1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
48 #include <linux/dca.h>
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name
[] = "igb";
54 char igb_driver_version
[] = DRV_VERSION
;
55 static const char igb_driver_string
[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright
[] = "Copyright (c) 2007-2009 Intel Corporation.";
59 static const struct e1000_info
*igb_info_tbl
[] = {
60 [board_82575
] = &e1000_82575_info
,
63 static struct pci_device_id igb_pci_tbl
[] = {
64 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576
), board_82575
},
65 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_NS
), board_82575
},
66 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_FIBER
), board_82575
},
67 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_SERDES
), board_82575
},
68 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_SERDES_QUAD
), board_82575
},
69 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_QUAD_COPPER
), board_82575
},
70 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_COPPER
), board_82575
},
71 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_FIBER_SERDES
), board_82575
},
72 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575GB_QUAD_COPPER
), board_82575
},
73 /* required last entry */
77 MODULE_DEVICE_TABLE(pci
, igb_pci_tbl
);
79 void igb_reset(struct igb_adapter
*);
80 static int igb_setup_all_tx_resources(struct igb_adapter
*);
81 static int igb_setup_all_rx_resources(struct igb_adapter
*);
82 static void igb_free_all_tx_resources(struct igb_adapter
*);
83 static void igb_free_all_rx_resources(struct igb_adapter
*);
84 void igb_update_stats(struct igb_adapter
*);
85 static int igb_probe(struct pci_dev
*, const struct pci_device_id
*);
86 static void __devexit
igb_remove(struct pci_dev
*pdev
);
87 static int igb_sw_init(struct igb_adapter
*);
88 static int igb_open(struct net_device
*);
89 static int igb_close(struct net_device
*);
90 static void igb_configure_tx(struct igb_adapter
*);
91 static void igb_configure_rx(struct igb_adapter
*);
92 static void igb_setup_rctl(struct igb_adapter
*);
93 static void igb_clean_all_tx_rings(struct igb_adapter
*);
94 static void igb_clean_all_rx_rings(struct igb_adapter
*);
95 static void igb_clean_tx_ring(struct igb_ring
*);
96 static void igb_clean_rx_ring(struct igb_ring
*);
97 static void igb_set_rx_mode(struct net_device
*);
98 static void igb_update_phy_info(unsigned long);
99 static void igb_watchdog(unsigned long);
100 static void igb_watchdog_task(struct work_struct
*);
101 static netdev_tx_t
igb_xmit_frame_ring_adv(struct sk_buff
*,
104 static netdev_tx_t
igb_xmit_frame_adv(struct sk_buff
*skb
,
105 struct net_device
*);
106 static struct net_device_stats
*igb_get_stats(struct net_device
*);
107 static int igb_change_mtu(struct net_device
*, int);
108 static int igb_set_mac(struct net_device
*, void *);
109 static irqreturn_t
igb_intr(int irq
, void *);
110 static irqreturn_t
igb_intr_msi(int irq
, void *);
111 static irqreturn_t
igb_msix_other(int irq
, void *);
112 static irqreturn_t
igb_msix_rx(int irq
, void *);
113 static irqreturn_t
igb_msix_tx(int irq
, void *);
114 #ifdef CONFIG_IGB_DCA
115 static void igb_update_rx_dca(struct igb_ring
*);
116 static void igb_update_tx_dca(struct igb_ring
*);
117 static void igb_setup_dca(struct igb_adapter
*);
118 #endif /* CONFIG_IGB_DCA */
119 static bool igb_clean_tx_irq(struct igb_ring
*);
120 static int igb_poll(struct napi_struct
*, int);
121 static bool igb_clean_rx_irq_adv(struct igb_ring
*, int *, int);
122 static void igb_alloc_rx_buffers_adv(struct igb_ring
*, int);
123 static int igb_ioctl(struct net_device
*, struct ifreq
*, int cmd
);
124 static void igb_tx_timeout(struct net_device
*);
125 static void igb_reset_task(struct work_struct
*);
126 static void igb_vlan_rx_register(struct net_device
*, struct vlan_group
*);
127 static void igb_vlan_rx_add_vid(struct net_device
*, u16
);
128 static void igb_vlan_rx_kill_vid(struct net_device
*, u16
);
129 static void igb_restore_vlan(struct igb_adapter
*);
130 static void igb_ping_all_vfs(struct igb_adapter
*);
131 static void igb_msg_task(struct igb_adapter
*);
132 static int igb_rcv_msg_from_vf(struct igb_adapter
*, u32
);
133 static inline void igb_set_rah_pool(struct e1000_hw
*, int , int);
134 static void igb_vmm_control(struct igb_adapter
*);
135 static int igb_set_vf_mac(struct igb_adapter
*adapter
, int, unsigned char *);
136 static void igb_restore_vf_multicasts(struct igb_adapter
*adapter
);
138 static inline void igb_set_vmolr(struct e1000_hw
*hw
, int vfn
)
142 reg_data
= rd32(E1000_VMOLR(vfn
));
143 reg_data
|= E1000_VMOLR_BAM
| /* Accept broadcast */
144 E1000_VMOLR_ROPE
| /* Accept packets matched in UTA */
145 E1000_VMOLR_ROMPE
| /* Accept packets matched in MTA */
146 E1000_VMOLR_AUPE
| /* Accept untagged packets */
147 E1000_VMOLR_STRVLAN
; /* Strip vlan tags */
148 wr32(E1000_VMOLR(vfn
), reg_data
);
151 static inline int igb_set_vf_rlpml(struct igb_adapter
*adapter
, int size
,
154 struct e1000_hw
*hw
= &adapter
->hw
;
157 /* if it isn't the PF check to see if VFs are enabled and
158 * increase the size to support vlan tags */
159 if (vfn
< adapter
->vfs_allocated_count
&&
160 adapter
->vf_data
[vfn
].vlans_enabled
)
161 size
+= VLAN_TAG_SIZE
;
163 vmolr
= rd32(E1000_VMOLR(vfn
));
164 vmolr
&= ~E1000_VMOLR_RLPML_MASK
;
165 vmolr
|= size
| E1000_VMOLR_LPE
;
166 wr32(E1000_VMOLR(vfn
), vmolr
);
171 static inline void igb_set_rah_pool(struct e1000_hw
*hw
, int pool
, int entry
)
175 reg_data
= rd32(E1000_RAH(entry
));
176 reg_data
&= ~E1000_RAH_POOL_MASK
;
177 reg_data
|= E1000_RAH_POOL_1
<< pool
;;
178 wr32(E1000_RAH(entry
), reg_data
);
182 static int igb_suspend(struct pci_dev
*, pm_message_t
);
183 static int igb_resume(struct pci_dev
*);
185 static void igb_shutdown(struct pci_dev
*);
186 #ifdef CONFIG_IGB_DCA
187 static int igb_notify_dca(struct notifier_block
*, unsigned long, void *);
188 static struct notifier_block dca_notifier
= {
189 .notifier_call
= igb_notify_dca
,
194 #ifdef CONFIG_NET_POLL_CONTROLLER
195 /* for netdump / net console */
196 static void igb_netpoll(struct net_device
*);
198 #ifdef CONFIG_PCI_IOV
199 static unsigned int max_vfs
= 0;
200 module_param(max_vfs
, uint
, 0);
201 MODULE_PARM_DESC(max_vfs
, "Maximum number of virtual functions to allocate "
202 "per physical function");
203 #endif /* CONFIG_PCI_IOV */
205 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*,
206 pci_channel_state_t
);
207 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*);
208 static void igb_io_resume(struct pci_dev
*);
210 static struct pci_error_handlers igb_err_handler
= {
211 .error_detected
= igb_io_error_detected
,
212 .slot_reset
= igb_io_slot_reset
,
213 .resume
= igb_io_resume
,
217 static struct pci_driver igb_driver
= {
218 .name
= igb_driver_name
,
219 .id_table
= igb_pci_tbl
,
221 .remove
= __devexit_p(igb_remove
),
223 /* Power Managment Hooks */
224 .suspend
= igb_suspend
,
225 .resume
= igb_resume
,
227 .shutdown
= igb_shutdown
,
228 .err_handler
= &igb_err_handler
231 static int global_quad_port_a
; /* global quad port a indication */
233 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
234 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
235 MODULE_LICENSE("GPL");
236 MODULE_VERSION(DRV_VERSION
);
239 * Scale the NIC clock cycle by a large factor so that
240 * relatively small clock corrections can be added or
241 * substracted at each clock tick. The drawbacks of a
242 * large factor are a) that the clock register overflows
243 * more quickly (not such a big deal) and b) that the
244 * increment per tick has to fit into 24 bits.
247 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
249 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
251 * The base scale factor is intentionally a power of two
252 * so that the division in %struct timecounter can be done with
255 #define IGB_TSYNC_SHIFT (19)
256 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
259 * The duration of one clock cycle of the NIC.
261 * @todo This hard-coded value is part of the specification and might change
262 * in future hardware revisions. Add revision check.
264 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
266 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
267 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
271 * igb_read_clock - read raw cycle counter (to be used by time counter)
273 static cycle_t
igb_read_clock(const struct cyclecounter
*tc
)
275 struct igb_adapter
*adapter
=
276 container_of(tc
, struct igb_adapter
, cycles
);
277 struct e1000_hw
*hw
= &adapter
->hw
;
280 stamp
= rd32(E1000_SYSTIML
);
281 stamp
|= (u64
)rd32(E1000_SYSTIMH
) << 32ULL;
288 * igb_get_hw_dev_name - return device name string
289 * used by hardware layer to print debugging information
291 char *igb_get_hw_dev_name(struct e1000_hw
*hw
)
293 struct igb_adapter
*adapter
= hw
->back
;
294 return adapter
->netdev
->name
;
298 * igb_get_time_str - format current NIC and system time as string
300 static char *igb_get_time_str(struct igb_adapter
*adapter
,
303 cycle_t hw
= adapter
->cycles
.read(&adapter
->cycles
);
304 struct timespec nic
= ns_to_timespec(timecounter_read(&adapter
->clock
));
306 struct timespec delta
;
307 getnstimeofday(&sys
);
309 delta
= timespec_sub(nic
, sys
);
312 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
314 (long)nic
.tv_sec
, nic
.tv_nsec
,
315 (long)sys
.tv_sec
, sys
.tv_nsec
,
316 (long)delta
.tv_sec
, delta
.tv_nsec
);
323 * igb_desc_unused - calculate if we have unused descriptors
325 static int igb_desc_unused(struct igb_ring
*ring
)
327 if (ring
->next_to_clean
> ring
->next_to_use
)
328 return ring
->next_to_clean
- ring
->next_to_use
- 1;
330 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
334 * igb_init_module - Driver Registration Routine
336 * igb_init_module is the first routine called when the driver is
337 * loaded. All it does is register with the PCI subsystem.
339 static int __init
igb_init_module(void)
342 printk(KERN_INFO
"%s - version %s\n",
343 igb_driver_string
, igb_driver_version
);
345 printk(KERN_INFO
"%s\n", igb_copyright
);
347 global_quad_port_a
= 0;
349 #ifdef CONFIG_IGB_DCA
350 dca_register_notify(&dca_notifier
);
353 ret
= pci_register_driver(&igb_driver
);
357 module_init(igb_init_module
);
360 * igb_exit_module - Driver Exit Cleanup Routine
362 * igb_exit_module is called just before the driver is removed
365 static void __exit
igb_exit_module(void)
367 #ifdef CONFIG_IGB_DCA
368 dca_unregister_notify(&dca_notifier
);
370 pci_unregister_driver(&igb_driver
);
373 module_exit(igb_exit_module
);
375 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
377 * igb_cache_ring_register - Descriptor ring to register mapping
378 * @adapter: board private structure to initialize
380 * Once we know the feature-set enabled for the device, we'll cache
381 * the register offset the descriptor ring is assigned to.
383 static void igb_cache_ring_register(struct igb_adapter
*adapter
)
386 unsigned int rbase_offset
= adapter
->vfs_allocated_count
;
388 switch (adapter
->hw
.mac
.type
) {
390 /* The queues are allocated for virtualization such that VF 0
391 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
392 * In order to avoid collision we start at the first free queue
393 * and continue consuming queues in the same sequence
395 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
396 adapter
->rx_ring
[i
].reg_idx
= rbase_offset
+
398 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
399 adapter
->tx_ring
[i
].reg_idx
= rbase_offset
+
404 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
405 adapter
->rx_ring
[i
].reg_idx
= i
;
406 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
407 adapter
->tx_ring
[i
].reg_idx
= i
;
413 * igb_alloc_queues - Allocate memory for all rings
414 * @adapter: board private structure to initialize
416 * We allocate one ring per queue at run-time since we don't know the
417 * number of queues at compile-time.
419 static int igb_alloc_queues(struct igb_adapter
*adapter
)
423 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
424 sizeof(struct igb_ring
), GFP_KERNEL
);
425 if (!adapter
->tx_ring
)
428 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
429 sizeof(struct igb_ring
), GFP_KERNEL
);
430 if (!adapter
->rx_ring
) {
431 kfree(adapter
->tx_ring
);
435 adapter
->rx_ring
->buddy
= adapter
->tx_ring
;
437 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
438 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
439 ring
->count
= adapter
->tx_ring_count
;
440 ring
->adapter
= adapter
;
441 ring
->queue_index
= i
;
443 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
444 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
445 ring
->count
= adapter
->rx_ring_count
;
446 ring
->adapter
= adapter
;
447 ring
->queue_index
= i
;
448 ring
->itr_register
= E1000_ITR
;
450 /* set a default napi handler for each rx_ring */
451 netif_napi_add(adapter
->netdev
, &ring
->napi
, igb_poll
, 64);
454 igb_cache_ring_register(adapter
);
458 static void igb_free_queues(struct igb_adapter
*adapter
)
462 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
463 netif_napi_del(&adapter
->rx_ring
[i
].napi
);
465 adapter
->num_rx_queues
= 0;
466 adapter
->num_tx_queues
= 0;
468 kfree(adapter
->tx_ring
);
469 kfree(adapter
->rx_ring
);
472 #define IGB_N0_QUEUE -1
473 static void igb_assign_vector(struct igb_adapter
*adapter
, int rx_queue
,
474 int tx_queue
, int msix_vector
)
477 struct e1000_hw
*hw
= &adapter
->hw
;
480 switch (hw
->mac
.type
) {
482 /* The 82575 assigns vectors using a bitmask, which matches the
483 bitmask for the EICR/EIMS/EIMC registers. To assign one
484 or more queues to a vector, we write the appropriate bits
485 into the MSIXBM register for that vector. */
486 if (rx_queue
> IGB_N0_QUEUE
) {
487 msixbm
= E1000_EICR_RX_QUEUE0
<< rx_queue
;
488 adapter
->rx_ring
[rx_queue
].eims_value
= msixbm
;
490 if (tx_queue
> IGB_N0_QUEUE
) {
491 msixbm
|= E1000_EICR_TX_QUEUE0
<< tx_queue
;
492 adapter
->tx_ring
[tx_queue
].eims_value
=
493 E1000_EICR_TX_QUEUE0
<< tx_queue
;
495 array_wr32(E1000_MSIXBM(0), msix_vector
, msixbm
);
498 /* 82576 uses a table-based method for assigning vectors.
499 Each queue has a single entry in the table to which we write
500 a vector number along with a "valid" bit. Sadly, the layout
501 of the table is somewhat counterintuitive. */
502 if (rx_queue
> IGB_N0_QUEUE
) {
503 index
= (rx_queue
>> 1) + adapter
->vfs_allocated_count
;
504 ivar
= array_rd32(E1000_IVAR0
, index
);
505 if (rx_queue
& 0x1) {
506 /* vector goes into third byte of register */
507 ivar
= ivar
& 0xFF00FFFF;
508 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
510 /* vector goes into low byte of register */
511 ivar
= ivar
& 0xFFFFFF00;
512 ivar
|= msix_vector
| E1000_IVAR_VALID
;
514 adapter
->rx_ring
[rx_queue
].eims_value
= 1 << msix_vector
;
515 array_wr32(E1000_IVAR0
, index
, ivar
);
517 if (tx_queue
> IGB_N0_QUEUE
) {
518 index
= (tx_queue
>> 1) + adapter
->vfs_allocated_count
;
519 ivar
= array_rd32(E1000_IVAR0
, index
);
520 if (tx_queue
& 0x1) {
521 /* vector goes into high byte of register */
522 ivar
= ivar
& 0x00FFFFFF;
523 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
525 /* vector goes into second byte of register */
526 ivar
= ivar
& 0xFFFF00FF;
527 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
529 adapter
->tx_ring
[tx_queue
].eims_value
= 1 << msix_vector
;
530 array_wr32(E1000_IVAR0
, index
, ivar
);
540 * igb_configure_msix - Configure MSI-X hardware
542 * igb_configure_msix sets up the hardware to properly
543 * generate MSI-X interrupts.
545 static void igb_configure_msix(struct igb_adapter
*adapter
)
549 struct e1000_hw
*hw
= &adapter
->hw
;
551 adapter
->eims_enable_mask
= 0;
552 if (hw
->mac
.type
== e1000_82576
)
553 /* Turn on MSI-X capability first, or our settings
554 * won't stick. And it will take days to debug. */
555 wr32(E1000_GPIE
, E1000_GPIE_MSIX_MODE
|
556 E1000_GPIE_PBA
| E1000_GPIE_EIAME
|
559 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
560 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[i
];
561 igb_assign_vector(adapter
, IGB_N0_QUEUE
, i
, vector
++);
562 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
563 if (tx_ring
->itr_val
)
564 writel(tx_ring
->itr_val
,
565 hw
->hw_addr
+ tx_ring
->itr_register
);
567 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
570 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
571 struct igb_ring
*rx_ring
= &adapter
->rx_ring
[i
];
572 rx_ring
->buddy
= NULL
;
573 igb_assign_vector(adapter
, i
, IGB_N0_QUEUE
, vector
++);
574 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
575 if (rx_ring
->itr_val
)
576 writel(rx_ring
->itr_val
,
577 hw
->hw_addr
+ rx_ring
->itr_register
);
579 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
583 /* set vector for other causes, i.e. link changes */
584 switch (hw
->mac
.type
) {
586 array_wr32(E1000_MSIXBM(0), vector
++,
589 tmp
= rd32(E1000_CTRL_EXT
);
590 /* enable MSI-X PBA support*/
591 tmp
|= E1000_CTRL_EXT_PBA_CLR
;
593 /* Auto-Mask interrupts upon ICR read. */
594 tmp
|= E1000_CTRL_EXT_EIAME
;
595 tmp
|= E1000_CTRL_EXT_IRCA
;
597 wr32(E1000_CTRL_EXT
, tmp
);
598 adapter
->eims_enable_mask
|= E1000_EIMS_OTHER
;
599 adapter
->eims_other
= E1000_EIMS_OTHER
;
604 tmp
= (vector
++ | E1000_IVAR_VALID
) << 8;
605 wr32(E1000_IVAR_MISC
, tmp
);
607 adapter
->eims_enable_mask
= (1 << (vector
)) - 1;
608 adapter
->eims_other
= 1 << (vector
- 1);
611 /* do nothing, since nothing else supports MSI-X */
613 } /* switch (hw->mac.type) */
618 * igb_request_msix - Initialize MSI-X interrupts
620 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
623 static int igb_request_msix(struct igb_adapter
*adapter
)
625 struct net_device
*netdev
= adapter
->netdev
;
626 int i
, err
= 0, vector
= 0;
630 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
631 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
632 sprintf(ring
->name
, "%s-tx-%d", netdev
->name
, i
);
633 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
634 &igb_msix_tx
, 0, ring
->name
,
635 &(adapter
->tx_ring
[i
]));
638 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
639 ring
->itr_val
= 976; /* ~4000 ints/sec */
642 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
643 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
644 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
645 sprintf(ring
->name
, "%s-rx-%d", netdev
->name
, i
);
647 memcpy(ring
->name
, netdev
->name
, IFNAMSIZ
);
648 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
649 &igb_msix_rx
, 0, ring
->name
,
650 &(adapter
->rx_ring
[i
]));
653 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
654 ring
->itr_val
= adapter
->itr
;
658 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
659 &igb_msix_other
, 0, netdev
->name
, netdev
);
663 igb_configure_msix(adapter
);
669 static void igb_reset_interrupt_capability(struct igb_adapter
*adapter
)
671 if (adapter
->msix_entries
) {
672 pci_disable_msix(adapter
->pdev
);
673 kfree(adapter
->msix_entries
);
674 adapter
->msix_entries
= NULL
;
675 } else if (adapter
->flags
& IGB_FLAG_HAS_MSI
)
676 pci_disable_msi(adapter
->pdev
);
682 * igb_set_interrupt_capability - set MSI or MSI-X if supported
684 * Attempt to configure interrupts using the best available
685 * capabilities of the hardware and kernel.
