTL_AN_ENABLE
| /* Enable Autoneg */
1092 E1000_PCS_LCTL_AN_RESTART
; /* Restart autoneg */
1093 hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg
);
1095 /* Set PCS register for forced speed */
1096 reg
|= E1000_PCS_LCTL_FLV_LINK_UP
| /* Force link up */
1097 E1000_PCS_LCTL_FSV_1000
| /* Force 1000 */
1098 E1000_PCS_LCTL_FDV_FULL
| /* SerDes Full duplex */
1099 E1000_PCS_LCTL_FSD
| /* Force Speed */
1100 E1000_PCS_LCTL_FORCE_LINK
; /* Force Link */
1101 hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg
);
1104 wr32(E1000_PCS_LCTL
, reg
);
1106 if (!igb_sgmii_active_82575(hw
))
1107 igb_force_mac_fc(hw
);
1113 * igb_sgmii_active_82575 - Return sgmii state
1114 * @hw: pointer to the HW structure
1116 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1117 * which can be enabled for use in the embedded applications. Simply
1118 * return the current state of the sgmii interface.
1120 static bool igb_sgmii_active_82575(struct e1000_hw
*hw
)
1122 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
1123 return dev_spec
->sgmii_active
;
1127 * igb_reset_init_script_82575 - Inits HW defaults after reset
1128 * @hw: pointer to the HW structure
1130 * Inits recommended HW defaults after a reset when there is no EEPROM
1131 * detected. This is only for the 82575.
1133 static s32
igb_reset_init_script_82575(struct e1000_hw
*hw
)
1135 if (hw
->mac
.type
== e1000_82575
) {
1136 hw_dbg("Running reset init script for 82575\n");
1137 /* SerDes configuration via SERDESCTRL */
1138 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x00, 0x0C);
1139 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x01, 0x78);
1140 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x1B, 0x23);
1141 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x23, 0x15);
1143 /* CCM configuration via CCMCTL register */
1144 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x14, 0x00);
1145 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x10, 0x00);
1147 /* PCIe lanes configuration */
1148 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x00, 0xEC);
1149 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x61, 0xDF);
1150 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x34, 0x05);
1151 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x2F, 0x81);
1153 /* PCIe PLL Configuration */
1154 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x02, 0x47);
1155 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x14, 0x00);
1156 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x10, 0x00);
1163 * igb_read_mac_addr_82575 - Read device MAC address
1164 * @hw: pointer to the HW structure
1166 static s32
igb_read_mac_addr_82575(struct e1000_hw
*hw
)
1170 if (igb_check_alt_mac_addr(hw
))
1171 ret_val
= igb_read_mac_addr(hw
);
1177 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1178 * @hw: pointer to the HW structure
1180 * Clears the hardware counters by reading the counter registers.
1182 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*hw
)
1186 igb_clear_hw_cntrs_base(hw
);
1188 temp
= rd32(E1000_PRC64
);
1189 temp
= rd32(E1000_PRC127
);
1190 temp
= rd32(E1000_PRC255
);
1191 temp
= rd32(E1000_PRC511
);
1192 temp
= rd32(E1000_PRC1023
);
1193 temp
= rd32(E1000_PRC1522
);
1194 temp
= rd32(E1000_PTC64
);
1195 temp
= rd32(E1000_PTC127
);
1196 temp
= rd32(E1000_PTC255
);
1197 temp
= rd32(E1000_PTC511
);
1198 temp
= rd32(E1000_PTC1023
);
1199 temp
= rd32(E1000_PTC1522
);
1201 temp
