x86/amd-iommu: Add function to complete a tlb flush
[linux/fpc-iii.git] / drivers / net / korina.c
blob03199fa10003179ba5fe399a2be061e4c7e13230
1 /*
2 * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
4 * Copyright 2004 IDT Inc. (rischelp@idt.com)
5 * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6 * Copyright 2008 Florian Fainelli <florian@openwrt.org>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
13 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
14 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
16 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
19 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 675 Mass Ave, Cambridge, MA 02139, USA.
28 * Writing to a DMA status register:
30 * When writing to the status register, you should mask the bit you have
31 * been testing the status register with. Both Tx and Rx DMA registers
32 * should stick to this procedure.
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/moduleparam.h>
38 #include <linux/sched.h>
39 #include <linux/ctype.h>
40 #include <linux/types.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/ioport.h>
44 #include <linux/in.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/delay.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/errno.h>
52 #include <linux/platform_device.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
57 #include <asm/bootinfo.h>
58 #include <asm/system.h>
59 #include <asm/bitops.h>
60 #include <asm/pgtable.h>
61 #include <asm/segment.h>
62 #include <asm/io.h>
63 #include <asm/dma.h>
65 #include <asm/mach-rc32434/rb.h>
66 #include <asm/mach-rc32434/rc32434.h>
67 #include <asm/mach-rc32434/eth.h>
68 #include <asm/mach-rc32434/dma_v.h>
70 #define DRV_NAME "korina"
71 #define DRV_VERSION "0.10"
72 #define DRV_RELDATE "04Mar2008"
74 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
75 ((dev)->dev_addr[1]))
76 #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
77 ((dev)->dev_addr[3] << 16) | \
78 ((dev)->dev_addr[4] << 8) | \
79 ((dev)->dev_addr[5]))
81 #define MII_CLOCK 1250000 /* no more than 2.5MHz */
83 /* the following must be powers of two */
84 #define KORINA_NUM_RDS 64 /* number of receive descriptors */
85 #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
87 /* KORINA_RBSIZE is the hardware's default maximum receive
88 * frame size in bytes. Having this hardcoded means that there
89 * is no support for MTU sizes greater than 1500. */
90 #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
91 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
92 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
93 #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
94 #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
96 #define TX_TIMEOUT (6000 * HZ / 1000)
98 enum chain_status { desc_filled, desc_empty };
99 #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
100 #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
101 #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
103 /* Information that need to be kept for each board. */
104 struct korina_private {
105 struct eth_regs *eth_regs;
106 struct dma_reg *rx_dma_regs;
107 struct dma_reg *tx_dma_regs;
108 struct dma_desc *td_ring; /* transmit descriptor ring */
109 struct dma_desc *rd_ring; /* receive descriptor ring */
111 struct sk_buff *tx_skb[KORINA_NUM_TDS];
112 struct sk_buff *rx_skb[KORINA_NUM_RDS];
114 int rx_next_done;
115 int rx_chain_head;
116 int rx_chain_tail;
117 enum chain_status rx_chain_status;
119 int tx_next_done;
120 int tx_chain_head;
121 int tx_chain_tail;
122 enum chain_status tx_chain_status;
123 int tx_count;
124 int tx_full;
126 int rx_irq;
127 int tx_irq;
128 int ovr_irq;
129 int und_irq;
131 spinlock_t lock; /* NIC xmit lock */
133 int dma_halt_cnt;
134 int dma_run_cnt;
135 struct napi_struct napi;
136 struct timer_list media_check_timer;
137 struct mii_if_info mii_if;
138 struct net_device *dev;
139 int phy_addr;
142 extern unsigned int idt_cpu_freq;
144 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
146 writel(0, &ch->dmandptr);
147 writel(dma_addr, &ch->dmadptr);
150 static inline void korina_abort_dma(struct net_device *dev,
151 struct dma_reg *ch)
153 if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