687 static void igb_set_interrupt_capability(struct igb_adapter
*adapter
)
692 /* Number of supported queues. */
693 /* Having more queues than CPUs doesn't make sense. */
694 adapter
->num_rx_queues
= min_t(u32
, IGB_MAX_RX_QUEUES
, num_online_cpus());
695 adapter
->num_tx_queues
= min_t(u32
, IGB_MAX_TX_QUEUES
, num_online_cpus());
697 numvecs
= adapter
->num_tx_queues
+ adapter
->num_rx_queues
+ 1;
698 adapter
->msix_entries
= kcalloc(numvecs
, sizeof(struct msix_entry
),
700 if (!adapter
->msix_entries
)
703 for (i
= 0; i
< numvecs
; i
++)
704 adapter
->msix_entries
[i
].entry
= i
;
706 err
= pci_enable_msix(adapter
->pdev
,
707 adapter
->msix_entries
,
712 igb_reset_interrupt_capability(adapter
);
714 /* If we can't do MSI-X, try MSI */
716 #ifdef CONFIG_PCI_IOV
717 /* disable SR-IOV for non MSI-X configurations */
718 if (adapter
->vf_data
) {
719 struct e1000_hw
*hw
= &adapter
->hw
;
720 /* disable iov and allow time for transactions to clear */
721 pci_disable_sriov(adapter
->pdev
);
724 kfree(adapter
->vf_data
);
725 adapter
->vf_data
= NULL
;
726 wr32(E1000_IOVCTL
, E1000_IOVCTL_REUSE_VFQ
);
728 dev_info(&adapter
->pdev
->dev
, "IOV Disabled\n");
731 adapter
->num_rx_queues
= 1;
732 adapter
->num_tx_queues
= 1;
733 if (!pci_enable_msi(adapter
->pdev
))
734 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
736 /* Notify the stack of the (possibly) reduced Tx Queue count. */
737 adapter
->netdev
->real_num_tx_queues
= adapter
->num_tx_queues
;
742 * igb_request_irq - initialize interrupts
744 * Attempts to configure interrupts using the best available
745 * capabilities of the hardware and kernel.
747 static int igb_request_irq(struct igb_adapter
*adapter
)
749 struct net_device
*netdev
= adapter
->netdev
;
750 struct e1000_hw
*hw
= &adapter
->hw
;
753 if (adapter
->msix_entries
) {
754 err
= igb_request_msix(adapter
);
757 /* fall back to MSI */
758 igb_reset_interrupt_capability(adapter
);
759 if (!pci_enable_msi(adapter
->pdev
))
760 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
761 igb_free_all_tx_resources(adapter
);
762 igb_free_all_rx_resources(adapter
);
763 adapter
->num_rx_queues
= 1;
764 igb_alloc_queues(adapter
);
766 switch (hw
->mac
.type
) {
768 wr32(E1000_MSIXBM(0),
769 (E1000_EICR_RX_QUEUE0
| E1000_EIMS_OTHER
));
772 wr32(E1000_IVAR0
, E1000_IVAR_VALID
);
779 if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
780 err
= request_irq(adapter
->pdev
->irq
, &igb_intr_msi
, 0,
781 netdev
->name
, netdev
);
784 /* fall back to legacy interrupts */
785 igb_reset_interrupt_capability(adapter
);
786 adapter
->flags
&= ~IGB_FLAG_HAS_MSI
;
789 err
= request_irq(adapter
->pdev
->irq
, &igb_intr
, IRQF_SHARED
,
790 netdev
->name
, netdev
);
793 dev_err(&adapter
->pdev
->dev
, "Error %d getting interrupt\n",
800 static void igb_free_irq(struct igb_adapter
*adapter
)
802 struct net_device
*netdev
= adapter
->netdev
;
804 if (adapter
->msix_entries
) {
807 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
808 free_irq(adapter
->msix_entries
[vector
++].vector
,
809 &(adapter
->tx_ring
[i
]));
810 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
811 free_irq(adapter
->msix_entries
[vector
++].vector
,
812 &(adapter
->rx_ring
[i
]));
814 free_irq(adapter
->msix_entries
[vector
++].vector
, netdev
);
818 free_irq(adapter
->pdev
->irq
, netdev
);
822 * igb_irq_disable - Mask off interrupt generation on the NIC
823 * @adapter: board private structure
825 static void igb_irq_disable(struct igb_adapter
*adapter
)
827 struct e1000_hw
*hw
= &adapter
->hw
;
829 if (adapter
->msix_entries
) {
830 u32 regval
= rd32(E1000_EIAM
);
831 wr32(E1000_EIAM
, regval
& ~adapter
->eims_enable_mask
);
832 wr32(E1000_EIMC
, adapter
->eims_enable_mask
);
833 regval
= rd32(E1000_EIAC
);
834 wr32(E1000_EIAC
, regval
& ~adapter
->eims_enable_mask
);
840 synchronize_irq(adapter
->pdev
->irq
);
844 * igb_irq_enable - Enable default interrupt generation settings
845 * @adapter: board private structure
847 static void igb_irq_enable(struct igb_adapter
*adapter
)
849 struct e1000_hw
*hw
= &adapter
->hw
;
851 if (adapter
->msix_entries
) {
852 u32 regval
= rd32(E1000_EIAC
);
853 wr32(E1000_EIAC
, regval
| adapter
->eims_enable_mask
);
854 regval
= rd32(E1000_EIAM
);
855 wr32(E1000_EIAM
, regval
| adapter
->eims_enable_mask
);
856 wr32(E1000_EIMS
, adapter
->eims_enable_mask
);
857 if (adapter
->vfs_allocated_count
)
858 wr32(E1000_MBVFIMR
, 0xFF);
859 wr32(E1000_IMS
, (E1000_IMS_LSC
| E1000_IMS_VMMB
|
860 E1000_IMS_DOUTSYNC
));
862 wr32(E1000_IMS
, IMS_ENABLE_MASK
);
863 wr32(E1000_IAM
, IMS_ENABLE_MASK
);
867 static void igb_update_mng_vlan(struct igb_adapter
*adapter
)
869 struct net_device
*netdev
= adapter
->netdev
;
870 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
871 u16 old_vid
= adapter
->mng_vlan_id
;
872 if (adapter
->vlgrp
) {
873 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
874 if (adapter
->hw
.mng_cookie
.status
&
875 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
876 igb_vlan_rx_add_vid(netdev
, vid
);
877 adapter
->mng_vlan_id
= vid
;
879 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
881 if ((old_vid
!= (u16
)IGB_MNG_VLAN_NONE
) &&
883 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
884 igb_vlan_rx_kill_vid(netdev
, old_vid
);
886 adapter
->mng_vlan_id
= vid
;
891 * igb_release_hw_control - release control of the h/w to f/w
892 * @adapter: address of board private structure
894 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
895 * For ASF and Pass Through versions of f/w this means that the
896 * driver is no longer loaded.
899 static void igb_release_hw_control(struct igb_adapter
*adapter
)
901 struct e1000_hw
*hw
= &adapter
->hw
;
904 /* Let firmware take over control of h/w */
905 ctrl_ext
= rd32(E1000_CTRL_EXT
);
907 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
912 * igb_get_hw_control - get control of the h/w from f/w
913 * @adapter: address of board private structure
915 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
916 * For ASF and Pass Through versions of f/w this means that
917 * the driver is loaded.
920 static void igb_get_hw_control(struct igb_adapter
*adapter
)
922 struct e1000_hw
*hw
= &adapter
->hw
;
925 /* Let firmware know the driver has taken over */
926 ctrl_ext
= rd32(E1000_CTRL_EXT
);
928 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
932 * igb_configure - configure the hardware for RX and TX
933 * @adapter: private board structure
935 static void igb_configure(struct igb_adapter
*adapter
)
937 struct net_device
*netdev
= adapter
->netdev
;
940 igb_get_hw_control(adapter
);
941 igb_set_rx_mode(netdev
);
943 igb_restore_vlan(adapter
);
945 igb_configure_tx(adapter
);
946 igb_setup_rctl(adapter
);
947 igb_configure_rx(adapter
);
949 igb_rx_fifo_flush_82575(&adapter
->hw
);
951 /* call igb_desc_unused which always leaves
952 * at least 1 descriptor unused to make sure
953 * next_to_use != next_to_clean */
954 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
955 struct igb_ring
*ring
= &adapter
->rx_ring
[i
];
956 igb_alloc_rx_buffers_adv(ring
, igb_desc_unused(ring
));
960 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
965 * igb_up - Open the interface and prepare it to handle traffic
966 * @adapter: board private structure
969 int igb_up(struct igb_adapter
*adapter
)
971 struct e1000_hw
*hw
= &adapter
->hw
;
974 /* hardware has been reset, we need to reload some things */
975 igb_configure(adapter
);
977 clear_bit(__IGB_DOWN
, &adapter
->state
);
979 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
980 napi_enable(&adapter
->rx_ring
[i
].napi
);
981 if (adapter
->msix_entries
)
982 igb_configure_msix(adapter
);
984 igb_vmm_control(adapter
);
985 igb_set_rah_pool(hw
, adapter
->vfs_allocated_count
, 0);
986 igb_set_vmolr(hw
, adapter
->vfs_allocated_count
);
988 /* Clear any pending interrupts. */
990 igb_irq_enable(adapter
);
992 netif_tx_start_all_queues(adapter
->netdev
);
994 /* Fire a link change interrupt to start the watchdog. */
995 wr32(E1000_ICS
, E1000_ICS_LSC
);
999 void igb_down(struct igb_adapter
*adapter
)
1001 struct e1000_hw
*hw
= &adapter
->hw
;
1002 struct net_device
*netdev
= adapter
->netdev
;
1006 /* signal that we're down so the interrupt handler does not
1007 * reschedule our watchdog timer */
1008 set_bit(__IGB_DOWN
, &adapter
->state
);
1010 /* disable receives in the hardware */
1011 rctl
= rd32(E1000_RCTL
);
1012 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
1013 /* flush and sleep below */
1015 netif_tx_stop_all_queues(netdev
);
1017 /* disable transmits in the hardware */
1018 tctl
= rd32(E1000_TCTL
);
1019 tctl
&= ~E1000_TCTL_EN
;
1020 wr32(E1000_TCTL
, tctl
);
1021 /* flush both disables and wait for them to finish */
1025 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1026 napi_disable(&adapter
->rx_ring
[i
].napi
);
1028 igb_irq_disable(adapter
);
1030 del_timer_sync(&adapter
->watchdog_timer
);
1031 del_timer_sync(&adapter
->phy_info_timer
);
1033 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
1034 netif_carrier_off(netdev
);
1036 /* record the stats before reset*/
1037 igb_update_stats(adapter
);
1039 adapter
->link_speed
= 0;
1040 adapter
->link_duplex
= 0;
1042 if (!pci_channel_offline(adapter
->pdev
))
1044 igb_clean_all_tx_rings(adapter
);
1045 igb_clean_all_rx_rings(adapter
);
1046 #ifdef CONFIG_IGB_DCA
1048 /* since we reset the hardware DCA settings were cleared */
1049 igb_setup_dca(adapter
);
1053 void igb_reinit_locked(struct igb_adapter
*adapter
)
1055 WARN_ON(in_interrupt());
1056 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
1060 clear_bit(__IGB_RESETTING
, &adapter
->state
);
1063 void igb_reset(struct igb_adapter
*adapter
)
1065 struct e1000_hw
*hw
= &adapter
->hw
;
1066 struct e1000_mac_info
*mac
= &hw
->mac
;
1067 struct e1000_fc_info
*fc
= &hw
->fc
;
1068 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
1071 /* Repartition Pba for greater than 9k mtu
1072 * To take effect CTRL.RST is required.
1074 switch (mac
->type
) {
1076 pba
= E1000_PBA_64K
;
1080 pba
= E1000_PBA_34K
;
1084 if ((adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
1085 (mac
->type
< e1000_82576
)) {
1086 /* adjust PBA for jumbo frames */
1087 wr32(E1000_PBA
, pba
);
1089 /* To maintain wire speed transmits, the Tx FIFO should be
1090 * large enough to accommodate two full transmit packets,
1091 * rounded up to the next 1KB and expressed in KB. Likewise,
1092 * the Rx FIFO should be large enough to accommodate at least
1093 * one full receive packet and is similarly rounded up and
1094 * expressed in KB. */
1095 pba
= rd32(E1000_PBA
);
1096 /* upper 16 bits has Tx packet buffer allocation size in KB */
1097 tx_space
= pba
>> 16;
1098 /* lower 16 bits has Rx packet buffer allocation size in KB */
1100 /* the tx fifo also stores 16 bytes of information about the tx
1101 * but don't include ethernet FCS because hardware appends it */
1102 min_tx_space
= (adapter
->max_frame_size
+
1103 sizeof(union e1000_adv_tx_desc
) -
1105 min_tx_space
= ALIGN(min_tx_space
, 1024);
1106 min_tx_space
>>= 10;
1107 /* software strips receive CRC, so leave room for it */
1108 min_rx_space
= adapter
->max_frame_size
;
1109 min_rx_space
= ALIGN(min_rx_space
, 1024);
1110 min_rx_space
>>= 10;
1112 /* If current Tx allocation is less than the min Tx FIFO size,
1113 * and the min Tx FIFO size is less than the current Rx FIFO
1114 * allocation, take space away from current Rx allocation */
1115 if (tx_space
< min_tx_space
&&
1116 ((min_tx_space
- tx_space
) < pba
)) {
1117 pba
= pba
- (min_tx_space
- tx_space
);
1119 /* if short on rx space, rx wins and must trump tx
1121 if (pba
< min_rx_space
)
1124 wr32(E1000_PBA
, pba
);
1127 /* flow control settings */
1128 /* The high water mark must be low enough to fit one full frame
1129 * (or the size used for early receive) above it in the Rx FIFO.
1130 * Set it to the lower of:
1131 * - 90% of the Rx FIFO size, or
1132 * - the full Rx FIFO size minus one full frame */
1133 hwm
= min(((pba
<< 10) * 9 / 10),
1134 ((pba
<< 10) - 2 * adapter
->max_frame_size
));
1136 if (mac
->type
< e1000_82576
) {
1137 fc
->high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
1138 fc
->low_water
= fc
->high_water
- 8;
1140 fc
->high_water
= hwm
& 0xFFF0; /* 16-byte granularity */
1141 fc
->low_water
= fc
->high_water
- 16;
1143 fc
->pause_time
= 0xFFFF;
1145 fc
->current_mode
= fc
->requested_mode
;
1147 /* disable receive for all VFs and wait one second */
1148 if (adapter
->vfs_allocated_count
) {
1150 for (i
= 0 ; i
< adapter
->vfs_allocated_count
; i
++)
1151 adapter
->vf_data
[i
].clear_to_send
= false;
1153 /* ping all the active vfs to let them know we are going down */
1154 igb_ping_all_vfs(adapter
);
1156 /* disable transmits and receives */
1157 wr32(E1000_VFRE
, 0);
1158 wr32(E1000_VFTE
, 0);
1161 /* Allow time for pending master requests to run */
1162 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
1165 if (adapter
->hw
.mac
.ops
.init_hw(&adapter
->hw
))
1166 dev_err(&adapter
->pdev
->dev
, "Hardware Error\n");
1168 igb_update_mng_vlan(adapter
);
1170 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1171 wr32(E1000_VET
, ETHERNET_IEEE_VLAN_TYPE
);
1173 igb_reset_adaptive(&adapter
->hw
);
1174 igb_get_phy_info(&adapter
->hw
);
1177 static const struct net_device_ops igb_netdev_ops
= {
1178 .ndo_open
= igb_open
,
1179 .ndo_stop
= igb_close
,
1180 .ndo_start_xmit
= igb_xmit_frame_adv
,
1181 .ndo_get_stats
= igb_get_stats
,
1182 .ndo_set_rx_mode
= igb_set_rx_mode
,
1183 .ndo_set_multicast_list
= igb_set_rx_mode
,
1184 .ndo_set_mac_address
= igb_set_mac
,
1185 .ndo_change_mtu
= igb_change_mtu
,
1186 .ndo_do_ioctl
= igb_ioctl
,
1187 .ndo_tx_timeout
= igb_tx_timeout
,
1188 .ndo_validate_addr
= eth_validate_addr
,
1189 .ndo_vlan_rx_register
= igb_vlan_rx_register
,
1190 .ndo_vlan_rx_add_vid
= igb_vlan_rx_add_vid
,
1191 .ndo_vlan_rx_kill_vid
= igb_vlan_rx_kill_vid
,
1192 #ifdef CONFIG_NET_POLL_CONTROLLER
1193 .ndo_poll_controller
= igb_netpoll
,
1198 * igb_probe - Device Initialization Routine
1199 * @pdev: PCI device information struct
1200 * @ent: entry in igb_pci_tbl
1202 * Returns 0 on success, negative on failure
1204 * igb_probe initializes an adapter identified by a pci_dev structure.
1205 * The OS initialization, configuring of the adapter private structure,
1206 * and a hardware reset occur.
1208 static int __devinit
igb_probe(struct pci_dev
*pdev
,
1209 const struct pci_device_id
*ent
)
1211 struct net_device
*netdev
;
1212 struct igb_adapter
*adapter
;
1213 struct e1000_hw
*hw
;
1214 const struct e1000_info
*ei
= igb_info_tbl
[ent
->driver_data
];
1215 unsigned long mmio_start
, mmio_len
;
1216 int err
, pci_using_dac
;
1217 u16 eeprom_data
= 0;
1218 u16 eeprom_apme_mask
= IGB_EEPROM_APME
;
1221 err
= pci_enable_device_mem(pdev
);
1226 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
1228 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
1232 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
1234 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
1236 dev_err(&pdev
->dev
, "No usable DMA "
1237 "configuration, aborting\n");
1243 err
= pci_request_selected_regions(pdev
, pci_select_bars(pdev
,
1249 pci_enable_pcie_error_reporting(pdev
);
1251 pci_set_master(pdev
);
1252 pci_save_state(pdev
);
1255 netdev
= alloc_etherdev_mq(sizeof(struct igb_adapter
),
1256 IGB_ABS_MAX_TX_QUEUES
);
1258 goto err_alloc_etherdev
;
1260 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
1262 pci_set_drvdata(pdev
, netdev
);
1263 adapter
= netdev_priv(netdev
);
1264 adapter
->netdev
= netdev
;
1265 adapter
->pdev
= pdev
;
1268 adapter
->msg_enable
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
1270 mmio_start
= pci_resource_start(pdev
, 0);
1271 mmio_len
= pci_resource_len(pdev
, 0);
1274 hw
->hw_addr
= ioremap(mmio_start
, mmio_len
);
1278 netdev
->netdev_ops
= &igb_netdev_ops
;
1279 igb_set_ethtool_ops(netdev
);
1280 netdev
->watchdog_timeo
= 5 * HZ
;
1282 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1284 netdev
->mem_start
= mmio_start
;
1285 netdev
->mem_end
= mmio_start
+ mmio_len
;
1287 /* PCI config space info */
1288 hw
->vendor_id
= pdev
->vendor
;
1289 hw
->device_id
= pdev
->device
;
1290 hw
->revision_id
= pdev
->revision
;
1291 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1292 hw
->subsystem_device_id
= pdev
->subsystem_device
;
1294 /* setup the private structure */
1296 /* Copy the default MAC, PHY and NVM function pointers */
1297 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
1298 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
1299 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
1300 /* Initialize skew-specific constants */
1301 err
= ei
->get_invariants(hw
);
1305 #ifdef CONFIG_PCI_IOV
1306 /* since iov functionality isn't critical to base device function we
1307 * can accept failure. If it fails we don't allow iov to be enabled */
1308 if (hw
->mac
.type
== e1000_82576
) {
1309 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1310 unsigned int num_vfs
= (max_vfs
> 7) ? 7 : max_vfs
;
1312 unsigned char mac_addr
[ETH_ALEN
];
1315 adapter
->vf_data
= kcalloc(num_vfs
,
1316 sizeof(struct vf_data_storage
),
1318 if (!adapter
->vf_data
) {
1320 "Could not allocate VF private data - "
1321 "IOV enable failed\n");
1323 err
= pci_enable_sriov(pdev
, num_vfs
);
1325 adapter
->vfs_allocated_count
= num_vfs
;
1326 dev_info(&pdev
->dev
,
1327 "%d vfs allocated\n",
1330 i
< adapter
->vfs_allocated_count
;
1332 random_ether_addr(mac_addr
);
1333 igb_set_vf_mac(adapter
, i
,
1337 kfree(adapter
->vf_data
);
1338 adapter
->vf_data
= NULL
;
1345 /* setup the private structure */
1346 err
= igb_sw_init(adapter
);
1350 igb_get_bus_info_pcie(hw
);
1353 switch (hw
->mac
.type
) {
1355 adapter
->flags
|= IGB_FLAG_NEED_CTX_IDX
;
1362 hw
->phy
.autoneg_wait_to_complete
= false;
1363 hw
->mac
.adaptive_ifs
= true;
1365 /* Copper options */
1366 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1367 hw
->phy
.mdix
= AUTO_ALL_MODES
;
1368 hw
->phy
.disable_polarity_correction
= false;
1369 hw
->phy
.ms_type
= e1000_ms_hw_default
;
1372 if (igb_check_reset_block(hw
))
1373 dev_info(&pdev
->dev
,
1374 "PHY reset is blocked due to SOL/IDER session.\n");
1376 netdev
->features
= NETIF_F_SG
|
1378 NETIF_F_HW_VLAN_TX
|
1379 NETIF_F_HW_VLAN_RX
|
1380 NETIF_F_HW_VLAN_FILTER
;
1382 netdev
->features
|= NETIF_F_IPV6_CSUM
;
1383 netdev
->features
|= NETIF_F_TSO
;
1384 netdev
->features
|= NETIF_F_TSO6
;
1386 netdev
->features
|= NETIF_F_GRO
;
1388 netdev
->vlan_features
|= NETIF_F_TSO
;
1389 netdev
->vlan_features
|= NETIF_F_TSO6
;
1390 netdev
->vlan_features
|= NETIF_F_IP_CSUM
;
1391 netdev
->vlan_features
|= NETIF_F_IPV6_CSUM
;
1392 netdev
->vlan_features
|= NETIF_F_SG
;
1395 netdev
->features
|= NETIF_F_HIGHDMA
;
1397 if (adapter
->hw
.mac
.type
== e1000_82576
)
1398 netdev
->features
|= NETIF_F_SCTP_CSUM
;
1400 adapter
->en_mng_pt
= igb_enable_mng_pass_thru(&adapter
->hw
);
1402 /* before reading the NVM, reset the controller to put the device in a
1403 * known good starting state */
1404 hw
->mac
.ops
.reset_hw(hw
);
1406 /* make sure the NVM is good */
1407 if (igb_validate_nvm_checksum(hw
) < 0) {
1408 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
1413 /* copy the MAC address out of the NVM */
1414 if (hw
->mac
.ops
.read_mac_addr(hw
))
1415 dev_err(&pdev
->dev
, "NVM Read Error\n");
1417 memcpy(netdev
->dev_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1418 memcpy(netdev
->perm_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1420 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
1421 dev_err(&pdev
->dev
, "Invalid MAC Address\n");
1426 setup_timer(&adapter
->watchdog_timer
, &igb_watchdog
,
1427 (unsigned long) adapter
);
1428 setup_timer(&adapter
->phy_info_timer
, &igb_update_phy_info
,
1429 (unsigned long) adapter
);
1431 INIT_WORK(&adapter
->reset_task
, igb_reset_task
);
1432 INIT_WORK(&adapter
->watchdog_task
, igb_watchdog_task
);
1434 /* Initialize link properties that are user-changeable */
1435 adapter
->fc_autoneg
= true;
1436 hw
->mac
.autoneg
= true;
1437 hw
->phy
.autoneg_advertised
= 0x2f;
1439 hw
->fc
.requested_mode
= e1000_fc_default
;
1440 hw
->fc
.current_mode
= e1000_fc_default
;
1442 adapter
->itr_setting
= IGB_DEFAULT_ITR
;
1443 adapter
->itr
= IGB_START_ITR
;
1445 igb_validate_mdi_setting(hw
);
1447 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1448 * enable the ACPI Magic Packet filter
1451 if (hw
->bus
.func
== 0)
1452 hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1453 else if (hw
->bus
.func
== 1)
1454 hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1456 if (eeprom_data
& eeprom_apme_mask
)
1457 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1459 /* now that we have the eeprom settings, apply the special cases where
1460 * the eeprom may be wrong or the board simply won't support wake on
1461 * lan on a particular port */
1462 switch (pdev
->device
) {
1463 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1464 adapter
->eeprom_wol
= 0;
1466 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1467 case E1000_DEV_ID_82576_FIBER
:
1468 case E1000_DEV_ID_82576_SERDES
:
1469 /* Wake events only supported on port A for dual fiber
1470 * regardless of eeprom setting */
1471 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
)
1472 adapter
->eeprom_wol
= 0;
1474 case E1000_DEV_ID_82576_QUAD_COPPER
:
1475 /* if quad port adapter, disable WoL on all but port A */
1476 if (global_quad_port_a
!= 0)
1477 adapter
->eeprom_wol
= 0;
1479 adapter
->flags
|= IGB_FLAG_QUAD_PORT_A
;
1480 /* Reset for multiple quad port adapters */
1481 if (++global_quad_port_a
== 4)
1482 global_quad_port_a
= 0;
1486 /* initialize the wol settings based on the eeprom settings */
1487 adapter
->wol
= adapter
->eeprom_wol
;
1488 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1490 /* reset the hardware with the new settings */
1493 /* let the f/w know that the h/w is now under the control of the
1495 igb_get_hw_control(adapter
);
1497 strcpy(netdev
->name
, "eth%d");
1498 err
= register_netdev(netdev
);
1502 /* carrier off reporting is important to ethtool even BEFORE open */
1503 netif_carrier_off(netdev
);
1505 #ifdef CONFIG_IGB_DCA
1506 if (dca_add_requester(&pdev
->dev
) == 0) {
1507 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
1508 dev_info(&pdev
->dev
, "DCA enabled\n");
1509 igb_setup_dca(adapter
);
1514 * Initialize hardware timer: we keep it running just in case
1515 * that some program needs it later on.
