x86/amd-iommu: Add function to complete a tlb flush
[linux/fpc-iii.git] / drivers / net / igb / igb_main.c
blob714c3a4a44eff5a1d43b538a6c6cf380bfea445c
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
73 /* required last entry */
74 {0, }
77 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
79 void igb_reset(struct igb_adapter *);
80 static int igb_setup_all_tx_resources(struct igb_adapter *);
81 static int igb_setup_all_rx_resources(struct igb_adapter *);
82 static void igb_free_all_tx_resources(struct igb_adapter *);
83 static void igb_free_all_rx_resources(struct igb_adapter *);
84 void igb_update_stats(struct igb_adapter *);
85 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
86 static void __devexit igb_remove(struct pci_dev *pdev);
87 static int igb_sw_init(struct igb_adapter *);
88 static int igb_open(struct net_device *);
89 static int igb_close(struct net_device *);
90 static void igb_configure_tx(struct igb_adapter *);
91 static void igb_configure_rx(struct igb_adapter *);
92 static void igb_setup_rctl(struct igb_adapter *);
93 static void igb_clean_all_tx_rings(struct igb_adapter *);
94 static void igb_clean_all_rx_rings(struct igb_adapter *);
95 static void igb_clean_tx_ring(struct igb_ring *);
96 static void igb_clean_rx_ring(struct igb_ring *);
97 static void igb_set_rx_mode(struct net_device *);
98 static void igb_update_phy_info(unsigned long);
99 static void igb_watchdog(unsigned long);
100 static void igb_watchdog_task(struct work_struct *);
101 static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *,
102 struct net_device *,
103 struct igb_ring *);
104 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
105 struct net_device *);
106 static struct net_device_stats *igb_get_stats(struct net_device *);
107 static int igb_change_mtu(struct net_device *, int);
108 static int igb_set_mac(struct net_device *, void *);
109 static irqreturn_t igb_intr(int irq, void *);
110 static irqreturn_t igb_intr_msi(int irq, void *);
111 static irqreturn_t igb_msix_other(int irq, void *);
112 static irqreturn_t igb_msix_rx(int irq, void *);
113 static irqreturn_t igb_msix_tx(int irq, void *);
114 #ifdef CONFIG_IGB_DCA
115 static void igb_update_rx_dca(struct igb_ring *);
116 static void igb_update_tx_dca(struct igb_ring *);
117 static void igb_setup_dca(struct igb_adapter *);
118 #endif /* CONFIG_IGB_DCA */
119 static bool igb_clean_tx_irq(struct igb_ring *);
120 static int igb_poll(struct napi_struct *, int);
121 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
122 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
123 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
124 static void igb_tx_timeout(struct net_device *);
125 static void igb_reset_task(struct work_struct *);
126 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
127 static void igb_vlan_rx_add_vid(struct net_device *, u16);
128 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
129 static void igb_restore_vlan(struct igb_adapter *);
130 static void igb_ping_all_vfs(struct igb_adapter *);
131 static void igb_msg_task(struct igb_adapter *);
132 static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
133 static inline void igb_set_rah_pool(struct e1000_hw *, int , int);
134 static void igb_vmm_control(struct igb_adapter *);
135 static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
136 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
138 static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
140 u32 reg_data;
142 reg_data = rd32(E1000_VMOLR(vfn));
143 reg_data |= E1000_VMOLR_BAM | /* Accept broadcast */
144 E1000_VMOLR_ROPE | /* Accept packets matched in UTA */
145 E1000_VMOLR_ROMPE | /* Accept packets matched in MTA */
146 E1000_VMOLR_AUPE | /* Accept untagged packets */
147 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
148 wr32(E1000_VMOLR(vfn), reg_data);
151 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
152 int vfn)
154 struct e1000_hw *hw = &adapter->hw;
155 u32 vmolr;
157 /* if it isn't the PF check to see if VFs are enabled and
158 * increase the size to support vlan tags */
159 if (vfn < adapter->vfs_allocated_count &&
160 adapter->vf_data[vfn].vlans_enabled)
161 size += VLAN_TAG_SIZE;
163 vmolr = rd32(E1000_VMOLR(vfn));
164 vmolr &= ~E1000_VMOLR_RLPML_MASK;
165 vmolr |= size | E1000_VMOLR_LPE;
166 wr32(E1000_VMOLR(vfn), vmolr);
168 return 0;
171 static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
173 u32 reg_data;
175 reg_data = rd32(E1000_RAH(entry));
176 reg_data &= ~E1000_RAH_POOL_MASK;
177 reg_data |= E1000_RAH_POOL_1 << pool;;
178 wr32(E1000_RAH(entry), reg_data);
181 #ifdef CONFIG_PM
182 static int igb_suspend(struct pci_dev *, pm_message_t);
183 static int igb_resume(struct pci_dev *);
184 #endif
185 static void igb_shutdown(struct pci_dev *);
186 #ifdef CONFIG_IGB_DCA
187 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
188 static struct notifier_block dca_notifier = {
189 .notifier_call = igb_notify_dca,
190 .next = NULL,
191 .priority = 0
193 #endif
194 #ifdef CONFIG_NET_POLL_CONTROLLER
195 /* for netdump / net console */
196 static void igb_netpoll(struct net_device *);
197 #endif
198 #ifdef CONFIG_PCI_IOV
199 static unsigned int max_vfs = 0;
200 module_param(max_vfs, uint, 0);
201 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
202 "per physical function");
203 #endif /* CONFIG_PCI_IOV */
205 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
206 pci_channel_state_t);
207 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
208 static void igb_io_resume(struct pci_dev *);
210 static struct pci_error_handlers igb_err_handler = {
211 .error_detected = igb_io_error_detected,
212 .slot_reset = igb_io_slot_reset,
213 .resume = igb_io_resume,
217 static struct pci_driver igb_driver = {
218 .name = igb_driver_name,
219 .id_table = igb_pci_tbl,
220 .probe = igb_probe,
221 .remove = __devexit_p(igb_remove),
222 #ifdef CONFIG_PM
223 /* Power Managment Hooks */
224 .suspend = igb_suspend,
225 .resume = igb_resume,
226 #endif
227 .shutdown = igb_shutdown,
228 .err_handler = &igb_err_handler
231 static int global_quad_port_a; /* global quad port a indication */
233 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
234 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
235 MODULE_LICENSE("GPL");
236 MODULE_VERSION(DRV_VERSION);
239 * Scale the NIC clock cycle by a large factor so that
240 * relatively small clock corrections can be added or
241 * substracted at each clock tick. The drawbacks of a
242 * large factor are a) that the clock register overflows
243 * more quickly (not such a big deal) and b) that the
244 * increment per tick has to fit into 24 bits.
246 * Note that
247 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
248 * IGB_TSYNC_SCALE
249 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
251 * The base scale factor is intentionally a power of two
252 * so that the division in %struct timecounter can be done with
253 * a shift.
255 #define IGB_TSYNC_SHIFT (19)
256 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
259 * The duration of one clock cycle of the NIC.
261 * @todo This hard-coded value is part of the specification and might change
262 * in future hardware revisions. Add revision check.
264 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
266 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
267 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
268 #endif
271 * igb_read_clock - read raw cycle counter (to be used by time counter)
273 static cycle_t igb_read_clock(const struct cyclecounter *tc)
275 struct igb_adapter *adapter =
276 container_of(tc, struct igb_adapter, cycles);
277 struct e1000_hw *hw = &adapter->hw;
278 u64 stamp;
280 stamp = rd32(E1000_SYSTIML);
281 stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
283 return stamp;
286 #ifdef DEBUG
288 * igb_get_hw_dev_name - return device name string
289 * used by hardware layer to print debugging information
291 char *igb_get_hw_dev_name(struct e1000_hw *hw)
293 struct igb_adapter *adapter = hw->back;
294 return adapter->netdev->name;
298 * igb_get_time_str - format current NIC and system time as string
300 static char *igb_get_time_str(struct igb_adapter *adapter,
301 char buffer[160])
303 cycle_t hw = adapter->cycles.read(&adapter->cycles);
304 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
305 struct timespec sys;
306 struct timespec delta;
307 getnstimeofday(&sys);
309 delta = timespec_sub(nic, sys);
311 sprintf(buffer,
312 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
314 (long)nic.tv_sec, nic.tv_nsec,
315 (long)sys.tv_sec, sys.tv_nsec,
316 (long)delta.tv_sec, delta.tv_nsec);
318 return buffer;
320 #endif
323 * igb_desc_unused - calculate if we have unused descriptors
325 static int igb_desc_unused(struct igb_ring *ring)
327 if (ring->next_to_clean > ring->next_to_use)
328 return ring->next_to_clean - ring->next_to_use - 1;
330 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
334 * igb_init_module - Driver Registration Routine
336 * igb_init_module is the first routine called when the driver is
337 * loaded. All it does is register with the PCI subsystem.
339 static int __init igb_init_module(void)
341 int ret;
342 printk(KERN_INFO "%s - version %s\n",
343 igb_driver_string, igb_driver_version);
345 printk(KERN_INFO "%s\n", igb_copyright);
347 global_quad_port_a = 0;
349 #ifdef CONFIG_IGB_DCA
350 dca_register_notify(&dca_notifier);
351 #endif
353 ret = pci_register_driver(&igb_driver);
354 return ret;
357 module_init(igb_init_module);
360 * igb_exit_module - Driver Exit Cleanup Routine
362 * igb_exit_module is called just before the driver is removed
363 * from memory.
365 static void __exit igb_exit_module(void)
367 #ifdef CONFIG_IGB_DCA
368 dca_unregister_notify(&dca_notifier);
369 #endif
370 pci_unregister_driver(&igb_driver);
373 module_exit(igb_exit_module);
375 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
377 * igb_cache_ring_register - Descriptor ring to register mapping
378 * @adapter: board private structure to initialize
380 * Once we know the feature-set enabled for the device, we'll cache
381 * the register offset the descriptor ring is assigned to.
383 static void igb_cache_ring_register(struct igb_adapter *adapter)
385 int i;
386 unsigned int rbase_offset = adapter->vfs_allocated_count;
388 switch (adapter->hw.mac.type) {
389 case e1000_82576:
390 /* The queues are allocated for virtualization such that VF 0
391 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
392 * In order to avoid collision we start at the first free queue
393 * and continue consuming queues in the same sequence
395 for (i = 0; i < adapter->num_rx_queues; i++)
396 adapter->rx_ring[i].reg_idx = rbase_offset +
397 Q_IDX_82576(i);
398 for (i = 0; i < adapter->num_tx_queues; i++)
399 adapter->tx_ring[i].reg_idx = rbase_offset +
400 Q_IDX_82576(i);
401 break;
402 case e1000_82575:
403 default:
404 for (i = 0; i < adapter->num_rx_queues; i++)
405 adapter->rx_ring[i].reg_idx = i;
406 for (i = 0; i < adapter->num_tx_queues; i++)
407 adapter->tx_ring[i].reg_idx = i;
408 break;
413 * igb_alloc_queues - Allocate memory for all rings
414 * @adapter: board private structure to initialize
416 * We allocate one ring per queue at run-time since we don't know the
417 * number of queues at compile-time.
419 static int igb_alloc_queues(struct igb_adapter *adapter)
421 int i;
423 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
424 sizeof(struct igb_ring), GFP_KERNEL);
425 if (!adapter->tx_ring)
426 return -ENOMEM;
428 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
429 sizeof(struct igb_ring), GFP_KERNEL);
430 if (!adapter->rx_ring) {
431 kfree(adapter->tx_ring);
432 return -ENOMEM;
435 adapter->rx_ring->buddy = adapter->tx_ring;
437 for (i = 0; i < adapter->num_tx_queues; i++) {
438 struct igb_ring *ring = &(adapter->tx_ring[i]);
439 ring->count = adapter->tx_ring_count;
440 ring->adapter = adapter;
441 ring->queue_index = i;
443 for (i = 0; i < adapter->num_rx_queues; i++) {
444 struct igb_ring *ring = &(adapter->rx_ring[i]);
445 ring->count = adapter->rx_ring_count;
446 ring->adapter = adapter;
447 ring->queue_index = i;
448 ring->itr_register = E1000_ITR;
450 /* set a default napi handler for each rx_ring */
451 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
454 igb_cache_ring_register(adapter);
455 return 0;
458 static void igb_free_queues(struct igb_adapter *adapter)
460 int i;
462 for (i = 0; i < adapter->num_rx_queues; i++)
463 netif_napi_del(&adapter->rx_ring[i].napi);
465 adapter->num_rx_queues = 0;
466 adapter->num_tx_queues = 0;
468 kfree(adapter->tx_ring);
469 kfree(adapter->rx_ring);
472 #define IGB_N0_QUEUE -1
473 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
474 int tx_queue, int msix_vector)
476 u32 msixbm = 0;
477 struct e1000_hw *hw = &adapter->hw;
478 u32 ivar, index;
480 switch (hw->mac.type) {
481 case e1000_82575:
482 /* The 82575 assigns vectors using a bitmask, which matches the
483 bitmask for the EICR/EIMS/EIMC registers. To assign one
484 or more queues to a vector, we write the appropriate bits
485 into the MSIXBM register for that vector. */
486 if (rx_queue > IGB_N0_QUEUE) {
487 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
488 adapter->rx_ring[rx_queue].eims_value = msixbm;
490 if (tx_queue > IGB_N0_QUEUE) {
491 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
492 adapter->tx_ring[tx_queue].eims_value =
493 E1000_EICR_TX_QUEUE0 << tx_queue;
495 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
496 break;
497 case e1000_82576:
498 /* 82576 uses a table-based method for assigning vectors.
499 Each queue has a single entry in the table to which we write
500 a vector number along with a "valid" bit. Sadly, the layout
501 of the table is somewhat counterintuitive. */
502 if (rx_queue > IGB_N0_QUEUE) {
503 index = (rx_queue >> 1) + adapter->vfs_allocated_count;
504 ivar = array_rd32(E1000_IVAR0, index);
505 if (rx_queue & 0x1) {
506 /* vector goes into third byte of register */
507 ivar = ivar & 0xFF00FFFF;
508 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
509 } else {
510 /* vector goes into low byte of register */
511 ivar = ivar & 0xFFFFFF00;
512 ivar |= msix_vector | E1000_IVAR_VALID;
514 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
515 array_wr32(E1000_IVAR0, index, ivar);
517 if (tx_queue > IGB_N0_QUEUE) {
518 index = (tx_queue >> 1) + adapter->vfs_allocated_count;
519 ivar = array_rd32(E1000_IVAR0, index);
520 if (tx_queue & 0x1) {
521 /* vector goes into high byte of register */
522 ivar = ivar & 0x00FFFFFF;
523 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
524 } else {
525 /* vector goes into second byte of register */
526 ivar = ivar & 0xFFFF00FF;
527 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
529 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
530 array_wr32(E1000_IVAR0, index, ivar);
532 break;
533 default:
534 BUG();
535 break;
540 * igb_configure_msix - Configure MSI-X hardware
542 * igb_configure_msix sets up the hardware to properly
543 * generate MSI-X interrupts.
545 static void igb_configure_msix(struct igb_adapter *adapter)
547 u32 tmp;
548 int i, vector = 0;
549 struct e1000_hw *hw = &adapter->hw;
551 adapter->eims_enable_mask = 0;
552 if (hw->mac.type == e1000_82576)
553 /* Turn on MSI-X capability first, or our settings
554 * won't stick. And it will take days to debug. */
555 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
556 E1000_GPIE_PBA | E1000_GPIE_EIAME |
557 E1000_GPIE_NSICR);
559 for (i = 0; i < adapter->num_tx_queues; i++) {
560 struct igb_ring *tx_ring = &adapter->tx_ring[i];
561 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
562 adapter->eims_enable_mask |= tx_ring->eims_value;
563 if (tx_ring->itr_val)
564 writel(tx_ring->itr_val,
565 hw->hw_addr + tx_ring->itr_register);
566 else
567 writel(1, hw->hw_addr + tx_ring->itr_register);
570 for (i = 0; i < adapter->num_rx_queues; i++) {
571 struct igb_ring *rx_ring = &adapter->rx_ring[i];
572 rx_ring->buddy = NULL;
573 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
574 adapter->eims_enable_mask |= rx_ring->eims_value;
575 if (rx_ring->itr_val)
576 writel(rx_ring->itr_val,
577 hw->hw_addr + rx_ring->itr_register);
578 else
579 writel(1, hw->hw_addr + rx_ring->itr_register);
583 /* set vector for other causes, i.e. link changes */
584 switch (hw->mac.type) {
585 case e1000_82575:
586 array_wr32(E1000_MSIXBM(0), vector++,
587 E1000_EIMS_OTHER);
589 tmp = rd32(E1000_CTRL_EXT);
590 /* enable MSI-X PBA support*/
591 tmp |= E1000_CTRL_EXT_PBA_CLR;
593 /* Auto-Mask interrupts upon ICR read. */
594 tmp |= E1000_CTRL_EXT_EIAME;
595 tmp |= E1000_CTRL_EXT_IRCA;
597 wr32(E1000_CTRL_EXT, tmp);
598 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
599 adapter->eims_other = E1000_EIMS_OTHER;
601 break;
603 case e1000_82576:
604 tmp = (vector++ | E1000_IVAR_VALID) << 8;
605 wr32(E1000_IVAR_MISC, tmp);
607 adapter->eims_enable_mask = (1 << (vector)) - 1;
608 adapter->eims_other = 1 << (vector - 1);
609 break;
610 default:
611 /* do nothing, since nothing else supports MSI-X */
612 break;
613 } /* switch (hw->mac.type) */
614 wrfl();
618 * igb_request_msix - Initialize MSI-X interrupts
620 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
621 * kernel.
623 static int igb_request_msix(struct igb_adapter *adapter)
625 struct net_device *netdev = adapter->netdev;
626 int i, err = 0, vector = 0;
628 vector = 0;
630 for (i = 0; i < adapter->num_tx_queues; i++) {
631 struct igb_ring *ring = &(adapter->tx_ring[i]);
632 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
633 err = request_irq(adapter->msix_entries[vector].vector,
634 &igb_msix_tx, 0, ring->name,
635 &(adapter->tx_ring[i]));
636 if (err)
637 goto out;
638 ring->itr_register = E1000_EITR(0) + (vector << 2);
639 ring->itr_val = 976; /* ~4000 ints/sec */
640 vector++;
642 for (i = 0; i < adapter->num_rx_queues; i++) {
643 struct igb_ring *ring = &(adapter->rx_ring[i]);
644 if (strlen(netdev->name) < (IFNAMSIZ - 5))
645 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
646 else
647 memcpy(ring->name, netdev->name, IFNAMSIZ);
648 err = request_irq(adapter->msix_entries[vector].vector,
649 &igb_msix_rx, 0, ring->name,
650 &(adapter->rx_ring[i]));
651 if (err)
652 goto out;
653 ring->itr_register = E1000_EITR(0) + (vector << 2);
654 ring->itr_val = adapter->itr;
655 vector++;
658 err = request_irq(adapter->msix_entries[vector].vector,
659 &igb_msix_other, 0, netdev->name, netdev);
660 if (err)
661 goto out;
663 igb_configure_msix(adapter);
664 return 0;
665 out:
666 return err;
669 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
671 if (adapter->msix_entries) {
672 pci_disable_msix(adapter->pdev);
673 kfree(adapter->msix_entries);
674 adapter->msix_entries = NULL;
675 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
676 pci_disable_msi(adapter->pdev);
677 return;
682 * igb_set_interrupt_capability - set MSI or MSI-X if supported
684 * Attempt to configure interrupts using the best available
685 * capabilities of the hardware and kernel.
687 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
689 int err;
690 int numvecs, i;
692 /* Number of supported queues. */
693 /* Having more queues than CPUs doesn't make sense. */
694 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
695 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
697 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
698 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
699 GFP_KERNEL);
700 if (!adapter->msix_entries)
701 goto msi_only;
703 for (i = 0; i < numvecs; i++)
704 adapter->msix_entries[i].entry = i;
706 err = pci_enable_msix(adapter->pdev,
707 adapter->msix_entries,
708 numvecs);
709 if (err == 0)
710 goto out;
712 igb_reset_interrupt_capability(adapter);
714 /* If we can't do MSI-X, try MSI */
715 msi_only:
716 #ifdef CONFIG_PCI_IOV
717 /* disable SR-IOV for non MSI-X configurations */
718 if (adapter->vf_data) {
719 struct e1000_hw *hw = &adapter->hw;
720 /* disable iov and allow time for transactions to clear */
721 pci_disable_sriov(adapter->pdev);
722 msleep(500);
724 kfree(adapter->vf_data);
725 adapter->vf_data = NULL;
726 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
727 msleep(100);
728 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
730 #endif
731 adapter->num_rx_queues = 1;
732 adapter->num_tx_queues = 1;
733 if (!pci_enable_msi(adapter->pdev))
734 adapter->flags |= IGB_FLAG_HAS_MSI;
735 out:
736 /* Notify the stack of the (possibly) reduced Tx Queue count. */
737 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
738 return;
742 * igb_request_irq - initialize interrupts
744 * Attempts to configure interrupts using the best available
745 * capabilities of the hardware and kernel.