154 writel(0x10, &ch->dmac);
156 while (!(readl(&ch->dmas) & DMA_STAT_HALT))
157 dev->trans_start = jiffies;
159 writel(0, &ch->dmas);
162 writel(0, &ch->dmadptr);
163 writel(0, &ch->dmandptr);
166 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
168 writel(dma_addr, &ch->dmandptr);
171 static void korina_abort_tx(struct net_device *dev)
173 struct korina_private *lp = netdev_priv(dev);
175 korina_abort_dma(dev, lp->tx_dma_regs);
178 static void korina_abort_rx(struct net_device *dev)
180 struct korina_private *lp = netdev_priv(dev);
182 korina_abort_dma(dev, lp->rx_dma_regs);
185 static void korina_start_rx(struct korina_private *lp,
186 struct dma_desc *rd)
188 korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
191 static void korina_chain_rx(struct korina_private *lp,
192 struct dma_desc *rd)
194 korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
197 /* transmit packet */
198 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
200 struct korina_private *lp = netdev_priv(dev);
201 unsigned long flags;
202 u32 length;
203 u32 chain_prev, chain_next;
204 struct dma_desc *td;
206 spin_lock_irqsave(&lp->lock, flags);
208 td = &lp->td_ring[lp->tx_chain_tail];
210 /* stop queue when full, drop pkts if queue already full */
211 if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
212 lp->tx_full = 1;
214 if (lp->tx_count == (KORINA_NUM_TDS - 2))
215 netif_stop_queue(dev);
216 else {
217 dev->stats.tx_dropped++;
218 dev_kfree_skb_any(skb);
219 spin_unlock_irqrestore(&lp->lock, flags);
221 return NETDEV_TX_BUSY;
225 lp->tx_count++;
227 lp->tx_skb[lp->tx_chain_tail] = skb;
229 length = skb->len;
230 dma_cache_wback((u32)skb->data, skb->len);
232 /* Setup the transmit descriptor. */
233 dma_cache_inv((u32) td, sizeof(*td));
234 td->ca = CPHYSADDR(skb->data);
235 chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
236 chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
238 if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
239 if (lp->tx_chain_status == desc_empty) {
240 /* Update tail */
241 td->control = DMA_COUNT(length) |
242 DMA_DESC_COF | DMA_DESC_IOF;
243 /* Move tail */
244 lp->tx_chain_tail = chain_next;
245 /* Write to NDPTR */
246 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
247 &lp->tx_dma_regs->dmandptr);
248 /* Move head to tail */
249 lp->tx_chain_head = lp->tx_chain_tail;
250 } else {
251 /* Update tail */
252 td->control = DMA_COUNT(length) |
253 DMA_DESC_COF | DMA_DESC_IOF;
254 /* Link to prev */
255 lp->td_ring[chain_prev].control &=
256 ~DMA_DESC_COF;
257 /* Link to prev */
258 lp->td_ring[chain_prev].link = CPHYSADDR(td);
259 /* Move tail */
260 lp->tx_chain_tail = chain_next;
261 /* Write to NDPTR */
262 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
263 &(lp->tx_dma_regs->dmandptr));
264 /* Move head to tail */
265 lp->tx_chain_head = lp->tx_chain_tail;
266 lp->tx_chain_status = desc_empty;
268 } else {
269 if (lp->tx_chain_status == desc_empty) {
270 /* Update tail */
271 td->control = DMA_COUNT(length) |
272 DMA_DESC_COF | DMA_DESC_IOF;
273 /* Move tail */
274 lp->tx_chain_tail = chain_next;
275 lp->tx_chain_status = desc_filled;
276 } else {
277 /* Update tail */
278 td->control = DMA_COUNT(length) |
279 DMA_DESC_COF | DMA_DESC_IOF;
280 lp->td_ring[chain_prev].control &=
281 ~DMA_DESC_COF;
282 lp->td_ring[chain_prev].link = CPHYSADDR(td);
283 lp->tx_chain_tail = chain_next;
286 dma_cache_wback((u32) td, sizeof(*td));
288 dev->trans_start = jiffies;
289 spin_unlock_irqrestore(&lp->lock, flags);
291 return NETDEV_TX_OK;
294 static int mdio_read(struct net_device *dev, int mii_id, int reg)
296 struct korina_private *lp = netdev_priv(dev);
297 int ret;
299 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
301 writel(0, &lp->eth_regs->miimcfg);
302 writel(0, &lp->eth_regs->miimcmd);
303 writel(mii_id | reg, &lp->eth_regs->miimaddr);
304 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
306 ret = (int)(readl(&lp->eth_regs->miimrdd));
307 return ret;
310 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
312 struct korina_private *lp = netdev_priv(dev);
314 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
316 writel(0, &lp->eth_regs->miimcfg);
317 writel(1, &lp->eth_regs->miimcmd);
318 writel(mii_id | reg, &lp->eth_regs->miimaddr);