1517 memset(&adapter
->cycles
, 0, sizeof(adapter
->cycles
));
1518 adapter
->cycles
.read
= igb_read_clock
;
1519 adapter
->cycles
.mask
= CLOCKSOURCE_MASK(64);
1520 adapter
->cycles
.mult
= 1;
1521 adapter
->cycles
.shift
= IGB_TSYNC_SHIFT
;
1524 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS
* IGB_TSYNC_SCALE
);
1527 * Avoid rollover while we initialize by resetting the time counter.
1529 wr32(E1000_SYSTIML
, 0x00000000);
1530 wr32(E1000_SYSTIMH
, 0x00000000);
1533 * Set registers so that rollover occurs soon to test this.
1535 wr32(E1000_SYSTIML
, 0x00000000);
1536 wr32(E1000_SYSTIMH
, 0xFF800000);
1539 timecounter_init(&adapter
->clock
,
1541 ktime_to_ns(ktime_get_real()));
1544 * Synchronize our NIC clock against system wall clock. NIC
1545 * time stamp reading requires ~3us per sample, each sample
1546 * was pretty stable even under load => only require 10
1547 * samples for each offset comparison.
1549 memset(&adapter
->compare
, 0, sizeof(adapter
->compare
));
1550 adapter
->compare
.source
= &adapter
->clock
;
1551 adapter
->compare
.target
= ktime_get_real
;
1552 adapter
->compare
.num_samples
= 10;
1553 timecompare_update(&adapter
->compare
, 0);
1559 "igb: %s: hw %p initialized timer\n",
1560 igb_get_time_str(adapter
, buffer
),
1565 dev_info(&pdev
->dev
, "Intel(R) Gigabit Ethernet Network Connection\n");
1566 /* print bus type/speed/width info */
1567 dev_info(&pdev
->dev
, "%s: (PCIe:%s:%s) %pM\n",
1569 ((hw
->bus
.speed
== e1000_bus_speed_2500
)
1570 ? "2.5Gb/s" : "unknown"),
1571 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
1572 (hw
->bus
.width
== e1000_bus_width_pcie_x2
) ? "Width x2" :
1573 (hw
->bus
.width
== e1000_bus_width_pcie_x1
) ? "Width x1" :
1577 igb_read_part_num(hw
, &part_num
);
1578 dev_info(&pdev
->dev
, "%s: PBA No: %06x-%03x\n", netdev
->name
,
1579 (part_num
>> 8), (part_num
& 0xff));
1581 dev_info(&pdev
->dev
,
1582 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1583 adapter
->msix_entries
? "MSI-X" :
1584 (adapter
->flags
& IGB_FLAG_HAS_MSI
) ? "MSI" : "legacy",
1585 adapter
->num_rx_queues
, adapter
->num_tx_queues
);
1590 igb_release_hw_control(adapter
);
1592 if (!igb_check_reset_block(hw
))
1595 if (hw
->flash_address
)
1596 iounmap(hw
->flash_address
);
1598 igb_free_queues(adapter
);
1600 iounmap(hw
->hw_addr
);
1602 free_netdev(netdev
);
1604 pci_release_selected_regions(pdev
, pci_select_bars(pdev
,
1608 pci_disable_device(pdev
);
1613 * igb_remove - Device Removal Routine
1614 * @pdev: PCI device information struct
1616 * igb_remove is called by the PCI subsystem to alert the driver
1617 * that it should release a PCI device. The could be caused by a
1618 * Hot-Plug event, or because the driver is going to be removed from
1621 static void __devexit
igb_remove(struct pci_dev
*pdev
)
1623 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1624 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1625 struct e1000_hw
*hw
= &adapter
->hw
;
1627 /* flush_scheduled work may reschedule our watchdog task, so
1628 * explicitly disable watchdog tasks from being rescheduled */
1629 set_bit(__IGB_DOWN
, &adapter
->state
);
1630 del_timer_sync(&adapter
->watchdog_timer
);
1631 del_timer_sync(&adapter
->phy_info_timer
);
1633 flush_scheduled_work();
1635 #ifdef CONFIG_IGB_DCA
1636 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
1637 dev_info(&pdev
->dev
, "DCA disabled\n");
1638 dca_remove_requester(&pdev
->dev
);
1639 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
1640 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_DISABLE
);
1644 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1645 * would have already happened in close and is redundant. */
1646 igb_release_hw_control(adapter
);
1648 unregister_netdev(netdev
);
1650 if (!igb_check_reset_block(&adapter
->hw
))
1651 igb_reset_phy(&adapter
->hw
);
1653 igb_reset_interrupt_capability(adapter
);
1655 igb_free_queues(adapter
);
1657 #ifdef CONFIG_PCI_IOV
1658 /* reclaim resources allocated to VFs */
1659 if (adapter
->vf_data
) {
1660 /* disable iov and allow time for transactions to clear */
1661 pci_disable_sriov(pdev
);
1664 kfree(adapter
->vf_data
);
1665 adapter
->vf_data
= NULL
;
1666 wr32(E1000_IOVCTL
, E1000_IOVCTL_REUSE_VFQ
);
1668 dev_info(&pdev
->dev
, "IOV Disabled\n");
1671 iounmap(hw
->hw_addr
);
1672 if (hw
->flash_address
)
1673 iounmap(hw
->flash_address
);
1674 pci_release_selected_regions(pdev
, pci_select_bars(pdev
,
1677 free_netdev(netdev
);
1679 pci_disable_pcie_error_reporting(pdev
);
1681 pci_disable_device(pdev
);
1685 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1686 * @adapter: board private structure to initialize
1688 * igb_sw_init initializes the Adapter private data structure.
1689 * Fields are initialized based on PCI device information and
1690 * OS network device settings (MTU size).
1692 static int __devinit
igb_sw_init(struct igb_adapter
*adapter
)
1694 struct e1000_hw
*hw
= &adapter
->hw
;
1695 struct net_device
*netdev
= adapter
->netdev
;
1696 struct pci_dev
*pdev
= adapter
->pdev
;
1698 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->bus
.pci_cmd_word
);
1700 adapter
->tx_ring_count
= IGB_DEFAULT_TXD
;
1701 adapter
->rx_ring_count
= IGB_DEFAULT_RXD
;
1702 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1703 adapter
->rx_ps_hdr_size
= 0; /* disable packet split */
1704 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1705 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1707 /* This call may decrease the number of queues depending on
1708 * interrupt mode. */
1709 igb_set_interrupt_capability(adapter
);
1711 if (igb_alloc_queues(adapter
)) {
1712 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
1716 /* Explicitly disable IRQ since the NIC can be in any state. */
1717 igb_irq_disable(adapter
);
1719 set_bit(__IGB_DOWN
, &adapter
->state
);
1724 * igb_open - Called when a network interface is made active
1725 * @netdev: network interface device structure
1727 * Returns 0 on success, negative value on failure
1729 * The open entry point is called when a network interface is made
1730 * active by the system (IFF_UP). At this point all resources needed
1731 * for transmit and receive operations are allocated, the interrupt
1732 * handler is registered with the OS, the watchdog timer is started,
1733 * and the stack is notified that the interface is ready.
1735 static int igb_open(struct net_device
*netdev
)
1737 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1738 struct e1000_hw
*hw
= &adapter
->hw
;
1742 /* disallow open during test */
1743 if (test_bit(__IGB_TESTING
, &adapter
->state
))
1746 netif_carrier_off(netdev
);
1748 /* allocate transmit descriptors */
1749 err
= igb_setup_all_tx_resources(adapter
);
1753 /* allocate receive descriptors */
1754 err
= igb_setup_all_rx_resources(adapter
);
1758 /* e1000_power_up_phy(adapter); */
1760 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
1761 if ((adapter
->hw
.mng_cookie
.status
&
1762 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
1763 igb_update_mng_vlan(adapter
);
1765 /* before we allocate an interrupt, we must be ready to handle it.
1766 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1767 * as soon as we call pci_request_irq, so we have to setup our
1768 * clean_rx handler before we do so. */
1769 igb_configure(adapter
);
1771 igb_vmm_control(adapter
);
1772 igb_set_rah_pool(hw
, adapter
->vfs_allocated_count
, 0);
1773 igb_set_vmolr(hw
, adapter
->vfs_allocated_count
);
1775 err
= igb_request_irq(adapter
);
1779 /* From here on the code is the same as igb_up() */
1780 clear_bit(__IGB_DOWN
, &adapter
->state
);
1782 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1783 napi_enable(&adapter
->rx_ring
[i
].napi
);
1785 /* Clear any pending interrupts. */
1788 igb_irq_enable(adapter
);
1790 netif_tx_start_all_queues(netdev
);
1792 /* Fire a link status change interrupt to start the watchdog. */
1793 wr32(E1000_ICS
, E1000_ICS_LSC
);
1798 igb_release_hw_control(adapter
);
1799 /* e1000_power_down_phy(adapter); */
1800 igb_free_all_rx_resources(adapter
);
1802 igb_free_all_tx_resources(adapter
);
1810 * igb_close - Disables a network interface
1811 * @netdev: network interface device structure
1813 * Returns 0, this is not allowed to fail
1815 * The close entry point is called when an interface is de-activated
1816 * by the OS. The hardware is still under the driver's control, but
1817 * needs to be disabled. A global MAC reset is issued to stop the
1818 * hardware, and all transmit and receive resources are freed.
1820 static int igb_close(struct net_device
*netdev
)
1822 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1824 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
1827 igb_free_irq(adapter
);
1829 igb_free_all_tx_resources(adapter
);
1830 igb_free_all_rx_resources(adapter
);
1832 /* kill manageability vlan ID if supported, but not if a vlan with
1833 * the same ID is registered on the host OS (let 8021q kill it) */
1834 if ((adapter
->hw
.mng_cookie
.status
&
1835 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1837 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
1838 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1844 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1845 * @adapter: board private structure
1846 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1848 * Return 0 on success, negative on failure
1850 int igb_setup_tx_resources(struct igb_adapter
*adapter
,
1851 struct igb_ring
*tx_ring
)
1853 struct pci_dev
*pdev
= adapter
->pdev
;
1856 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1857 tx_ring
->buffer_info
= vmalloc(size
);
1858 if (!tx_ring
->buffer_info
)
1860 memset(tx_ring
->buffer_info
, 0, size
);
1862 /* round up to nearest 4K */
1863 tx_ring
->size
= tx_ring
->count
* sizeof(union e1000_adv_tx_desc
);
1864 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1866 tx_ring
->desc
= pci_alloc_consistent(pdev
, tx_ring
->size
,
1872 tx_ring
->adapter
= adapter
;
1873 tx_ring
->next_to_use
= 0;
1874 tx_ring
->next_to_clean
= 0;
1878 vfree(tx_ring
->buffer_info
);
1879 dev_err(&adapter
->pdev
->dev
,
1880 "Unable to allocate memory for the transmit descriptor ring\n");
1885 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1886 * (Descriptors) for all queues
1887 * @adapter: board private structure
1889 * Return 0 on success, negative on failure
1891 static int igb_setup_all_tx_resources(struct igb_adapter
*adapter
)
1896 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1897 err
= igb_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1899 dev_err(&adapter
->pdev
->dev
,
1900 "Allocation for Tx Queue %u failed\n", i
);
1901 for (i
--; i
>= 0; i
--)
1902 igb_free_tx_resources(&adapter
->tx_ring
[i
]);
1907 for (i
= 0; i
< IGB_MAX_TX_QUEUES
; i
++) {
1908 r_idx
= i
% adapter
->num_tx_queues
;
1909 adapter
->multi_tx_table
[i
] = &adapter
->tx_ring
[r_idx
];
1915 * igb_configure_tx - Configure transmit Unit after Reset
1916 * @adapter: board private structure
1918 * Configure the Tx unit of the MAC after a reset.
1920 static void igb_configure_tx(struct igb_adapter
*adapter
)
1923 struct e1000_hw
*hw
= &adapter
->hw
;
1928 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1929 struct igb_ring
*ring
= &adapter
->tx_ring
[i
];
1931 wr32(E1000_TDLEN(j
),
1932 ring
->count
* sizeof(union e1000_adv_tx_desc
));
1934 wr32(E1000_TDBAL(j
),
1935 tdba
& 0x00000000ffffffffULL
);
1936 wr32(E1000_TDBAH(j
), tdba
>> 32);
1938 ring
->head
= E1000_TDH(j
);
1939 ring
->tail
= E1000_TDT(j
);
1940 writel(0, hw
->hw_addr
+ ring
->tail
);
1941 writel(0, hw
->hw_addr
+ ring
->head
);
1942 txdctl
= rd32(E1000_TXDCTL(j
));
1943 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1944 wr32(E1000_TXDCTL(j
), txdctl
);
1946 /* Turn off Relaxed Ordering on head write-backs. The
1947 * writebacks MUST be delivered in order or it will
1948 * completely screw up our bookeeping.
1950 txctrl
= rd32(E1000_DCA_TXCTRL(j
));
1951 txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1952 wr32(E1000_DCA_TXCTRL(j
), txctrl
);
1955 /* disable queue 0 to prevent tail bump w/o re-configuration */
1956 if (adapter
->vfs_allocated_count
)
1957 wr32(E1000_TXDCTL(0), 0);
1959 /* Program the Transmit Control Register */
1960 tctl
= rd32(E1000_TCTL
);
1961 tctl
&= ~E1000_TCTL_CT
;
1962 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1963 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1965 igb_config_collision_dist(hw
);
1967 /* Setup Transmit Descriptor Settings for eop descriptor */
1968 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_RS
;
1970 /* Enable transmits */
1971 tctl
|= E1000_TCTL_EN
;
1973 wr32(E1000_TCTL
, tctl
);
1977 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1978 * @adapter: board private structure
1979 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1981 * Returns 0 on success, negative on failure
1983 int igb_setup_rx_resources(struct igb_adapter
*adapter
,
1984 struct igb_ring
*rx_ring
)
1986 struct pci_dev
*pdev
= adapter
->pdev
;
1989 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1990 rx_ring
->buffer_info
= vmalloc(size
);
1991 if (!rx_ring
->buffer_info
)
1993 memset(rx_ring
->buffer_info
, 0, size
);
1995 desc_len
= sizeof(union e1000_adv_rx_desc
);
1997 /* Round up to nearest 4K */
1998 rx_ring
->size
= rx_ring
->count
* desc_len
;
1999 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2001 rx_ring
->desc
= pci_alloc_consistent(pdev
, rx_ring
->size
,
2007 rx_ring
->next_to_clean
= 0;
2008 rx_ring
->next_to_use
= 0;
2010 rx_ring
->adapter
= adapter
;
2015 vfree(rx_ring
->buffer_info
);
2016 dev_err(&adapter
->pdev
->dev
, "Unable to allocate memory for "
2017 "the receive descriptor ring\n");
2022 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2023 * (Descriptors) for all queues
2024 * @adapter: board private structure
2026 * Return 0 on success, negative on failure
2028 static int igb_setup_all_rx_resources(struct igb_adapter
*adapter
)
2032 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2033 err
= igb_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2035 dev_err(&adapter
->pdev
->dev
,
2036 "Allocation for Rx Queue %u failed\n", i
);
2037 for (i
--; i
>= 0; i
--)
2038 igb_free_rx_resources(&adapter
->rx_ring
[i
]);
2047 * igb_setup_rctl - configure the receive control registers
2048 * @adapter: Board private structure
2050 static void igb_setup_rctl(struct igb_adapter
*adapter
)
2052 struct e1000_hw
*hw
= &adapter
->hw
;
2057 rctl
= rd32(E1000_RCTL
);
2059 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2060 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
2062 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_RDMTS_HALF
|
2063 (hw
->mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
2066 * enable stripping of CRC. It's unlikely this will break BMC
2067 * redirection as it did with e1000. Newer features require
2068 * that the HW strips the CRC.
2070 rctl
|= E1000_RCTL_SECRC
;
2073 * disable store bad packets and clear size bits.
2075 rctl
&= ~(E1000_RCTL_SBP
| E1000_RCTL_SZ_256
);
2077 /* enable LPE when to prevent packets larger than max_frame_size */
2078 rctl
|= E1000_RCTL_LPE
;
2080 /* Setup buffer sizes */
2081 switch (adapter
->rx_buffer_len
) {
2082 case IGB_RXBUFFER_256
:
2083 rctl
|= E1000_RCTL_SZ_256
;
2085 case IGB_RXBUFFER_512
:
2086 rctl
|= E1000_RCTL_SZ_512
;
2089 srrctl
= ALIGN(adapter
->rx_buffer_len
, 1024)
2090 >> E1000_SRRCTL_BSIZEPKT_SHIFT
;
2094 /* 82575 and greater support packet-split where the protocol
2095 * header is placed in skb->data and the packet data is
2096 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2097 * In the case of a non-split, skb->data is linearly filled,
2098 * followed by the page buffers. Therefore, skb->data is
2099 * sized to hold the largest protocol header.