747 static int igb_request_irq(struct igb_adapter *adapter)
749 struct net_device *netdev = adapter->netdev;
750 struct e1000_hw *hw = &adapter->hw;
751 int err = 0;
753 if (adapter->msix_entries) {
754 err = igb_request_msix(adapter);
755 if (!err)
756 goto request_done;
757 /* fall back to MSI */
758 igb_reset_interrupt_capability(adapter);
759 if (!pci_enable_msi(adapter->pdev))
760 adapter->flags |= IGB_FLAG_HAS_MSI;
761 igb_free_all_tx_resources(adapter);
762 igb_free_all_rx_resources(adapter);
763 adapter->num_rx_queues = 1;
764 igb_alloc_queues(adapter);
765 } else {
766 switch (hw->mac.type) {
767 case e1000_82575:
768 wr32(E1000_MSIXBM(0),
769 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
770 break;
771 case e1000_82576:
772 wr32(E1000_IVAR0, E1000_IVAR_VALID);
773 break;
774 default:
775 break;
779 if (adapter->flags & IGB_FLAG_HAS_MSI) {
780 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
781 netdev->name, netdev);
782 if (!err)
783 goto request_done;
784 /* fall back to legacy interrupts */
785 igb_reset_interrupt_capability(adapter);
786 adapter->flags &= ~IGB_FLAG_HAS_MSI;
789 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
790 netdev->name, netdev);
792 if (err)
793 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
794 err);
796 request_done:
797 return err;
800 static void igb_free_irq(struct igb_adapter *adapter)
802 struct net_device *netdev = adapter->netdev;
804 if (adapter->msix_entries) {
805 int vector = 0, i;
807 for (i = 0; i < adapter->num_tx_queues; i++)
808 free_irq(adapter->msix_entries[vector++].vector,
809 &(adapter->tx_ring[i]));
810 for (i = 0; i < adapter->num_rx_queues; i++)
811 free_irq(adapter->msix_entries[vector++].vector,
812 &(adapter->rx_ring[i]));
814 free_irq(adapter->msix_entries[vector++].vector, netdev);
815 return;
818 free_irq(adapter->pdev->irq, netdev);
822 * igb_irq_disable - Mask off interrupt generation on the NIC
823 * @adapter: board private structure
825 static void igb_irq_disable(struct igb_adapter *adapter)
827 struct e1000_hw *hw = &adapter->hw;
829 if (adapter->msix_entries) {
830 u32 regval = rd32(E1000_EIAM);
831 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
832 wr32(E1000_EIMC, adapter->eims_enable_mask);
833 regval = rd32(E1000_EIAC);
834 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
837 wr32(E1000_IAM, 0);
838 wr32(E1000_IMC, ~0);
839 wrfl();
840 synchronize_irq(adapter->pdev->irq);
844 * igb_irq_enable - Enable default interrupt generation settings
845 * @adapter: board private structure
847 static void igb_irq_enable(struct igb_adapter *adapter)
849 struct e1000_hw *hw = &adapter->hw;
851 if (adapter->msix_entries) {
852 u32 regval = rd32(E1000_EIAC);
853 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
854 regval = rd32(E1000_EIAM);
855 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
856 wr32(E1000_EIMS, adapter->eims_enable_mask);
857 if (adapter->vfs_allocated_count)
858 wr32(E1000_MBVFIMR, 0xFF);
859 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
860 E1000_IMS_DOUTSYNC));
861 } else {
862 wr32(E1000_IMS, IMS_ENABLE_MASK);
863 wr32(E1000_IAM, IMS_ENABLE_MASK);
867 static void igb_update_mng_vlan(struct igb_adapter *adapter)
869 struct net_device *netdev = adapter->netdev;
870 u16 vid = adapter->hw.mng_cookie.vlan_id;
871 u16 old_vid = adapter->mng_vlan_id;
872 if (adapter->vlgrp) {
873 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
874 if (adapter->hw.mng_cookie.status &
875 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
876 igb_vlan_rx_add_vid(netdev, vid);
877 adapter->mng_vlan_id = vid;
878 } else
879 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
881 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
882 (vid != old_vid) &&
883 !vlan_group_get_device(adapter->vlgrp, old_vid))
884 igb_vlan_rx_kill_vid(netdev, old_vid);
885 } else
886 adapter->mng_vlan_id = vid;
891 * igb_release_hw_control - release control of the h/w to f/w
892 * @adapter: address of board private structure
894 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
895 * For ASF and Pass Through versions of f/w this means that the
896 * driver is no longer loaded.
899 static void igb_release_hw_control(struct igb_adapter *adapter)
901 struct e1000_hw *hw = &adapter->hw;
902 u32 ctrl_ext;
904 /* Let firmware take over control of h/w */
905 ctrl_ext = rd32(E1000_CTRL_EXT);
906 wr32(E1000_CTRL_EXT,
907 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
912 * igb_get_hw_control - get control of the h/w from f/w
913 * @adapter: address of board private structure
915 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
916 * For ASF and Pass Through versions of f/w this means that
917 * the driver is loaded.
920 static void igb_get_hw_control(struct igb_adapter *adapter)
922 struct e1000_hw *hw = &adapter->hw;
923 u32 ctrl_ext;
925 /* Let firmware know the driver has taken over */
926 ctrl_ext = rd32(E1000_CTRL_EXT);
927 wr32(E1000_CTRL_EXT,
928 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
932 * igb_configure - configure the hardware for RX and TX
933 * @adapter: private board structure
935 static void igb_configure(struct igb_adapter *adapter)
937 struct net_device *netdev = adapter->netdev;
938 int i;
940 igb_get_hw_control(adapter);
941 igb_set_rx_mode(netdev);
943 igb_restore_vlan(adapter);
945 igb_configure_tx(adapter);
946 igb_setup_rctl(adapter);
947 igb_configure_rx(adapter);
949 igb_rx_fifo_flush_82575(&adapter->hw);
951 /* call igb_desc_unused which always leaves
952 * at least 1 descriptor unused to make sure
953 * next_to_use != next_to_clean */
954 for (i = 0; i < adapter->num_rx_queues; i++) {
955 struct igb_ring *ring = &adapter->rx_ring[i];
956 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
960 adapter->tx_queue_len = netdev->tx_queue_len;
965 * igb_up - Open the interface and prepare it to handle traffic
966 * @adapter: board private structure
969 int igb_up(struct igb_adapter *adapter)
971 struct e1000_hw *hw = &adapter->hw;
972 int i;
974 /* hardware has been reset, we need to reload some things */
975 igb_configure(adapter);
977 clear_bit(__IGB_DOWN, &adapter->state);
979 for (i = 0; i < adapter->num_rx_queues; i++)
980 napi_enable(&adapter->rx_ring[i].napi);
981 if (adapter->msix_entries)
982 igb_configure_msix(adapter);
984 igb_vmm_control(adapter);
985 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
986 igb_set_vmolr(hw, adapter->vfs_allocated_count);
988 /* Clear any pending interrupts. */
989 rd32(E1000_ICR);
990 igb_irq_enable(adapter);
992 netif_tx_start_all_queues(adapter->netdev);
994 /* Fire a link change interrupt to start the watchdog. */
995 wr32(E1000_ICS, E1000_ICS_LSC);
996 return 0;
999 void igb_down(struct igb_adapter *adapter)
1001 struct e1000_hw *hw = &adapter->hw;
1002 struct net_device *netdev = adapter->netdev;
1003 u32 tctl, rctl;
1004 int i;
1006 /* signal that we're down so the interrupt handler does not
1007 * reschedule our watchdog timer */
1008 set_bit(__IGB_DOWN, &adapter->state);
1010 /* disable receives in the hardware */
1011 rctl = rd32(E1000_RCTL);
1012 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1013 /* flush and sleep below */
1015 netif_tx_stop_all_queues(netdev);
1017 /* disable transmits in the hardware */
1018 tctl = rd32(E1000_TCTL);
1019 tctl &= ~E1000_TCTL_EN;
1020 wr32(E1000_TCTL, tctl);
1021 /* flush both disables and wait for them to finish */
1022 wrfl();
1023 msleep(10);
1025 for (i = 0; i < adapter->num_rx_queues; i++)
1026 napi_disable(&adapter->rx_ring[i].napi);
1028 igb_irq_disable(adapter);
1030 del_timer_sync(&adapter->watchdog_timer);
1031 del_timer_sync(&adapter->phy_info_timer);
1033 netdev->tx_queue_len = adapter->tx_queue_len;
1034 netif_carrier_off(netdev);
1036 /* record the stats before reset*/
1037 igb_update_stats(adapter);
1039 adapter->link_speed = 0;
1040 adapter->link_duplex = 0;
1042 if (!pci_channel_offline(adapter->pdev))
1043 igb_reset(adapter);
1044 igb_clean_all_tx_rings(adapter);
1045 igb_clean_all_rx_rings(adapter);
1046 #ifdef CONFIG_IGB_DCA
1048 /* since we reset the hardware DCA settings were cleared */
1049 igb_setup_dca(adapter);
1050 #endif
1053 void igb_reinit_locked(struct igb_adapter *adapter)
1055 WARN_ON(in_interrupt());
1056 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1057 msleep(1);
1058 igb_down(adapter);
1059 igb_up(adapter);
1060 clear_bit(__IGB_RESETTING, &adapter->state);
1063 void igb_reset(struct igb_adapter *adapter)
1065 struct e1000_hw *hw = &adapter->hw;
1066 struct e1000_mac_info *mac = &hw->mac;
1067 struct e1000_fc_info *fc = &hw->fc;
1068 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1069 u16 hwm;
1071 /* Repartition Pba for greater than 9k mtu
1072 * To take effect CTRL.RST is required.
1074 switch (mac->type) {
1075 case e1000_82576:
1076 pba = E1000_PBA_64K;
1077 break;
1078 case e1000_82575:
1079 default:
1080 pba = E1000_PBA_34K;
1081 break;
1084 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1085 (mac->type < e1000_82576)) {
1086 /* adjust PBA for jumbo frames */
1087 wr32(E1000_PBA, pba);
1089 /* To maintain wire speed transmits, the Tx FIFO should be
1090 * large enough to accommodate two full transmit packets,
1091 * rounded up to the next 1KB and expressed in KB. Likewise,
1092 * the Rx FIFO should be large enough to accommodate at least
1093 * one full receive packet and is similarly rounded up and
1094 * expressed in KB. */
1095 pba = rd32(E1000_PBA);
1096 /* upper 16 bits has Tx packet buffer allocation size in KB */
1097 tx_space = pba >> 16;
1098 /* lower 16 bits has Rx packet buffer allocation size in KB */
1099 pba &= 0xffff;
1100 /* the tx fifo also stores 16 bytes of information about the tx
1101 * but don't include ethernet FCS because hardware appends it */
1102 min_tx_space = (adapter->max_frame_size +
1103 sizeof(union e1000_adv_tx_desc) -
1104 ETH_FCS_LEN) * 2;
1105 min_tx_space = ALIGN(min_tx_space, 1024);
1106 min_tx_space >>= 10;
1107 /* software strips receive CRC, so leave room for it */
1108 min_rx_space = adapter->max_frame_size;
1109 min_rx_space = ALIGN(min_rx_space, 1024);
1110 min_rx_space >>= 10;
1112 /* If current Tx allocation is less than the min Tx FIFO size,
1113 * and the min Tx FIFO size is less than the current Rx FIFO
1114 * allocation, take space away from current Rx allocation */
1115 if (tx_space < min_tx_space &&
1116 ((min_tx_space - tx_space) < pba)) {
1117 pba = pba - (min_tx_space - tx_space);
1119 /* if short on rx space, rx wins and must trump tx
1120 * adjustment */
1121 if (pba < min_rx_space)
1122 pba = min_rx_space;
1124 wr32(E1000_PBA, pba);
1127 /* flow control settings */
1128 /* The high water mark must be low enough to fit one full frame
1129 * (or the size used for early receive) above it in the Rx FIFO.
1130 * Set it to the lower of:
1131 * - 90% of the Rx FIFO size, or
1132 * - the full Rx FIFO size minus one full frame */
1133 hwm = min(((pba << 10) * 9 / 10),
1134 ((pba << 10) - 2 * adapter->max_frame_size));
1136 if (mac->type < e1000_82576) {
1137 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1138 fc->low_water = fc->high_water - 8;
1139 } else {
1140 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1141 fc->low_water = fc->high_water - 16;
1143 fc->pause_time = 0xFFFF;
1144 fc->send_xon = 1;
1145 fc->current_mode = fc->requested_mode;
1147 /* disable receive for all VFs and wait one second */
1148 if (adapter->vfs_allocated_count) {
1149 int i;
1150 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1151 adapter->vf_data[i].clear_to_send = false;
1153 /* ping all the active vfs to let them know we are going down */
1154 igb_ping_all_vfs(adapter);
1156 /* disable transmits and receives */
1157 wr32(E1000_VFRE, 0);
1158 wr32(E1000_VFTE, 0);
1161 /* Allow time for pending master requests to run */
1162 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1163 wr32(E1000_WUC, 0);
1165 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1166 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1168 igb_update_mng_vlan(adapter);
1170 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1171 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1173 igb_reset_adaptive(&adapter->hw);
1174 igb_get_phy_info(&adapter->hw);
1177 static const struct net_device_ops igb_netdev_ops = {
1178 .ndo_open = igb_open,
1179 .ndo_stop = igb_close,
1180 .ndo_start_xmit = igb_xmit_frame_adv,
1181 .ndo_get_stats = igb_get_stats,
1182 .ndo_set_rx_mode = igb_set_rx_mode,
1183 .ndo_set_multicast_list = igb_set_rx_mode,
1184 .ndo_set_mac_address = igb_set_mac,
1185 .ndo_change_mtu = igb_change_mtu,
1186 .ndo_do_ioctl = igb_ioctl,
1187 .ndo_tx_timeout = igb_tx_timeout,
1188 .ndo_validate_addr = eth_validate_addr,
1189 .ndo_vlan_rx_register = igb_vlan_rx_register,
1190 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1191 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1192 #ifdef CONFIG_NET_POLL_CONTROLLER
1193 .ndo_poll_controller = igb_netpoll,
1194 #endif
1198 * igb_probe - Device Initialization Routine
1199 * @pdev: PCI device information struct
1200 * @ent: entry in igb_pci_tbl
1202 * Returns 0 on success, negative on failure
1204 * igb_probe initializes an adapter identified by a pci_dev structure.
1205 * The OS initialization, configuring of the adapter private structure,
1206 * and a hardware reset occur.
1208 static int __devinit igb_probe(struct pci_dev *pdev,
1209 const struct pci_device_id *ent)
1211 struct net_device *netdev;
1212 struct igb_adapter *adapter;
1213 struct e1000_hw *hw;
1214 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1215 unsigned long mmio_start, mmio_len;
1216 int err, pci_using_dac;
1217 u16 eeprom_data = 0;
1218 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1219 u32 part_num;
1221 err = pci_enable_device_mem(pdev);
1222 if (err)
1223 return err;
1225 pci_using_dac = 0;
1226 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1227 if (!err) {
1228 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1229 if (!err)
1230 pci_using_dac = 1;
1231 } else {
1232 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1233 if (err) {
1234 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1235 if (err) {
1236 dev_err(&pdev->dev, "No usable DMA "
1237 "configuration, aborting\n");
1238 goto err_dma;
1243 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1244 IORESOURCE_MEM),
1245 igb_driver_name);
1246 if (err)
1247 goto err_pci_reg;
1249 pci_enable_pcie_error_reporting(pdev);
1251 pci_set_master(pdev);
1252 pci_save_state(pdev);
1254 err = -ENOMEM;
1255 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1256 IGB_ABS_MAX_TX_QUEUES);
1257 if (!netdev)
1258 goto err_alloc_etherdev;
1260 SET_NETDEV_DEV(netdev, &pdev->dev);
1262 pci_set_drvdata(pdev, netdev);
1263 adapter = netdev_priv(netdev);
1264 adapter->netdev = netdev;
1265 adapter->pdev = pdev;
1266 hw = &adapter->hw;
1267 hw->back = adapter;
1268 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1270 mmio_start = pci_resource_start(pdev, 0);
1271 mmio_len = pci_resource_len(pdev, 0);
1273 err = -EIO;
1274 hw->hw_addr = ioremap(mmio_start, mmio_len);
1275 if (!hw->hw_addr)
1276 goto err_ioremap;
1278 netdev->netdev_ops = &igb_netdev_ops;
1279 igb_set_ethtool_ops(netdev);
1280 netdev->watchdog_timeo = 5 * HZ;
1282 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1284 netdev->mem_start = mmio_start;
1285 netdev->mem_end = mmio_start + mmio_len;
1287 /* PCI config space info */
1288 hw->vendor_id = pdev->vendor;
1289 hw->device_id = pdev->device;
1290 hw->revision_id = pdev->revision;
1291 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1292 hw->subsystem_device_id = pdev->subsystem_device;
1294 /* setup the private structure */
1295 hw->back = adapter;
1296 /* Copy the default MAC, PHY and NVM function pointers */
1297 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1298 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1299 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1300 /* Initialize skew-specific constants */
1301 err = ei->get_invariants(hw);
1302 if (err)
1303 goto err_sw_init;
1305 #ifdef CONFIG_PCI_IOV
1306 /* since iov functionality isn't critical to base device function we
1307 * can accept failure. If it fails we don't allow iov to be enabled */
1308 if (hw->mac.type == e1000_82576) {
1309 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1310 unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
1311 int i;
1312 unsigned char mac_addr[ETH_ALEN];
1314 if (num_vfs) {
1315 adapter->vf_data = kcalloc(num_vfs,
1316 sizeof(struct vf_data_storage),
1317 GFP_KERNEL);
1318 if (!adapter->vf_data) {
1319 dev_err(&pdev->dev,
1320 "Could not allocate VF private data - "
1321 "IOV enable failed\n");
1322 } else {
1323 err = pci_enable_sriov(pdev, num_vfs);
1324 if (!err) {
1325 adapter->vfs_allocated_count = num_vfs;
1326 dev_info(&pdev->dev,
1327 "%d vfs allocated\n",
1328 num_vfs);
1329 for (i = 0;
1330 i < adapter->vfs_allocated_count;
1331 i++) {
1332 random_ether_addr(mac_addr);
1333 igb_set_vf_mac(adapter, i,
1334 mac_addr);
1336 } else {
1337 kfree(adapter->vf_data);
1338 adapter->vf_data = NULL;
1344 #endif
1345 /* setup the private structure */
1346 err = igb_sw_init(adapter);
1347 if (err)
1348 goto err_sw_init;
1350 igb_get_bus_info_pcie(hw);
1352 /* set flags */
1353 switch (hw->mac.type) {
1354 case e1000_82575:
1355 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1356 break;
1357 case e1000_82576:
1358 default:
1359 break;
1362 hw->phy.autoneg_wait_to_complete = false;
1363 hw->mac.adaptive_ifs = true;
1365 /* Copper options */
1366 if (hw->phy.media_type == e1000_media_type_copper) {
1367 hw->phy.mdix = AUTO_ALL_MODES;
1368 hw->phy.disable_polarity_correction = false;
1369 hw->phy.ms_type = e1000_ms_hw_default;
1372 if (igb_check_reset_block(hw))
1373 dev_info(&pdev->dev,
1374 "PHY reset is blocked due to SOL/IDER session.\n");
1376 netdev->features = NETIF_F_SG |
1377 NETIF_F_IP_CSUM |
1378 NETIF_F_HW_VLAN_TX |
1379 NETIF_F_HW_VLAN_RX |
1380 NETIF_F_HW_VLAN_FILTER;
1382 netdev->features |= NETIF_F_IPV6_CSUM;
1383 netdev->features |= NETIF_F_TSO;
1384 netdev->features |= NETIF_F_TSO6;
1386 netdev->features |= NETIF_F_GRO;
1388 netdev->vlan_features |= NETIF_F_TSO;
1389 netdev->vlan_features |= NETIF_F_TSO6;
1390 netdev->vlan_features |= NETIF_F_IP_CSUM;
1391 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1392 netdev->vlan_features |= NETIF_F_SG;
1394 if (pci_using_dac)
1395 netdev->features |= NETIF_F_HIGHDMA;
1397 if (adapter->hw.mac.type == e1000_82576)
1398 netdev->features |= NETIF_F_SCTP_CSUM;
1400 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1402 /* before reading the NVM, reset the controller to put the device in a
1403 * known good starting state */
1404 hw->mac.ops.reset_hw(hw);
1406 /* make sure the NVM is good */
1407 if (igb_validate_nvm_checksum(hw) < 0) {
1408 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1409 err = -EIO;
1410 goto err_eeprom;
1413 /* copy the MAC address out of the NVM */
1414 if (hw->mac.ops.read_mac_addr(hw))
1415 dev_err(&pdev->dev, "NVM Read Error\n");
1417 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1418 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1420 if (!is_valid_ether_addr(netdev->perm_addr)) {
1421 dev_err(&pdev->dev, "Invalid MAC Address\n");
1422 err = -EIO;
1423 goto err_eeprom;
1426 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1427 (unsigned long) adapter);
1428 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1429 (unsigned long) adapter);
1431 INIT_WORK(&adapter->reset_task, igb_reset_task);
1432 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1434 /* Initialize link properties that are user-changeable */
1435 adapter->fc_autoneg = true;
1436 hw->mac.autoneg = true;
1437 hw->phy.autoneg_advertised = 0x2f;
1439 hw->fc.requested_mode = e1000_fc_default;
1440 hw->fc.current_mode = e1000_fc_default;
1442 adapter->itr_setting = IGB_DEFAULT_ITR;
1443 adapter->itr = IGB_START_ITR;
1445 igb_validate_mdi_setting(hw);
1447 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1448 * enable the ACPI Magic Packet filter
1451 if (hw->bus.func == 0)
1452 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1453 else if (hw->bus.func == 1)
1454 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1456 if (eeprom_data & eeprom_apme_mask)
1457 adapter->eeprom_wol |= E1000_WUFC_MAG;
1459 /* now that we have the eeprom settings, apply the special cases where
1460 * the eeprom may be wrong or the board simply won't support wake on
1461 * lan on a particular port */
1462 switch (pdev->device) {
1463 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1464 adapter->eeprom_wol = 0;
1465 break;
1466 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1467 case E1000_DEV_ID_82576_FIBER:
1468 case E1000_DEV_ID_82576_SERDES:
1469 /* Wake events only supported on port A for dual fiber
1470 * regardless of eeprom setting */
1471 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1472 adapter->eeprom_wol = 0;
1473 break;
1474 case E1000_DEV_ID_82576_QUAD_COPPER:
1475 /* if quad port adapter, disable WoL on all but port A */
1476 if (global_quad_port_a != 0)
1477 adapter->eeprom_wol = 0;
1478 else
1479 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1480 /* Reset for multiple quad port adapters */
1481 if (++global_quad_port_a == 4)
1482 global_quad_port_a = 0;
1483 break;
1486 /* initialize the wol settings based on the eeprom settings */
1487 adapter->wol = adapter->eeprom_wol;
1488 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1490 /* reset the hardware with the new settings */
1491 igb_reset(adapter);
1493 /* let the f/w know that the h/w is now under the control of the
1494 * driver. */
1495 igb_get_hw_control(adapter);
1497 strcpy(netdev->name, "eth%d");
1498 err = register_netdev(netdev);
1499 if (err)
1500 goto err_register;
1502 /* carrier off reporting is important to ethtool even BEFORE open */
1503 netif_carrier_off(netdev);
1505 #ifdef CONFIG_IGB_DCA
1506 if (dca_add_requester(&pdev->dev) == 0) {
1507 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1508 dev_info(&pdev->dev, "DCA enabled\n");
1509 igb_setup_dca(adapter);
1511 #endif
1514 * Initialize hardware timer: we keep it running just in case
1515 * that some program needs it later on.