319 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
320 writel(val, &lp->eth_regs->miimwtd);
323 /* Ethernet Rx DMA interrupt */
324 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
326 struct net_device *dev = dev_id;
327 struct korina_private *lp = netdev_priv(dev);
328 u32 dmas, dmasm;
329 irqreturn_t retval;
331 dmas = readl(&lp->rx_dma_regs->dmas);
332 if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
333 dmasm = readl(&lp->rx_dma_regs->dmasm);
334 writel(dmasm | (DMA_STAT_DONE |
335 DMA_STAT_HALT | DMA_STAT_ERR),
336 &lp->rx_dma_regs->dmasm);
338 napi_schedule(&lp->napi);
340 if (dmas & DMA_STAT_ERR)
341 printk(KERN_ERR "%s: DMA error\n", dev->name);
343 retval = IRQ_HANDLED;
344 } else
345 retval = IRQ_NONE;
347 return retval;
350 static int korina_rx(struct net_device *dev, int limit)
352 struct korina_private *lp = netdev_priv(dev);
353 struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
354 struct sk_buff *skb, *skb_new;
355 u8 *pkt_buf;
356 u32 devcs, pkt_len, dmas;
357 int count;
359 dma_cache_inv((u32)rd, sizeof(*rd));
361 for (count = 0; count < limit; count++) {
362 skb = lp->rx_skb[lp->rx_next_done];
363 skb_new = NULL;
365 devcs = rd->devcs;
367 if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
368 break;
370 /* Update statistics counters */
371 if (devcs & ETH_RX_CRC)
372 dev->stats.rx_crc_errors++;
373 if (devcs & ETH_RX_LOR)
374 dev->stats.rx_length_errors++;
375 if (devcs & ETH_RX_LE)
376 dev->stats.rx_length_errors++;
377 if (devcs & ETH_RX_OVR)
378 dev->stats.rx_over_errors++;
379 if (devcs & ETH_RX_CV)
380 dev->stats.rx_frame_errors++;
381 if (devcs & ETH_RX_CES)
382 dev->stats.rx_length_errors++;
383 if (devcs & ETH_RX_MP)
384 dev->stats.multicast++;
386 if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
387 /* check that this is a whole packet
388 * WARNING: DMA_FD bit incorrectly set
389 * in Rc32434 (errata ref #077) */
390 dev->stats.rx_errors++;
391 dev->stats.rx_dropped++;
392 } else if ((devcs & ETH_RX_ROK)) {
393 pkt_len = RCVPKT_LENGTH(devcs);
395 /* must be the (first and) last
396 * descriptor then */
397 pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
399 /* invalidate the cache */
400 dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
402 /* Malloc up new buffer. */
403 skb_new = netdev_alloc_skb(dev, KORINA_RBSIZE + 2);
405 if (!skb_new)
406 break;
407 /* Do not count the CRC */
408 skb_put(skb, pkt_len - 4);
409 skb->protocol = eth_type_trans(skb, dev);
411 /* Pass the packet to upper layers */
412 netif_receive_skb(skb);
413 dev->stats.rx_packets++;
414 dev->stats.rx_bytes += pkt_len;
416 /* Update the mcast stats */
417 if (devcs & ETH_RX_MP)
418 dev->stats.multicast++;
420 /* 16 bit align */
421 skb_reserve(skb_new, 2);
423 lp->rx_skb[lp->rx_next_done] = skb_new;
426 rd->devcs = 0;
428 /* Restore descriptor's curr_addr */
429 if (skb_new)
430 rd->ca = CPHYSADDR(skb_new->data);
431 else
432 rd->ca = CPHYSADDR(skb->data);
434 rd->control = DMA_COUNT(KORINA_RBSIZE) |
435 DMA_DESC_COD | DMA_DESC_IOD;
436 lp->rd_ring[(lp->rx_next_done - 1) &
437 KORINA_RDS_MASK].control &=
438 ~DMA_DESC_COD;
440 lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
441 dma_cache_wback((u32)rd, sizeof(*rd));
442 rd = &lp->rd_ring[lp->rx_next_done];
443 writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
446 dmas = readl(&lp->rx_dma_regs->dmas);
448 if (dmas & DMA_STAT_HALT) {
449 writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
450 &lp->rx_dma_regs->dmas);
452 lp->dma_halt_cnt++;
453 rd->devcs = 0;
454 skb = lp->rx_skb[lp->rx_next_done];
455 rd->ca = CPHYSADDR(skb->data);
456 dma_cache_wback((u32)rd, sizeof(*rd));
457 korina_chain_rx(lp, rd);
460 return count;
463 static int korina_poll(struct napi_struct *napi, int budget)
465 struct korina_private *lp =
466 container_of(napi, struct korina_private, napi);
467 struct net_device *dev = lp->dev;
468 int work_done;
470 work_done = korina_rx(dev, budget);
471 if (work_done < budget) {
472 napi_complete(napi);
474 writel(readl(&lp->rx_dma_regs->dmasm) &
475 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
476 &lp->rx_dma_regs->dmasm);
478 return work_done;
482 * Set or clear the multicast filter for this adaptor.