2101 /* allocations using alloc_page take too long for regular MTU
2102 * so only enable packet split for jumbo frames */
2103 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
2104 adapter
->rx_ps_hdr_size
= IGB_RXBUFFER_128
;
2105 srrctl
|= adapter
->rx_ps_hdr_size
<<
2106 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
2107 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
2109 adapter
->rx_ps_hdr_size
= 0;
2110 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
2113 /* Attention!!! For SR-IOV PF driver operations you must enable
2114 * queue drop for all VF and PF queues to prevent head of line blocking
2115 * if an un-trusted VF does not provide descriptors to hardware.
2117 if (adapter
->vfs_allocated_count
) {
2120 /* set all queue drop enable bits */
2121 wr32(E1000_QDE
, ALL_QUEUES
);
2122 srrctl
|= E1000_SRRCTL_DROP_EN
;
2124 /* disable queue 0 to prevent tail write w/o re-config */
2125 wr32(E1000_RXDCTL(0), 0);
2127 vmolr
= rd32(E1000_VMOLR(adapter
->vfs_allocated_count
));
2128 if (rctl
& E1000_RCTL_LPE
)
2129 vmolr
|= E1000_VMOLR_LPE
;
2130 if (adapter
->num_rx_queues
> 1)
2131 vmolr
|= E1000_VMOLR_RSSE
;
2132 wr32(E1000_VMOLR(adapter
->vfs_allocated_count
), vmolr
);
2135 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2136 int j
= adapter
->rx_ring
[i
].reg_idx
;
2137 wr32(E1000_SRRCTL(j
), srrctl
);
2140 wr32(E1000_RCTL
, rctl
);
2144 * igb_rlpml_set - set maximum receive packet size
2145 * @adapter: board private structure
2147 * Configure maximum receivable packet size.
2149 static void igb_rlpml_set(struct igb_adapter
*adapter
)
2151 u32 max_frame_size
= adapter
->max_frame_size
;
2152 struct e1000_hw
*hw
= &adapter
->hw
;
2153 u16 pf_id
= adapter
->vfs_allocated_count
;
2156 max_frame_size
+= VLAN_TAG_SIZE
;
2158 /* if vfs are enabled we set RLPML to the largest possible request
2159 * size and set the VMOLR RLPML to the size we need */
2161 igb_set_vf_rlpml(adapter
, max_frame_size
, pf_id
);
2162 max_frame_size
= MAX_STD_JUMBO_FRAME_SIZE
+ VLAN_TAG_SIZE
;
2165 wr32(E1000_RLPML
, max_frame_size
);
2169 * igb_configure_vt_default_pool - Configure VT default pool
2170 * @adapter: board private structure
2172 * Configure the default pool
2174 static void igb_configure_vt_default_pool(struct igb_adapter
*adapter
)
2176 struct e1000_hw
*hw
= &adapter
->hw
;
2177 u16 pf_id
= adapter
->vfs_allocated_count
;
2180 /* not in sr-iov mode - do nothing */
2184 vtctl
= rd32(E1000_VT_CTL
);
2185 vtctl
&= ~(E1000_VT_CTL_DEFAULT_POOL_MASK
|
2186 E1000_VT_CTL_DISABLE_DEF_POOL
);
2187 vtctl
|= pf_id
<< E1000_VT_CTL_DEFAULT_POOL_SHIFT
;
2188 wr32(E1000_VT_CTL
, vtctl
);
2192 * igb_configure_rx - Configure receive Unit after Reset
2193 * @adapter: board private structure
2195 * Configure the Rx unit of the MAC after a reset.
2197 static void igb_configure_rx(struct igb_adapter
*adapter
)
2200 struct e1000_hw
*hw
= &adapter
->hw
;
2205 /* disable receives while setting up the descriptors */
2206 rctl
= rd32(E1000_RCTL
);
2207 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
2211 if (adapter
->itr_setting
> 3)
2212 wr32(E1000_ITR
, adapter
->itr
);
2214 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2215 * the Base and Length of the Rx Descriptor Ring */
2216 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2217 struct igb_ring
*ring
= &adapter
->rx_ring
[i
];
2218 int j
= ring
->reg_idx
;
2220 wr32(E1000_RDBAL(j
),
2221 rdba
& 0x00000000ffffffffULL
);
2222 wr32(E1000_RDBAH(j
), rdba
>> 32);
2223 wr32(E1000_RDLEN(j
),
2224 ring
->count
* sizeof(union e1000_adv_rx_desc
));
2226 ring
->head
= E1000_RDH(j
);
2227 ring
->tail
= E1000_RDT(j
);
2228 writel(0, hw
->hw_addr
+ ring
->tail
);
2229 writel(0, hw
->hw_addr
+ ring
->head
);
2231 rxdctl
= rd32(E1000_RXDCTL(j
));
2232 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
2233 rxdctl
&= 0xFFF00000;
2234 rxdctl
|= IGB_RX_PTHRESH
;
2235 rxdctl
|= IGB_RX_HTHRESH
<< 8;
2236 rxdctl
|= IGB_RX_WTHRESH
<< 16;
2237 wr32(E1000_RXDCTL(j
), rxdctl
);
2240 if (adapter
->num_rx_queues
> 1) {
2249 get_random_bytes(&random
[0], 40);
2251 if (hw
->mac
.type
>= e1000_82576
)
2255 for (j
= 0; j
< (32 * 4); j
++) {
2257 adapter
->rx_ring
[(j
% adapter
->num_rx_queues
)].reg_idx
<< shift
;
2260 hw
->hw_addr
+ E1000_RETA(0) + (j
& ~3));
2262 if (adapter
->vfs_allocated_count
)
2263 mrqc
= E1000_MRQC_ENABLE_VMDQ_RSS_2Q
;
2265 mrqc
= E1000_MRQC_ENABLE_RSS_4Q
;
2267 /* Fill out hash function seeds */
2268 for (j
= 0; j
< 10; j
++)
2269 array_wr32(E1000_RSSRK(0), j
, random
[j
]);
2271 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4
|
2272 E1000_MRQC_RSS_FIELD_IPV4_TCP
);
2273 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6
|
2274 E1000_MRQC_RSS_FIELD_IPV6_TCP
);
2275 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4_UDP
|
2276 E1000_MRQC_RSS_FIELD_IPV6_UDP
);
2277 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX
|
2278 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
2280 wr32(E1000_MRQC
, mrqc
);
2281 } else if (adapter
->vfs_allocated_count
) {
2282 /* Enable multi-queue for sr-iov */
2283 wr32(E1000_MRQC
, E1000_MRQC_ENABLE_VMDQ
);
2286 /* Enable Receive Checksum Offload for TCP and UDP */
2287 rxcsum
= rd32(E1000_RXCSUM
);
2288 /* Disable raw packet checksumming */
2289 rxcsum
|= E1000_RXCSUM_PCSD
;
2291 if (adapter
->hw
.mac
.type
== e1000_82576
)
2292 /* Enable Receive Checksum Offload for SCTP */
2293 rxcsum
|= E1000_RXCSUM_CRCOFL
;
2295 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2296 wr32(E1000_RXCSUM
, rxcsum
);
2298 /* Set the default pool for the PF's first queue */
2299 igb_configure_vt_default_pool(adapter
);
2301 igb_rlpml_set(adapter
);
2303 /* Enable Receives */
2304 wr32(E1000_RCTL
, rctl
);
2308 * igb_free_tx_resources - Free Tx Resources per Queue
2309 * @tx_ring: Tx descriptor ring for a specific queue
2311 * Free all transmit software resources
2313 void igb_free_tx_resources(struct igb_ring
*tx_ring
)
2315 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
2317 igb_clean_tx_ring(tx_ring
);
2319 vfree(tx_ring
->buffer_info
);
2320 tx_ring
->buffer_info
= NULL
;
2322 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
2324 tx_ring
->desc
= NULL
;
2328 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2329 * @adapter: board private structure
2331 * Free all transmit software resources
2333 static void igb_free_all_tx_resources(struct igb_adapter
*adapter
)
2337 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2338 igb_free_tx_resources(&adapter
->tx_ring
[i
]);
2341 static void igb_unmap_and_free_tx_resource(struct igb_adapter
*adapter
,
2342 struct igb_buffer
*buffer_info
)
2344 buffer_info
->dma
= 0;
2345 if (buffer_info
->skb
) {
2346 skb_dma_unmap(&adapter
->pdev
->dev
, buffer_info
->skb
,
2348 dev_kfree_skb_any(buffer_info
->skb
);
2349 buffer_info
->skb
= NULL
;
2351 buffer_info
->time_stamp
= 0;
2352 /* buffer_info must be completely set up in the transmit path */
2356 * igb_clean_tx_ring - Free Tx Buffers
2357 * @tx_ring: ring to be cleaned
2359 static void igb_clean_tx_ring(struct igb_ring
*tx_ring
)
2361 struct igb_adapter
*adapter
= tx_ring
->adapter
;
2362 struct igb_buffer
*buffer_info
;
2366 if (!tx_ring
->buffer_info
)
2368 /* Free all the Tx ring sk_buffs */
2370 for (i
= 0; i
< tx_ring
->count
; i
++) {
2371 buffer_info
= &tx_ring
->buffer_info
[i
];
2372 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
2375 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
2376 memset(tx_ring
->buffer_info
, 0, size
);
2378 /* Zero out the descriptor ring */
2380 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2382 tx_ring
->next_to_use
= 0;
2383 tx_ring
->next_to_clean
= 0;
2385 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
2386 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2390 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2391 * @adapter: board private structure
2393 static void igb_clean_all_tx_rings(struct igb_adapter
*adapter
)
2397 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2398 igb_clean_tx_ring(&adapter
->tx_ring
[i
]);
2402 * igb_free_rx_resources - Free Rx Resources
2403 * @rx_ring: ring to clean the resources from
2405 * Free all receive software resources
2407 void igb_free_rx_resources(struct igb_ring
*rx_ring
)
2409 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
2411 igb_clean_rx_ring(rx_ring
);
2413 vfree(rx_ring
->buffer_info
);
2414 rx_ring
->buffer_info
= NULL
;
2416 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2418 rx_ring
->desc
= NULL
;
2422 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2423 * @adapter: board private structure
2425 * Free all receive software resources
2427 static void igb_free_all_rx_resources(struct igb_adapter
*adapter
)
2431 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2432 igb_free_rx_resources(&adapter
->rx_ring
[i
]);
2436 * igb_clean_rx_ring - Free Rx Buffers per Queue
2437 * @rx_ring: ring to free buffers from
2439 static void igb_clean_rx_ring(struct igb_ring
*rx_ring
)
2441 struct igb_adapter
*adapter
= rx_ring
->adapter
;
2442 struct igb_buffer
*buffer_info
;
2443 struct pci_dev
*pdev
= adapter
->pdev
;
2447 if (!rx_ring
->buffer_info
)
2449 /* Free all the Rx ring sk_buffs */
2450 for (i
= 0; i
< rx_ring
->count
; i
++) {
2451 buffer_info
= &rx_ring
->buffer_info
[i
];
2452 if (buffer_info
->dma
) {
2453 if (adapter
->rx_ps_hdr_size
)
2454 pci_unmap_single(pdev
, buffer_info
->dma
,
2455 adapter
->rx_ps_hdr_size
,
2456 PCI_DMA_FROMDEVICE
);
2458 pci_unmap_single(pdev
, buffer_info
->dma
,
2459 adapter
->rx_buffer_len
,
2460 PCI_DMA_FROMDEVICE
);
2461 buffer_info
->dma
= 0;
2464 if (buffer_info
->skb
) {
2465 dev_kfree_skb(buffer_info
->skb
);
2466 buffer_info
->skb
= NULL
;
2468 if (buffer_info
->page
) {
2469 if (buffer_info
->page_dma
)
2470 pci_unmap_page(pdev
, buffer_info
->page_dma
,
2472 PCI_DMA_FROMDEVICE
);
2473 put_page(buffer_info
->page
);
2474 buffer_info
->page
= NULL
;
2475 buffer_info
->page_dma
= 0;
2476 buffer_info
->page_offset
= 0;
2480 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
2481 memset(rx_ring
->buffer_info
, 0, size
);
2483 /* Zero out the descriptor ring */
2484 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2486 rx_ring
->next_to_clean
= 0;
2487 rx_ring
->next_to_use
= 0;
2489 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
2490 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
2494 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2495 * @adapter: board private structure
2497 static void igb_clean_all_rx_rings(struct igb_adapter
*adapter
)
2501 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2502 igb_clean_rx_ring(&adapter
->rx_ring
[i
]);
2506 * igb_set_mac - Change the Ethernet Address of the NIC
2507 * @netdev: network interface device structure
2508 * @p: pointer to an address structure
2510 * Returns 0 on success, negative on failure
2512 static int igb_set_mac(struct net_device
*netdev
, void *p
)
2514 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2515 struct e1000_hw
*hw
= &adapter
->hw
;
2516 struct sockaddr
*addr
= p
;
2518 if (!is_valid_ether_addr(addr
->sa_data
))
2519 return -EADDRNOTAVAIL
;
2521 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2522 memcpy(hw
->mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
2524 igb_rar_set(hw
, hw
->mac
.addr
, 0);
2525 igb_set_rah_pool(hw
, adapter
->vfs_allocated_count
, 0);
2531 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2532 * @netdev: network interface device structure
2534 * The set_rx_mode entry point is called whenever the unicast or multicast
2535 * address lists or the network interface flags are updated. This routine is
2536 * responsible for configuring the hardware for proper unicast, multicast,
2537 * promiscuous mode, and all-multi behavior.
2539 static void igb_set_rx_mode(struct net_device
*netdev
)
2541 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2542 struct e1000_hw
*hw
= &adapter
->hw
;
2543 unsigned int rar_entries
= hw
->mac
.rar_entry_count
-
2544 (adapter
->vfs_allocated_count
+ 1);
2545 struct dev_mc_list
*mc_ptr
= netdev
->mc_list
;
2546 u8
*mta_list
= NULL
;
2550 /* Check for Promiscuous and All Multicast modes */
2551 rctl
= rd32(E1000_RCTL
);
2553 if (netdev
->flags
& IFF_PROMISC
) {
2554 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2555 rctl
&= ~E1000_RCTL_VFE
;
2557 if (netdev
->flags
& IFF_ALLMULTI
)
2558 rctl
|= E1000_RCTL_MPE
;
2560 rctl
&= ~E1000_RCTL_MPE
;
2562 if (netdev
->uc
.count
> rar_entries
)
2563 rctl
|= E1000_RCTL_UPE
;
2565 rctl
&= ~E1000_RCTL_UPE
;
2566 rctl
|= E1000_RCTL_VFE
;
2568 wr32(E1000_RCTL
, rctl
);
2570 if (netdev
->uc
.count
&& rar_entries
) {
2571 struct netdev_hw_addr
*ha
;
2572 list_for_each_entry(ha
, &netdev
->uc
.list
, list
) {
2575 igb_rar_set(hw
, ha
->addr
, rar_entries
);
2576 igb_set_rah_pool(hw
, adapter
->vfs_allocated_count
,
2581 /* write the addresses in reverse order to avoid write combining */
2582 for (; rar_entries
> 0 ; rar_entries
--) {
2583 wr32(E1000_RAH(rar_entries
), 0);
2584 wr32(E1000_RAL(rar_entries
), 0);
2588 if (!netdev
->mc_count
) {
2589 /* nothing to program, so clear mc list */
2590 igb_update_mc_addr_list(hw
, NULL
, 0);
2591 igb_restore_vf_multicasts(adapter
);
2595 mta_list
= kzalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2597 dev_err(&adapter
->pdev
->dev
,
2598 "failed to allocate multicast filter list\n");
2602 /* The shared function expects a packed array of only addresses. */
2603 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2606 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
, ETH_ALEN
);
2607 mc_ptr
= mc_ptr
->next
;
2609 igb_update_mc_addr_list(hw
, mta_list
, i
);
2611 igb_restore_vf_multicasts(adapter
);
2614 /* Need to wait a few seconds after link up to get diagnostic information from
2616 static void igb_update_phy_info(unsigned long data
)
2618 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
2619 igb_get_phy_info(&adapter
->hw
);
2623 * igb_has_link - check shared code for link and determine up/down
2624 * @adapter: pointer to driver private info
2626 static bool igb_has_link(struct igb_adapter
*adapter
)
2628 struct e1000_hw
*hw
= &adapter
->hw
;
2629 bool link_active
= false;
2632 /* get_link_status is set on LSC (link status) interrupt or
2633 * rx sequence error interrupt. get_link_status will stay
2634 * false until the e1000_check_for_link establishes link
2635 * for copper adapters ONLY
2637 switch (hw
->phy
.media_type
) {
2638 case e1000_media_type_copper
:
2639 if (hw
->mac
.get_link_status
) {
2640 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
2641 link_active
= !hw
->mac
.get_link_status
;
2646 case e1000_media_type_internal_serdes
:
2647 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
2648 link_active
= hw
->mac
.serdes_has_link
;
2651 case e1000_media_type_unknown
:
2659 * igb_watchdog - Timer Call-back
2660 * @data: pointer to adapter cast into an unsigned long
2662 static void igb_watchdog(unsigned long data
)
2664 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
2665 /* Do the rest outside of interrupt context */
2666 schedule_work(&adapter
->watchdog_task
);
2669 static void igb_watchdog_task(struct work_struct
*work
)
2671 struct igb_adapter
*adapter
= container_of(work
,
2672 struct igb_adapter
, watchdog_task
);
2673 struct e1000_hw
*hw
= &adapter
->hw
;
2674 struct net_device
*netdev
= adapter
->netdev
;
2675 struct igb_ring
*tx_ring
= adapter
->tx_ring
;
2680 link
= igb_has_link(adapter
);
2681 if ((netif_carrier_ok(netdev
)) && link
)
2685 if (!netif_carrier_ok(netdev
)) {
2687 hw
->mac
.ops
.get_speed_and_duplex(&adapter
->hw
,
2688 &adapter
->link_speed
,
2689 &adapter
->link_duplex
);
2691 ctrl
= rd32(E1000_CTRL
);
2692 /* Links status message must follow this format */
2693 printk(KERN_INFO
"igb: %s NIC Link is Up %d Mbps %s, "
2694 "Flow Control: %s\n",
2696 adapter
->link_speed
,
2697 adapter
->link_duplex
== FULL_DUPLEX
?
2698 "Full Duplex" : "Half Duplex",
2699 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2700 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2701 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2702 E1000_CTRL_TFCE
) ? "TX" : "None")));
2704 /* tweak tx_queue_len according to speed/duplex and
2705 * adjust the timeout factor */
2706 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2707 adapter
->tx_timeout_factor
= 1;
2708 switch (adapter
->link_speed
) {
2710 netdev
->tx_queue_len
= 10;
2711 adapter
->tx_timeout_factor
= 14;
2714 netdev
->tx_queue_len
= 100;
2715 /* maybe add some timeout factor ? */
2719 netif_carrier_on(netdev
);
2721 igb_ping_all_vfs(adapter
);
2723 /* link state has changed, schedule phy info update */
2724 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2725 mod_timer(&adapter
->phy_info_timer
,
2726 round_jiffies(jiffies
+ 2 * HZ
));
2729 if (netif_carrier_ok(netdev
)) {
2730 adapter
->link_speed
= 0;
2731 adapter
->link_duplex
= 0;
2732 /* Links status message must follow this format */
2733 printk(KERN_INFO
"igb: %s NIC Link is Down\n",
2735 netif_carrier_off(netdev
);
2737 igb_ping_all_vfs(adapter
);
2739 /* link state has changed, schedule phy info update */
2740 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2741 mod_timer(&adapter
->phy_info_timer
,
2742 round_jiffies(jiffies
+ 2 * HZ
));
2747 igb_update_stats(adapter
);
2749 hw
->mac
.tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2750 adapter
->tpt_old
= adapter
->stats
.tpt
;
2751 hw
->mac
.collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2752 adapter
->colc_old
= adapter
->stats
.colc
;
2754 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
2755 adapter
->gorc_old
= adapter
->stats
.gorc
;
2756 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
2757 adapter
->gotc_old
= adapter
->stats
.gotc
;
2759 igb_update_adaptive(&adapter
->hw
);
2761 if (!netif_carrier_ok(netdev
)) {
2762 if (igb_desc_unused(tx_ring
) + 1 < tx_ring
->count
) {
2763 /* We've lost link, so the controller stops DMA,
2764 * but we've got queued Tx work that's never going
2765 * to get done, so reset controller to flush Tx.
2766 * (Do the reset outside of interrupt context). */
2767 adapter
->tx_timeout_count
++;
2768 schedule_work(&adapter
->reset_task
);
2769 /* return immediately since reset is imminent */
2774 /* Cause software interrupt to ensure rx ring is cleaned */
2775 if (adapter
->msix_entries
) {
2776 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2777 eics
|= adapter
->rx_ring
[i
].eims_value
;
2778 wr32(E1000_EICS
, eics
);
2780 wr32(E1000_ICS
, E1000_ICS_RXDMT0
);
2783 /* Force detection of hung controller every watchdog period */
2784 tx_ring
->detect_tx_hung
= true;
2786 /* Reset the timer */
2787 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2788 mod_timer(&adapter
->watchdog_timer
,
2789 round_jiffies(jiffies
+ 2 * HZ
));
2792 enum latency_range
{
2796 latency_invalid
= 255
2801 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2803 * Stores a new ITR value based on strictly on packet size. This
2804 * algorithm is less sophisticated than that used in igb_update_itr,
2805 * due to the difficulty of synchronizing statistics across multiple
2806 * receive rings. The divisors and thresholds used by this fuction
2807 * were determined based on theoretical maximum wire speed and testing
2808 * data, in order to minimize response time while increasing bulk
2810 * This functionality is controlled by the InterruptThrottleRate module
2811 * parameter (see igb_param.c)
2812 * NOTE: This function is called only when operating in a multiqueue
2813 * receive environment.