1517 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1518 adapter->cycles.read = igb_read_clock;
1519 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1520 adapter->cycles.mult = 1;
1521 adapter->cycles.shift = IGB_TSYNC_SHIFT;
1522 wr32(E1000_TIMINCA,
1523 (1<<24) |
1524 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1525 #if 0
1527 * Avoid rollover while we initialize by resetting the time counter.
1529 wr32(E1000_SYSTIML, 0x00000000);
1530 wr32(E1000_SYSTIMH, 0x00000000);
1531 #else
1533 * Set registers so that rollover occurs soon to test this.
1535 wr32(E1000_SYSTIML, 0x00000000);
1536 wr32(E1000_SYSTIMH, 0xFF800000);
1537 #endif
1538 wrfl();
1539 timecounter_init(&adapter->clock,
1540 &adapter->cycles,
1541 ktime_to_ns(ktime_get_real()));
1544 * Synchronize our NIC clock against system wall clock. NIC
1545 * time stamp reading requires ~3us per sample, each sample
1546 * was pretty stable even under load => only require 10
1547 * samples for each offset comparison.
1549 memset(&adapter->compare, 0, sizeof(adapter->compare));
1550 adapter->compare.source = &adapter->clock;
1551 adapter->compare.target = ktime_get_real;
1552 adapter->compare.num_samples = 10;
1553 timecompare_update(&adapter->compare, 0);
1555 #ifdef DEBUG
1557 char buffer[160];
1558 printk(KERN_DEBUG
1559 "igb: %s: hw %p initialized timer\n",
1560 igb_get_time_str(adapter, buffer),
1561 &adapter->hw);
1563 #endif
1565 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1566 /* print bus type/speed/width info */
1567 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1568 netdev->name,
1569 ((hw->bus.speed == e1000_bus_speed_2500)
1570 ? "2.5Gb/s" : "unknown"),
1571 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1572 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1573 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1574 "unknown"),
1575 netdev->dev_addr);
1577 igb_read_part_num(hw, &part_num);
1578 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1579 (part_num >> 8), (part_num & 0xff));
1581 dev_info(&pdev->dev,
1582 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1583 adapter->msix_entries ? "MSI-X" :
1584 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1585 adapter->num_rx_queues, adapter->num_tx_queues);
1587 return 0;
1589 err_register:
1590 igb_release_hw_control(adapter);
1591 err_eeprom:
1592 if (!igb_check_reset_block(hw))
1593 igb_reset_phy(hw);
1595 if (hw->flash_address)
1596 iounmap(hw->flash_address);
1598 igb_free_queues(adapter);
1599 err_sw_init:
1600 iounmap(hw->hw_addr);
1601 err_ioremap:
1602 free_netdev(netdev);
1603 err_alloc_etherdev:
1604 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1605 IORESOURCE_MEM));
1606 err_pci_reg:
1607 err_dma:
1608 pci_disable_device(pdev);
1609 return err;
1613 * igb_remove - Device Removal Routine
1614 * @pdev: PCI device information struct
1616 * igb_remove is called by the PCI subsystem to alert the driver
1617 * that it should release a PCI device. The could be caused by a
1618 * Hot-Plug event, or because the driver is going to be removed from
1619 * memory.
1621 static void __devexit igb_remove(struct pci_dev *pdev)
1623 struct net_device *netdev = pci_get_drvdata(pdev);
1624 struct igb_adapter *adapter = netdev_priv(netdev);
1625 struct e1000_hw *hw = &adapter->hw;
1627 /* flush_scheduled work may reschedule our watchdog task, so
1628 * explicitly disable watchdog tasks from being rescheduled */
1629 set_bit(__IGB_DOWN, &adapter->state);
1630 del_timer_sync(&adapter->watchdog_timer);
1631 del_timer_sync(&adapter->phy_info_timer);
1633 flush_scheduled_work();
1635 #ifdef CONFIG_IGB_DCA
1636 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1637 dev_info(&pdev->dev, "DCA disabled\n");
1638 dca_remove_requester(&pdev->dev);
1639 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1640 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1642 #endif
1644 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1645 * would have already happened in close and is redundant. */
1646 igb_release_hw_control(adapter);
1648 unregister_netdev(netdev);
1650 if (!igb_check_reset_block(&adapter->hw))
1651 igb_reset_phy(&adapter->hw);
1653 igb_reset_interrupt_capability(adapter);
1655 igb_free_queues(adapter);
1657 #ifdef CONFIG_PCI_IOV
1658 /* reclaim resources allocated to VFs */
1659 if (adapter->vf_data) {
1660 /* disable iov and allow time for transactions to clear */
1661 pci_disable_sriov(pdev);
1662 msleep(500);
1664 kfree(adapter->vf_data);
1665 adapter->vf_data = NULL;
1666 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1667 msleep(100);
1668 dev_info(&pdev->dev, "IOV Disabled\n");
1670 #endif
1671 iounmap(hw->hw_addr);
1672 if (hw->flash_address)
1673 iounmap(hw->flash_address);
1674 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1675 IORESOURCE_MEM));
1677 free_netdev(netdev);
1679 pci_disable_pcie_error_reporting(pdev);
1681 pci_disable_device(pdev);
1685 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1686 * @adapter: board private structure to initialize
1688 * igb_sw_init initializes the Adapter private data structure.
1689 * Fields are initialized based on PCI device information and
1690 * OS network device settings (MTU size).
1692 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1694 struct e1000_hw *hw = &adapter->hw;
1695 struct net_device *netdev = adapter->netdev;
1696 struct pci_dev *pdev = adapter->pdev;
1698 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1700 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1701 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1702 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1703 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1704 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1705 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1707 /* This call may decrease the number of queues depending on
1708 * interrupt mode. */
1709 igb_set_interrupt_capability(adapter);
1711 if (igb_alloc_queues(adapter)) {
1712 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1713 return -ENOMEM;
1716 /* Explicitly disable IRQ since the NIC can be in any state. */
1717 igb_irq_disable(adapter);
1719 set_bit(__IGB_DOWN, &adapter->state);
1720 return 0;
1724 * igb_open - Called when a network interface is made active
1725 * @netdev: network interface device structure
1727 * Returns 0 on success, negative value on failure
1729 * The open entry point is called when a network interface is made
1730 * active by the system (IFF_UP). At this point all resources needed
1731 * for transmit and receive operations are allocated, the interrupt
1732 * handler is registered with the OS, the watchdog timer is started,
1733 * and the stack is notified that the interface is ready.
1735 static int igb_open(struct net_device *netdev)
1737 struct igb_adapter *adapter = netdev_priv(netdev);
1738 struct e1000_hw *hw = &adapter->hw;
1739 int err;
1740 int i;
1742 /* disallow open during test */
1743 if (test_bit(__IGB_TESTING, &adapter->state))
1744 return -EBUSY;
1746 netif_carrier_off(netdev);
1748 /* allocate transmit descriptors */
1749 err = igb_setup_all_tx_resources(adapter);
1750 if (err)
1751 goto err_setup_tx;
1753 /* allocate receive descriptors */
1754 err = igb_setup_all_rx_resources(adapter);
1755 if (err)
1756 goto err_setup_rx;
1758 /* e1000_power_up_phy(adapter); */
1760 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1761 if ((adapter->hw.mng_cookie.status &
1762 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1763 igb_update_mng_vlan(adapter);
1765 /* before we allocate an interrupt, we must be ready to handle it.
1766 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1767 * as soon as we call pci_request_irq, so we have to setup our
1768 * clean_rx handler before we do so. */
1769 igb_configure(adapter);
1771 igb_vmm_control(adapter);
1772 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
1773 igb_set_vmolr(hw, adapter->vfs_allocated_count);
1775 err = igb_request_irq(adapter);
1776 if (err)
1777 goto err_req_irq;
1779 /* From here on the code is the same as igb_up() */
1780 clear_bit(__IGB_DOWN, &adapter->state);
1782 for (i = 0; i < adapter->num_rx_queues; i++)
1783 napi_enable(&adapter->rx_ring[i].napi);
1785 /* Clear any pending interrupts. */
1786 rd32(E1000_ICR);
1788 igb_irq_enable(adapter);
1790 netif_tx_start_all_queues(netdev);
1792 /* Fire a link status change interrupt to start the watchdog. */
1793 wr32(E1000_ICS, E1000_ICS_LSC);
1795 return 0;
1797 err_req_irq:
1798 igb_release_hw_control(adapter);
1799 /* e1000_power_down_phy(adapter); */
1800 igb_free_all_rx_resources(adapter);
1801 err_setup_rx:
1802 igb_free_all_tx_resources(adapter);
1803 err_setup_tx:
1804 igb_reset(adapter);
1806 return err;
1810 * igb_close - Disables a network interface
1811 * @netdev: network interface device structure
1813 * Returns 0, this is not allowed to fail
1815 * The close entry point is called when an interface is de-activated
1816 * by the OS. The hardware is still under the driver's control, but
1817 * needs to be disabled. A global MAC reset is issued to stop the
1818 * hardware, and all transmit and receive resources are freed.
1820 static int igb_close(struct net_device *netdev)
1822 struct igb_adapter *adapter = netdev_priv(netdev);
1824 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1825 igb_down(adapter);
1827 igb_free_irq(adapter);
1829 igb_free_all_tx_resources(adapter);
1830 igb_free_all_rx_resources(adapter);
1832 /* kill manageability vlan ID if supported, but not if a vlan with
1833 * the same ID is registered on the host OS (let 8021q kill it) */
1834 if ((adapter->hw.mng_cookie.status &
1835 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1836 !(adapter->vlgrp &&
1837 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1838 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1840 return 0;
1844 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1845 * @adapter: board private structure
1846 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1848 * Return 0 on success, negative on failure
1850 int igb_setup_tx_resources(struct igb_adapter *adapter,
1851 struct igb_ring *tx_ring)
1853 struct pci_dev *pdev = adapter->pdev;
1854 int size;
1856 size = sizeof(struct igb_buffer) * tx_ring->count;
1857 tx_ring->buffer_info = vmalloc(size);
1858 if (!tx_ring->buffer_info)
1859 goto err;
1860 memset(tx_ring->buffer_info, 0, size);
1862 /* round up to nearest 4K */
1863 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1864 tx_ring->size = ALIGN(tx_ring->size, 4096);
1866 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1867 &tx_ring->dma);
1869 if (!tx_ring->desc)
1870 goto err;
1872 tx_ring->adapter = adapter;
1873 tx_ring->next_to_use = 0;
1874 tx_ring->next_to_clean = 0;
1875 return 0;
1877 err:
1878 vfree(tx_ring->buffer_info);
1879 dev_err(&adapter->pdev->dev,
1880 "Unable to allocate memory for the transmit descriptor ring\n");
1881 return -ENOMEM;
1885 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1886 * (Descriptors) for all queues
1887 * @adapter: board private structure
1889 * Return 0 on success, negative on failure
1891 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1893 int i, err = 0;
1894 int r_idx;
1896 for (i = 0; i < adapter->num_tx_queues; i++) {
1897 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1898 if (err) {
1899 dev_err(&adapter->pdev->dev,
1900 "Allocation for Tx Queue %u failed\n", i);
1901 for (i--; i >= 0; i--)
1902 igb_free_tx_resources(&adapter->tx_ring[i]);
1903 break;
1907 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1908 r_idx = i % adapter->num_tx_queues;
1909 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1911 return err;
1915 * igb_configure_tx - Configure transmit Unit after Reset
1916 * @adapter: board private structure
1918 * Configure the Tx unit of the MAC after a reset.
1920 static void igb_configure_tx(struct igb_adapter *adapter)
1922 u64 tdba;
1923 struct e1000_hw *hw = &adapter->hw;
1924 u32 tctl;
1925 u32 txdctl, txctrl;
1926 int i, j;
1928 for (i = 0; i < adapter->num_tx_queues; i++) {
1929 struct igb_ring *ring = &adapter->tx_ring[i];
1930 j = ring->reg_idx;
1931 wr32(E1000_TDLEN(j),
1932 ring->count * sizeof(union e1000_adv_tx_desc));
1933 tdba = ring->dma;
1934 wr32(E1000_TDBAL(j),
1935 tdba & 0x00000000ffffffffULL);
1936 wr32(E1000_TDBAH(j), tdba >> 32);
1938 ring->head = E1000_TDH(j);
1939 ring->tail = E1000_TDT(j);
1940 writel(0, hw->hw_addr + ring->tail);
1941 writel(0, hw->hw_addr + ring->head);
1942 txdctl = rd32(E1000_TXDCTL(j));
1943 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1944 wr32(E1000_TXDCTL(j), txdctl);
1946 /* Turn off Relaxed Ordering on head write-backs. The
1947 * writebacks MUST be delivered in order or it will
1948 * completely screw up our bookeeping.
1950 txctrl = rd32(E1000_DCA_TXCTRL(j));
1951 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1952 wr32(E1000_DCA_TXCTRL(j), txctrl);
1955 /* disable queue 0 to prevent tail bump w/o re-configuration */
1956 if (adapter->vfs_allocated_count)
1957 wr32(E1000_TXDCTL(0), 0);
1959 /* Program the Transmit Control Register */
1960 tctl = rd32(E1000_TCTL);
1961 tctl &= ~E1000_TCTL_CT;
1962 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1963 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1965 igb_config_collision_dist(hw);
1967 /* Setup Transmit Descriptor Settings for eop descriptor */
1968 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1970 /* Enable transmits */
1971 tctl |= E1000_TCTL_EN;
1973 wr32(E1000_TCTL, tctl);
1977 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1978 * @adapter: board private structure
1979 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1981 * Returns 0 on success, negative on failure
1983 int igb_setup_rx_resources(struct igb_adapter *adapter,
1984 struct igb_ring *rx_ring)
1986 struct pci_dev *pdev = adapter->pdev;
1987 int size, desc_len;
1989 size = sizeof(struct igb_buffer) * rx_ring->count;
1990 rx_ring->buffer_info = vmalloc(size);
1991 if (!rx_ring->buffer_info)
1992 goto err;
1993 memset(rx_ring->buffer_info, 0, size);
1995 desc_len = sizeof(union e1000_adv_rx_desc);
1997 /* Round up to nearest 4K */
1998 rx_ring->size = rx_ring->count * desc_len;
1999 rx_ring->size = ALIGN(rx_ring->size, 4096);
2001 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2002 &rx_ring->dma);
2004 if (!rx_ring->desc)
2005 goto err;
2007 rx_ring->next_to_clean = 0;
2008 rx_ring->next_to_use = 0;
2010 rx_ring->adapter = adapter;
2012 return 0;
2014 err:
2015 vfree(rx_ring->buffer_info);
2016 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
2017 "the receive descriptor ring\n");
2018 return -ENOMEM;
2022 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2023 * (Descriptors) for all queues
2024 * @adapter: board private structure
2026 * Return 0 on success, negative on failure
2028 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2030 int i, err = 0;
2032 for (i = 0; i < adapter->num_rx_queues; i++) {
2033 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2034 if (err) {
2035 dev_err(&adapter->pdev->dev,
2036 "Allocation for Rx Queue %u failed\n", i);
2037 for (i--; i >= 0; i--)
2038 igb_free_rx_resources(&adapter->rx_ring[i]);
2039 break;
2043 return err;
2047 * igb_setup_rctl - configure the receive control registers
2048 * @adapter: Board private structure
2050 static void igb_setup_rctl(struct igb_adapter *adapter)
2052 struct e1000_hw *hw = &adapter->hw;
2053 u32 rctl;
2054 u32 srrctl = 0;
2055 int i;
2057 rctl = rd32(E1000_RCTL);
2059 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2060 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2062 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2063 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2066 * enable stripping of CRC. It's unlikely this will break BMC
2067 * redirection as it did with e1000. Newer features require
2068 * that the HW strips the CRC.
2070 rctl |= E1000_RCTL_SECRC;
2073 * disable store bad packets and clear size bits.
2075 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2077 /* enable LPE when to prevent packets larger than max_frame_size */
2078 rctl |= E1000_RCTL_LPE;
2080 /* Setup buffer sizes */
2081 switch (adapter->rx_buffer_len) {
2082 case IGB_RXBUFFER_256:
2083 rctl |= E1000_RCTL_SZ_256;
2084 break;
2085 case IGB_RXBUFFER_512:
2086 rctl |= E1000_RCTL_SZ_512;
2087 break;
2088 default:
2089 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
2090 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2091 break;
2094 /* 82575 and greater support packet-split where the protocol
2095 * header is placed in skb->data and the packet data is
2096 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2097 * In the case of a non-split, skb->data is linearly filled,
2098 * followed by the page buffers. Therefore, skb->data is
2099 * sized to hold the largest protocol header.