= rd32(E1000_ALGNERRC
);
1202 temp
= rd32(E1000_RXERRC
);
1203 temp
= rd32(E1000_TNCRS
);
1204 temp
= rd32(E1000_CEXTERR
);
1205 temp
= rd32(E1000_TSCTC
);
1206 temp
= rd32(E1000_TSCTFC
);
1208 temp
= rd32(E1000_MGTPRC
);
1209 temp
= rd32(E1000_MGTPDC
);
1210 temp
= rd32(E1000_MGTPTC
);
1212 temp
= rd32(E1000_IAC
);
1213 temp
= rd32(E1000_ICRXOC
);
1215 temp
= rd32(E1000_ICRXPTC
);
1216 temp
= rd32(E1000_ICRXATC
);
1217 temp
= rd32(E1000_ICTXPTC
);
1218 temp
= rd32(E1000_ICTXATC
);
1219 temp
= rd32(E1000_ICTXQEC
);
1220 temp
= rd32(E1000_ICTXQMTC
);
1221 temp
= rd32(E1000_ICRXDMTC
);
1223 temp
= rd32(E1000_CBTMPC
);
1224 temp
= rd32(E1000_HTDPMC
);
1225 temp
= rd32(E1000_CBRMPC
);
1226 temp
= rd32(E1000_RPTHC
);
1227 temp
= rd32(E1000_HGPTC
);
1228 temp
= rd32(E1000_HTCBDPC
);
1229 temp
= rd32(E1000_HGORCL
);
1230 temp
= rd32(E1000_HGORCH
);
1231 temp
= rd32(E1000_HGOTCL
);
1232 temp
= rd32(E1000_HGOTCH
);
1233 temp
= rd32(E1000_LENERRS
);
1235 /* This register should not be read in copper configurations */
1236 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
1237 igb_sgmii_active_82575(hw
))
1238 temp
= rd32(E1000_SCVPC
);
1242 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1243 * @hw: pointer to the HW structure
1245 * After rx enable if managability is enabled then there is likely some
1246 * bad data at the start of the fifo and possibly in the DMA fifo. This
1247 * function clears the fifos and flushes any packets that came in as rx was
1250 void igb_rx_fifo_flush_82575(struct e1000_hw
*hw
)
1252 u32 rctl
, rlpml
, rxdctl
[4], rfctl
, temp_rctl
, rx_enabled
;
1255 if (hw
->mac
.type
!= e1000_82575
||
1256 !(rd32(E1000_MANC
) & E1000_MANC_RCV_TCO_EN
))
1259 /* Disable all RX queues */
1260 for (i
= 0; i
< 4; i
++) {
1261 rxdctl
[i
] = rd32(E1000_RXDCTL(i
));
1262 wr32(E1000_RXDCTL(i
),
1263 rxdctl
[i
] & ~E1000_RXDCTL_QUEUE_ENABLE
);
1265 /* Poll all queues to verify they have shut down */
1266 for (ms_wait
= 0; ms_wait
< 10; ms_wait
++) {
1269 for (i
= 0; i
< 4; i
++)
1270 rx_enabled
|= rd32(E1000_RXDCTL(i
));
1271 if (!(rx_enabled
& E1000_RXDCTL_QUEUE_ENABLE
))
1276 hw_dbg("Queue disable timed out after 10ms\n");
1278 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1279 * incoming packets are rejected. Set enable and wait 2ms so that
1280 * any packet that was coming in as RCTL.EN was set is flushed
1282 rfctl
= rd32(E1000_RFCTL
);
1283 wr32(E1000_RFCTL
, rfctl
& ~E1000_RFCTL_LEF
);
1285 rlpml
= rd32(E1000_RLPML
);
1286 wr32(E1000_RLPML
, 0);
1288 rctl
= rd32(E1000_RCTL
);
1289 temp_rctl
= rctl
& ~(E1000_RCTL_EN
| E1000_RCTL_SBP
);
1290 temp_rctl
|= E1000_RCTL_LPE
;
1292 wr32(E1000_RCTL
, temp_rctl
);
1293 wr32(E1000_RCTL
, temp_rctl
| E1000_RCTL_EN
);
1297 /* Enable RX queues that were previously enabled and restore our
1300 for (i
= 0; i
< 4; i
++)
1301 wr32(E1000_RXDCTL(i
), rxdctl
[i
]);
1302 wr32(E1000_RCTL
, rctl
);
1305 wr32(E1000_RLPML
, rlpml
);
1306 wr32(E1000_RFCTL
, rfctl
);
1308 /* Flush receive errors generated by workaround */
1315 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1316 * @hw: pointer to the HW structure
1318 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1319 * however the hardware default for these parts is 500us to 1ms which is less
1320 * than the 10ms recommended by the pci-e spec. To address this we need to
1321 * increase the value to either 10ms to 200ms for capability version 1 config,
1322 * or 16ms to 55ms for version 2.