2814 * @rx_ring: pointer to ring
2816 static void igb_update_ring_itr(struct igb_ring
*rx_ring
)
2818 int new_val
= rx_ring
->itr_val
;
2819 int avg_wire_size
= 0;
2820 struct igb_adapter
*adapter
= rx_ring
->adapter
;
2822 if (!rx_ring
->total_packets
)
2823 goto clear_counts
; /* no packets, so don't do anything */
2825 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2826 * ints/sec - ITR timer value of 120 ticks.
2828 if (adapter
->link_speed
!= SPEED_1000
) {
2832 avg_wire_size
= rx_ring
->total_bytes
/ rx_ring
->total_packets
;
2834 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2835 avg_wire_size
+= 24;
2837 /* Don't starve jumbo frames */
2838 avg_wire_size
= min(avg_wire_size
, 3000);
2840 /* Give a little boost to mid-size frames */
2841 if ((avg_wire_size
> 300) && (avg_wire_size
< 1200))
2842 new_val
= avg_wire_size
/ 3;
2844 new_val
= avg_wire_size
/ 2;
2847 if (new_val
!= rx_ring
->itr_val
) {
2848 rx_ring
->itr_val
= new_val
;
2849 rx_ring
->set_itr
= 1;
2852 rx_ring
->total_bytes
= 0;
2853 rx_ring
->total_packets
= 0;
2857 * igb_update_itr - update the dynamic ITR value based on statistics
2858 * Stores a new ITR value based on packets and byte
2859 * counts during the last interrupt. The advantage of per interrupt
2860 * computation is faster updates and more accurate ITR for the current
2861 * traffic pattern. Constants in this function were computed
2862 * based on theoretical maximum wire speed and thresholds were set based
2863 * on testing data as well as attempting to minimize response time
2864 * while increasing bulk throughput.
2865 * this functionality is controlled by the InterruptThrottleRate module
2866 * parameter (see igb_param.c)
2867 * NOTE: These calculations are only valid when operating in a single-
2868 * queue environment.
2869 * @adapter: pointer to adapter
2870 * @itr_setting: current adapter->itr
2871 * @packets: the number of packets during this measurement interval
2872 * @bytes: the number of bytes during this measurement interval
2874 static unsigned int igb_update_itr(struct igb_adapter
*adapter
, u16 itr_setting
,
2875 int packets
, int bytes
)
2877 unsigned int retval
= itr_setting
;
2880 goto update_itr_done
;
2882 switch (itr_setting
) {
2883 case lowest_latency
:
2884 /* handle TSO and jumbo frames */
2885 if (bytes
/packets
> 8000)
2886 retval
= bulk_latency
;
2887 else if ((packets
< 5) && (bytes
> 512))
2888 retval
= low_latency
;
2890 case low_latency
: /* 50 usec aka 20000 ints/s */
2891 if (bytes
> 10000) {
2892 /* this if handles the TSO accounting */
2893 if (bytes
/packets
> 8000) {
2894 retval
= bulk_latency
;
2895 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
2896 retval
= bulk_latency
;
2897 } else if ((packets
> 35)) {
2898 retval
= lowest_latency
;
2900 } else if (bytes
/packets
> 2000) {
2901 retval
= bulk_latency
;
2902 } else if (packets
<= 2 && bytes
< 512) {
2903 retval
= lowest_latency
;
2906 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2907 if (bytes
> 25000) {
2909 retval
= low_latency
;
2910 } else if (bytes
< 1500) {
2911 retval
= low_latency
;
2920 static void igb_set_itr(struct igb_adapter
*adapter
)
2923 u32 new_itr
= adapter
->itr
;
2925 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2926 if (adapter
->link_speed
!= SPEED_1000
) {
2932 adapter
->rx_itr
= igb_update_itr(adapter
,
2934 adapter
->rx_ring
->total_packets
,
2935 adapter
->rx_ring
->total_bytes
);
2937 if (adapter
->rx_ring
->buddy
) {
2938 adapter
->tx_itr
= igb_update_itr(adapter
,
2940 adapter
->tx_ring
->total_packets
,
2941 adapter
->tx_ring
->total_bytes
);
2942 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2944 current_itr
= adapter
->rx_itr
;
2947 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2948 if (adapter
->itr_setting
== 3 && current_itr
== lowest_latency
)
2949 current_itr
= low_latency
;
2951 switch (current_itr
) {
2952 /* counts and packets in update_itr are dependent on these numbers */
2953 case lowest_latency
:
2954 new_itr
= 56; /* aka 70,000 ints/sec */
2957 new_itr
= 196; /* aka 20,000 ints/sec */
2960 new_itr
= 980; /* aka 4,000 ints/sec */
2967 adapter
->rx_ring
->total_bytes
= 0;
2968 adapter
->rx_ring
->total_packets
= 0;
2969 if (adapter
->rx_ring
->buddy
) {
2970 adapter
->rx_ring
->buddy
->total_bytes
= 0;
2971 adapter
->rx_ring
->buddy
->total_packets
= 0;
2974 if (new_itr
!= adapter
->itr
) {
2975 /* this attempts to bias the interrupt rate towards Bulk
2976 * by adding intermediate steps when interrupt rate is
2978 new_itr
= new_itr
> adapter
->itr
?
2979 max((new_itr
* adapter
->itr
) /
2980 (new_itr
+ (adapter
->itr
>> 2)), new_itr
) :
2982 /* Don't write the value here; it resets the adapter's
2983 * internal timer, and causes us to delay far longer than
2984 * we should between interrupts. Instead, we write the ITR
2985 * value at the beginning of the next interrupt so the timing
2986 * ends up being correct.
2988 adapter
->itr
= new_itr
;
2989 adapter
->rx_ring
->itr_val
= new_itr
;
2990 adapter
->rx_ring
->set_itr
= 1;
2997 #define IGB_TX_FLAGS_CSUM 0x00000001
2998 #define IGB_TX_FLAGS_VLAN 0x00000002
2999 #define IGB_TX_FLAGS_TSO 0x00000004
3000 #define IGB_TX_FLAGS_IPV4 0x00000008
3001 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3002 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3003 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3005 static inline int igb_tso_adv(struct igb_adapter
*adapter
,
3006 struct igb_ring
*tx_ring
,
3007 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
3009 struct e1000_adv_tx_context_desc
*context_desc
;
3012 struct igb_buffer
*buffer_info
;
3013 u32 info
= 0, tu_cmd
= 0;
3014 u32 mss_l4len_idx
, l4len
;
3017 if (skb_header_cloned(skb
)) {
3018 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
3023 l4len
= tcp_hdrlen(skb
);
3026 if (skb
->protocol
== htons(ETH_P_IP
)) {
3027 struct iphdr
*iph
= ip_hdr(skb
);
3030 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
3034 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
3035 ipv6_hdr(skb
)->payload_len
= 0;
3036 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3037 &ipv6_hdr(skb
)->daddr
,
3041 i
= tx_ring
->next_to_use
;
3043 buffer_info
= &tx_ring
->buffer_info
[i
];
3044 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
3045 /* VLAN MACLEN IPLEN */
3046 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
3047 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
3048 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
3049 *hdr_len
+= skb_network_offset(skb
);
3050 info
|= skb_network_header_len(skb
);
3051 *hdr_len
+= skb_network_header_len(skb
);
3052 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
3054 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3055 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
3057 if (skb
->protocol
== htons(ETH_P_IP
))
3058 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
3059 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
3061 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
3064 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
3065 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
3067 /* For 82575, context index must be unique per ring. */
3068 if (adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
)
3069 mss_l4len_idx
|= tx_ring
->queue_index
<< 4;
3071 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
3072 context_desc
->seqnum_seed
= 0;
3074 buffer_info
->time_stamp
= jiffies
;
3075 buffer_info
->next_to_watch
= i
;
3076 buffer_info
->dma
= 0;
3078 if (i
== tx_ring
->count
)
3081 tx_ring
->next_to_use
= i
;
3086 static inline bool igb_tx_csum_adv(struct igb_adapter
*adapter
,
3087 struct igb_ring
*tx_ring
,
3088 struct sk_buff
*skb
, u32 tx_flags
)
3090 struct e1000_adv_tx_context_desc
*context_desc
;
3092 struct igb_buffer
*buffer_info
;
3093 u32 info
= 0, tu_cmd
= 0;
3095 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
3096 (tx_flags
& IGB_TX_FLAGS_VLAN
)) {
3097 i
= tx_ring
->next_to_use
;
3098 buffer_info
= &tx_ring
->buffer_info
[i
];
3099 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
3101 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
3102 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
3103 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
3104 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
3105 info
|= skb_network_header_len(skb
);
3107 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
3109 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
3111 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3114 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
)) {
3115 const struct vlan_ethhdr
*vhdr
=
3116 (const struct vlan_ethhdr
*)skb
->data
;
3118 protocol
= vhdr
->h_vlan_encapsulated_proto
;
3120 protocol
= skb
->protocol
;
3124 case cpu_to_be16(ETH_P_IP
):
3125 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
3126 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
3127 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
3128 else if (ip_hdr(skb
)->protocol
== IPPROTO_SCTP
)
3129 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_SCTP
;
3131 case cpu_to_be16(ETH_P_IPV6
):
3132 /* XXX what about other V6 headers?? */
3133 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
3134 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
3135 else if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_SCTP
)
3136 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_SCTP
;
3139 if (unlikely(net_ratelimit()))
3140 dev_warn(&adapter
->pdev
->dev
,
3141 "partial checksum but proto=%x!\n",
3147 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
3148 context_desc
->seqnum_seed
= 0;
3149 if (adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
)
3150 context_desc
->mss_l4len_idx
=
3151 cpu_to_le32(tx_ring
->queue_index
<< 4);
3153 context_desc
->mss_l4len_idx
= 0;
3155 buffer_info
->time_stamp
= jiffies
;
3156 buffer_info
->next_to_watch
= i
;
3157 buffer_info
->dma
= 0;
3160 if (i
== tx_ring
->count
)
3162 tx_ring
->next_to_use
= i
;
3169 #define IGB_MAX_TXD_PWR 16
3170 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3172 static inline int igb_tx_map_adv(struct igb_adapter
*adapter
,
3173 struct igb_ring
*tx_ring
, struct sk_buff
*skb
,
3176 struct igb_buffer
*buffer_info
;
3177 unsigned int len
= skb_headlen(skb
);
3178 unsigned int count
= 0, i
;
3182 i
= tx_ring
->next_to_use
;
3184 if (skb_dma_map(&adapter
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
3185 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
3189 map
= skb_shinfo(skb
)->dma_maps
;
3191 buffer_info
= &tx_ring
->buffer_info
[i
];
3192 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
3193 buffer_info
->length
= len
;
3194 /* set time_stamp *before* dma to help avoid a possible race */
3195 buffer_info
->time_stamp
= jiffies
;
3196 buffer_info
->next_to_watch
= i
;
3197 buffer_info
->dma
= skb_shinfo(skb
)->dma_head
;
3199 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
3200 struct skb_frag_struct
*frag
;
3203 if (i
== tx_ring
->count
)
3206 frag
= &skb_shinfo(skb
)->frags
[f
];
3209 buffer_info
= &tx_ring
->buffer_info
[i
];
3210 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
3211 buffer_info
->length
= len
;
3212 buffer_info
->time_stamp
= jiffies
;
3213 buffer_info
->next_to_watch
= i
;
3214 buffer_info
->dma
= map
[count
];
3218 tx_ring
->buffer_info
[i
].skb
= skb
;
3219 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3224 static inline void igb_tx_queue_adv(struct igb_adapter
*adapter
,
3225 struct igb_ring
*tx_ring
,
3226 int tx_flags
, int count
, u32 paylen
,
3229 union e1000_adv_tx_desc
*tx_desc
= NULL
;
3230 struct igb_buffer
*buffer_info
;
3231 u32 olinfo_status
= 0, cmd_type_len
;
3234 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
3235 E1000_ADVTXD_DCMD_DEXT
);
3237 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
3238 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
3240 if (tx_flags
& IGB_TX_FLAGS_TSTAMP
)
3241 cmd_type_len
|= E1000_ADVTXD_MAC_TSTAMP
;
3243 if (tx_flags
& IGB_TX_FLAGS_TSO
) {
3244 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
3246 /* insert tcp checksum */
3247 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
3249 /* insert ip checksum */
3250 if (tx_flags
& IGB_TX_FLAGS_IPV4
)
3251 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
3253 } else if (tx_flags
& IGB_TX_FLAGS_CSUM
) {
3254 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
3257 if ((adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
) &&
3258 (tx_flags
& (IGB_TX_FLAGS_CSUM
| IGB_TX_FLAGS_TSO
|
3259 IGB_TX_FLAGS_VLAN
)))
3260 olinfo_status
|= tx_ring
->queue_index
<< 4;
3262 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
3264 i
= tx_ring
->next_to_use
;
3266 buffer_info
= &tx_ring
->buffer_info
[i
];
3267 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
3268 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3269 tx_desc
->read
.cmd_type_len
=
3270 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
3271 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
3273 if (i
== tx_ring
->count
)
3277 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
3278 /* Force memory writes to complete before letting h/w
3279 * know there are new descriptors to fetch. (Only
3280 * applicable for weak-ordered memory model archs,
3281 * such as IA-64). */
3284 tx_ring
->next_to_use
= i
;
3285 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
3286 /* we need this if more than one processor can write to our tail
3287 * at a time, it syncronizes IO on IA64/Altix systems */
3291 static int __igb_maybe_stop_tx(struct net_device
*netdev
,
3292 struct igb_ring
*tx_ring
, int size
)
3294 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3296 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
3298 /* Herbert's original patch had:
3299 * smp_mb__after_netif_stop_queue();
3300 * but since that doesn't exist yet, just open code it. */
3303 /* We need to check again in a case another CPU has just
3304 * made room available. */
3305 if (igb_desc_unused(tx_ring
) < size
)
3309 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
3310 ++adapter
->restart_queue
;
3314 static int igb_maybe_stop_tx(struct net_device
*netdev
,
3315 struct igb_ring
*tx_ring
, int size
)
3317 if (igb_desc_unused(tx_ring
) >= size
)
3319 return __igb_maybe_stop_tx(netdev
, tx_ring
, size
);
3322 static netdev_tx_t
igb_xmit_frame_ring_adv(struct sk_buff
*skb
,
3323 struct net_device
*netdev
,
3324 struct igb_ring
*tx_ring
)
3326 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3328 unsigned int tx_flags
= 0;
3332 union skb_shared_tx
*shtx
;
3334 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
3335 dev_kfree_skb_any(skb
);
3336 return NETDEV_TX_OK
;
3339 if (skb
->len
<= 0) {
3340 dev_kfree_skb_any(skb
);
3341 return NETDEV_TX_OK
;
3344 /* need: 1 descriptor per page,
3345 * + 2 desc gap to keep tail from touching head,
3346 * + 1 desc for skb->data,
3347 * + 1 desc for context descriptor,
3348 * otherwise try next time */
3349 if (igb_maybe_stop_tx(netdev
, tx_ring
, skb_shinfo(skb
)->nr_frags
+ 4)) {
3350 /* this is a hard error */
3351 return NETDEV_TX_BUSY
;
3355 * TODO: check that there currently is no other packet with
3356 * time stamping in the queue
3358 * When doing time stamping, keep the connection to the socket
3359 * a while longer: it is still needed by skb_hwtstamp_tx(),
3360 * called either in igb_tx_hwtstamp() or by our caller when
3361 * doing software time stamping.
3364 if (unlikely(shtx
->hardware
)) {
3365 shtx
->in_progress
= 1;
3366 tx_flags
|= IGB_TX_FLAGS_TSTAMP
;
3369 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3370 tx_flags
|= IGB_TX_FLAGS_VLAN
;
3371 tx_flags
|= (vlan_tx_tag_get(skb
) << IGB_TX_FLAGS_VLAN_SHIFT
);
3374 if (skb
->protocol
== htons(ETH_P_IP
))
3375 tx_flags
|= IGB_TX_FLAGS_IPV4
;
3377 first
= tx_ring
->next_to_use
;
3378 tso
= skb_is_gso(skb
) ? igb_tso_adv(adapter
, tx_ring
, skb
, tx_flags
,
3382 dev_kfree_skb_any(skb
);
3383 return NETDEV_TX_OK
;
3387 tx_flags
|= IGB_TX_FLAGS_TSO
;
3388 else if (igb_tx_csum_adv(adapter
, tx_ring
, skb
, tx_flags
) &&
3389 (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3390 tx_flags
|= IGB_TX_FLAGS_CSUM
;
3393 * count reflects descriptors mapped, if 0 then mapping error
3394 * has occured and we need to rewind the descriptor queue
3396 count
= igb_tx_map_adv(adapter
, tx_ring
, skb
, first
);
3399 igb_tx_queue_adv(adapter
, tx_ring
, tx_flags
, count
,
3401 /* Make sure there is space in the ring for the next send. */
3402 igb_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 4);
3404 dev_kfree_skb_any(skb
);
3405 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3406 tx_ring
->next_to_use
= first
;
3409 return NETDEV_TX_OK
;
3412 static netdev_tx_t
igb_xmit_frame_adv(struct sk_buff
*skb
,
3413 struct net_device
*netdev
)
3415 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3416 struct igb_ring
*tx_ring
;
3419 r_idx
= skb
->queue_mapping
& (IGB_ABS_MAX_TX_QUEUES
- 1);
3420 tx_ring
= adapter
->multi_tx_table
[r_idx
];
3422 /* This goes back to the question of how to logically map a tx queue
3423 * to a flow. Right now, performance is impacted slightly negatively
3424 * if using multiple tx queues. If the stack breaks away from a
3425 * single qdisc implementation, we can look at this again. */
3426 return igb_xmit_frame_ring_adv(skb
, netdev
, tx_ring
);
3430 * igb_tx_timeout - Respond to a Tx Hang
3431 * @netdev: network interface device structure
3433 static void igb_tx_timeout(struct net_device
*netdev
)
3435 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3436 struct e1000_hw
*hw
= &adapter
->hw
;
3438 /* Do the reset outside of interrupt context */
3439 adapter
->tx_timeout_count
++;
3440 schedule_work(&adapter
->reset_task
);
3442 (adapter
->eims_enable_mask
& ~adapter
->eims_other
));
3445 static void igb_reset_task(struct work_struct
*work
)
3447 struct igb_adapter
*adapter
;
3448 adapter
= container_of(work
, struct igb_adapter
, reset_task
);
3450 igb_reinit_locked(adapter
);
3454 * igb_get_stats - Get System Network Statistics
3455 * @netdev: network interface device structure
3457 * Returns the address of the device statistics structure.
3458 * The statistics are actually updated from the timer callback.
3460 static struct net_device_stats
*igb_get_stats(struct net_device
*netdev
)
3462 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3464 /* only return the current stats */
3465 return &adapter
->net_stats
;
3469 * igb_change_mtu - Change the Maximum Transfer Unit
3470 * @netdev: network interface device structure
3471 * @new_mtu: new value for maximum frame size
3473 * Returns 0 on success, negative on failure
3475 static int igb_change_mtu(struct net_device
*netdev
, int new_mtu
)
3477 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3478 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3480 if ((max_frame
< ETH_ZLEN
+ ETH_FCS_LEN
) ||
3481 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3482 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
3486 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3487 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
3491 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
3494 /* igb_down has a dependency on max_frame_size */
3495 adapter
->max_frame_size
= max_frame
;
3496 if (netif_running(netdev
))
3499 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3500 * means we reserve 2 more, this pushes us to allocate from the next
3502 * i.e. RXBUFFER_2048 --> size-4096 slab
3505 if (max_frame
<= IGB_RXBUFFER_256
)
3506 adapter
->rx_buffer_len
= IGB_RXBUFFER_256
;
3507 else if (max_frame
<= IGB_RXBUFFER_512
)
3508 adapter
->rx_buffer_len
= IGB_RXBUFFER_512
;
3509 else if (max_frame
<= IGB_RXBUFFER_1024
)
3510 adapter
->rx_buffer_len
= IGB_RXBUFFER_1024
;
3511 else if (max_frame
<= IGB_RXBUFFER_2048
)
3512 adapter
->rx_buffer_len
= IGB_RXBUFFER_2048
;
3514 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3515 adapter
->rx_buffer_len
= IGB_RXBUFFER_16384
;
3517 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
3520 /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3521 if (adapter
->vfs_allocated_count
&&
3522 (adapter
->rx_buffer_len
< IGB_RXBUFFER_1024
))
3523 adapter
->rx_buffer_len
= IGB_RXBUFFER_1024
;
3525 /* adjust allocation if LPE protects us, and we aren't using SBP */
3526 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
3527 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
))
3528 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3530 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
3531 netdev
->mtu
, new_mtu
);
3532 netdev
->mtu
= new_mtu
;
3534 if (netif_running(netdev
))
3539 clear_bit(__IGB_RESETTING
, &adapter
->state
);
3545 * igb_update_stats - Update the board statistics counters
3546 * @adapter: board private structure
3549 void igb_update_stats(struct igb_adapter
*adapter
)
3551 struct e1000_hw
*hw
= &adapter
->hw
;
3552 struct pci_dev
*pdev
= adapter
->pdev
;
3555 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3558 * Prevent stats update while adapter is being reset, or if the pci
3559 * connection is down.