2101 /* allocations using alloc_page take too long for regular MTU
2102 * so only enable packet split for jumbo frames */
2103 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2104 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
2105 srrctl |= adapter->rx_ps_hdr_size <<
2106 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2107 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2108 } else {
2109 adapter->rx_ps_hdr_size = 0;
2110 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2113 /* Attention!!! For SR-IOV PF driver operations you must enable
2114 * queue drop for all VF and PF queues to prevent head of line blocking
2115 * if an un-trusted VF does not provide descriptors to hardware.
2117 if (adapter->vfs_allocated_count) {
2118 u32 vmolr;
2120 /* set all queue drop enable bits */
2121 wr32(E1000_QDE, ALL_QUEUES);
2122 srrctl |= E1000_SRRCTL_DROP_EN;
2124 /* disable queue 0 to prevent tail write w/o re-config */
2125 wr32(E1000_RXDCTL(0), 0);
2127 vmolr = rd32(E1000_VMOLR(adapter->vfs_allocated_count));
2128 if (rctl & E1000_RCTL_LPE)
2129 vmolr |= E1000_VMOLR_LPE;
2130 if (adapter->num_rx_queues > 1)
2131 vmolr |= E1000_VMOLR_RSSE;
2132 wr32(E1000_VMOLR(adapter->vfs_allocated_count), vmolr);
2135 for (i = 0; i < adapter->num_rx_queues; i++) {
2136 int j = adapter->rx_ring[i].reg_idx;
2137 wr32(E1000_SRRCTL(j), srrctl);
2140 wr32(E1000_RCTL, rctl);
2144 * igb_rlpml_set - set maximum receive packet size
2145 * @adapter: board private structure
2147 * Configure maximum receivable packet size.
2149 static void igb_rlpml_set(struct igb_adapter *adapter)
2151 u32 max_frame_size = adapter->max_frame_size;
2152 struct e1000_hw *hw = &adapter->hw;
2153 u16 pf_id = adapter->vfs_allocated_count;
2155 if (adapter->vlgrp)
2156 max_frame_size += VLAN_TAG_SIZE;
2158 /* if vfs are enabled we set RLPML to the largest possible request
2159 * size and set the VMOLR RLPML to the size we need */
2160 if (pf_id) {
2161 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2162 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2165 wr32(E1000_RLPML, max_frame_size);
2169 * igb_configure_vt_default_pool - Configure VT default pool
2170 * @adapter: board private structure
2172 * Configure the default pool
2174 static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2176 struct e1000_hw *hw = &adapter->hw;
2177 u16 pf_id = adapter->vfs_allocated_count;
2178 u32 vtctl;
2180 /* not in sr-iov mode - do nothing */
2181 if (!pf_id)
2182 return;
2184 vtctl = rd32(E1000_VT_CTL);
2185 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2186 E1000_VT_CTL_DISABLE_DEF_POOL);
2187 vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2188 wr32(E1000_VT_CTL, vtctl);
2192 * igb_configure_rx - Configure receive Unit after Reset
2193 * @adapter: board private structure
2195 * Configure the Rx unit of the MAC after a reset.
2197 static void igb_configure_rx(struct igb_adapter *adapter)
2199 u64 rdba;
2200 struct e1000_hw *hw = &adapter->hw;
2201 u32 rctl, rxcsum;
2202 u32 rxdctl;
2203 int i;
2205 /* disable receives while setting up the descriptors */
2206 rctl = rd32(E1000_RCTL);
2207 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2208 wrfl();
2209 mdelay(10);
2211 if (adapter->itr_setting > 3)
2212 wr32(E1000_ITR, adapter->itr);
2214 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2215 * the Base and Length of the Rx Descriptor Ring */
2216 for (i = 0; i < adapter->num_rx_queues; i++) {
2217 struct igb_ring *ring = &adapter->rx_ring[i];
2218 int j = ring->reg_idx;
2219 rdba = ring->dma;
2220 wr32(E1000_RDBAL(j),
2221 rdba & 0x00000000ffffffffULL);
2222 wr32(E1000_RDBAH(j), rdba >> 32);
2223 wr32(E1000_RDLEN(j),
2224 ring->count * sizeof(union e1000_adv_rx_desc));
2226 ring->head = E1000_RDH(j);
2227 ring->tail = E1000_RDT(j);
2228 writel(0, hw->hw_addr + ring->tail);
2229 writel(0, hw->hw_addr + ring->head);
2231 rxdctl = rd32(E1000_RXDCTL(j));
2232 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2233 rxdctl &= 0xFFF00000;
2234 rxdctl |= IGB_RX_PTHRESH;
2235 rxdctl |= IGB_RX_HTHRESH << 8;
2236 rxdctl |= IGB_RX_WTHRESH << 16;
2237 wr32(E1000_RXDCTL(j), rxdctl);
2240 if (adapter->num_rx_queues > 1) {
2241 u32 random[10];
2242 u32 mrqc;
2243 u32 j, shift;
2244 union e1000_reta {
2245 u32 dword;
2246 u8 bytes[4];
2247 } reta;
2249 get_random_bytes(&random[0], 40);
2251 if (hw->mac.type >= e1000_82576)
2252 shift = 0;
2253 else
2254 shift = 6;
2255 for (j = 0; j < (32 * 4); j++) {
2256 reta.bytes[j & 3] =
2257 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2258 if ((j & 3) == 3)
2259 writel(reta.dword,
2260 hw->hw_addr + E1000_RETA(0) + (j & ~3));
2262 if (adapter->vfs_allocated_count)
2263 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2264 else
2265 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2267 /* Fill out hash function seeds */
2268 for (j = 0; j < 10; j++)
2269 array_wr32(E1000_RSSRK(0), j, random[j]);
2271 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2272 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2273 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2274 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2275 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2276 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2277 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2278 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2280 wr32(E1000_MRQC, mrqc);
2281 } else if (adapter->vfs_allocated_count) {
2282 /* Enable multi-queue for sr-iov */
2283 wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2286 /* Enable Receive Checksum Offload for TCP and UDP */
2287 rxcsum = rd32(E1000_RXCSUM);
2288 /* Disable raw packet checksumming */
2289 rxcsum |= E1000_RXCSUM_PCSD;
2291 if (adapter->hw.mac.type == e1000_82576)
2292 /* Enable Receive Checksum Offload for SCTP */
2293 rxcsum |= E1000_RXCSUM_CRCOFL;
2295 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2296 wr32(E1000_RXCSUM, rxcsum);
2298 /* Set the default pool for the PF's first queue */
2299 igb_configure_vt_default_pool(adapter);
2301 igb_rlpml_set(adapter);
2303 /* Enable Receives */
2304 wr32(E1000_RCTL, rctl);
2308 * igb_free_tx_resources - Free Tx Resources per Queue
2309 * @tx_ring: Tx descriptor ring for a specific queue
2311 * Free all transmit software resources
2313 void igb_free_tx_resources(struct igb_ring *tx_ring)
2315 struct pci_dev *pdev = tx_ring->adapter->pdev;
2317 igb_clean_tx_ring(tx_ring);
2319 vfree(tx_ring->buffer_info);
2320 tx_ring->buffer_info = NULL;
2322 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2324 tx_ring->desc = NULL;
2328 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2329 * @adapter: board private structure
2331 * Free all transmit software resources
2333 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2335 int i;
2337 for (i = 0; i < adapter->num_tx_queues; i++)
2338 igb_free_tx_resources(&adapter->tx_ring[i]);
2341 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2342 struct igb_buffer *buffer_info)
2344 buffer_info->dma = 0;
2345 if (buffer_info->skb) {
2346 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2347 DMA_TO_DEVICE);
2348 dev_kfree_skb_any(buffer_info->skb);
2349 buffer_info->skb = NULL;
2351 buffer_info->time_stamp = 0;
2352 /* buffer_info must be completely set up in the transmit path */
2356 * igb_clean_tx_ring - Free Tx Buffers
2357 * @tx_ring: ring to be cleaned
2359 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2361 struct igb_adapter *adapter = tx_ring->adapter;
2362 struct igb_buffer *buffer_info;
2363 unsigned long size;
2364 unsigned int i;
2366 if (!tx_ring->buffer_info)
2367 return;
2368 /* Free all the Tx ring sk_buffs */
2370 for (i = 0; i < tx_ring->count; i++) {
2371 buffer_info = &tx_ring->buffer_info[i];
2372 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2375 size = sizeof(struct igb_buffer) * tx_ring->count;
2376 memset(tx_ring->buffer_info, 0, size);
2378 /* Zero out the descriptor ring */
2380 memset(tx_ring->desc, 0, tx_ring->size);
2382 tx_ring->next_to_use = 0;
2383 tx_ring->next_to_clean = 0;
2385 writel(0, adapter->hw.hw_addr + tx_ring->head);
2386 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2390 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2391 * @adapter: board private structure
2393 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2395 int i;
2397 for (i = 0; i < adapter->num_tx_queues; i++)
2398 igb_clean_tx_ring(&adapter->tx_ring[i]);
2402 * igb_free_rx_resources - Free Rx Resources
2403 * @rx_ring: ring to clean the resources from
2405 * Free all receive software resources
2407 void igb_free_rx_resources(struct igb_ring *rx_ring)
2409 struct pci_dev *pdev = rx_ring->adapter->pdev;
2411 igb_clean_rx_ring(rx_ring);
2413 vfree(rx_ring->buffer_info);
2414 rx_ring->buffer_info = NULL;
2416 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2418 rx_ring->desc = NULL;
2422 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2423 * @adapter: board private structure
2425 * Free all receive software resources
2427 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2429 int i;
2431 for (i = 0; i < adapter->num_rx_queues; i++)
2432 igb_free_rx_resources(&adapter->rx_ring[i]);
2436 * igb_clean_rx_ring - Free Rx Buffers per Queue
2437 * @rx_ring: ring to free buffers from
2439 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2441 struct igb_adapter *adapter = rx_ring->adapter;
2442 struct igb_buffer *buffer_info;
2443 struct pci_dev *pdev = adapter->pdev;
2444 unsigned long size;
2445 unsigned int i;
2447 if (!rx_ring->buffer_info)
2448 return;
2449 /* Free all the Rx ring sk_buffs */
2450 for (i = 0; i < rx_ring->count; i++) {
2451 buffer_info = &rx_ring->buffer_info[i];
2452 if (buffer_info->dma) {
2453 if (adapter->rx_ps_hdr_size)
2454 pci_unmap_single(pdev, buffer_info->dma,
2455 adapter->rx_ps_hdr_size,
2456 PCI_DMA_FROMDEVICE);
2457 else
2458 pci_unmap_single(pdev, buffer_info->dma,
2459 adapter->rx_buffer_len,
2460 PCI_DMA_FROMDEVICE);
2461 buffer_info->dma = 0;
2464 if (buffer_info->skb) {
2465 dev_kfree_skb(buffer_info->skb);
2466 buffer_info->skb = NULL;
2468 if (buffer_info->page) {
2469 if (buffer_info->page_dma)
2470 pci_unmap_page(pdev, buffer_info->page_dma,
2471 PAGE_SIZE / 2,
2472 PCI_DMA_FROMDEVICE);
2473 put_page(buffer_info->page);
2474 buffer_info->page = NULL;
2475 buffer_info->page_dma = 0;
2476 buffer_info->page_offset = 0;
2480 size = sizeof(struct igb_buffer) * rx_ring->count;
2481 memset(rx_ring->buffer_info, 0, size);
2483 /* Zero out the descriptor ring */
2484 memset(rx_ring->desc, 0, rx_ring->size);
2486 rx_ring->next_to_clean = 0;
2487 rx_ring->next_to_use = 0;
2489 writel(0, adapter->hw.hw_addr + rx_ring->head);
2490 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2494 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2495 * @adapter: board private structure
2497 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2499 int i;
2501 for (i = 0; i < adapter->num_rx_queues; i++)
2502 igb_clean_rx_ring(&adapter->rx_ring[i]);
2506 * igb_set_mac - Change the Ethernet Address of the NIC
2507 * @netdev: network interface device structure
2508 * @p: pointer to an address structure
2510 * Returns 0 on success, negative on failure
2512 static int igb_set_mac(struct net_device *netdev, void *p)
2514 struct igb_adapter *adapter = netdev_priv(netdev);
2515 struct e1000_hw *hw = &adapter->hw;
2516 struct sockaddr *addr = p;
2518 if (!is_valid_ether_addr(addr->sa_data))
2519 return -EADDRNOTAVAIL;
2521 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2522 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2524 igb_rar_set(hw, hw->mac.addr, 0);
2525 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
2527 return 0;
2531 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2532 * @netdev: network interface device structure
2534 * The set_rx_mode entry point is called whenever the unicast or multicast
2535 * address lists or the network interface flags are updated. This routine is
2536 * responsible for configuring the hardware for proper unicast, multicast,
2537 * promiscuous mode, and all-multi behavior.
2539 static void igb_set_rx_mode(struct net_device *netdev)
2541 struct igb_adapter *adapter = netdev_priv(netdev);
2542 struct e1000_hw *hw = &adapter->hw;
2543 unsigned int rar_entries = hw->mac.rar_entry_count -
2544 (adapter->vfs_allocated_count + 1);
2545 struct dev_mc_list *mc_ptr = netdev->mc_list;
2546 u8 *mta_list = NULL;
2547 u32 rctl;
2548 int i;
2550 /* Check for Promiscuous and All Multicast modes */
2551 rctl = rd32(E1000_RCTL);
2553 if (netdev->flags & IFF_PROMISC) {
2554 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2555 rctl &= ~E1000_RCTL_VFE;
2556 } else {
2557 if (netdev->flags & IFF_ALLMULTI)
2558 rctl |= E1000_RCTL_MPE;
2559 else
2560 rctl &= ~E1000_RCTL_MPE;
2562 if (netdev->uc.count > rar_entries)
2563 rctl |= E1000_RCTL_UPE;
2564 else
2565 rctl &= ~E1000_RCTL_UPE;
2566 rctl |= E1000_RCTL_VFE;
2568 wr32(E1000_RCTL, rctl);
2570 if (netdev->uc.count && rar_entries) {
2571 struct netdev_hw_addr *ha;
2572 list_for_each_entry(ha, &netdev->uc.list, list) {
2573 if (!rar_entries)
2574 break;
2575 igb_rar_set(hw, ha->addr, rar_entries);
2576 igb_set_rah_pool(hw, adapter->vfs_allocated_count,
2577 rar_entries);
2578 rar_entries--;
2581 /* write the addresses in reverse order to avoid write combining */
2582 for (; rar_entries > 0 ; rar_entries--) {
2583 wr32(E1000_RAH(rar_entries), 0);
2584 wr32(E1000_RAL(rar_entries), 0);
2586 wrfl();
2588 if (!netdev->mc_count) {
2589 /* nothing to program, so clear mc list */
2590 igb_update_mc_addr_list(hw, NULL, 0);
2591 igb_restore_vf_multicasts(adapter);
2592 return;
2595 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2596 if (!mta_list) {
2597 dev_err(&adapter->pdev->dev,
2598 "failed to allocate multicast filter list\n");
2599 return;
2602 /* The shared function expects a packed array of only addresses. */
2603 for (i = 0; i < netdev->mc_count; i++) {
2604 if (!mc_ptr)
2605 break;
2606 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2607 mc_ptr = mc_ptr->next;
2609 igb_update_mc_addr_list(hw, mta_list, i);
2610 kfree(mta_list);
2611 igb_restore_vf_multicasts(adapter);
2614 /* Need to wait a few seconds after link up to get diagnostic information from
2615 * the phy */
2616 static void igb_update_phy_info(unsigned long data)
2618 struct igb_adapter *adapter = (struct igb_adapter *) data;
2619 igb_get_phy_info(&adapter->hw);
2623 * igb_has_link - check shared code for link and determine up/down
2624 * @adapter: pointer to driver private info
2626 static bool igb_has_link(struct igb_adapter *adapter)
2628 struct e1000_hw *hw = &adapter->hw;
2629 bool link_active = false;
2630 s32 ret_val = 0;
2632 /* get_link_status is set on LSC (link status) interrupt or
2633 * rx sequence error interrupt. get_link_status will stay
2634 * false until the e1000_check_for_link establishes link
2635 * for copper adapters ONLY
2637 switch (hw->phy.media_type) {
2638 case e1000_media_type_copper:
2639 if (hw->mac.get_link_status) {
2640 ret_val = hw->mac.ops.check_for_link(hw);
2641 link_active = !hw->mac.get_link_status;
2642 } else {
2643 link_active = true;
2645 break;
2646 case e1000_media_type_internal_serdes:
2647 ret_val = hw->mac.ops.check_for_link(hw);
2648 link_active = hw->mac.serdes_has_link;
2649 break;
2650 default:
2651 case e1000_media_type_unknown:
2652 break;
2655 return link_active;
2659 * igb_watchdog - Timer Call-back
2660 * @data: pointer to adapter cast into an unsigned long
2662 static void igb_watchdog(unsigned long data)
2664 struct igb_adapter *adapter = (struct igb_adapter *)data;
2665 /* Do the rest outside of interrupt context */
2666 schedule_work(&adapter->watchdog_task);
2669 static void igb_watchdog_task(struct work_struct *work)
2671 struct igb_adapter *adapter = container_of(work,
2672 struct igb_adapter, watchdog_task);
2673 struct e1000_hw *hw = &adapter->hw;
2674 struct net_device *netdev = adapter->netdev;
2675 struct igb_ring *tx_ring = adapter->tx_ring;
2676 u32 link;
2677 u32 eics = 0;
2678 int i;
2680 link = igb_has_link(adapter);
2681 if ((netif_carrier_ok(netdev)) && link)
2682 goto link_up;
2684 if (link) {
2685 if (!netif_carrier_ok(netdev)) {
2686 u32 ctrl;
2687 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2688 &adapter->link_speed,
2689 &adapter->link_duplex);
2691 ctrl = rd32(E1000_CTRL);
2692 /* Links status message must follow this format */
2693 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2694 "Flow Control: %s\n",
2695 netdev->name,
2696 adapter->link_speed,
2697 adapter->link_duplex == FULL_DUPLEX ?
2698 "Full Duplex" : "Half Duplex",
2699 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2700 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2701 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2702 E1000_CTRL_TFCE) ? "TX" : "None")));
2704 /* tweak tx_queue_len according to speed/duplex and
2705 * adjust the timeout factor */
2706 netdev->tx_queue_len = adapter->tx_queue_len;
2707 adapter->tx_timeout_factor = 1;
2708 switch (adapter->link_speed) {
2709 case SPEED_10:
2710 netdev->tx_queue_len = 10;
2711 adapter->tx_timeout_factor = 14;
2712 break;
2713 case SPEED_100:
2714 netdev->tx_queue_len = 100;
2715 /* maybe add some timeout factor ? */
2716 break;
2719 netif_carrier_on(netdev);
2721 igb_ping_all_vfs(adapter);
2723 /* link state has changed, schedule phy info update */
2724 if (!test_bit(__IGB_DOWN, &adapter->state))
2725 mod_timer(&adapter->phy_info_timer,
2726 round_jiffies(jiffies + 2 * HZ));
2728 } else {
2729 if (netif_carrier_ok(netdev)) {
2730 adapter->link_speed = 0;
2731 adapter->link_duplex = 0;
2732 /* Links status message must follow this format */
2733 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2734 netdev->name);
2735 netif_carrier_off(netdev);
2737 igb_ping_all_vfs(adapter);
2739 /* link state has changed, schedule phy info update */
2740 if (!test_bit(__IGB_DOWN, &adapter->state))
2741 mod_timer(&adapter->phy_info_timer,
2742 round_jiffies(jiffies + 2 * HZ));
2746 link_up:
2747 igb_update_stats(adapter);
2749 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2750 adapter->tpt_old = adapter->stats.tpt;
2751 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2752 adapter->colc_old = adapter->stats.colc;
2754 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2755 adapter->gorc_old = adapter->stats.gorc;
2756 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2757 adapter->gotc_old = adapter->stats.gotc;
2759 igb_update_adaptive(&adapter->hw);
2761 if (!netif_carrier_ok(netdev)) {
2762 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
2763 /* We've lost link, so the controller stops DMA,
2764 * but we've got queued Tx work that's never going
2765 * to get done, so reset controller to flush Tx.