1324 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
)
1326 u32 gcr
= rd32(E1000_GCR
);
1330 /* only take action if timeout value is defaulted to 0 */
1331 if (gcr
& E1000_GCR_CMPL_TMOUT_MASK
)
1335 * if capababilities version is type 1 we can write the
1336 * timeout of 10ms to 200ms through the GCR register
1338 if (!(gcr
& E1000_GCR_CAP_VER2
)) {
1339 gcr
|= E1000_GCR_CMPL_TMOUT_10ms
;
1344 * for version 2 capabilities we need to write the config space
1345 * directly in order to set the completion timeout value for
1348 ret_val
= igb_read_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
1353 pcie_devctl2
|= PCIE_DEVICE_CONTROL2_16ms
;
1355 ret_val
= igb_write_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
1358 /* disable completion timeout resend */
1359 gcr
&= ~E1000_GCR_CMPL_TMOUT_RESEND
;
1361 wr32(E1000_GCR
, gcr
);
1366 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1367 * @hw: pointer to the hardware struct
1368 * @enable: state to enter, either enabled or disabled
1370 * enables/disables L2 switch loopback functionality.
1372 void igb_vmdq_set_loopback_pf(struct e1000_hw
*hw
, bool enable
)
1374 u32 dtxswc
= rd32(E1000_DTXSWC
);
1377 dtxswc
|= E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1379 dtxswc
&= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1381 wr32(E1000_DTXSWC
, dtxswc
);
1385 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1386 * @hw: pointer to the hardware struct
1387 * @enable: state to enter, either enabled or disabled
1389 * enables/disables replication of packets across multiple pools.
1391 void igb_vmdq_set_replication_pf(struct e1000_hw
*hw
, bool enable
)
1393 u32 vt_ctl
= rd32(E1000_VT_CTL
);
1396 vt_ctl
|= E1000_VT_CTL_VM_REPL_EN
;
1398 vt_ctl
&= ~E1000_VT_CTL_VM_REPL_EN
;
1400 wr32(E1000_VT_CTL
, vt_ctl
);
1403 static struct e1000_mac_operations e1000_mac_ops_82575
= {
1404 .reset_hw
= igb_reset_hw_82575
,
1405 .init_hw
= igb_init_hw_82575
,
1406 .check_for_link
= igb_check_for_link_82575
,
1407 .rar_set
= igb_rar_set
,
1408 .read_mac_addr
= igb_read_mac_addr_82575
,
1409 .get_speed_and_duplex
= igb_get_speed_and_duplex_copper
,
1412 static struct e1000_phy_operations e1000_phy_ops_82575
= {
1413 .acquire
= igb_acquire_phy_82575
,
1414 .get_cfg_done
= igb_get_cfg_done_82575
,
1415 .release
= igb_release_phy_82575
,
1418 static struct e1000_nvm_operations e1000_nvm_ops_82575
= {
1419 .acquire
= igb_acquire_nvm_82575
,
1420 .read
= igb_read_nvm_eerd
,
1421 .release
= igb_release_nvm_82575
,
1422 .write
= igb_write_nvm_spi
,
1425 const struct e1000_info e1000_82575_info
= {
1426 .get_invariants
= igb_get_invariants_82575
,
1427 .mac_ops
= &e1000_mac_ops_82575
,
1428 .phy_ops
= &e1000_phy_ops_82575
,
1429 .nvm_ops
= &e1000_nvm_ops_82575
,