3561 if (adapter
->link_speed
== 0)
3563 if (pci_channel_offline(pdev
))
3566 adapter
->stats
.crcerrs
+= rd32(E1000_CRCERRS
);
3567 adapter
->stats
.gprc
+= rd32(E1000_GPRC
);
3568 adapter
->stats
.gorc
+= rd32(E1000_GORCL
);
3569 rd32(E1000_GORCH
); /* clear GORCL */
3570 adapter
->stats
.bprc
+= rd32(E1000_BPRC
);
3571 adapter
->stats
.mprc
+= rd32(E1000_MPRC
);
3572 adapter
->stats
.roc
+= rd32(E1000_ROC
);
3574 adapter
->stats
.prc64
+= rd32(E1000_PRC64
);
3575 adapter
->stats
.prc127
+= rd32(E1000_PRC127
);
3576 adapter
->stats
.prc255
+= rd32(E1000_PRC255
);
3577 adapter
->stats
.prc511
+= rd32(E1000_PRC511
);
3578 adapter
->stats
.prc1023
+= rd32(E1000_PRC1023
);
3579 adapter
->stats
.prc1522
+= rd32(E1000_PRC1522
);
3580 adapter
->stats
.symerrs
+= rd32(E1000_SYMERRS
);
3581 adapter
->stats
.sec
+= rd32(E1000_SEC
);
3583 adapter
->stats
.mpc
+= rd32(E1000_MPC
);
3584 adapter
->stats
.scc
+= rd32(E1000_SCC
);
3585 adapter
->stats
.ecol
+= rd32(E1000_ECOL
);
3586 adapter
->stats
.mcc
+= rd32(E1000_MCC
);
3587 adapter
->stats
.latecol
+= rd32(E1000_LATECOL
);
3588 adapter
->stats
.dc
+= rd32(E1000_DC
);
3589 adapter
->stats
.rlec
+= rd32(E1000_RLEC
);
3590 adapter
->stats
.xonrxc
+= rd32(E1000_XONRXC
);
3591 adapter
->stats
.xontxc
+= rd32(E1000_XONTXC
);
3592 adapter
->stats
.xoffrxc
+= rd32(E1000_XOFFRXC
);
3593 adapter
->stats
.xofftxc
+= rd32(E1000_XOFFTXC
);
3594 adapter
->stats
.fcruc
+= rd32(E1000_FCRUC
);
3595 adapter
->stats
.gptc
+= rd32(E1000_GPTC
);
3596 adapter
->stats
.gotc
+= rd32(E1000_GOTCL
);
3597 rd32(E1000_GOTCH
); /* clear GOTCL */
3598 adapter
->stats
.rnbc
+= rd32(E1000_RNBC
);
3599 adapter
->stats
.ruc
+= rd32(E1000_RUC
);
3600 adapter
->stats
.rfc
+= rd32(E1000_RFC
);
3601 adapter
->stats
.rjc
+= rd32(E1000_RJC
);
3602 adapter
->stats
.tor
+= rd32(E1000_TORH
);
3603 adapter
->stats
.tot
+= rd32(E1000_TOTH
);
3604 adapter
->stats
.tpr
+= rd32(E1000_TPR
);
3606 adapter
->stats
.ptc64
+= rd32(E1000_PTC64
);
3607 adapter
->stats
.ptc127
+= rd32(E1000_PTC127
);
3608 adapter
->stats
.ptc255
+= rd32(E1000_PTC255
);
3609 adapter
->stats
.ptc511
+= rd32(E1000_PTC511
);
3610 adapter
->stats
.ptc1023
+= rd32(E1000_PTC1023
);
3611 adapter
->stats
.ptc1522
+= rd32(E1000_PTC1522
);
3613 adapter
->stats
.mptc
+= rd32(E1000_MPTC
);
3614 adapter
->stats
.bptc
+= rd32(E1000_BPTC
);
3616 /* used for adaptive IFS */
3618 hw
->mac
.tx_packet_delta
= rd32(E1000_TPT
);
3619 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
3620 hw
->mac
.collision_delta
= rd32(E1000_COLC
);
3621 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
3623 adapter
->stats
.algnerrc
+= rd32(E1000_ALGNERRC
);
3624 adapter
->stats
.rxerrc
+= rd32(E1000_RXERRC
);
3625 adapter
->stats
.tncrs
+= rd32(E1000_TNCRS
);
3626 adapter
->stats
.tsctc
+= rd32(E1000_TSCTC
);
3627 adapter
->stats
.tsctfc
+= rd32(E1000_TSCTFC
);
3629 adapter
->stats
.iac
+= rd32(E1000_IAC
);
3630 adapter
->stats
.icrxoc
+= rd32(E1000_ICRXOC
);
3631 adapter
->stats
.icrxptc
+= rd32(E1000_ICRXPTC
);
3632 adapter
->stats
.icrxatc
+= rd32(E1000_ICRXATC
);
3633 adapter
->stats
.ictxptc
+= rd32(E1000_ICTXPTC
);
3634 adapter
->stats
.ictxatc
+= rd32(E1000_ICTXATC
);
3635 adapter
->stats
.ictxqec
+= rd32(E1000_ICTXQEC
);
3636 adapter
->stats
.ictxqmtc
+= rd32(E1000_ICTXQMTC
);
3637 adapter
->stats
.icrxdmtc
+= rd32(E1000_ICRXDMTC
);
3639 /* Fill out the OS statistics structure */
3640 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3641 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3645 if (hw
->mac
.type
!= e1000_82575
) {
3647 u64 rqdpc_total
= 0;
3649 /* Read out drops stats per RX queue. Notice RQDPC (Receive
3650 * Queue Drop Packet Count) stats only gets incremented, if
3651 * the DROP_EN but it set (in the SRRCTL register for that
3652 * queue). If DROP_EN bit is NOT set, then the some what
3653 * equivalent count is stored in RNBC (not per queue basis).
3654 * Also note the drop count is due to lack of available
3657 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
3658 rqdpc_tmp
= rd32(E1000_RQDPC(i
)) & 0xFFF;
3659 adapter
->rx_ring
[i
].rx_stats
.drops
+= rqdpc_tmp
;
3660 rqdpc_total
+= adapter
->rx_ring
[i
].rx_stats
.drops
;
3662 adapter
->net_stats
.rx_fifo_errors
= rqdpc_total
;
3665 /* Note RNBC (Receive No Buffers Count) is an not an exact
3666 * drop count as the hardware FIFO might save the day. Thats
3667 * one of the reason for saving it in rx_fifo_errors, as its
3668 * potentially not a true drop.
3670 adapter
->net_stats
.rx_fifo_errors
+= adapter
->stats
.rnbc
;
3672 /* RLEC on some newer hardware can be incorrect so build
3673 * our own version based on RUC and ROC */
3674 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3675 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3676 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3677 adapter
->stats
.cexterr
;
3678 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
3680 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3681 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3682 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3685 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
3686 adapter
->stats
.latecol
;
3687 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3688 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3689 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3691 /* Tx Dropped needs to be maintained elsewhere */
3694 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
3695 if ((adapter
->link_speed
== SPEED_1000
) &&
3696 (!igb_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3697 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3698 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3702 /* Management Stats */
3703 adapter
->stats
.mgptc
+= rd32(E1000_MGTPTC
);
3704 adapter
->stats
.mgprc
+= rd32(E1000_MGTPRC
);
3705 adapter
->stats
.mgpdc
+= rd32(E1000_MGTPDC
);
3708 static irqreturn_t
igb_msix_other(int irq
, void *data
)
3710 struct net_device
*netdev
= data
;
3711 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3712 struct e1000_hw
*hw
= &adapter
->hw
;
3713 u32 icr
= rd32(E1000_ICR
);
3715 /* reading ICR causes bit 31 of EICR to be cleared */
3717 if(icr
& E1000_ICR_DOUTSYNC
) {
3718 /* HW is reporting DMA is out of sync */
3719 adapter
->stats
.doosync
++;
3722 /* Check for a mailbox event */
3723 if (icr
& E1000_ICR_VMMB
)
3724 igb_msg_task(adapter
);
3726 if (icr
& E1000_ICR_LSC
) {
3727 hw
->mac
.get_link_status
= 1;
3728 /* guard against interrupt when we're going down */
3729 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3730 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3733 wr32(E1000_IMS
, E1000_IMS_LSC
| E1000_IMS_DOUTSYNC
| E1000_IMS_VMMB
);
3734 wr32(E1000_EIMS
, adapter
->eims_other
);
3739 static irqreturn_t
igb_msix_tx(int irq
, void *data
)
3741 struct igb_ring
*tx_ring
= data
;
3742 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3743 struct e1000_hw
*hw
= &adapter
->hw
;
3745 #ifdef CONFIG_IGB_DCA
3746 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3747 igb_update_tx_dca(tx_ring
);
3750 tx_ring
->total_bytes
= 0;
3751 tx_ring
->total_packets
= 0;
3753 /* auto mask will automatically reenable the interrupt when we write
3755 if (!igb_clean_tx_irq(tx_ring
))
3756 /* Ring was not completely cleaned, so fire another interrupt */
3757 wr32(E1000_EICS
, tx_ring
->eims_value
);
3759 wr32(E1000_EIMS
, tx_ring
->eims_value
);
3764 static void igb_write_itr(struct igb_ring
*ring
)
3766 struct e1000_hw
*hw
= &ring
->adapter
->hw
;
3767 if ((ring
->adapter
->itr_setting
& 3) && ring
->set_itr
) {
3768 switch (hw
->mac
.type
) {
3770 wr32(ring
->itr_register
, ring
->itr_val
|
3774 wr32(ring
->itr_register
, ring
->itr_val
|
3775 (ring
->itr_val
<< 16));
3782 static irqreturn_t
igb_msix_rx(int irq
, void *data
)
3784 struct igb_ring
*rx_ring
= data
;
3786 /* Write the ITR value calculated at the end of the
3787 * previous interrupt.
3790 igb_write_itr(rx_ring
);
3792 if (napi_schedule_prep(&rx_ring
->napi
))
3793 __napi_schedule(&rx_ring
->napi
);
3795 #ifdef CONFIG_IGB_DCA
3796 if (rx_ring
->adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3797 igb_update_rx_dca(rx_ring
);
3802 #ifdef CONFIG_IGB_DCA
3803 static void igb_update_rx_dca(struct igb_ring
*rx_ring
)
3806 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3807 struct e1000_hw
*hw
= &adapter
->hw
;
3808 int cpu
= get_cpu();
3809 int q
= rx_ring
->reg_idx
;
3811 if (rx_ring
->cpu
!= cpu
) {
3812 dca_rxctrl
= rd32(E1000_DCA_RXCTRL(q
));
3813 if (hw
->mac
.type
== e1000_82576
) {
3814 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK_82576
;
3815 dca_rxctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
) <<
3816 E1000_DCA_RXCTRL_CPUID_SHIFT
;
3818 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK
;
3819 dca_rxctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
);
3821 dca_rxctrl
|= E1000_DCA_RXCTRL_DESC_DCA_EN
;
3822 dca_rxctrl
|= E1000_DCA_RXCTRL_HEAD_DCA_EN
;
3823 dca_rxctrl
|= E1000_DCA_RXCTRL_DATA_DCA_EN
;
3824 wr32(E1000_DCA_RXCTRL(q
), dca_rxctrl
);
3830 static void igb_update_tx_dca(struct igb_ring
*tx_ring
)
3833 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3834 struct e1000_hw
*hw
= &adapter
->hw
;
3835 int cpu
= get_cpu();
3836 int q
= tx_ring
->reg_idx
;
3838 if (tx_ring
->cpu
!= cpu
) {
3839 dca_txctrl
= rd32(E1000_DCA_TXCTRL(q
));
3840 if (hw
->mac
.type
== e1000_82576
) {
3841 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK_82576
;
3842 dca_txctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
) <<
3843 E1000_DCA_TXCTRL_CPUID_SHIFT
;
3845 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK
;
3846 dca_txctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
);
3848 dca_txctrl
|= E1000_DCA_TXCTRL_DESC_DCA_EN
;
3849 wr32(E1000_DCA_TXCTRL(q
), dca_txctrl
);
3855 static void igb_setup_dca(struct igb_adapter
*adapter
)
3857 struct e1000_hw
*hw
= &adapter
->hw
;
3860 if (!(adapter
->flags
& IGB_FLAG_DCA_ENABLED
))
3863 /* Always use CB2 mode, difference is masked in the CB driver. */
3864 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_CB2
);
3866 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
3867 adapter
->tx_ring
[i
].cpu
= -1;
3868 igb_update_tx_dca(&adapter
->tx_ring
[i
]);
3870 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
3871 adapter
->rx_ring
[i
].cpu
= -1;
3872 igb_update_rx_dca(&adapter
->rx_ring
[i
]);
3876 static int __igb_notify_dca(struct device
*dev
, void *data
)
3878 struct net_device
*netdev
= dev_get_drvdata(dev
);
3879 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3880 struct e1000_hw
*hw
= &adapter
->hw
;
3881 unsigned long event
= *(unsigned long *)data
;
3884 case DCA_PROVIDER_ADD
:
3885 /* if already enabled, don't do it again */
3886 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3888 /* Always use CB2 mode, difference is masked
3889 * in the CB driver. */
3890 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_CB2
);
3891 if (dca_add_requester(dev
) == 0) {
3892 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
3893 dev_info(&adapter
->pdev
->dev
, "DCA enabled\n");
3894 igb_setup_dca(adapter
);
3897 /* Fall Through since DCA is disabled. */
3898 case DCA_PROVIDER_REMOVE
:
3899 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
3900 /* without this a class_device is left
3901 * hanging around in the sysfs model */
3902 dca_remove_requester(dev
);
3903 dev_info(&adapter
->pdev
->dev
, "DCA disabled\n");
3904 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
3905 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_DISABLE
);
3913 static int igb_notify_dca(struct notifier_block
*nb
, unsigned long event
,
3918 ret_val
= driver_for_each_device(&igb_driver
.driver
, NULL
, &event
,
3921 return ret_val
? NOTIFY_BAD
: NOTIFY_DONE
;
3923 #endif /* CONFIG_IGB_DCA */
3925 static void igb_ping_all_vfs(struct igb_adapter
*adapter
)
3927 struct e1000_hw
*hw
= &adapter
->hw
;
3931 for (i
= 0 ; i
< adapter
->vfs_allocated_count
; i
++) {
3932 ping
= E1000_PF_CONTROL_MSG
;
3933 if (adapter
->vf_data
[i
].clear_to_send
)
3934 ping
|= E1000_VT_MSGTYPE_CTS
;
3935 igb_write_mbx(hw
, &ping
, 1, i
);
3939 static int igb_set_vf_multicasts(struct igb_adapter
*adapter
,
3940 u32
*msgbuf
, u32 vf
)
3942 int n
= (msgbuf
[0] & E1000_VT_MSGINFO_MASK
) >> E1000_VT_MSGINFO_SHIFT
;
3943 u16
*hash_list
= (u16
*)&msgbuf
[1];
3944 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
3947 /* only up to 30 hash values supported */
3951 /* salt away the number of multi cast addresses assigned
3952 * to this VF for later use to restore when the PF multi cast
3955 vf_data
->num_vf_mc_hashes
= n
;
3957 /* VFs are limited to using the MTA hash table for their multicast
3959 for (i
= 0; i
< n
; i
++)
3960 vf_data
->vf_mc_hashes
[i
] = hash_list
[i
];
3962 /* Flush and reset the mta with the new values */
3963 igb_set_rx_mode(adapter
->netdev
);
3968 static void igb_restore_vf_multicasts(struct igb_adapter
*adapter
)
3970 struct e1000_hw
*hw
= &adapter
->hw
;
3971 struct vf_data_storage
*vf_data
;
3974 for (i
= 0; i
< adapter
->vfs_allocated_count
; i
++) {
3975 vf_data
= &adapter
->vf_data
[i
];
3976 for (j
= 0; j
< vf_data
->num_vf_mc_hashes
; j
++)
3977 igb_mta_set(hw
, vf_data
->vf_mc_hashes
[j
]);
3981 static void igb_clear_vf_vfta(struct igb_adapter
*adapter
, u32 vf
)
3983 struct e1000_hw
*hw
= &adapter
->hw
;
3984 u32 pool_mask
, reg
, vid
;
3987 pool_mask
= 1 << (E1000_VLVF_POOLSEL_SHIFT
+ vf
);
3989 /* Find the vlan filter for this id */
3990 for (i
= 0; i
< E1000_VLVF_ARRAY_SIZE
; i
++) {
3991 reg
= rd32(E1000_VLVF(i
));
3993 /* remove the vf from the pool */
3996 /* if pool is empty then remove entry from vfta */
3997 if (!(reg
& E1000_VLVF_POOLSEL_MASK
) &&
3998 (reg
& E1000_VLVF_VLANID_ENABLE
)) {
4000 vid
= reg
& E1000_VLVF_VLANID_MASK
;
4001 igb_vfta_set(hw
, vid
, false);
4004 wr32(E1000_VLVF(i
), reg
);
4007 adapter
->vf_data
[vf
].vlans_enabled
= 0;
4010 static s32
igb_vlvf_set(struct igb_adapter
*adapter
, u32 vid
, bool add
, u32 vf
)
4012 struct e1000_hw
*hw
= &adapter
->hw
;
4015 /* It is an error to call this function when VFs are not enabled */
4016 if (!adapter
->vfs_allocated_count
)
4019 /* Find the vlan filter for this id */
4020 for (i
= 0; i
< E1000_VLVF_ARRAY_SIZE
; i
++) {
4021 reg
= rd32(E1000_VLVF(i
));
4022 if ((reg
& E1000_VLVF_VLANID_ENABLE
) &&
4023 vid
== (reg
& E1000_VLVF_VLANID_MASK
))
4028 if (i
== E1000_VLVF_ARRAY_SIZE
) {
4029 /* Did not find a matching VLAN ID entry that was
4030 * enabled. Search for a free filter entry, i.e.