2766 * (Do the reset outside of interrupt context). */
2767 adapter->tx_timeout_count++;
2768 schedule_work(&adapter->reset_task);
2769 /* return immediately since reset is imminent */
2770 return;
2774 /* Cause software interrupt to ensure rx ring is cleaned */
2775 if (adapter->msix_entries) {
2776 for (i = 0; i < adapter->num_rx_queues; i++)
2777 eics |= adapter->rx_ring[i].eims_value;
2778 wr32(E1000_EICS, eics);
2779 } else {
2780 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2783 /* Force detection of hung controller every watchdog period */
2784 tx_ring->detect_tx_hung = true;
2786 /* Reset the timer */
2787 if (!test_bit(__IGB_DOWN, &adapter->state))
2788 mod_timer(&adapter->watchdog_timer,
2789 round_jiffies(jiffies + 2 * HZ));
2792 enum latency_range {
2793 lowest_latency = 0,
2794 low_latency = 1,
2795 bulk_latency = 2,
2796 latency_invalid = 255
2801 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2803 * Stores a new ITR value based on strictly on packet size. This
2804 * algorithm is less sophisticated than that used in igb_update_itr,
2805 * due to the difficulty of synchronizing statistics across multiple
2806 * receive rings. The divisors and thresholds used by this fuction
2807 * were determined based on theoretical maximum wire speed and testing
2808 * data, in order to minimize response time while increasing bulk
2809 * throughput.
2810 * This functionality is controlled by the InterruptThrottleRate module
2811 * parameter (see igb_param.c)
2812 * NOTE: This function is called only when operating in a multiqueue
2813 * receive environment.
2814 * @rx_ring: pointer to ring
2816 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2818 int new_val = rx_ring->itr_val;
2819 int avg_wire_size = 0;
2820 struct igb_adapter *adapter = rx_ring->adapter;
2822 if (!rx_ring->total_packets)
2823 goto clear_counts; /* no packets, so don't do anything */
2825 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2826 * ints/sec - ITR timer value of 120 ticks.
2828 if (adapter->link_speed != SPEED_1000) {
2829 new_val = 120;
2830 goto set_itr_val;
2832 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2834 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2835 avg_wire_size += 24;
2837 /* Don't starve jumbo frames */
2838 avg_wire_size = min(avg_wire_size, 3000);
2840 /* Give a little boost to mid-size frames */
2841 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2842 new_val = avg_wire_size / 3;
2843 else
2844 new_val = avg_wire_size / 2;
2846 set_itr_val:
2847 if (new_val != rx_ring->itr_val) {
2848 rx_ring->itr_val = new_val;
2849 rx_ring->set_itr = 1;
2851 clear_counts:
2852 rx_ring->total_bytes = 0;
2853 rx_ring->total_packets = 0;
2857 * igb_update_itr - update the dynamic ITR value based on statistics
2858 * Stores a new ITR value based on packets and byte
2859 * counts during the last interrupt. The advantage of per interrupt
2860 * computation is faster updates and more accurate ITR for the current
2861 * traffic pattern. Constants in this function were computed
2862 * based on theoretical maximum wire speed and thresholds were set based
2863 * on testing data as well as attempting to minimize response time
2864 * while increasing bulk throughput.
2865 * this functionality is controlled by the InterruptThrottleRate module
2866 * parameter (see igb_param.c)
2867 * NOTE: These calculations are only valid when operating in a single-
2868 * queue environment.
2869 * @adapter: pointer to adapter
2870 * @itr_setting: current adapter->itr
2871 * @packets: the number of packets during this measurement interval
2872 * @bytes: the number of bytes during this measurement interval
2874 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2875 int packets, int bytes)
2877 unsigned int retval = itr_setting;
2879 if (packets == 0)
2880 goto update_itr_done;
2882 switch (itr_setting) {
2883 case lowest_latency:
2884 /* handle TSO and jumbo frames */
2885 if (bytes/packets > 8000)
2886 retval = bulk_latency;
2887 else if ((packets < 5) && (bytes > 512))
2888 retval = low_latency;
2889 break;
2890 case low_latency: /* 50 usec aka 20000 ints/s */
2891 if (bytes > 10000) {
2892 /* this if handles the TSO accounting */
2893 if (bytes/packets > 8000) {
2894 retval = bulk_latency;
2895 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2896 retval = bulk_latency;
2897 } else if ((packets > 35)) {
2898 retval = lowest_latency;
2900 } else if (bytes/packets > 2000) {
2901 retval = bulk_latency;
2902 } else if (packets <= 2 && bytes < 512) {
2903 retval = lowest_latency;
2905 break;
2906 case bulk_latency: /* 250 usec aka 4000 ints/s */
2907 if (bytes > 25000) {
2908 if (packets > 35)
2909 retval = low_latency;
2910 } else if (bytes < 1500) {
2911 retval = low_latency;
2913 break;
2916 update_itr_done:
2917 return retval;
2920 static void igb_set_itr(struct igb_adapter *adapter)
2922 u16 current_itr;
2923 u32 new_itr = adapter->itr;
2925 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2926 if (adapter->link_speed != SPEED_1000) {
2927 current_itr = 0;
2928 new_itr = 4000;
2929 goto set_itr_now;
2932 adapter->rx_itr = igb_update_itr(adapter,
2933 adapter->rx_itr,
2934 adapter->rx_ring->total_packets,
2935 adapter->rx_ring->total_bytes);
2937 if (adapter->rx_ring->buddy) {
2938 adapter->tx_itr = igb_update_itr(adapter,
2939 adapter->tx_itr,
2940 adapter->tx_ring->total_packets,
2941 adapter->tx_ring->total_bytes);
2942 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2943 } else {
2944 current_itr = adapter->rx_itr;
2947 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2948 if (adapter->itr_setting == 3 && current_itr == lowest_latency)
2949 current_itr = low_latency;
2951 switch (current_itr) {
2952 /* counts and packets in update_itr are dependent on these numbers */
2953 case lowest_latency:
2954 new_itr = 56; /* aka 70,000 ints/sec */
2955 break;
2956 case low_latency:
2957 new_itr = 196; /* aka 20,000 ints/sec */
2958 break;
2959 case bulk_latency:
2960 new_itr = 980; /* aka 4,000 ints/sec */
2961 break;
2962 default:
2963 break;
2966 set_itr_now:
2967 adapter->rx_ring->total_bytes = 0;
2968 adapter->rx_ring->total_packets = 0;
2969 if (adapter->rx_ring->buddy) {
2970 adapter->rx_ring->buddy->total_bytes = 0;
2971 adapter->rx_ring->buddy->total_packets = 0;
2974 if (new_itr != adapter->itr) {
2975 /* this attempts to bias the interrupt rate towards Bulk
2976 * by adding intermediate steps when interrupt rate is
2977 * increasing */
2978 new_itr = new_itr > adapter->itr ?
2979 max((new_itr * adapter->itr) /
2980 (new_itr + (adapter->itr >> 2)), new_itr) :
2981 new_itr;
2982 /* Don't write the value here; it resets the adapter's
2983 * internal timer, and causes us to delay far longer than
2984 * we should between interrupts. Instead, we write the ITR
2985 * value at the beginning of the next interrupt so the timing
2986 * ends up being correct.
2988 adapter->itr = new_itr;
2989 adapter->rx_ring->itr_val = new_itr;
2990 adapter->rx_ring->set_itr = 1;
2993 return;
2997 #define IGB_TX_FLAGS_CSUM 0x00000001
2998 #define IGB_TX_FLAGS_VLAN 0x00000002
2999 #define IGB_TX_FLAGS_TSO 0x00000004
3000 #define IGB_TX_FLAGS_IPV4 0x00000008
3001 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3002 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3003 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3005 static inline int igb_tso_adv(struct igb_adapter *adapter,
3006 struct igb_ring *tx_ring,
3007 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3009 struct e1000_adv_tx_context_desc *context_desc;
3010 unsigned int i;
3011 int err;
3012 struct igb_buffer *buffer_info;
3013 u32 info = 0, tu_cmd = 0;
3014 u32 mss_l4len_idx, l4len;
3015 *hdr_len = 0;
3017 if (skb_header_cloned(skb)) {
3018 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3019 if (err)
3020 return err;
3023 l4len = tcp_hdrlen(skb);
3024 *hdr_len += l4len;
3026 if (skb->protocol == htons(ETH_P_IP)) {
3027 struct iphdr *iph = ip_hdr(skb);
3028 iph->tot_len = 0;
3029 iph->check = 0;
3030 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3031 iph->daddr, 0,
3032 IPPROTO_TCP,
3034 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3035 ipv6_hdr(skb)->payload_len = 0;
3036 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3037 &ipv6_hdr(skb)->daddr,
3038 0, IPPROTO_TCP, 0);
3041 i = tx_ring->next_to_use;
3043 buffer_info = &tx_ring->buffer_info[i];
3044 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3045 /* VLAN MACLEN IPLEN */
3046 if (tx_flags & IGB_TX_FLAGS_VLAN)
3047 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3048 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3049 *hdr_len += skb_network_offset(skb);
3050 info |= skb_network_header_len(skb);
3051 *hdr_len += skb_network_header_len(skb);
3052 context_desc->vlan_macip_lens = cpu_to_le32(info);
3054 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3055 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3057 if (skb->protocol == htons(ETH_P_IP))
3058 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3059 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3061 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3063 /* MSS L4LEN IDX */
3064 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3065 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3067 /* For 82575, context index must be unique per ring. */
3068 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3069 mss_l4len_idx |= tx_ring->queue_index << 4;
3071 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3072 context_desc->seqnum_seed = 0;
3074 buffer_info->time_stamp = jiffies;
3075 buffer_info->next_to_watch = i;
3076 buffer_info->dma = 0;
3077 i++;
3078 if (i == tx_ring->count)
3079 i = 0;
3081 tx_ring->next_to_use = i;
3083 return true;
3086 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
3087 struct igb_ring *tx_ring,
3088 struct sk_buff *skb, u32 tx_flags)
3090 struct e1000_adv_tx_context_desc *context_desc;
3091 unsigned int i;
3092 struct igb_buffer *buffer_info;
3093 u32 info = 0, tu_cmd = 0;
3095 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3096 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3097 i = tx_ring->next_to_use;
3098 buffer_info = &tx_ring->buffer_info[i];
3099 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3101 if (tx_flags & IGB_TX_FLAGS_VLAN)
3102 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3103 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3104 if (skb->ip_summed == CHECKSUM_PARTIAL)
3105 info |= skb_network_header_len(skb);
3107 context_desc->vlan_macip_lens = cpu_to_le32(info);
3109 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3111 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3112 __be16 protocol;
3114 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3115 const struct vlan_ethhdr *vhdr =
3116 (const struct vlan_ethhdr*)skb->data;
3118 protocol = vhdr->h_vlan_encapsulated_proto;
3119 } else {
3120 protocol = skb->protocol;
3123 switch (protocol) {
3124 case cpu_to_be16(ETH_P_IP):
3125 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3126 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3127 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3128 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3129 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3130 break;
3131 case cpu_to_be16(ETH_P_IPV6):
3132 /* XXX what about other V6 headers?? */
3133 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3134 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3135 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3136 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3137 break;
3138 default:
3139 if (unlikely(net_ratelimit()))
3140 dev_warn(&adapter->pdev->dev,
3141 "partial checksum but proto=%x!\n",
3142 skb->protocol);
3143 break;
3147 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3148 context_desc->seqnum_seed = 0;
3149 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3150 context_desc->mss_l4len_idx =
3151 cpu_to_le32(tx_ring->queue_index << 4);
3152 else
3153 context_desc->mss_l4len_idx = 0;
3155 buffer_info->time_stamp = jiffies;
3156 buffer_info->next_to_watch = i;
3157 buffer_info->dma = 0;
3159 i++;
3160 if (i == tx_ring->count)
3161 i = 0;
3162 tx_ring->next_to_use = i;
3164 return true;
3166 return false;
3169 #define IGB_MAX_TXD_PWR 16
3170 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3172 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
3173 struct igb_ring *tx_ring, struct sk_buff *skb,
3174 unsigned int first)
3176 struct igb_buffer *buffer_info;
3177 unsigned int len = skb_headlen(skb);
3178 unsigned int count = 0, i;
3179 unsigned int f;
3180 dma_addr_t *map;
3182 i = tx_ring->next_to_use;
3184 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3185 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3186 return 0;
3189 map = skb_shinfo(skb)->dma_maps;
3191 buffer_info = &tx_ring->buffer_info[i];
3192 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3193 buffer_info->length = len;
3194 /* set time_stamp *before* dma to help avoid a possible race */
3195 buffer_info->time_stamp = jiffies;
3196 buffer_info->next_to_watch = i;
3197 buffer_info->dma = skb_shinfo(skb)->dma_head;
3199 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3200 struct skb_frag_struct *frag;
3202 i++;
3203 if (i == tx_ring->count)
3204 i = 0;
3206 frag = &skb_shinfo(skb)->frags[f];
3207 len = frag->size;
3209 buffer_info = &tx_ring->buffer_info[i];
3210 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3211 buffer_info->length = len;
3212 buffer_info->time_stamp = jiffies;
3213 buffer_info->next_to_watch = i;
3214 buffer_info->dma = map[count];
3215 count++;
3218 tx_ring->buffer_info[i].skb = skb;
3219 tx_ring->buffer_info[first].next_to_watch = i;
3221 return count + 1;
3224 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3225 struct igb_ring *tx_ring,
3226 int tx_flags, int count, u32 paylen,
3227 u8 hdr_len)
3229 union e1000_adv_tx_desc *tx_desc = NULL;
3230 struct igb_buffer *buffer_info;
3231 u32 olinfo_status = 0, cmd_type_len;
3232 unsigned int i;
3234 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3235 E1000_ADVTXD_DCMD_DEXT);
3237 if (tx_flags & IGB_TX_FLAGS_VLAN)
3238 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3240 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3241 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3243 if (tx_flags & IGB_TX_FLAGS_TSO) {
3244 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3246 /* insert tcp checksum */
3247 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3249 /* insert ip checksum */
3250 if (tx_flags & IGB_TX_FLAGS_IPV4)
3251 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3253 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3254 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3257 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3258 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3259 IGB_TX_FLAGS_VLAN)))
3260 olinfo_status |= tx_ring->queue_index << 4;
3262 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3264 i = tx_ring->next_to_use;
3265 while (count--) {
3266 buffer_info = &tx_ring->buffer_info[i];
3267 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3268 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3269 tx_desc->read.cmd_type_len =
3270 cpu_to_le32(cmd_type_len | buffer_info->length);
3271 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3272 i++;
3273 if (i == tx_ring->count)
3274 i = 0;
3277 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3278 /* Force memory writes to complete before letting h/w
3279 * know there are new descriptors to fetch. (Only
3280 * applicable for weak-ordered memory model archs,
3281 * such as IA-64). */
3282 wmb();
3284 tx_ring->next_to_use = i;
3285 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3286 /* we need this if more than one processor can write to our tail
3287 * at a time, it syncronizes IO on IA64/Altix systems */
3288 mmiowb();
3291 static int __igb_maybe_stop_tx(struct net_device *netdev,
3292 struct igb_ring *tx_ring, int size)
3294 struct igb_adapter *adapter = netdev_priv(netdev);
3296 netif_stop_subqueue(netdev, tx_ring->queue_index);
3298 /* Herbert's original patch had:
3299 * smp_mb__after_netif_stop_queue();
3300 * but since that doesn't exist yet, just open code it. */
3301 smp_mb();
3303 /* We need to check again in a case another CPU has just
3304 * made room available. */
3305 if (igb_desc_unused(tx_ring) < size)
3306 return -EBUSY;
3308 /* A reprieve! */
3309 netif_wake_subqueue(netdev, tx_ring->queue_index);
3310 ++adapter->restart_queue;
3311 return 0;
3314 static int igb_maybe_stop_tx(struct net_device *netdev,
3315 struct igb_ring *tx_ring, int size)
3317 if (igb_desc_unused(tx_ring) >= size)
3318 return 0;
3319 return __igb_maybe_stop_tx(netdev, tx_ring, size);
3322 static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3323 struct net_device *netdev,
3324 struct igb_ring *tx_ring)
3326 struct igb_adapter *adapter = netdev_priv(netdev);
3327 unsigned int first;
3328 unsigned int tx_flags = 0;
3329 u8 hdr_len = 0;
3330 int count = 0;
3331 int tso = 0;
3332 union skb_shared_tx *shtx;
3334 if (test_bit(__IGB_DOWN, &adapter->state)) {
3335 dev_kfree_skb_any(skb);
3336 return NETDEV_TX_OK;
3339 if (skb->len <= 0) {
3340 dev_kfree_skb_any(skb);
3341 return NETDEV_TX_OK;
3344 /* need: 1 descriptor per page,
3345 * + 2 desc gap to keep tail from touching head,
3346 * + 1 desc for skb->data,
3347 * + 1 desc for context descriptor,
3348 * otherwise try next time */
3349 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3350 /* this is a hard error */
3351 return NETDEV_TX_BUSY;
3355 * TODO: check that there currently is no other packet with
3356 * time stamping in the queue
3358 * When doing time stamping, keep the connection to the socket
3359 * a while longer: it is still needed by skb_hwtstamp_tx(),
3360 * called either in igb_tx_hwtstamp() or by our caller when
3361 * doing software time stamping.
3363 shtx = skb_tx(skb);
3364 if (unlikely(shtx->hardware)) {
3365 shtx->in_progress = 1;
3366 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3369 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3370 tx_flags |= IGB_TX_FLAGS_VLAN;
3371 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3374 if (skb->protocol == htons(ETH_P_IP))
3375 tx_flags |= IGB_TX_FLAGS_IPV4;
3377 first = tx_ring->next_to_use;
3378 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3379 &hdr_len) : 0;
3381 if (tso < 0) {
3382 dev_kfree_skb_any(skb);
3383 return NETDEV_TX_OK;
3386 if (tso)
3387 tx_flags |= IGB_TX_FLAGS_TSO;
3388 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3389 (skb->ip_summed == CHECKSUM_PARTIAL))
3390 tx_flags |= IGB_TX_FLAGS_CSUM;
3393 * count reflects descriptors mapped, if 0 then mapping error
3394 * has occured and we need to rewind the descriptor queue
3396 count = igb_tx_map_adv(adapter, tx_ring, skb, first);
3398 if (count) {
3399 igb_tx_queue_adv(adapter, tx_ring, tx_flags, count,
3400 skb->len, hdr_len);
3401 /* Make sure there is space in the ring for the next send. */
3402 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3403 } else {
3404 dev_kfree_skb_any(skb);
3405 tx_ring->buffer_info[first].time_stamp = 0;
3406 tx_ring->next_to_use = first;
3409 return NETDEV_TX_OK;
3412 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3413 struct net_device *netdev)
3415 struct igb_adapter *adapter = netdev_priv(netdev);
3416 struct igb_ring *tx_ring;
3418 int r_idx = 0;
3419 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3420 tx_ring = adapter->multi_tx_table[r_idx];
3422 /* This goes back to the question of how to logically map a tx queue
3423 * to a flow. Right now, performance is impacted slightly negatively
3424 * if using multiple tx queues. If the stack breaks away from a
3425 * single qdisc implementation, we can look at this again. */
3426 return igb_xmit_frame_ring_adv(skb, netdev, tx_ring);
3430 * igb_tx_timeout - Respond to a Tx Hang
3431 * @netdev: network interface device structure
3433 static void igb_tx_timeout(struct net_device *netdev)
3435 struct igb_adapter *adapter = netdev_priv(netdev);
3436 struct e1000_hw *hw = &adapter->hw;
3438 /* Do the reset outside of interrupt context */
3439 adapter->tx_timeout_count++;
3440 schedule_work(&adapter->reset_task);
3441 wr32(E1000_EICS,
3442 (adapter->eims_enable_mask & ~adapter->eims_other));
3445 static void igb_reset_task(struct work_struct *work)
3447 struct igb_adapter *adapter;
3448 adapter = container_of(work, struct igb_adapter, reset_task);
3450 igb_reinit_locked(adapter);
3454 * igb_get_stats - Get System Network Statistics
3455 * @netdev: network interface device structure
3457 * Returns the address of the device statistics structure.
3458 * The statistics are actually updated from the timer callback.