4031 * one without the enable bit set
4033 for (i
= 0; i
< E1000_VLVF_ARRAY_SIZE
; i
++) {
4034 reg
= rd32(E1000_VLVF(i
));
4035 if (!(reg
& E1000_VLVF_VLANID_ENABLE
))
4039 if (i
< E1000_VLVF_ARRAY_SIZE
) {
4040 /* Found an enabled/available entry */
4041 reg
|= 1 << (E1000_VLVF_POOLSEL_SHIFT
+ vf
);
4043 /* if !enabled we need to set this up in vfta */
4044 if (!(reg
& E1000_VLVF_VLANID_ENABLE
)) {
4045 /* add VID to filter table, if bit already set
4046 * PF must have added it outside of table */
4047 if (igb_vfta_set(hw
, vid
, true))
4048 reg
|= 1 << (E1000_VLVF_POOLSEL_SHIFT
+
4049 adapter
->vfs_allocated_count
);
4050 reg
|= E1000_VLVF_VLANID_ENABLE
;
4052 reg
&= ~E1000_VLVF_VLANID_MASK
;
4055 wr32(E1000_VLVF(i
), reg
);
4057 /* do not modify RLPML for PF devices */
4058 if (vf
>= adapter
->vfs_allocated_count
)
4061 if (!adapter
->vf_data
[vf
].vlans_enabled
) {
4063 reg
= rd32(E1000_VMOLR(vf
));
4064 size
= reg
& E1000_VMOLR_RLPML_MASK
;
4066 reg
&= ~E1000_VMOLR_RLPML_MASK
;
4068 wr32(E1000_VMOLR(vf
), reg
);
4070 adapter
->vf_data
[vf
].vlans_enabled
++;
4075 if (i
< E1000_VLVF_ARRAY_SIZE
) {
4076 /* remove vf from the pool */
4077 reg
&= ~(1 << (E1000_VLVF_POOLSEL_SHIFT
+ vf
));
4078 /* if pool is empty then remove entry from vfta */
4079 if (!(reg
& E1000_VLVF_POOLSEL_MASK
)) {
4081 igb_vfta_set(hw
, vid
, false);
4083 wr32(E1000_VLVF(i
), reg
);
4085 /* do not modify RLPML for PF devices */
4086 if (vf
>= adapter
->vfs_allocated_count
)
4089 adapter
->vf_data
[vf
].vlans_enabled
--;
4090 if (!adapter
->vf_data
[vf
].vlans_enabled
) {
4092 reg
= rd32(E1000_VMOLR(vf
));
4093 size
= reg
& E1000_VMOLR_RLPML_MASK
;
4095 reg
&= ~E1000_VMOLR_RLPML_MASK
;
4097 wr32(E1000_VMOLR(vf
), reg
);
4105 static int igb_set_vf_vlan(struct igb_adapter
*adapter
, u32
*msgbuf
, u32 vf
)
4107 int add
= (msgbuf
[0] & E1000_VT_MSGINFO_MASK
) >> E1000_VT_MSGINFO_SHIFT
;
4108 int vid
= (msgbuf
[1] & E1000_VLVF_VLANID_MASK
);
4110 return igb_vlvf_set(adapter
, vid
, add
, vf
);
4113 static inline void igb_vf_reset_event(struct igb_adapter
*adapter
, u32 vf
)
4115 struct e1000_hw
*hw
= &adapter
->hw
;
4117 /* disable mailbox functionality for vf */
4118 adapter
->vf_data
[vf
].clear_to_send
= false;
4120 /* reset offloads to defaults */
4121 igb_set_vmolr(hw
, vf
);
4123 /* reset vlans for device */
4124 igb_clear_vf_vfta(adapter
, vf
);
4126 /* reset multicast table array for vf */
4127 adapter
->vf_data
[vf
].num_vf_mc_hashes
= 0;
4129 /* Flush and reset the mta with the new values */
4130 igb_set_rx_mode(adapter
->netdev
);
4133 static inline void igb_vf_reset_msg(struct igb_adapter
*adapter
, u32 vf
)
4135 struct e1000_hw
*hw
= &adapter
->hw
;
4136 unsigned char *vf_mac
= adapter
->vf_data
[vf
].vf_mac_addresses
;
4137 int rar_entry
= hw
->mac
.rar_entry_count
- (vf
+ 1);
4139 u8
*addr
= (u8
*)(&msgbuf
[1]);
4141 /* process all the same items cleared in a function level reset */
4142 igb_vf_reset_event(adapter
, vf
);
4144 /* set vf mac address */
4145 igb_rar_set(hw
, vf_mac
, rar_entry
);
4146 igb_set_rah_pool(hw
, vf
, rar_entry
);
4148 /* enable transmit and receive for vf */
4149 reg
= rd32(E1000_VFTE
);
4150 wr32(E1000_VFTE
, reg
| (1 << vf
));
4151 reg
= rd32(E1000_VFRE
);
4152 wr32(E1000_VFRE
, reg
| (1 << vf
));
4154 /* enable mailbox functionality for vf */
4155 adapter
->vf_data
[vf
].clear_to_send
= true;
4157 /* reply to reset with ack and vf mac address */
4158 msgbuf
[0] = E1000_VF_RESET
| E1000_VT_MSGTYPE_ACK
;
4159 memcpy(addr
, vf_mac
, 6);
4160 igb_write_mbx(hw
, msgbuf
, 3, vf
);
4163 static int igb_set_vf_mac_addr(struct igb_adapter
*adapter
, u32
*msg
, int vf
)
4165 unsigned char *addr
= (char *)&msg
[1];
4168 if (is_valid_ether_addr(addr
))
4169 err
= igb_set_vf_mac(adapter
, vf
, addr
);
4175 static void igb_rcv_ack_from_vf(struct igb_adapter
*adapter
, u32 vf
)
4177 struct e1000_hw
*hw
= &adapter
->hw
;
4178 u32 msg
= E1000_VT_MSGTYPE_NACK
;
4180 /* if device isn't clear to send it shouldn't be reading either */
4181 if (!adapter
->vf_data
[vf
].clear_to_send
)
4182 igb_write_mbx(hw
, &msg
, 1, vf
);
4186 static void igb_msg_task(struct igb_adapter
*adapter
)
4188 struct e1000_hw
*hw
= &adapter
->hw
;
4191 for (vf
= 0; vf
< adapter
->vfs_allocated_count
; vf
++) {
4192 /* process any reset requests */
4193 if (!igb_check_for_rst(hw
, vf
)) {
4194 adapter
->vf_data
[vf
].clear_to_send
= false;
4195 igb_vf_reset_event(adapter
, vf
);
4198 /* process any messages pending */
4199 if (!igb_check_for_msg(hw
, vf
))
4200 igb_rcv_msg_from_vf(adapter
, vf
);
4202 /* process any acks */
4203 if (!igb_check_for_ack(hw
, vf
))
4204 igb_rcv_ack_from_vf(adapter
, vf
);
4209 static int igb_rcv_msg_from_vf(struct igb_adapter
*adapter
, u32 vf
)
4211 u32 mbx_size
= E1000_VFMAILBOX_SIZE
;
4212 u32 msgbuf
[mbx_size
];
4213 struct e1000_hw
*hw
= &adapter
->hw
;
4216 retval
= igb_read_mbx(hw
, msgbuf
, mbx_size
, vf
);
4219 dev_err(&adapter
->pdev
->dev
,
4220 "Error receiving message from VF\n");
4222 /* this is a message we already processed, do nothing */
4223 if (msgbuf
[0] & (E1000_VT_MSGTYPE_ACK
| E1000_VT_MSGTYPE_NACK
))
4227 * until the vf completes a reset it should not be
4228 * allowed to start any configuration.
4231 if (msgbuf
[0] == E1000_VF_RESET
) {
4232 igb_vf_reset_msg(adapter
, vf
);
4237 if (!adapter
->vf_data
[vf
].clear_to_send
) {
4238 msgbuf
[0] |= E1000_VT_MSGTYPE_NACK
;
4239 igb_write_mbx(hw
, msgbuf
, 1, vf
);
4243 switch ((msgbuf
[0] & 0xFFFF)) {
4244 case E1000_VF_SET_MAC_ADDR
:
4245 retval
= igb_set_vf_mac_addr(adapter
, msgbuf
, vf
);
4247 case E1000_VF_SET_MULTICAST
:
4248 retval
= igb_set_vf_multicasts(adapter
, msgbuf
, vf
);
4250 case E1000_VF_SET_LPE
:
4251 retval
= igb_set_vf_rlpml(adapter
, msgbuf
[1], vf
);
4253 case E1000_VF_SET_VLAN
:
4254 retval
= igb_set_vf_vlan(adapter
, msgbuf
, vf
);
4257 dev_err(&adapter
->pdev
->dev
, "Unhandled Msg %08x\n", msgbuf
[0]);
4262 /* notify the VF of the results of what it sent us */
4264 msgbuf
[0] |= E1000_VT_MSGTYPE_NACK
;
4266 msgbuf
[0] |= E1000_VT_MSGTYPE_ACK
;
4268 msgbuf
[0] |= E1000_VT_MSGTYPE_CTS
;
4270 igb_write_mbx(hw
, msgbuf
, 1, vf
);
4276 * igb_intr_msi - Interrupt Handler
4277 * @irq: interrupt number
4278 * @data: pointer to a network interface device structure
4280 static irqreturn_t
igb_intr_msi(int irq
, void *data
)
4282 struct net_device
*netdev
= data
;
4283 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4284 struct e1000_hw
*hw
= &adapter
->hw
;
4285 /* read ICR disables interrupts using IAM */
4286 u32 icr
= rd32(E1000_ICR
);
4288 igb_write_itr(adapter
->rx_ring
);
4290 if(icr
& E1000_ICR_DOUTSYNC
) {
4291 /* HW is reporting DMA is out of sync */
4292 adapter
->stats
.doosync
++;
4295 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
4296 hw
->mac
.get_link_status
= 1;
4297 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
4298 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
4301 napi_schedule(&adapter
->rx_ring
[0].napi
);
4307 * igb_intr - Legacy Interrupt Handler
4308 * @irq: interrupt number
4309 * @data: pointer to a network interface device structure
4311 static irqreturn_t
igb_intr(int irq
, void *data
)
4313 struct net_device
*netdev
= data
;
4314 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4315 struct e1000_hw
*hw
= &adapter
->hw
;
4316 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4317 * need for the IMC write */
4318 u32 icr
= rd32(E1000_ICR
);
4320 return IRQ_NONE
; /* Not our interrupt */
4322 igb_write_itr(adapter
->rx_ring
);
4324 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4325 * not set, then the adapter didn't send an interrupt */
4326 if (!(icr
& E1000_ICR_INT_ASSERTED
))
4329 if(icr
& E1000_ICR_DOUTSYNC
) {
4330 /* HW is reporting DMA is out of sync */
4331 adapter
->stats
.doosync
++;
4334 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
4335 hw
->mac
.get_link_status
= 1;
4336 /* guard against interrupt when we're going down */
4337 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
4338 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
4341 napi_schedule(&adapter
->rx_ring
[0].napi
);
4346 static inline void igb_rx_irq_enable(struct igb_ring
*rx_ring
)
4348 struct igb_adapter
*adapter
= rx_ring
->adapter
;
4349 struct e1000_hw
*hw
= &adapter
->hw
;
4351 if (adapter
->itr_setting
& 3) {
4352 if (adapter
->num_rx_queues
== 1)
4353 igb_set_itr(adapter
);
4355 igb_update_ring_itr(rx_ring
);
4358 if (!test_bit(__IGB_DOWN
, &adapter
->state
)) {
4359 if (adapter
->msix_entries
)
4360 wr32(E1000_EIMS
, rx_ring
->eims_value
);
4362 igb_irq_enable(adapter
);
4367 * igb_poll - NAPI Rx polling callback
4368 * @napi: napi polling structure
4369 * @budget: count of how many packets we should handle
4371 static int igb_poll(struct napi_struct
*napi
, int budget
)
4373 struct igb_ring
*rx_ring
= container_of(napi
, struct igb_ring
, napi
);
4376 #ifdef CONFIG_IGB_DCA
4377 if (rx_ring
->adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
4378 igb_update_rx_dca(rx_ring
);
4380 igb_clean_rx_irq_adv(rx_ring
, &work_done
, budget
);
4382 if (rx_ring
->buddy
) {
4383 #ifdef CONFIG_IGB_DCA
4384 if (rx_ring
->adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
4385 igb_update_tx_dca(rx_ring
->buddy
);
4387 if (!igb_clean_tx_irq(rx_ring
->buddy
))
4391 /* If not enough Rx work done, exit the polling mode */
4392 if (work_done
< budget
) {
4393 napi_complete(napi
);
4394 igb_rx_irq_enable(rx_ring
);
4401 * igb_hwtstamp - utility function which checks for TX time stamp
4402 * @adapter: board private structure
4403 * @skb: packet that was just sent
4405 * If we were asked to do hardware stamping and such a time stamp is
4406 * available, then it must have been for this skb here because we only
4407 * allow only one such packet into the queue.
4409 static void igb_tx_hwtstamp(struct igb_adapter
*adapter
, struct sk_buff
*skb
)
4411 union skb_shared_tx
*shtx
= skb_tx(skb
);
4412 struct e1000_hw
*hw
= &adapter
->hw
;
4414 if (unlikely(shtx
->hardware
)) {
4415 u32 valid
= rd32(E1000_TSYNCTXCTL
) & E1000_TSYNCTXCTL_VALID
;
4417 u64 regval
= rd32(E1000_TXSTMPL
);
4419 struct skb_shared_hwtstamps shhwtstamps
;
4421 memset(&shhwtstamps
, 0, sizeof(shhwtstamps
));
4422 regval
|= (u64
)rd32(E1000_TXSTMPH
) << 32;
4423 ns
= timecounter_cyc2time(&adapter
->clock
,
4425 timecompare_update(&adapter
->compare
, ns
);
4426 shhwtstamps
.hwtstamp
= ns_to_ktime(ns
);
4427 shhwtstamps
.syststamp
=
4428 timecompare_transform(&adapter
->compare
, ns
);
4429 skb_tstamp_tx(skb
, &shhwtstamps
);
4435 * igb_clean_tx_irq - Reclaim resources after transmit completes
4436 * @adapter: board private structure
4437 * returns true if ring is completely cleaned
4439 static bool igb_clean_tx_irq(struct igb_ring
*tx_ring
)
4441 struct igb_adapter
*adapter
= tx_ring
->adapter
;
4442 struct net_device
*netdev
= adapter
->netdev
;
4443 struct e1000_hw
*hw
= &adapter
->hw
;
4444 struct igb_buffer
*buffer_info
;
4445 struct sk_buff
*skb
;
4446 union e1000_adv_tx_desc
*tx_desc
, *eop_desc
;
4447 unsigned int total_bytes
= 0, total_packets
= 0;
4448 unsigned int i
, eop
, count
= 0;
4449 bool cleaned
= false;
4451 i
= tx_ring
->next_to_clean
;
4452 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
4453 eop_desc
= E1000_TX_DESC_ADV(*tx_ring
, eop
);
4455 while ((eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
4456 (count
< tx_ring
->count
)) {
4457 for (cleaned
= false; !cleaned
; count
++) {
4458 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
4459 buffer_info
= &tx_ring
->buffer_info
[i
];
4460 cleaned
= (i
== eop
);
4461 skb
= buffer_info
->skb
;
4464 unsigned int segs
, bytecount
;
4465 /* gso_segs is currently only valid for tcp */
4466 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
4467 /* multiply data chunks by size of headers */
4468 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
4470 total_packets
+= segs
;
4471 total_bytes
+= bytecount
;
4473 igb_tx_hwtstamp(adapter
, skb
);
4476 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
4477 tx_desc
->wb
.status
= 0;
4480 if (i
== tx_ring
->count
)
4483 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
4484 eop_desc
= E1000_TX_DESC_ADV(*tx_ring
, eop
);
4487 tx_ring
->next_to_clean
= i
;
4489 if (unlikely(count
&&
4490 netif_carrier_ok(netdev
) &&
4491 igb_desc_unused(tx_ring
) >= IGB_TX_QUEUE_WAKE
)) {
4492 /* Make sure that anybody stopping the queue after this
4493 * sees the new next_to_clean.
4496 if (__netif_subqueue_stopped(netdev
, tx_ring
->queue_index
) &&
4497 !(test_bit(__IGB_DOWN
, &adapter
->state
))) {
4498 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
4499 ++adapter
->restart_queue
;
4503 if (tx_ring
->detect_tx_hung
) {
4504 /* Detect a transmit hang in hardware, this serializes the
4505 * check with the clearing of time_stamp and movement of i */
4506 tx_ring
->detect_tx_hung
= false;
4507 if (tx_ring
->buffer_info
[i
].time_stamp
&&
4508 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
4509 (adapter
->tx_timeout_factor
* HZ
))
4510 && !(rd32(E1000_STATUS
) &
4511 E1000_STATUS_TXOFF
)) {
4513 /* detected Tx unit hang */
4514 dev_err(&adapter
->pdev
->dev
,
4515 "Detected Tx Unit Hang\n"
4519 " next_to_use <%x>\n"
4520 " next_to_clean <%x>\n"
4521 "buffer_info[next_to_clean]\n"
4522 " time_stamp <%lx>\n"
4523 " next_to_watch <%x>\n"
4525 " desc.status <%x>\n",
4526 tx_ring
->queue_index
,
4527 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
4528 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
4529 tx_ring
->next_to_use
,
4530 tx_ring
->next_to_clean
,
4531 tx_ring
->buffer_info
[i
].time_stamp
,
4534 eop_desc
->wb
.status
);
4535 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
4538 tx_ring
->total_bytes
+= total_bytes
;
4539 tx_ring
->total_packets
+= total_packets
;
4540 tx_ring
->tx_stats
.bytes
+= total_bytes
;
4541 tx_ring
->tx_stats
.packets
+= total_packets
;
4542 adapter
->net_stats
.tx_bytes
+= total_bytes
;
4543 adapter
->net_stats
.tx_packets
+= total_packets
;
4544 return (count
< tx_ring
->count
);
4548 * igb_receive_skb - helper function to handle rx indications
4549 * @ring: pointer to receive ring receving this packet
4550 * @status: descriptor status field as written by hardware
4551 * @rx_desc: receive descriptor containing vlan and type information.
4552 * @skb: pointer to sk_buff to be indicated to stack
4554 static void igb_receive_skb(struct igb_ring
*ring
, u8 status
,
4555 union e1000_adv_rx_desc
* rx_desc
,
4556 struct sk_buff
*skb
)
4558 struct igb_adapter
* adapter
= ring
->adapter
;
4559 bool vlan_extracted
= (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
));
4561 skb_record_rx_queue(skb
, ring
->queue_index
);
4563 vlan_gro_receive(&ring
->napi
, adapter
->vlgrp
,
4564 le16_to_cpu(rx_desc
->wb
.upper
.vlan
),
4567 napi_gro_receive(&ring
->napi
, skb
);
4570 static inline void igb_rx_checksum_adv(struct igb_adapter
*adapter
,
4571 u32 status_err
, struct sk_buff
*skb
)
4573 skb
->ip_summed
= CHECKSUM_NONE
;
4575 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4576 if ((status_err
& E1000_RXD_STAT_IXSM
) ||
4577 (adapter
->flags
& IGB_FLAG_RX_CSUM_DISABLED
))
4579 /* TCP/UDP checksum error bit is set */
4581 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
4583 * work around errata with sctp packets where the TCPE aka
4584 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4585 * packets, (aka let the stack check the crc32c)
4587 if (!((adapter
->hw
.mac
.type
== e1000_82576
) &&
4589 adapter
->hw_csum_err
++;
4590 /* let the stack verify checksum errors */
4593 /* It must be a TCP or UDP packet with a valid checksum */
4594 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
4595 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
4597 dev_dbg(&adapter
->pdev
->dev
, "cksum success: bits %08X\n", status_err
);
4598 adapter
->hw_csum_good
++;
4601 static inline u16
igb_get_hlen(struct igb_adapter
*adapter
,
4602 union e1000_adv_rx_desc
*rx_desc
)
4604 /* HW will not DMA in data larger than the given buffer, even if it
4605 * parses the (NFS, of course) header to be larger. In that case, it
4606 * fills the header buffer and spills the rest into the page.
4608 u16 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hdr_info
) &
4609 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
4610 if (hlen
> adapter
->rx_ps_hdr_size
)
4611 hlen
= adapter
->rx_ps_hdr_size
;
4615 static bool igb_clean_rx_irq_adv(struct igb_ring
*rx_ring
,
4616 int *work_done
, int budget
)
4618 struct igb_adapter
*adapter
= rx_ring
->adapter
;
4619 struct net_device
*netdev
= adapter
->netdev
;
4620 struct e1000_hw
*hw
= &adapter
->hw
;
4621 struct pci_dev
*pdev
= adapter
->pdev
;
4622 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
4623 struct igb_buffer
*buffer_info
, *next_buffer
;
4624 struct sk_buff
*skb
;
4625 bool cleaned
= false;
4626 int cleaned_count
= 0;
4627 unsigned int total_bytes
= 0, total_packets
= 0;
4632 i
= rx_ring
->next_to_clean
;
4633 buffer_info
= &rx_ring
->buffer_info
[i
];
4634 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
4635 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
4637 while (staterr
& E1000_RXD_STAT_DD
) {
4638 if (*work_done
>= budget
)
4642 skb
= buffer_info
->skb
;
4643 prefetch(skb
->data
- NET_IP_ALIGN
);
4644 buffer_info
->skb
= NULL
;
4647 if (i
== rx_ring
->count
)
4649 next_rxd
= E1000_RX_DESC_ADV(*rx_ring
, i
);
4651 next_buffer
= &rx_ring
->buffer_info
[i
];
4653 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
4657 /* this is the fast path for the non-packet split case */
4658 if (!adapter
->rx_ps_hdr_size
) {
4659 pci_unmap_single(pdev
, buffer_info
->dma
,
4660 adapter
->rx_buffer_len
,
4661 PCI_DMA_FROMDEVICE
);
4662 buffer_info
->dma
= 0;
4663 skb_put(skb
, length
);
4667 if (buffer_info
->dma
) {
4668 u16 hlen
= igb_get_hlen(adapter
, rx_desc
);
4669 pci_unmap_single(pdev
, buffer_info
->dma
,
4670 adapter
->rx_ps_hdr_size
,
4671 PCI_DMA_FROMDEVICE
);
4672 buffer_info
->dma
= 0;
4677 pci_unmap_page(pdev
, buffer_info
->page_dma
,
4678 PAGE_SIZE
/ 2, PCI_DMA_FROMDEVICE
);
4679 buffer_info
->page_dma
= 0;
4681 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
++,
4683 buffer_info
->page_offset
,
4686 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
4687 (page_count(buffer_info
->page
) != 1))
4688 buffer_info
->page
= NULL
;
4690 get_page(buffer_info
->page
);
4693 skb
->data_len
+= length
;
4695 skb
->truesize
+= length
;
4698 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
4699 buffer_info
->skb
= next_buffer
->skb
;
4700 buffer_info
->dma
= next_buffer
->dma
;
4701 next_buffer
->skb
= skb
;
4702 next_buffer
->dma
= 0;
4707 * If this bit is set, then the RX registers contain
4708 * the time stamp. No other packet will be time
4709 * stamped until we read these registers, so read the
4710 * registers to make them available again. Because
4711 * only one packet can be time stamped at a time, we
4712 * know that the register values must belong to this
4713 * one here and therefore we don't need to compare
4714 * any of the additional attributes stored for it.
4716 * If nothing went wrong, then it should have a
4717 * skb_shared_tx that we can turn into a
4718 * skb_shared_hwtstamps.
4720 * TODO: can time stamping be triggered (thus locking
4721 * the registers) without the packet reaching this point
4722 * here? In that case RX time stamping would get stuck.
4724 * TODO: in "time stamp all packets" mode this bit is
4725 * not set. Need a global flag for this mode and then
4726 * always read the registers. Cannot be done without
4729 if (unlikely(staterr
& E1000_RXD_STAT_TS
)) {
4732 struct skb_shared_hwtstamps
*shhwtstamps
=
4735 WARN(!(rd32(E1000_TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
),
4736 "igb: no RX time stamp available for time stamped packet");
4737 regval
= rd32(E1000_RXSTMPL
);
4738 regval
|= (u64
)rd32(E1000_RXSTMPH
) << 32;
4739 ns
= timecounter_cyc2time(&adapter
->clock
, regval
);
4740 timecompare_update(&adapter
->compare
, ns
);
4741 memset(shhwtstamps
, 0, sizeof(*shhwtstamps
));
4742 shhwtstamps
->hwtstamp
= ns_to_ktime(ns
);
4743 shhwtstamps
->syststamp
=
4744 timecompare_transform(&adapter
->compare
, ns
);
4747 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
4748 dev_kfree_skb_irq(skb
);
4752 total_bytes
+= skb
->len
;
4755 igb_rx_checksum_adv(adapter
, staterr
, skb
);
4757 skb
->protocol
= eth_type_trans(skb
, netdev
);
4759 igb_receive_skb(rx_ring
, staterr
, rx_desc
, skb
);
4762 rx_desc
->wb
.upper
.status_error
= 0;
4764 /* return some buffers to hardware, one at a time is too slow */
4765 if (cleaned_count
>= IGB_RX_BUFFER_WRITE
) {
4766 igb_alloc_rx_buffers_adv(rx_ring
, cleaned_count
);
4770 /* use prefetched values */
4772 buffer_info
= next_buffer
;
4773 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
4776 rx_ring
->next_to_clean
= i
;
4777 cleaned_count
= igb_desc_unused(rx_ring
);
4780 igb_alloc_rx_buffers_adv(rx_ring
, cleaned_count
);
4782 rx_ring
->total_packets
+= total_packets
;
4783 rx_ring
->total_bytes
+= total_bytes
;
4784 rx_ring
->rx_stats
.packets
+= total_packets
;
4785 rx_ring
->rx_stats
.bytes
+= total_bytes
;
4786 adapter
->net_stats
.rx_bytes
+= total_bytes
;
4787 adapter
->net_stats
.rx_packets
+= total_packets
;
4792 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4793 * @adapter: address of board private structure
4795 static void igb_alloc_rx_buffers_adv(struct igb_ring
*rx_ring
,
4798 struct igb_adapter
*adapter
= rx_ring
->adapter
;
4799 struct net_device
*netdev
= adapter
->netdev
;
4800 struct pci_dev
*pdev
= adapter
->pdev
;
4801 union e1000_adv_rx_desc
*rx_desc
;
4802 struct igb_buffer
*buffer_info
;
4803 struct sk_buff
*skb
;
4807 i
= rx_ring
->next_to_use
;
4808 buffer_info
= &rx_ring
->buffer_info
[i
];
4810 if (adapter
->rx_ps_hdr_size
)
4811 bufsz
= adapter
->rx_ps_hdr_size
;
4813 bufsz
= adapter
->rx_buffer_len
;
4815 while (cleaned_count
--) {
4816 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
4818 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
4819 if (!buffer_info
->page
) {
4820 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
4821 if (!buffer_info
->page
) {
4822 adapter
->alloc_rx_buff_failed
++;
4825 buffer_info
->page_offset
= 0;
4827 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
4829 buffer_info
->page_dma
=
4830 pci_map_page(pdev
, buffer_info
->page
,
4831 buffer_info
->page_offset
,
4833 PCI_DMA_FROMDEVICE
);
4836 if (!buffer_info
->skb
) {
4837 skb
= netdev_alloc_skb(netdev
, bufsz
+ NET_IP_ALIGN
);
4839 adapter
->alloc_rx_buff_failed
++;
4843 /* Make buffer alignment 2 beyond a 16 byte boundary
4844 * this will result in a 16 byte aligned IP header after
4845 * the 14 byte MAC header is removed
4847 skb_reserve(skb
, NET_IP_ALIGN
);
4849 buffer_info
->skb
= skb
;
4850 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
4852 PCI_DMA_FROMDEVICE
);
4854 /* Refresh the desc even if buffer_addrs didn't change because
4855 * each write-back erases this info. */
4856 if (adapter
->rx_ps_hdr_size
) {
4857 rx_desc
->read
.pkt_addr
=
4858 cpu_to_le64(buffer_info
->page_dma
);
4859 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
4861 rx_desc
->read
.pkt_addr
=
4862 cpu_to_le64(buffer_info
->dma
);
4863 rx_desc
->read
.hdr_addr
= 0;
4867 if (i
== rx_ring
->count
)
4869 buffer_info
= &rx_ring
->buffer_info
[i
];
4873 if (rx_ring
->next_to_use
!= i
) {
4874 rx_ring
->next_to_use
= i
;
4876 i
= (rx_ring
->count
- 1);
4880 /* Force memory writes to complete before letting h/w
4881 * know there are new descriptors to fetch. (Only
4882 * applicable for weak-ordered memory model archs,
4883 * such as IA-64). */
4885 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
4895 static int igb_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4897 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4898 struct mii_ioctl_data
*data
= if_mii(ifr
);
4900 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
4905 data
->phy_id
= adapter
->hw
.phy
.addr
;
4908 if (igb_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
4920 * igb_hwtstamp_ioctl - control hardware time stamping
4925 * Outgoing time stamping can be enabled and disabled. Play nice and
4926 * disable it when requested, although it shouldn't case any overhead
4927 * when no packet needs it. At most one packet in the queue may be
4928 * marked for time stamping, otherwise it would be impossible to tell
4929 * for sure to which packet the hardware time stamp belongs.
4931 * Incoming time stamping has to be configured via the hardware
4932 * filters. Not all combinations are supported, in particular event
4933 * type has to be specified. Matching the kind of event packet is
4934 * not supported, with the exception of "all V2 events regardless of
4938 static int igb_hwtstamp_ioctl(struct net_device
*netdev
,
4939 struct ifreq
*ifr
, int cmd
)
4941 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4942 struct e1000_hw
*hw
= &adapter
->hw
;
4943 struct hwtstamp_config config
;
4944 u32 tsync_tx_ctl_bit
= E1000_TSYNCTXCTL_ENABLED
;
4945 u32 tsync_rx_ctl_bit
= E1000_TSYNCRXCTL_ENABLED
;
4946 u32 tsync_rx_ctl_type
= 0;
4947 u32 tsync_rx_cfg
= 0;
4950 short port
= 319; /* PTP */
4953 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
4956 /* reserved for future extensions */
4960 switch (config
.tx_type
) {
4961 case HWTSTAMP_TX_OFF
:
4962 tsync_tx_ctl_bit
= 0;
4964 case HWTSTAMP_TX_ON
:
4965 tsync_tx_ctl_bit
= E1000_TSYNCTXCTL_ENABLED
;
4971 switch (config
.rx_filter
) {
4972 case HWTSTAMP_FILTER_NONE
:
4973 tsync_rx_ctl_bit
= 0;
4975 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
4976 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
4977 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
4978 case HWTSTAMP_FILTER_ALL
:
4980 * register TSYNCRXCFG must be set, therefore it is not
4981 * possible to time stamp both Sync and Delay_Req messages
4982 * => fall back to time stamping all packets
4984 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_ALL
;
4985 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
4987 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
4988 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_L4_V1
;
4989 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE
;
4992 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
4993 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_L4_V1
;
4994 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE
;
4997 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
4998 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
4999 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
5000 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE
;
5003 config
.rx_filter
= HWTSTAMP_FILTER_SOME
;
5005 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
5006 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
5007 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
5008 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE
;
5011 config
.rx_filter
= HWTSTAMP_FILTER_SOME
;
5013 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
5014 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
5015 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
5016 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_EVENT_V2
;
5017 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
5024 /* enable/disable TX */
5025 regval
= rd32(E1000_TSYNCTXCTL
);
5026 regval
= (regval
& ~E1000_TSYNCTXCTL_ENABLED
) | tsync_tx_ctl_bit
;
5027 wr32(E1000_TSYNCTXCTL
, regval
);
5029 /* enable/disable RX, define which PTP packets are time stamped */
5030 regval
= rd32(E1000_TSYNCRXCTL
);
5031 regval
= (regval
& ~E1000_TSYNCRXCTL_ENABLED
) | tsync_rx_ctl_bit
;
5032 regval
= (regval
& ~0xE) | tsync_rx_ctl_type
;
5033 wr32(E1000_TSYNCRXCTL
, regval
);
5034 wr32(E1000_TSYNCRXCFG
, tsync_rx_cfg
);
5037 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
5038 * (Ethertype to filter on)
5039 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
5040 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
5042 wr32(E1000_ETQF0
, is_l2
? 0x440088f7 : 0);
5044 /* L4 Queue Filter[0]: only filter by source and destination port */
5045 wr32(E1000_SPQF0
, htons(port
));
5046 wr32(E1000_IMIREXT(0), is_l4
?
5047 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
5048 wr32(E1000_IMIR(0), is_l4
?
5050 | (0<<16) /* immediate interrupt disabled */
5051 | 0 /* (1<<17) bit cleared: do not bypass
5052 destination port check */)
5054 wr32(E1000_FTQF0
, is_l4
?
5056 | (1<<15) /* VF not compared */
5057 | (1<<27) /* Enable Timestamping */
5058 | (7<<28) /* only source port filter enabled,
5059 source/target address and protocol
5061 : ((1<<15) | (15<<28) /* all mask bits set = filter not
5066 adapter
->hwtstamp_config
= config
;
5068 /* clear TX/RX time stamp registers, just to be sure */
5069 regval
= rd32(E1000_TXSTMPH
);
5070 regval
= rd32(E1000_RXSTMPH
);
5072 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
5082 static int igb_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
5088 return igb_mii_ioctl(netdev
, ifr
, cmd
);
5090 return igb_hwtstamp_ioctl(netdev
, ifr
, cmd
);
5096 s32
igb_read_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
5098 struct igb_adapter
*adapter
= hw
->back
;
5101 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
5103 return -E1000_ERR_CONFIG
;
5105 pci_read_config_word(adapter
->pdev
, cap_offset
+ reg
, value
);
5110 s32
igb_write_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
5112 struct igb_adapter
*adapter
= hw
->back
;
5115 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
5117 return -E1000_ERR_CONFIG
;
5119 pci_write_config_word(adapter
->pdev
, cap_offset
+ reg
, *value
);
5124 static void igb_vlan_rx_register(struct net_device
*netdev
,
5125 struct vlan_group
*grp
)
5127 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5128 struct e1000_hw
*hw
= &adapter
->hw
;
5131 igb_irq_disable(adapter
);
5132 adapter
->vlgrp
= grp
;
5135 /* enable VLAN tag insert/strip */
5136 ctrl
= rd32(E1000_CTRL
);
5137 ctrl
|= E1000_CTRL_VME
;
5138 wr32(E1000_CTRL
, ctrl
);
5140 /* enable VLAN receive filtering */
5141 rctl
= rd32(E1000_RCTL
);
5142 rctl
&= ~E1000_RCTL_CFIEN
;
5143 wr32(E1000_RCTL
, rctl
);
5144 igb_update_mng_vlan(adapter
);
5146 /* disable VLAN tag insert/strip */
5147 ctrl
= rd32(E1000_CTRL
);
5148 ctrl
&= ~E1000_CTRL_VME
;
5149 wr32(E1000_CTRL
, ctrl
);
5151 if (adapter
->mng_vlan_id
!= (u16
)IGB_MNG_VLAN_NONE
) {
5152 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
5153 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
5157 igb_rlpml_set(adapter
);
5159 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
5160 igb_irq_enable(adapter
);
5163 static void igb_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
5165 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5166 struct e1000_hw
*hw
= &adapter
->hw
;
5167 int pf_id
= adapter
->vfs_allocated_count
;
5169 if ((hw
->mng_cookie
.status
&
5170 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
5171 (vid
== adapter
->mng_vlan_id
))
5174 /* add vid to vlvf if sr-iov is enabled,
5175 * if that fails add directly to filter table */
5176 if (igb_vlvf_set(adapter
, vid
, true, pf_id
))
5177 igb_vfta_set(hw
, vid
, true);
5181 static void igb_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
5183 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5184 struct e1000_hw
*hw
= &adapter
->hw
;
5185 int pf_id
= adapter
->vfs_allocated_count
;
5187 igb_irq_disable(adapter
);
5188 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
5190 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
5191 igb_irq_enable(adapter
);
5193 if ((adapter
->hw
.mng_cookie
.status
&
5194 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
5195 (vid
== adapter
->mng_vlan_id
)) {
5196 /* release control to f/w */
5197 igb_release_hw_control(adapter
);
5201 /* remove vid from vlvf if sr-iov is enabled,
5202 * if not in vlvf remove from vfta */
5203 if (igb_vlvf_set(adapter
, vid
, false, pf_id
))
5204 igb_vfta_set(hw
, vid
, false);
5207 static void igb_restore_vlan(struct igb_adapter
*adapter
)
5209 igb_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
5211 if (adapter
->vlgrp
) {
5213 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
5214 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
5216 igb_vlan_rx_add_vid(adapter
->netdev
, vid
);
5221 int igb_set_spd_dplx(struct igb_adapter
*adapter
, u16 spddplx
)
5223 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
5228 case SPEED_10
+ DUPLEX_HALF
:
5229 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
5231 case SPEED_10
+ DUPLEX_FULL
:
5232 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
5234 case SPEED_100
+ DUPLEX_HALF
:
5235 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
5237 case SPEED_100
+ DUPLEX_FULL
:
5238 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
5240 case SPEED_1000
+ DUPLEX_FULL
:
5242 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
5244 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
5246 dev_err(&adapter
->pdev
->dev
,
5247 "Unsupported Speed/Duplex configuration\n");
5253 static int __igb_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
5255 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5256 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5257 struct e1000_hw
*hw
= &adapter
->hw
;
5258 u32 ctrl
, rctl
, status
;
5259 u32 wufc
= adapter
->wol
;
5264 netif_device_detach(netdev
);
5266 if (netif_running(netdev
))
5269 igb_reset_interrupt_capability(adapter
);
5271 igb_free_queues(adapter
);
5274 retval
= pci_save_state(pdev
);
5279 status
= rd32(E1000_STATUS
);
5280 if (status
& E1000_STATUS_LU
)
5281 wufc
&= ~E1000_WUFC_LNKC
;
5284 igb_setup_rctl(adapter
);
5285 igb_set_rx_mode(netdev
);
5287 /* turn on all-multi mode if wake on multicast is enabled */
5288 if (wufc
& E1000_WUFC_MC
) {
5289 rctl
= rd32(E1000_RCTL
);
5290 rctl
|= E1000_RCTL_MPE
;
5291 wr32(E1000_RCTL
, rctl
);
5294 ctrl
= rd32(E1000_CTRL
);
5295 /* advertise wake from D3Cold */
5296 #define E1000_CTRL_ADVD3WUC 0x00100000
5297 /* phy power management enable */
5298 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5299 ctrl
|= E1000_CTRL_ADVD3WUC
;
5300 wr32(E1000_CTRL
, ctrl
);
5302 /* Allow time for pending master requests to run */
5303 igb_disable_pcie_master(&adapter
->hw
);
5305 wr32(E1000_WUC
, E1000_WUC_PME_EN
);
5306 wr32(E1000_WUFC
, wufc
);
5309 wr32(E1000_WUFC
, 0);
5312 *enable_wake
= wufc
|| adapter
->en_mng_pt
;
5314 igb_shutdown_serdes_link_82575(hw
);
5316 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5317 * would have already happened in close and is redundant. */
5318 igb_release_hw_control(adapter
);
5320 pci_disable_device(pdev
);
5326 static int igb_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5331 retval
= __igb_shutdown(pdev
, &wake
);
5336 pci_prepare_to_sleep(pdev
);
5338 pci_wake_from_d3(pdev
, false);
5339 pci_set_power_state(pdev
, PCI_D3hot
);
5345 static int igb_resume(struct pci_dev
*pdev
)
5347 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5348 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5349 struct e1000_hw
*hw
= &adapter
->hw
;
5352 pci_set_power_state(pdev
, PCI_D0
);
5353 pci_restore_state(pdev
);
5355 err
= pci_enable_device_mem(pdev
);
5358 "igb: Cannot enable PCI device from suspend\n");
5361 pci_set_master(pdev
);
5363 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5364 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5366 igb_set_interrupt_capability(adapter
);
5368 if (igb_alloc_queues(adapter
)) {
5369 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
5373 /* e1000_power_up_phy(adapter); */
5377 /* let the f/w know that the h/w is now under the control of the
5379 igb_get_hw_control(adapter
);
5381 wr32(E1000_WUS
, ~0);
5383 if (netif_running(netdev
)) {
5384 err
= igb_open(netdev
);
5389 netif_device_attach(netdev
);
5395 static void igb_shutdown(struct pci_dev
*pdev
)
5399 __igb_shutdown(pdev
, &wake
);
5401 if (system_state
== SYSTEM_POWER_OFF
) {
5402 pci_wake_from_d3(pdev
, wake
);
5403 pci_set_power_state(pdev
, PCI_D3hot
);
5407 #ifdef CONFIG_NET_POLL_CONTROLLER
5409 * Polling 'interrupt' - used by things like netconsole to send skbs
5410 * without having to re-enable interrupts. It's not called while
5411 * the interrupt routine is executing.
5413 static void igb_netpoll(struct net_device
*netdev
)
5415 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5416 struct e1000_hw
*hw
= &adapter
->hw
;
5419 if (!adapter
->msix_entries
) {
5420 igb_irq_disable(adapter
);
5421 napi_schedule(&adapter
->rx_ring
[0].napi
);
5425 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
5426 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[i
];
5427 wr32(E1000_EIMC
, tx_ring
->eims_value
);
5428 igb_clean_tx_irq(tx_ring
);
5429 wr32(E1000_EIMS
, tx_ring
->eims_value
);
5432 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
5433 struct igb_ring
*rx_ring
= &adapter
->rx_ring
[i
];
5434 wr32(E1000_EIMC
, rx_ring
->eims_value
);
5435 napi_schedule(&rx_ring
->napi
);
5438 #endif /* CONFIG_NET_POLL_CONTROLLER */
5441 * igb_io_error_detected - called when PCI error is detected
5442 * @pdev: Pointer to PCI device
5443 * @state: The current pci connection state
5445 * This function is called after a PCI bus error affecting
5446 * this device has been detected.
5448 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*pdev
,
5449 pci_channel_state_t state
)
5451 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5452 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5454 netif_device_detach(netdev
);
5456 if (state
== pci_channel_io_perm_failure
)
5457 return PCI_ERS_RESULT_DISCONNECT
;
5459 if (netif_running(netdev
))
5461 pci_disable_device(pdev
);
5463 /* Request a slot slot reset. */
5464 return PCI_ERS_RESULT_NEED_RESET
;
5468 * igb_io_slot_reset - called after the pci bus has been reset.
5469 * @pdev: Pointer to PCI device
5471 * Restart the card from scratch, as if from a cold-boot. Implementation
5472 * resembles the first-half of the igb_resume routine.
5474 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*pdev
)
5476 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5477 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5478 struct e1000_hw
*hw
= &adapter
->hw
;
5479 pci_ers_result_t result
;
5482 if (pci_enable_device_mem(pdev
)) {
5484 "Cannot re-enable PCI device after reset.\n");
5485 result
= PCI_ERS_RESULT_DISCONNECT
;
5487 pci_set_master(pdev
);
5488 pci_restore_state(pdev
);
5490 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5491 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5494 wr32(E1000_WUS
, ~0);
5495 result
= PCI_ERS_RESULT_RECOVERED
;
5498 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
5500 dev_err(&pdev
->dev
, "pci_cleanup_aer_uncorrect_error_status "
5501 "failed 0x%0x\n", err
);
5502 /* non-fatal, continue */
5509 * igb_io_resume - called when traffic can start flowing again.
5510 * @pdev: Pointer to PCI device
5512 * This callback is called when the error recovery driver tells us that
5513 * its OK to resume normal operation. Implementation resembles the
5514 * second-half of the igb_resume routine.
5516 static void igb_io_resume(struct pci_dev
*pdev
)
5518 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5519 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5521 if (netif_running(netdev
)) {
5522 if (igb_up(adapter
)) {
5523 dev_err(&pdev
->dev
, "igb_up failed after reset\n");
5528 netif_device_attach(netdev
);
5530 /* let the f/w know that the h/w is now under the control of the
5532 igb_get_hw_control(adapter
);
5535 static int igb_set_vf_mac(struct igb_adapter
*adapter
,
5536 int vf
, unsigned char *mac_addr
)
5538 struct e1000_hw
*hw
= &adapter
->hw
;
5539 /* VF MAC addresses start at end of receive addresses and moves
5540 * torwards the first, as a result a collision should not be possible */
5541 int rar_entry
= hw
->mac
.rar_entry_count
- (vf
+ 1);
5543 memcpy(adapter
->vf_data
[vf
].vf_mac_addresses
, mac_addr
, ETH_ALEN
);
5545 igb_rar_set(hw
, mac_addr
, rar_entry
);
5546 igb_set_rah_pool(hw
, vf
, rar_entry
);
5551 static void igb_vmm_control(struct igb_adapter
*adapter
)
5553 struct e1000_hw
*hw
= &adapter
->hw
;
5556 if (!adapter
->vfs_allocated_count
)
5559 /* VF's need PF reset indication before they
5560 * can send/receive mail */
5561 reg_data
= rd32(E1000_CTRL_EXT
);
5562 reg_data
|= E1000_CTRL_EXT_PFRSTD
;
5563 wr32(E1000_CTRL_EXT
, reg_data
);
5565 igb_vmdq_set_loopback_pf(hw
, true);
5566 igb_vmdq_set_replication_pf(hw
, true);