3460 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3462 struct igb_adapter *adapter = netdev_priv(netdev);
3464 /* only return the current stats */
3465 return &adapter->net_stats;
3469 * igb_change_mtu - Change the Maximum Transfer Unit
3470 * @netdev: network interface device structure
3471 * @new_mtu: new value for maximum frame size
3473 * Returns 0 on success, negative on failure
3475 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3477 struct igb_adapter *adapter = netdev_priv(netdev);
3478 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3480 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3481 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3482 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3483 return -EINVAL;
3486 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3487 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3488 return -EINVAL;
3491 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3492 msleep(1);
3494 /* igb_down has a dependency on max_frame_size */
3495 adapter->max_frame_size = max_frame;
3496 if (netif_running(netdev))
3497 igb_down(adapter);
3499 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3500 * means we reserve 2 more, this pushes us to allocate from the next
3501 * larger slab size.
3502 * i.e. RXBUFFER_2048 --> size-4096 slab
3505 if (max_frame <= IGB_RXBUFFER_256)
3506 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3507 else if (max_frame <= IGB_RXBUFFER_512)
3508 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3509 else if (max_frame <= IGB_RXBUFFER_1024)
3510 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3511 else if (max_frame <= IGB_RXBUFFER_2048)
3512 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3513 else
3514 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3515 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3516 #else
3517 adapter->rx_buffer_len = PAGE_SIZE / 2;
3518 #endif
3520 /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3521 if (adapter->vfs_allocated_count &&
3522 (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3523 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3525 /* adjust allocation if LPE protects us, and we aren't using SBP */
3526 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3527 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3528 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3530 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3531 netdev->mtu, new_mtu);
3532 netdev->mtu = new_mtu;
3534 if (netif_running(netdev))
3535 igb_up(adapter);
3536 else
3537 igb_reset(adapter);
3539 clear_bit(__IGB_RESETTING, &adapter->state);
3541 return 0;
3545 * igb_update_stats - Update the board statistics counters
3546 * @adapter: board private structure
3549 void igb_update_stats(struct igb_adapter *adapter)
3551 struct e1000_hw *hw = &adapter->hw;
3552 struct pci_dev *pdev = adapter->pdev;
3553 u16 phy_tmp;
3555 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3558 * Prevent stats update while adapter is being reset, or if the pci
3559 * connection is down.
3561 if (adapter->link_speed == 0)
3562 return;
3563 if (pci_channel_offline(pdev))
3564 return;
3566 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3567 adapter->stats.gprc += rd32(E1000_GPRC);
3568 adapter->stats.gorc += rd32(E1000_GORCL);
3569 rd32(E1000_GORCH); /* clear GORCL */
3570 adapter->stats.bprc += rd32(E1000_BPRC);
3571 adapter->stats.mprc += rd32(E1000_MPRC);
3572 adapter->stats.roc += rd32(E1000_ROC);
3574 adapter->stats.prc64 += rd32(E1000_PRC64);
3575 adapter->stats.prc127 += rd32(E1000_PRC127);
3576 adapter->stats.prc255 += rd32(E1000_PRC255);
3577 adapter->stats.prc511 += rd32(E1000_PRC511);
3578 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3579 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3580 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3581 adapter->stats.sec += rd32(E1000_SEC);
3583 adapter->stats.mpc += rd32(E1000_MPC);
3584 adapter->stats.scc += rd32(E1000_SCC);
3585 adapter->stats.ecol += rd32(E1000_ECOL);
3586 adapter->stats.mcc += rd32(E1000_MCC);
3587 adapter->stats.latecol += rd32(E1000_LATECOL);
3588 adapter->stats.dc += rd32(E1000_DC);
3589 adapter->stats.rlec += rd32(E1000_RLEC);
3590 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3591 adapter->stats.xontxc += rd32(E1000_XONTXC);
3592 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3593 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3594 adapter->stats.fcruc += rd32(E1000_FCRUC);
3595 adapter->stats.gptc += rd32(E1000_GPTC);
3596 adapter->stats.gotc += rd32(E1000_GOTCL);
3597 rd32(E1000_GOTCH); /* clear GOTCL */
3598 adapter->stats.rnbc += rd32(E1000_RNBC);
3599 adapter->stats.ruc += rd32(E1000_RUC);
3600 adapter->stats.rfc += rd32(E1000_RFC);
3601 adapter->stats.rjc += rd32(E1000_RJC);
3602 adapter->stats.tor += rd32(E1000_TORH);
3603 adapter->stats.tot += rd32(E1000_TOTH);
3604 adapter->stats.tpr += rd32(E1000_TPR);
3606 adapter->stats.ptc64 += rd32(E1000_PTC64);
3607 adapter->stats.ptc127 += rd32(E1000_PTC127);
3608 adapter->stats.ptc255 += rd32(E1000_PTC255);
3609 adapter->stats.ptc511 += rd32(E1000_PTC511);
3610 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3611 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3613 adapter->stats.mptc += rd32(E1000_MPTC);
3614 adapter->stats.bptc += rd32(E1000_BPTC);
3616 /* used for adaptive IFS */
3618 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3619 adapter->stats.tpt += hw->mac.tx_packet_delta;
3620 hw->mac.collision_delta = rd32(E1000_COLC);
3621 adapter->stats.colc += hw->mac.collision_delta;
3623 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3624 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3625 adapter->stats.tncrs += rd32(E1000_TNCRS);
3626 adapter->stats.tsctc += rd32(E1000_TSCTC);
3627 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3629 adapter->stats.iac += rd32(E1000_IAC);
3630 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3631 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3632 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3633 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3634 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3635 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3636 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3637 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3639 /* Fill out the OS statistics structure */
3640 adapter->net_stats.multicast = adapter->stats.mprc;
3641 adapter->net_stats.collisions = adapter->stats.colc;
3643 /* Rx Errors */
3645 if (hw->mac.type != e1000_82575) {
3646 u32 rqdpc_tmp;
3647 u64 rqdpc_total = 0;
3648 int i;
3649 /* Read out drops stats per RX queue. Notice RQDPC (Receive
3650 * Queue Drop Packet Count) stats only gets incremented, if
3651 * the DROP_EN but it set (in the SRRCTL register for that
3652 * queue). If DROP_EN bit is NOT set, then the some what
3653 * equivalent count is stored in RNBC (not per queue basis).
3654 * Also note the drop count is due to lack of available
3655 * descriptors.
3657 for (i = 0; i < adapter->num_rx_queues; i++) {
3658 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
3659 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3660 rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
3662 adapter->net_stats.rx_fifo_errors = rqdpc_total;
3665 /* Note RNBC (Receive No Buffers Count) is an not an exact
3666 * drop count as the hardware FIFO might save the day. Thats
3667 * one of the reason for saving it in rx_fifo_errors, as its
3668 * potentially not a true drop.
3670 adapter->net_stats.rx_fifo_errors += adapter->stats.rnbc;
3672 /* RLEC on some newer hardware can be incorrect so build
3673 * our own version based on RUC and ROC */
3674 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3675 adapter->stats.crcerrs + adapter->stats.algnerrc +
3676 adapter->stats.ruc + adapter->stats.roc +
3677 adapter->stats.cexterr;
3678 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3679 adapter->stats.roc;
3680 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3681 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3682 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3684 /* Tx Errors */
3685 adapter->net_stats.tx_errors = adapter->stats.ecol +
3686 adapter->stats.latecol;
3687 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3688 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3689 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3691 /* Tx Dropped needs to be maintained elsewhere */
3693 /* Phy Stats */
3694 if (hw->phy.media_type == e1000_media_type_copper) {
3695 if ((adapter->link_speed == SPEED_1000) &&
3696 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3697 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3698 adapter->phy_stats.idle_errors += phy_tmp;
3702 /* Management Stats */
3703 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3704 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3705 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3708 static irqreturn_t igb_msix_other(int irq, void *data)
3710 struct net_device *netdev = data;
3711 struct igb_adapter *adapter = netdev_priv(netdev);
3712 struct e1000_hw *hw = &adapter->hw;
3713 u32 icr = rd32(E1000_ICR);
3715 /* reading ICR causes bit 31 of EICR to be cleared */
3717 if(icr & E1000_ICR_DOUTSYNC) {
3718 /* HW is reporting DMA is out of sync */
3719 adapter->stats.doosync++;
3722 /* Check for a mailbox event */
3723 if (icr & E1000_ICR_VMMB)
3724 igb_msg_task(adapter);
3726 if (icr & E1000_ICR_LSC) {
3727 hw->mac.get_link_status = 1;
3728 /* guard against interrupt when we're going down */
3729 if (!test_bit(__IGB_DOWN, &adapter->state))
3730 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3733 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3734 wr32(E1000_EIMS, adapter->eims_other);
3736 return IRQ_HANDLED;
3739 static irqreturn_t igb_msix_tx(int irq, void *data)
3741 struct igb_ring *tx_ring = data;
3742 struct igb_adapter *adapter = tx_ring->adapter;
3743 struct e1000_hw *hw = &adapter->hw;
3745 #ifdef CONFIG_IGB_DCA
3746 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3747 igb_update_tx_dca(tx_ring);
3748 #endif
3750 tx_ring->total_bytes = 0;
3751 tx_ring->total_packets = 0;
3753 /* auto mask will automatically reenable the interrupt when we write
3754 * EICS */
3755 if (!igb_clean_tx_irq(tx_ring))
3756 /* Ring was not completely cleaned, so fire another interrupt */
3757 wr32(E1000_EICS, tx_ring->eims_value);
3758 else
3759 wr32(E1000_EIMS, tx_ring->eims_value);
3761 return IRQ_HANDLED;
3764 static void igb_write_itr(struct igb_ring *ring)
3766 struct e1000_hw *hw = &ring->adapter->hw;
3767 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3768 switch (hw->mac.type) {
3769 case e1000_82576:
3770 wr32(ring->itr_register, ring->itr_val |
3771 0x80000000);
3772 break;
3773 default:
3774 wr32(ring->itr_register, ring->itr_val |
3775 (ring->itr_val << 16));
3776 break;
3778 ring->set_itr = 0;
3782 static irqreturn_t igb_msix_rx(int irq, void *data)
3784 struct igb_ring *rx_ring = data;
3786 /* Write the ITR value calculated at the end of the
3787 * previous interrupt.
3790 igb_write_itr(rx_ring);
3792 if (napi_schedule_prep(&rx_ring->napi))
3793 __napi_schedule(&rx_ring->napi);
3795 #ifdef CONFIG_IGB_DCA
3796 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3797 igb_update_rx_dca(rx_ring);
3798 #endif
3799 return IRQ_HANDLED;
3802 #ifdef CONFIG_IGB_DCA
3803 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3805 u32 dca_rxctrl;
3806 struct igb_adapter *adapter = rx_ring->adapter;
3807 struct e1000_hw *hw = &adapter->hw;
3808 int cpu = get_cpu();
3809 int q = rx_ring->reg_idx;
3811 if (rx_ring->cpu != cpu) {
3812 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3813 if (hw->mac.type == e1000_82576) {
3814 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3815 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3816 E1000_DCA_RXCTRL_CPUID_SHIFT;
3817 } else {
3818 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3819 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3821 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3822 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3823 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3824 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3825 rx_ring->cpu = cpu;
3827 put_cpu();
3830 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3832 u32 dca_txctrl;
3833 struct igb_adapter *adapter = tx_ring->adapter;
3834 struct e1000_hw *hw = &adapter->hw;
3835 int cpu = get_cpu();
3836 int q = tx_ring->reg_idx;
3838 if (tx_ring->cpu != cpu) {
3839 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3840 if (hw->mac.type == e1000_82576) {
3841 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3842 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3843 E1000_DCA_TXCTRL_CPUID_SHIFT;
3844 } else {
3845 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3846 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3848 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3849 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3850 tx_ring->cpu = cpu;
3852 put_cpu();
3855 static void igb_setup_dca(struct igb_adapter *adapter)
3857 struct e1000_hw *hw = &adapter->hw;
3858 int i;
3860 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3861 return;
3863 /* Always use CB2 mode, difference is masked in the CB driver. */
3864 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3866 for (i = 0; i < adapter->num_tx_queues; i++) {
3867 adapter->tx_ring[i].cpu = -1;
3868 igb_update_tx_dca(&adapter->tx_ring[i]);
3870 for (i = 0; i < adapter->num_rx_queues; i++) {
3871 adapter->rx_ring[i].cpu = -1;
3872 igb_update_rx_dca(&adapter->rx_ring[i]);
3876 static int __igb_notify_dca(struct device *dev, void *data)
3878 struct net_device *netdev = dev_get_drvdata(dev);
3879 struct igb_adapter *adapter = netdev_priv(netdev);
3880 struct e1000_hw *hw = &adapter->hw;
3881 unsigned long event = *(unsigned long *)data;
3883 switch (event) {
3884 case DCA_PROVIDER_ADD:
3885 /* if already enabled, don't do it again */
3886 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3887 break;
3888 /* Always use CB2 mode, difference is masked
3889 * in the CB driver. */
3890 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3891 if (dca_add_requester(dev) == 0) {
3892 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3893 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3894 igb_setup_dca(adapter);
3895 break;
3897 /* Fall Through since DCA is disabled. */
3898 case DCA_PROVIDER_REMOVE:
3899 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3900 /* without this a class_device is left
3901 * hanging around in the sysfs model */
3902 dca_remove_requester(dev);
3903 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3904 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3905 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3907 break;
3910 return 0;
3913 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3914 void *p)
3916 int ret_val;
3918 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3919 __igb_notify_dca);
3921 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3923 #endif /* CONFIG_IGB_DCA */
3925 static void igb_ping_all_vfs(struct igb_adapter *adapter)
3927 struct e1000_hw *hw = &adapter->hw;
3928 u32 ping;
3929 int i;
3931 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
3932 ping = E1000_PF_CONTROL_MSG;
3933 if (adapter->vf_data[i].clear_to_send)
3934 ping |= E1000_VT_MSGTYPE_CTS;
3935 igb_write_mbx(hw, &ping, 1, i);
3939 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
3940 u32 *msgbuf, u32 vf)
3942 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3943 u16 *hash_list = (u16 *)&msgbuf[1];
3944 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
3945 int i;
3947 /* only up to 30 hash values supported */
3948 if (n > 30)
3949 n = 30;
3951 /* salt away the number of multi cast addresses assigned
3952 * to this VF for later use to restore when the PF multi cast
3953 * list changes
3955 vf_data->num_vf_mc_hashes = n;
3957 /* VFs are limited to using the MTA hash table for their multicast
3958 * addresses */
3959 for (i = 0; i < n; i++)
3960 vf_data->vf_mc_hashes[i] = hash_list[i];
3962 /* Flush and reset the mta with the new values */
3963 igb_set_rx_mode(adapter->netdev);
3965 return 0;
3968 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
3970 struct e1000_hw *hw = &adapter->hw;
3971 struct vf_data_storage *vf_data;
3972 int i, j;
3974 for (i = 0; i < adapter->vfs_allocated_count; i++) {
3975 vf_data = &adapter->vf_data[i];
3976 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
3977 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
3981 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
3983 struct e1000_hw *hw = &adapter->hw;
3984 u32 pool_mask, reg, vid;
3985 int i;
3987 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3989 /* Find the vlan filter for this id */
3990 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3991 reg = rd32(E1000_VLVF(i));
3993 /* remove the vf from the pool */
3994 reg &= ~pool_mask;
3996 /* if pool is empty then remove entry from vfta */
3997 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
3998 (reg & E1000_VLVF_VLANID_ENABLE)) {
3999 reg = 0;
4000 vid = reg & E1000_VLVF_VLANID_MASK;
4001 igb_vfta_set(hw, vid, false);
4004 wr32(E1000_VLVF(i), reg);
4007 adapter->vf_data[vf].vlans_enabled = 0;
4010 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4012 struct e1000_hw *hw = &adapter->hw;
4013 u32 reg, i;
4015 /* It is an error to call this function when VFs are not enabled */
4016 if (!adapter->vfs_allocated_count)
4017 return -1;
4019 /* Find the vlan filter for this id */
4020 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4021 reg = rd32(E1000_VLVF(i));
4022 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4023 vid == (reg & E1000_VLVF_VLANID_MASK))
4024 break;
4027 if (add) {
4028 if (i == E1000_VLVF_ARRAY_SIZE) {
4029 /* Did not find a matching VLAN ID entry that was
4030 * enabled. Search for a free filter entry, i.e.
4031 * one without the enable bit set
4033 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4034 reg = rd32(E1000_VLVF(i));
4035 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4036 break;
4039 if (i < E1000_VLVF_ARRAY_SIZE) {
4040 /* Found an enabled/available entry */
4041 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4043 /* if !enabled we need to set this up in vfta */
4044 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4045 /* add VID to filter table, if bit already set
4046 * PF must have added it outside of table */
4047 if (igb_vfta_set(hw, vid, true))
4048 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
4049 adapter->vfs_allocated_count);
4050 reg |= E1000_VLVF_VLANID_ENABLE;
4052 reg &= ~E1000_VLVF_VLANID_MASK;
4053 reg |= vid;
4055 wr32(E1000_VLVF(i), reg);
4057 /* do not modify RLPML for PF devices */
4058 if (vf >= adapter->vfs_allocated_count)
4059 return 0;
4061 if (!adapter->vf_data[vf].vlans_enabled) {
4062 u32 size;
4063 reg = rd32(E1000_VMOLR(vf));
4064 size = reg & E1000_VMOLR_RLPML_MASK;
4065 size += 4;
4066 reg &= ~E1000_VMOLR_RLPML_MASK;
4067 reg |= size;
4068 wr32(E1000_VMOLR(vf), reg);
4070 adapter->vf_data[vf].vlans_enabled++;
4072 return 0;
4074 } else {
4075 if (i < E1000_VLVF_ARRAY_SIZE) {
4076 /* remove vf from the pool */
4077 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4078 /* if pool is empty then remove entry from vfta */
4079 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4080 reg = 0;
4081 igb_vfta_set(hw, vid, false);
4083 wr32(E1000_VLVF(i), reg);
4085 /* do not modify RLPML for PF devices */
4086 if (vf >= adapter->vfs_allocated_count)
4087 return 0;
4089 adapter->vf_data[vf].vlans_enabled--;
4090 if (!adapter->vf_data[vf].vlans_enabled) {
4091 u32 size;
4092 reg = rd32(E1000_VMOLR(vf));
4093 size = reg & E1000_VMOLR_RLPML_MASK;
4094 size -= 4;
4095 reg &= ~E1000_VMOLR_RLPML_MASK;
4096 reg |= size;
4097 wr32(E1000_VMOLR(vf), reg);
4099 return 0;
4102 return -1;
4105 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4107 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4108 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4110 return igb_vlvf_set(adapter, vid, add, vf);
4113 static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4115 struct e1000_hw *hw = &adapter->hw;
4117 /* disable mailbox functionality for vf */
4118 adapter->vf_data[vf].clear_to_send = false;
4120 /* reset offloads to defaults */
4121 igb_set_vmolr(hw, vf);
4123 /* reset vlans for device */
4124 igb_clear_vf_vfta(adapter, vf);
4126 /* reset multicast table array for vf */
4127 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4129 /* Flush and reset the mta with the new values */
4130 igb_set_rx_mode(adapter->netdev);
4133 static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4135 struct e1000_hw *hw = &adapter->hw;
4136 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4137 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4138 u32 reg, msgbuf[3];
4139 u8 *addr = (u8 *)(&msgbuf[1]);
4141 /* process all the same items cleared in a function level reset */
4142 igb_vf_reset_event(adapter, vf);
4144 /* set vf mac address */
4145 igb_rar_set(hw, vf_mac, rar_entry);
4146 igb_set_rah_pool(hw, vf, rar_entry);
4148 /* enable transmit and receive for vf */
4149 reg = rd32(E1000_VFTE);
4150 wr32(E1000_VFTE, reg | (1 << vf));
4151 reg = rd32(E1000_VFRE);
4152 wr32(E1000_VFRE, reg | (1 << vf));
4154 /* enable mailbox functionality for vf */
4155 adapter->vf_data[vf].clear_to_send = true;
4157 /* reply to reset with ack and vf mac address */
4158 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4159 memcpy(addr, vf_mac, 6);
4160 igb_write_mbx(hw, msgbuf, 3, vf);
4163 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4165 unsigned char *addr = (char *)&msg[1];
4166 int err = -1;
4168 if (is_valid_ether_addr(addr))
4169 err = igb_set_vf_mac(adapter, vf, addr);
4171 return err;
4175 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4177 struct e1000_hw *hw = &adapter->hw;
4178 u32 msg = E1000_VT_MSGTYPE_NACK;
4180 /* if device isn't clear to send it shouldn't be reading either */
4181 if (!adapter->vf_data[vf].clear_to_send)
4182 igb_write_mbx(hw, &msg, 1, vf);
4186 static void igb_msg_task(struct igb_adapter *adapter)
4188 struct e1000_hw *hw = &adapter->hw;
4189 u32 vf;
4191 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4192 /* process any reset requests */
4193 if (!igb_check_for_rst(hw, vf)) {
4194 adapter->vf_data[vf].clear_to_send = false;
4195 igb_vf_reset_event(adapter, vf);
4198 /* process any messages pending */
4199 if (!igb_check_for_msg(hw, vf))
4200 igb_rcv_msg_from_vf(adapter, vf);
4202 /* process any acks */
4203 if (!igb_check_for_ack(hw, vf))
4204 igb_rcv_ack_from_vf(adapter, vf);
4209 static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4211 u32 mbx_size = E1000_VFMAILBOX_SIZE;
4212 u32 msgbuf[mbx_size];
4213 struct e1000_hw *hw = &adapter->hw;
4214 s32 retval;
4216 retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4218 if (retval)
4219 dev_err(&adapter->pdev->dev,
4220 "Error receiving message from VF\n");
4222 /* this is a message we already processed, do nothing */
4223 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4224 return retval;
4227 * until the vf completes a reset it should not be
4228 * allowed to start any configuration.
4231 if (msgbuf[0] == E1000_VF_RESET) {
4232 igb_vf_reset_msg(adapter, vf);
4234 return retval;
4237 if (!adapter->vf_data[vf].clear_to_send) {
4238 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4239 igb_write_mbx(hw, msgbuf, 1, vf);
4240 return retval;
4243 switch ((msgbuf[0] & 0xFFFF)) {
4244 case E1000_VF_SET_MAC_ADDR:
4245 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4246 break;
4247 case E1000_VF_SET_MULTICAST:
4248 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4249 break;
4250 case E1000_VF_SET_LPE:
4251 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4252 break;
4253 case E1000_VF_SET_VLAN:
4254 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4255 break;
4256 default:
4257 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4258 retval = -1;
4259 break;
4262 /* notify the VF of the results of what it sent us */
4263 if (retval)
4264 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4265 else
4266 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4268 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4270 igb_write_mbx(hw, msgbuf, 1, vf);
4272 return retval;
4276 * igb_intr_msi - Interrupt Handler
4277 * @irq: interrupt number
4278 * @data: pointer to a network interface device structure
4280 static irqreturn_t igb_intr_msi(int irq, void *data)
4282 struct net_device *netdev = data;
4283 struct igb_adapter *adapter = netdev_priv(netdev);
4284 struct e1000_hw *hw = &adapter->hw;
4285 /* read ICR disables interrupts using IAM */
4286 u32 icr = rd32(E1000_ICR);
4288 igb_write_itr(adapter->rx_ring);
4290 if(icr & E1000_ICR_DOUTSYNC) {
4291 /* HW is reporting DMA is out of sync */
4292 adapter->stats.doosync++;
4295 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4296 hw->mac.get_link_status = 1;
4297 if (!test_bit(__IGB_DOWN, &adapter->state))
4298 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4301 napi_schedule(&adapter->rx_ring[0].napi);
4303 return IRQ_HANDLED;
4307 * igb_intr - Legacy Interrupt Handler
4308 * @irq: interrupt number
4309 * @data: pointer to a network interface device structure
4311 static irqreturn_t igb_intr(int irq, void *data)
4313 struct net_device *netdev = data;
4314 struct igb_adapter *adapter = netdev_priv(netdev);
4315 struct e1000_hw *hw = &adapter->hw;
4316 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4317 * need for the IMC write */
4318 u32 icr = rd32(E1000_ICR);
4319 if (!icr)
4320 return IRQ_NONE; /* Not our interrupt */
4322 igb_write_itr(adapter->rx_ring);
4324 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4325 * not set, then the adapter didn't send an interrupt */
4326 if (!(icr & E1000_ICR_INT_ASSERTED))
4327 return IRQ_NONE;
4329 if(icr & E1000_ICR_DOUTSYNC) {
4330 /* HW is reporting DMA is out of sync */
4331 adapter->stats.doosync++;
4334 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4335 hw->mac.get_link_status = 1;
4336 /* guard against interrupt when we're going down */
4337 if (!test_bit(__IGB_DOWN, &adapter->state))
4338 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4341 napi_schedule(&adapter->rx_ring[0].napi);
4343 return IRQ_HANDLED;
4346 static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
4348 struct igb_adapter *adapter = rx_ring->adapter;
4349 struct e1000_hw *hw = &adapter->hw;
4351 if (adapter->itr_setting & 3) {
4352 if (adapter->num_rx_queues == 1)
4353 igb_set_itr(adapter);
4354 else
4355 igb_update_ring_itr(rx_ring);
4358 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4359 if (adapter->msix_entries)
4360 wr32(E1000_EIMS, rx_ring->eims_value);
4361 else
4362 igb_irq_enable(adapter);
4367 * igb_poll - NAPI Rx polling callback
4368 * @napi: napi polling structure
4369 * @budget: count of how many packets we should handle
4371 static int igb_poll(struct napi_struct *napi, int budget)
4373 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
4374 int work_done = 0;
4376 #ifdef CONFIG_IGB_DCA
4377 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4378 igb_update_rx_dca(rx_ring);
4379 #endif
4380 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
4382 if (rx_ring->buddy) {
4383 #ifdef CONFIG_IGB_DCA
4384 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4385 igb_update_tx_dca(rx_ring->buddy);
4386 #endif
4387 if (!igb_clean_tx_irq(rx_ring->buddy))
4388 work_done = budget;
4391 /* If not enough Rx work done, exit the polling mode */
4392 if (work_done < budget) {
4393 napi_complete(napi);
4394 igb_rx_irq_enable(rx_ring);
4397 return work_done;
4401 * igb_hwtstamp - utility function which checks for TX time stamp
4402 * @adapter: board private structure
4403 * @skb: packet that was just sent
4405 * If we were asked to do hardware stamping and such a time stamp is
4406 * available, then it must have been for this skb here because we only
4407 * allow only one such packet into the queue.
4409 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4411 union skb_shared_tx *shtx = skb_tx(skb);
4412 struct e1000_hw *hw = &adapter->hw;
4414 if (unlikely(shtx->hardware)) {
4415 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4416 if (valid) {
4417 u64 regval = rd32(E1000_TXSTMPL);
4418 u64 ns;
4419 struct skb_shared_hwtstamps shhwtstamps;
4421 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4422 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4423 ns = timecounter_cyc2time(&adapter->clock,
4424 regval);
4425 timecompare_update(&adapter->compare, ns);
4426 shhwtstamps.hwtstamp = ns_to_ktime(ns);
4427 shhwtstamps.syststamp =
4428 timecompare_transform(&adapter->compare, ns);
4429 skb_tstamp_tx(skb, &shhwtstamps);
4435 * igb_clean_tx_irq - Reclaim resources after transmit completes
4436 * @adapter: board private structure
4437 * returns true if ring is completely cleaned
4439 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
4441 struct igb_adapter *adapter = tx_ring->adapter;
4442 struct net_device *netdev = adapter->netdev;
4443 struct e1000_hw *hw = &adapter->hw;
4444 struct igb_buffer *buffer_info;
4445 struct sk_buff *skb;
4446 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4447 unsigned int total_bytes = 0, total_packets = 0;
4448 unsigned int i, eop, count = 0;
4449 bool cleaned = false;
4451 i = tx_ring->next_to_clean;
4452 eop = tx_ring->buffer_info[i].next_to_watch;
4453 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4455 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4456 (count < tx_ring->count)) {
4457 for (cleaned = false; !cleaned; count++) {
4458 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4459 buffer_info = &tx_ring->buffer_info[i];
4460 cleaned = (i == eop);
4461 skb = buffer_info->skb;
4463 if (skb) {
4464 unsigned int segs, bytecount;
4465 /* gso_segs is currently only valid for tcp */
4466 segs = skb_shinfo(skb)->gso_segs ?: 1;
4467 /* multiply data chunks by size of headers */
4468 bytecount = ((segs - 1) * skb_headlen(skb)) +
4469 skb->len;
4470 total_packets += segs;
4471 total_bytes += bytecount;
4473 igb_tx_hwtstamp(adapter, skb);
4476 igb_unmap_and_free_tx_resource(adapter, buffer_info);
4477 tx_desc->wb.status = 0;
4479 i++;
4480 if (i == tx_ring->count)
4481 i = 0;
4483 eop = tx_ring->buffer_info[i].next_to_watch;
4484 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4487 tx_ring->next_to_clean = i;
4489 if (unlikely(count &&
4490 netif_carrier_ok(netdev) &&
4491 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4492 /* Make sure that anybody stopping the queue after this
4493 * sees the new next_to_clean.
4495 smp_mb();
4496 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4497 !(test_bit(__IGB_DOWN, &adapter->state))) {
4498 netif_wake_subqueue(netdev, tx_ring->queue_index);
4499 ++adapter->restart_queue;
4503 if (tx_ring->detect_tx_hung) {
4504 /* Detect a transmit hang in hardware, this serializes the
4505 * check with the clearing of time_stamp and movement of i */
4506 tx_ring->detect_tx_hung = false;
4507 if (tx_ring->buffer_info[i].time_stamp &&
4508 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4509 (adapter->tx_timeout_factor * HZ))
4510 && !(rd32(E1000_STATUS) &
4511 E1000_STATUS_TXOFF)) {
4513 /* detected Tx unit hang */
4514 dev_err(&adapter->pdev->dev,
4515 "Detected Tx Unit Hang\n"
4516 " Tx Queue <%d>\n"
4517 " TDH <%x>\n"
4518 " TDT <%x>\n"
4519 " next_to_use <%x>\n"
4520 " next_to_clean <%x>\n"
4521 "buffer_info[next_to_clean]\n"
4522 " time_stamp <%lx>\n"
4523 " next_to_watch <%x>\n"
4524 " jiffies <%lx>\n"
4525 " desc.status <%x>\n",
4526 tx_ring->queue_index,
4527 readl(adapter->hw.hw_addr + tx_ring->head),
4528 readl(adapter->hw.hw_addr + tx_ring->tail),
4529 tx_ring->next_to_use,
4530 tx_ring->next_to_clean,
4531 tx_ring->buffer_info[i].time_stamp,
4532 eop,
4533 jiffies,
4534 eop_desc->wb.status);
4535 netif_stop_subqueue(netdev, tx_ring->queue_index);
4538 tx_ring->total_bytes += total_bytes;
4539 tx_ring->total_packets += total_packets;
4540 tx_ring->tx_stats.bytes += total_bytes;
4541 tx_ring->tx_stats.packets += total_packets;
4542 adapter->net_stats.tx_bytes += total_bytes;
4543 adapter->net_stats.tx_packets += total_packets;
4544 return (count < tx_ring->count);
4548 * igb_receive_skb - helper function to handle rx indications
4549 * @ring: pointer to receive ring receving this packet
4550 * @status: descriptor status field as written by hardware
4551 * @rx_desc: receive descriptor containing vlan and type information.
4552 * @skb: pointer to sk_buff to be indicated to stack
4554 static void igb_receive_skb(struct igb_ring *ring, u8 status,
4555 union e1000_adv_rx_desc * rx_desc,
4556 struct sk_buff *skb)
4558 struct igb_adapter * adapter = ring->adapter;
4559 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4561 skb_record_rx_queue(skb, ring->queue_index);
4562 if (vlan_extracted)
4563 vlan_gro_receive(&ring->napi, adapter->vlgrp,
4564 le16_to_cpu(rx_desc->wb.upper.vlan),
4565 skb);
4566 else
4567 napi_gro_receive(&ring->napi, skb);
4570 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4571 u32 status_err, struct sk_buff *skb)
4573 skb->ip_summed = CHECKSUM_NONE;
4575 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4576 if ((status_err & E1000_RXD_STAT_IXSM) ||
4577 (adapter->flags & IGB_FLAG_RX_CSUM_DISABLED))
4578 return;
4579 /* TCP/UDP checksum error bit is set */
4580 if (status_err &
4581 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4583 * work around errata with sctp packets where the TCPE aka
4584 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4585 * packets, (aka let the stack check the crc32c)
4587 if (!((adapter->hw.mac.type == e1000_82576) &&
4588 (skb->len == 60)))
4589 adapter->hw_csum_err++;
4590 /* let the stack verify checksum errors */
4591 return;
4593 /* It must be a TCP or UDP packet with a valid checksum */
4594 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4595 skb->ip_summed = CHECKSUM_UNNECESSARY;
4597 dev_dbg(&adapter->pdev->dev, "cksum success: bits %08X\n", status_err);
4598 adapter->hw_csum_good++;
4601 static inline u16 igb_get_hlen(struct igb_adapter *adapter,
4602 union e1000_adv_rx_desc *rx_desc)
4604 /* HW will not DMA in data larger than the given buffer, even if it
4605 * parses the (NFS, of course) header to be larger. In that case, it
4606 * fills the header buffer and spills the rest into the page.
4608 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4609 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4610 if (hlen > adapter->rx_ps_hdr_size)
4611 hlen = adapter->rx_ps_hdr_size;
4612 return hlen;
4615 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4616 int *work_done, int budget)
4618 struct igb_adapter *adapter = rx_ring->adapter;
4619 struct net_device *netdev = adapter->netdev;
4620 struct e1000_hw *hw = &adapter->hw;
4621 struct pci_dev *pdev = adapter->pdev;
4622 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4623 struct igb_buffer *buffer_info , *next_buffer;
4624 struct sk_buff *skb;
4625 bool cleaned = false;
4626 int cleaned_count = 0;
4627 unsigned int total_bytes = 0, total_packets = 0;
4628 unsigned int i;
4629 u32 staterr;
4630 u16 length;
4632 i = rx_ring->next_to_clean;
4633 buffer_info = &rx_ring->buffer_info[i];
4634 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4635 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4637 while (staterr & E1000_RXD_STAT_DD) {
4638 if (*work_done >= budget)
4639 break;
4640 (*work_done)++;
4642 skb = buffer_info->skb;
4643 prefetch(skb->data - NET_IP_ALIGN);
4644 buffer_info->skb = NULL;
4646 i++;
4647 if (i == rx_ring->count)
4648 i = 0;
4649 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4650 prefetch(next_rxd);
4651 next_buffer = &rx_ring->buffer_info[i];
4653 length = le16_to_cpu(rx_desc->wb.upper.length);
4654 cleaned = true;
4655 cleaned_count++;
4657 /* this is the fast path for the non-packet split case */
4658 if (!adapter->rx_ps_hdr_size) {
4659 pci_unmap_single(pdev, buffer_info->dma,
4660 adapter->rx_buffer_len,
4661 PCI_DMA_FROMDEVICE);
4662 buffer_info->dma = 0;
4663 skb_put(skb, length);
4664 goto send_up;
4667 if (buffer_info->dma) {
4668 u16 hlen = igb_get_hlen(adapter, rx_desc);
4669 pci_unmap_single(pdev, buffer_info->dma,
4670 adapter->rx_ps_hdr_size,
4671 PCI_DMA_FROMDEVICE);
4672 buffer_info->dma = 0;
4673 skb_put(skb, hlen);
4676 if (length) {
4677 pci_unmap_page(pdev, buffer_info->page_dma,
4678 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4679 buffer_info->page_dma = 0;
4681 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4682 buffer_info->page,
4683 buffer_info->page_offset,
4684 length);
4686 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4687 (page_count(buffer_info->page) != 1))
4688 buffer_info->page = NULL;
4689 else
4690 get_page(buffer_info->page);
4692 skb->len += length;
4693 skb->data_len += length;
4695 skb->truesize += length;
4698 if (!(staterr & E1000_RXD_STAT_EOP)) {
4699 buffer_info->skb = next_buffer->skb;
4700 buffer_info->dma = next_buffer->dma;
4701 next_buffer->skb = skb;
4702 next_buffer->dma = 0;
4703 goto next_desc;
4705 send_up:
4707 * If this bit is set, then the RX registers contain
4708 * the time stamp. No other packet will be time
4709 * stamped until we read these registers, so read the
4710 * registers to make them available again. Because
4711 * only one packet can be time stamped at a time, we
4712 * know that the register values must belong to this
4713 * one here and therefore we don't need to compare
4714 * any of the additional attributes stored for it.
4716 * If nothing went wrong, then it should have a
4717 * skb_shared_tx that we can turn into a
4718 * skb_shared_hwtstamps.
4720 * TODO: can time stamping be triggered (thus locking
4721 * the registers) without the packet reaching this point
4722 * here? In that case RX time stamping would get stuck.
4724 * TODO: in "time stamp all packets" mode this bit is
4725 * not set. Need a global flag for this mode and then
4726 * always read the registers. Cannot be done without
4727 * a race condition.
4729 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4730 u64 regval;
4731 u64 ns;
4732 struct skb_shared_hwtstamps *shhwtstamps =
4733 skb_hwtstamps(skb);
4735 WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4736 "igb: no RX time stamp available for time stamped packet");
4737 regval = rd32(E1000_RXSTMPL);
4738 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4739 ns = timecounter_cyc2time(&adapter->clock, regval);
4740 timecompare_update(&adapter->compare, ns);
4741 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4742 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4743 shhwtstamps->syststamp =
4744 timecompare_transform(&adapter->compare, ns);
4747 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4748 dev_kfree_skb_irq(skb);
4749 goto next_desc;
4752 total_bytes += skb->len;
4753 total_packets++;
4755 igb_rx_checksum_adv(adapter, staterr, skb);
4757 skb->protocol = eth_type_trans(skb, netdev);
4759 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4761 next_desc:
4762 rx_desc->wb.upper.status_error = 0;
4764 /* return some buffers to hardware, one at a time is too slow */
4765 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4766 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4767 cleaned_count = 0;
4770 /* use prefetched values */
4771 rx_desc = next_rxd;
4772 buffer_info = next_buffer;
4773 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4776 rx_ring->next_to_clean = i;
4777 cleaned_count = igb_desc_unused(rx_ring);
4779 if (cleaned_count)
4780 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4782 rx_ring->total_packets += total_packets;
4783 rx_ring->total_bytes += total_bytes;
4784 rx_ring->rx_stats.packets += total_packets;
4785 rx_ring->rx_stats.bytes += total_bytes;
4786 adapter->net_stats.rx_bytes += total_bytes;
4787 adapter->net_stats.rx_packets += total_packets;
4788 return cleaned;
4792 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4793 * @adapter: address of board private structure
4795 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4796 int cleaned_count)
4798 struct igb_adapter *adapter = rx_ring->adapter;
4799 struct net_device *netdev = adapter->netdev;
4800 struct pci_dev *pdev = adapter->pdev;
4801 union e1000_adv_rx_desc *rx_desc;
4802 struct igb_buffer *buffer_info;
4803 struct sk_buff *skb;
4804 unsigned int i;
4805 int bufsz;
4807 i = rx_ring->next_to_use;
4808 buffer_info = &rx_ring->buffer_info[i];
4810 if (adapter->rx_ps_hdr_size)
4811 bufsz = adapter->rx_ps_hdr_size;
4812 else
4813 bufsz = adapter->rx_buffer_len;
4815 while (cleaned_count--) {
4816 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4818 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4819 if (!buffer_info->page) {
4820 buffer_info->page = alloc_page(GFP_ATOMIC);
4821 if (!buffer_info->page) {
4822 adapter->alloc_rx_buff_failed++;
4823 goto no_buffers;
4825 buffer_info->page_offset = 0;
4826 } else {
4827 buffer_info->page_offset ^= PAGE_SIZE / 2;
4829 buffer_info->page_dma =
4830 pci_map_page(pdev, buffer_info->page,
4831 buffer_info->page_offset,
4832 PAGE_SIZE / 2,
4833 PCI_DMA_FROMDEVICE);
4836 if (!buffer_info->skb) {
4837 skb = netdev_alloc_skb(netdev, bufsz + NET_IP_ALIGN);
4838 if (!skb) {
4839 adapter->alloc_rx_buff_failed++;
4840 goto no_buffers;
4843 /* Make buffer alignment 2 beyond a 16 byte boundary
4844 * this will result in a 16 byte aligned IP header after
4845 * the 14 byte MAC header is removed
4847 skb_reserve(skb, NET_IP_ALIGN);
4849 buffer_info->skb = skb;
4850 buffer_info->dma = pci_map_single(pdev, skb->data,
4851 bufsz,
4852 PCI_DMA_FROMDEVICE);
4854 /* Refresh the desc even if buffer_addrs didn't change because
4855 * each write-back erases this info. */
4856 if (adapter->rx_ps_hdr_size) {
4857 rx_desc->read.pkt_addr =
4858 cpu_to_le64(buffer_info->page_dma);
4859 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4860 } else {
4861 rx_desc->read.pkt_addr =
4862 cpu_to_le64(buffer_info->dma);
4863 rx_desc->read.hdr_addr = 0;
4866 i++;
4867 if (i == rx_ring->count)
4868 i = 0;
4869 buffer_info = &rx_ring->buffer_info[i];
4872 no_buffers:
4873 if (rx_ring->next_to_use != i) {
4874 rx_ring->next_to_use = i;
4875 if (i == 0)
4876 i = (rx_ring->count - 1);
4877 else
4878 i--;
4880 /* Force memory writes to complete before letting h/w
4881 * know there are new descriptors to fetch. (Only
4882 * applicable for weak-ordered memory model archs,
4883 * such as IA-64). */
4884 wmb();
4885 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4890 * igb_mii_ioctl -
4891 * @netdev:
4892 * @ifreq:
4893 * @cmd:
4895 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4897 struct igb_adapter *adapter = netdev_priv(netdev);
4898 struct mii_ioctl_data *data = if_mii(ifr);
4900 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4901 return -EOPNOTSUPP;
4903 switch (cmd) {
4904 case SIOCGMIIPHY:
4905 data->phy_id = adapter->hw.phy.addr;
4906 break;
4907 case SIOCGMIIREG:
4908 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4909 &data->val_out))
4910 return -EIO;
4911 break;
4912 case SIOCSMIIREG:
4913 default:
4914 return -EOPNOTSUPP;
4916 return 0;
4920 * igb_hwtstamp_ioctl - control hardware time stamping
4921 * @netdev:
4922 * @ifreq:
4923 * @cmd:
4925 * Outgoing time stamping can be enabled and disabled. Play nice and
4926 * disable it when requested, although it shouldn't case any overhead
4927 * when no packet needs it. At most one packet in the queue may be
4928 * marked for time stamping, otherwise it would be impossible to tell
4929 * for sure to which packet the hardware time stamp belongs.
4931 * Incoming time stamping has to be configured via the hardware
4932 * filters. Not all combinations are supported, in particular event
4933 * type has to be specified. Matching the kind of event packet is
4934 * not supported, with the exception of "all V2 events regardless of
4935 * level 2 or 4".
4938 static int igb_hwtstamp_ioctl(struct net_device *netdev,
4939 struct ifreq *ifr, int cmd)
4941 struct igb_adapter *adapter = netdev_priv(netdev);
4942 struct e1000_hw *hw = &adapter->hw;
4943 struct hwtstamp_config config;
4944 u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4945 u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4946 u32 tsync_rx_ctl_type = 0;
4947 u32 tsync_rx_cfg = 0;
4948 int is_l4 = 0;
4949 int is_l2 = 0;
4950 short port = 319; /* PTP */
4951 u32 regval;
4953 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4954 return -EFAULT;
4956 /* reserved for future extensions */
4957 if (config.flags)
4958 return -EINVAL;
4960 switch (config.tx_type) {
4961 case HWTSTAMP_TX_OFF:
4962 tsync_tx_ctl_bit = 0;
4963 break;
4964 case HWTSTAMP_TX_ON:
4965 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4966 break;
4967 default:
4968 return -ERANGE;
4971 switch (config.rx_filter) {
4972 case HWTSTAMP_FILTER_NONE:
4973 tsync_rx_ctl_bit = 0;
4974 break;
4975 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4976 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4977 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4978 case HWTSTAMP_FILTER_ALL:
4980 * register TSYNCRXCFG must be set, therefore it is not
4981 * possible to time stamp both Sync and Delay_Req messages
4982 * => fall back to time stamping all packets
4984 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4985 config.rx_filter = HWTSTAMP_FILTER_ALL;
4986 break;
4987 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4988 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4989 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4990 is_l4 = 1;
4991 break;
4992 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4993 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4994 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4995 is_l4 = 1;
4996 break;
4997 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4998 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4999 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5000 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5001 is_l2 = 1;
5002 is_l4 = 1;
5003 config.rx_filter = HWTSTAMP_FILTER_SOME;
5004 break;
5005 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5006 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5007 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5008 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5009 is_l2 = 1;
5010 is_l4 = 1;
5011 config.rx_filter = HWTSTAMP_FILTER_SOME;
5012 break;
5013 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5014 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5015 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5016 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5017 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5018 is_l2 = 1;
5019 break;
5020 default:
5021 return -ERANGE;
5024 /* enable/disable TX */
5025 regval = rd32(E1000_TSYNCTXCTL);
5026 regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
5027 wr32(E1000_TSYNCTXCTL, regval);
5029 /* enable/disable RX, define which PTP packets are time stamped */
5030 regval = rd32(E1000_TSYNCRXCTL);
5031 regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
5032 regval = (regval & ~0xE) | tsync_rx_ctl_type;
5033 wr32(E1000_TSYNCRXCTL, regval);
5034 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5037 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
5038 * (Ethertype to filter on)
5039 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
5040 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
5042 wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
5044 /* L4 Queue Filter[0]: only filter by source and destination port */
5045 wr32(E1000_SPQF0, htons(port));
5046 wr32(E1000_IMIREXT(0), is_l4 ?
5047 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
5048 wr32(E1000_IMIR(0), is_l4 ?
5049 (htons(port)
5050 | (0<<16) /* immediate interrupt disabled */
5051 | 0 /* (1<<17) bit cleared: do not bypass
5052 destination port check */)
5053 : 0);
5054 wr32(E1000_FTQF0, is_l4 ?
5055 (0x11 /* UDP */
5056 | (1<<15) /* VF not compared */
5057 | (1<<27) /* Enable Timestamping */
5058 | (7<<28) /* only source port filter enabled,
5059 source/target address and protocol
5060 masked */)
5061 : ((1<<15) | (15<<28) /* all mask bits set = filter not
5062 enabled */));
5064 wrfl();
5066 adapter->hwtstamp_config = config;
5068 /* clear TX/RX time stamp registers, just to be sure */
5069 regval = rd32(E1000_TXSTMPH);
5070 regval = rd32(E1000_RXSTMPH);
5072 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5073 -EFAULT : 0;
5077 * igb_ioctl -
5078 * @netdev:
5079 * @ifreq:
5080 * @cmd:
5082 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5084 switch (cmd) {
5085 case SIOCGMIIPHY:
5086 case SIOCGMIIREG:
5087 case SIOCSMIIREG:
5088 return igb_mii_ioctl(netdev, ifr, cmd);
5089 case SIOCSHWTSTAMP:
5090 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5091 default:
5092 return -EOPNOTSUPP;
5096 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5098 struct igb_adapter *adapter = hw->back;
5099 u16 cap_offset;
5101 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5102 if (!cap_offset)
5103 return -E1000_ERR_CONFIG;
5105 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5107 return 0;
5110 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5112 struct igb_adapter *adapter = hw->back;
5113 u16 cap_offset;
5115 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5116 if (!cap_offset)
5117 return -E1000_ERR_CONFIG;
5119 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5121 return 0;
5124 static void igb_vlan_rx_register(struct net_device *netdev,
5125 struct vlan_group *grp)
5127 struct igb_adapter *adapter = netdev_priv(netdev);
5128 struct e1000_hw *hw = &adapter->hw;
5129 u32 ctrl, rctl;
5131 igb_irq_disable(adapter);
5132 adapter->vlgrp = grp;
5134 if (grp) {
5135 /* enable VLAN tag insert/strip */
5136 ctrl = rd32(E1000_CTRL);
5137 ctrl |= E1000_CTRL_VME;
5138 wr32(E1000_CTRL, ctrl);
5140 /* enable VLAN receive filtering */
5141 rctl = rd32(E1000_RCTL);
5142 rctl &= ~E1000_RCTL_CFIEN;
5143 wr32(E1000_RCTL, rctl);
5144 igb_update_mng_vlan(adapter);
5145 } else {
5146 /* disable VLAN tag insert/strip */
5147 ctrl = rd32(E1000_CTRL);
5148 ctrl &= ~E1000_CTRL_VME;
5149 wr32(E1000_CTRL, ctrl);
5151 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
5152 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
5153 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
5157 igb_rlpml_set(adapter);
5159 if (!test_bit(__IGB_DOWN, &adapter->state))
5160 igb_irq_enable(adapter);
5163 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5165 struct igb_adapter *adapter = netdev_priv(netdev);
5166 struct e1000_hw *hw = &adapter->hw;
5167 int pf_id = adapter->vfs_allocated_count;
5169 if ((hw->mng_cookie.status &
5170 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5171 (vid == adapter->mng_vlan_id))
5172 return;
5174 /* add vid to vlvf if sr-iov is enabled,
5175 * if that fails add directly to filter table */
5176 if (igb_vlvf_set(adapter, vid, true, pf_id))
5177 igb_vfta_set(hw, vid, true);
5181 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5183 struct igb_adapter *adapter = netdev_priv(netdev);
5184 struct e1000_hw *hw = &adapter->hw;
5185 int pf_id = adapter->vfs_allocated_count;
5187 igb_irq_disable(adapter);
5188 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5190 if (!test_bit(__IGB_DOWN, &adapter->state))
5191 igb_irq_enable(adapter);
5193 if ((adapter->hw.mng_cookie.status &
5194 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5195 (vid == adapter->mng_vlan_id)) {
5196 /* release control to f/w */
5197 igb_release_hw_control(adapter);
5198 return;
5201 /* remove vid from vlvf if sr-iov is enabled,
5202 * if not in vlvf remove from vfta */
5203 if (igb_vlvf_set(adapter, vid, false, pf_id))
5204 igb_vfta_set(hw, vid, false);
5207 static void igb_restore_vlan(struct igb_adapter *adapter)
5209 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5211 if (adapter->vlgrp) {
5212 u16 vid;
5213 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5214 if (!vlan_group_get_device(adapter->vlgrp, vid))
5215 continue;
5216 igb_vlan_rx_add_vid(adapter->netdev, vid);
5221 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5223 struct e1000_mac_info *mac = &adapter->hw.mac;
5225 mac->autoneg = 0;
5227 switch (spddplx) {
5228 case SPEED_10 + DUPLEX_HALF:
5229 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5230 break;
5231 case SPEED_10 + DUPLEX_FULL:
5232 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5233 break;
5234 case SPEED_100 + DUPLEX_HALF:
5235 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5236 break;
5237 case SPEED_100 + DUPLEX_FULL:
5238 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5239 break;
5240 case SPEED_1000 + DUPLEX_FULL:
5241 mac->autoneg = 1;
5242 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5243 break;
5244 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5245 default:
5246 dev_err(&adapter->pdev->dev,
5247 "Unsupported Speed/Duplex configuration\n");
5248 return -EINVAL;
5250 return 0;
5253 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5255 struct net_device *netdev = pci_get_drvdata(pdev);
5256 struct igb_adapter *adapter = netdev_priv(netdev);
5257 struct e1000_hw *hw = &adapter->hw;
5258 u32 ctrl, rctl, status;
5259 u32 wufc = adapter->wol;
5260 #ifdef CONFIG_PM
5261 int retval = 0;
5262 #endif
5264 netif_device_detach(netdev);
5266 if (netif_running(netdev))
5267 igb_close(netdev);
5269 igb_reset_interrupt_capability(adapter);
5271 igb_free_queues(adapter);
5273 #ifdef CONFIG_PM
5274 retval = pci_save_state(pdev);
5275 if (retval)
5276 return retval;
5277 #endif
5279 status = rd32(E1000_STATUS);
5280 if (status & E1000_STATUS_LU)
5281 wufc &= ~E1000_WUFC_LNKC;
5283 if (wufc) {
5284 igb_setup_rctl(adapter);
5285 igb_set_rx_mode(netdev);
5287 /* turn on all-multi mode if wake on multicast is enabled */
5288 if (wufc & E1000_WUFC_MC) {
5289 rctl = rd32(E1000_RCTL);
5290 rctl |= E1000_RCTL_MPE;
5291 wr32(E1000_RCTL, rctl);
5294 ctrl = rd32(E1000_CTRL);
5295 /* advertise wake from D3Cold */
5296 #define E1000_CTRL_ADVD3WUC 0x00100000
5297 /* phy power management enable */
5298 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5299 ctrl |= E1000_CTRL_ADVD3WUC;
5300 wr32(E1000_CTRL, ctrl);
5302 /* Allow time for pending master requests to run */
5303 igb_disable_pcie_master(&adapter->hw);
5305 wr32(E1000_WUC, E1000_WUC_PME_EN);
5306 wr32(E1000_WUFC, wufc);
5307 } else {
5308 wr32(E1000_WUC, 0);
5309 wr32(E1000_WUFC, 0);
5312 *enable_wake = wufc || adapter->en_mng_pt;
5313 if (!*enable_wake)
5314 igb_shutdown_serdes_link_82575(hw);
5316 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5317 * would have already happened in close and is redundant. */
5318 igb_release_hw_control(adapter);
5320 pci_disable_device(pdev);
5322 return 0;
5325 #ifdef CONFIG_PM
5326 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5328 int retval;
5329 bool wake;
5331 retval = __igb_shutdown(pdev, &wake);
5332 if (retval)
5333 return retval;
5335 if (wake) {
5336 pci_prepare_to_sleep(pdev);
5337 } else {
5338 pci_wake_from_d3(pdev, false);
5339 pci_set_power_state(pdev, PCI_D3hot);
5342 return 0;
5345 static int igb_resume(struct pci_dev *pdev)
5347 struct net_device *netdev = pci_get_drvdata(pdev);
5348 struct igb_adapter *adapter = netdev_priv(netdev);
5349 struct e1000_hw *hw = &adapter->hw;
5350 u32 err;
5352 pci_set_power_state(pdev, PCI_D0);
5353 pci_restore_state(pdev);
5355 err = pci_enable_device_mem(pdev);
5356 if (err) {
5357 dev_err(&pdev->dev,
5358 "igb: Cannot enable PCI device from suspend\n");
5359 return err;
5361 pci_set_master(pdev);
5363 pci_enable_wake(pdev, PCI_D3hot, 0);
5364 pci_enable_wake(pdev, PCI_D3cold, 0);
5366 igb_set_interrupt_capability(adapter);
5368 if (igb_alloc_queues(adapter)) {
5369 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5370 return -ENOMEM;
5373 /* e1000_power_up_phy(adapter); */
5375 igb_reset(adapter);
5377 /* let the f/w know that the h/w is now under the control of the
5378 * driver. */
5379 igb_get_hw_control(adapter);
5381 wr32(E1000_WUS, ~0);
5383 if (netif_running(netdev)) {
5384 err = igb_open(netdev);
5385 if (err)
5386 return err;
5389 netif_device_attach(netdev);
5391 return 0;
5393 #endif
5395 static void igb_shutdown(struct pci_dev *pdev)
5397 bool wake;
5399 __igb_shutdown(pdev, &wake);
5401 if (system_state == SYSTEM_POWER_OFF) {
5402 pci_wake_from_d3(pdev, wake);
5403 pci_set_power_state(pdev, PCI_D3hot);
5407 #ifdef CONFIG_NET_POLL_CONTROLLER
5409 * Polling 'interrupt' - used by things like netconsole to send skbs
5410 * without having to re-enable interrupts. It's not called while
5411 * the interrupt routine is executing.
5413 static void igb_netpoll(struct net_device *netdev)
5415 struct igb_adapter *adapter = netdev_priv(netdev);
5416 struct e1000_hw *hw = &adapter->hw;
5417 int i;
5419 if (!adapter->msix_entries) {
5420 igb_irq_disable(adapter);
5421 napi_schedule(&adapter->rx_ring[0].napi);
5422 return;
5425 for (i = 0; i < adapter->num_tx_queues; i++) {
5426 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5427 wr32(E1000_EIMC, tx_ring->eims_value);
5428 igb_clean_tx_irq(tx_ring);
5429 wr32(E1000_EIMS, tx_ring->eims_value);
5432 for (i = 0; i < adapter->num_rx_queues; i++) {
5433 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5434 wr32(E1000_EIMC, rx_ring->eims_value);
5435 napi_schedule(&rx_ring->napi);
5438 #endif /* CONFIG_NET_POLL_CONTROLLER */
5441 * igb_io_error_detected - called when PCI error is detected
5442 * @pdev: Pointer to PCI device
5443 * @state: The current pci connection state
5445 * This function is called after a PCI bus error affecting
5446 * this device has been detected.
5448 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5449 pci_channel_state_t state)
5451 struct net_device *netdev = pci_get_drvdata(pdev);
5452 struct igb_adapter *adapter = netdev_priv(netdev);
5454 netif_device_detach(netdev);
5456 if (state == pci_channel_io_perm_failure)
5457 return PCI_ERS_RESULT_DISCONNECT;
5459 if (netif_running(netdev))
5460 igb_down(adapter);
5461 pci_disable_device(pdev);
5463 /* Request a slot slot reset. */
5464 return PCI_ERS_RESULT_NEED_RESET;
5468 * igb_io_slot_reset - called after the pci bus has been reset.
5469 * @pdev: Pointer to PCI device
5471 * Restart the card from scratch, as if from a cold-boot. Implementation
5472 * resembles the first-half of the igb_resume routine.
5474 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5476 struct net_device *netdev = pci_get_drvdata(pdev);
5477 struct igb_adapter *adapter = netdev_priv(netdev);
5478 struct e1000_hw *hw = &adapter->hw;
5479 pci_ers_result_t result;
5480 int err;
5482 if (pci_enable_device_mem(pdev)) {
5483 dev_err(&pdev->dev,
5484 "Cannot re-enable PCI device after reset.\n");
5485 result = PCI_ERS_RESULT_DISCONNECT;
5486 } else {
5487 pci_set_master(pdev);
5488 pci_restore_state(pdev);
5490 pci_enable_wake(pdev, PCI_D3hot, 0);
5491 pci_enable_wake(pdev, PCI_D3cold, 0);
5493 igb_reset(adapter);
5494 wr32(E1000_WUS, ~0);
5495 result = PCI_ERS_RESULT_RECOVERED;
5498 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5499 if (err) {
5500 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5501 "failed 0x%0x\n", err);
5502 /* non-fatal, continue */
5505 return result;
5509 * igb_io_resume - called when traffic can start flowing again.
5510 * @pdev: Pointer to PCI device
5512 * This callback is called when the error recovery driver tells us that
5513 * its OK to resume normal operation. Implementation resembles the
5514 * second-half of the igb_resume routine.
5516 static void igb_io_resume(struct pci_dev *pdev)
5518 struct net_device *netdev = pci_get_drvdata(pdev);
5519 struct igb_adapter *adapter = netdev_priv(netdev);
5521 if (netif_running(netdev)) {
5522 if (igb_up(adapter)) {
5523 dev_err(&pdev->dev, "igb_up failed after reset\n");
5524 return;
5528 netif_device_attach(netdev);
5530 /* let the f/w know that the h/w is now under the control of the
5531 * driver. */
5532 igb_get_hw_control(adapter);
5535 static int igb_set_vf_mac(struct igb_adapter *adapter,
5536 int vf, unsigned char *mac_addr)
5538 struct e1000_hw *hw = &adapter->hw;
5539 /* VF MAC addresses start at end of receive addresses and moves
5540 * torwards the first, as a result a collision should not be possible */
5541 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5543 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5545 igb_rar_set(hw, mac_addr, rar_entry);
5546 igb_set_rah_pool(hw, vf, rar_entry);
5548 return 0;
5551 static void igb_vmm_control(struct igb_adapter *adapter)
5553 struct e1000_hw *hw = &adapter->hw;
5554 u32 reg_data;
5556 if (!adapter->vfs_allocated_count)
5557 return;
5559 /* VF's need PF reset indication before they
5560 * can send/receive mail */
5561 reg_data = rd32(E1000_CTRL_EXT);
5562 reg_data |= E1000_CTRL_EXT_PFRSTD;
5563 wr32(E1000_CTRL_EXT, reg_data);
5565 igb_vmdq_set_loopback_pf(hw, true);
5566 igb_vmdq_set_replication_pf(hw, true);
5569 /* igb_main.c */