484 static void korina_multicast_list(struct net_device *dev)
486 struct korina_private *lp = netdev_priv(dev);
487 unsigned long flags;
488 struct dev_mc_list *dmi = dev->mc_list;
489 u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
490 int i;
492 /* Set promiscuous mode */
493 if (dev->flags & IFF_PROMISC)
494 recognise |= ETH_ARC_PRO;
496 else if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 4))
497 /* All multicast and broadcast */
498 recognise |= ETH_ARC_AM;
500 /* Build the hash table */
501 if (dev->mc_count > 4) {
502 u16 hash_table[4];
503 u32 crc;
505 for (i = 0; i < 4; i++)
506 hash_table[i] = 0;
508 for (i = 0; i < dev->mc_count; i++) {
509 char *addrs = dmi->dmi_addr;
511 dmi = dmi->next;
513 if (!(*addrs & 1))
514 continue;
516 crc = ether_crc_le(6, addrs);
517 crc >>= 26;
518 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
520 /* Accept filtered multicast */
521 recognise |= ETH_ARC_AFM;
523 /* Fill the MAC hash tables with their values */
524 writel((u32)(hash_table[1] << 16 | hash_table[0]),
525 &lp->eth_regs->ethhash0);
526 writel((u32)(hash_table[3] << 16 | hash_table[2]),
527 &lp->eth_regs->ethhash1);
530 spin_lock_irqsave(&lp->lock, flags);
531 writel(recognise, &lp->eth_regs->etharc);
532 spin_unlock_irqrestore(&lp->lock, flags);
535 static void korina_tx(struct net_device *dev)
537 struct korina_private *lp = netdev_priv(dev);
538 struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
539 u32 devcs;
540 u32 dmas;
542 spin_lock(&lp->lock);
544 /* Process all desc that are done */
545 while (IS_DMA_FINISHED(td->control)) {
546 if (lp->tx_full == 1) {
547 netif_wake_queue(dev);
548 lp->tx_full = 0;
551 devcs = lp->td_ring[lp->tx_next_done].devcs;
552 if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
553 (ETH_TX_FD | ETH_TX_LD)) {
554 dev->stats.tx_errors++;
555 dev->stats.tx_dropped++;
557 /* Should never happen */
558 printk(KERN_ERR "%s: split tx ignored\n",
559 dev->name);
560 } else if (devcs & ETH_TX_TOK) {
561 dev->stats.tx_packets++;
562 dev->stats.tx_bytes +=
563 lp->tx_skb[lp->tx_next_done]->len;
564 } else {
565 dev->stats.tx_errors++;
566 dev->stats.tx_dropped++;
568 /* Underflow */
569 if (devcs & ETH_TX_UND)
570 dev->stats.tx_fifo_errors++;
572 /* Oversized frame */
573 if (devcs & ETH_TX_OF)
574 dev->stats.tx_aborted_errors++;
576 /* Excessive deferrals */
577 if (devcs & ETH_TX_ED)
578 dev->stats.tx_carrier_errors++;
580 /* Collisions: medium busy */
581 if (devcs & ETH_TX_EC)
582 dev->stats.collisions++;
584 /* Late collision */
585 if (devcs & ETH_TX_LC)
586 dev->stats.tx_window_errors++;
589 /* We must always free the original skb */
590 if (lp->tx_skb[lp->tx_next_done]) {
591 dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
592 lp->tx_skb[lp->tx_next_done] = NULL;
595 lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
596 lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
597 lp->td_ring[lp->tx_next_done].link = 0;
598 lp->td_ring[lp->tx_next_done].ca = 0;
599 lp->tx_count--;
601 /* Go on to next transmission */
602 lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
603 td = &lp->td_ring[lp->tx_next_done];
607 /* Clear the DMA status register */
608 dmas = readl(&lp->tx_dma_regs->dmas);
609 writel(~dmas, &lp->tx_dma_regs->dmas);
611 writel(readl(&lp->tx_dma_regs->dmasm) &
612 ~(DMA_STAT_FINI | DMA_STAT_ERR),
613 &lp->tx_dma_regs->dmasm);
615 spin_unlock(&lp->lock);
618 static irqreturn_t
619 korina_tx_dma_interrupt(int irq, void *dev_id)
621 struct net_device *dev = dev_id;
622 struct korina_private *lp = netdev_priv(dev);
623 u32 dmas, dmasm;
624 irqreturn_t retval;
626 dmas = readl(&lp->tx_dma_regs->dmas);
628 if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
629 dmasm = readl(&lp->tx_dma_regs->dmasm);
630 writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
631 &lp->tx_dma_regs->dmasm);
633 korina_tx(dev);
635 if (lp->tx_chain_status == desc_filled &&
636 (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
637 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
638 &(lp->tx_dma_regs->dmandptr));
639 lp->tx_chain_status = desc_empty;
640 lp->tx_chain_head = lp->tx_chain_tail;
641 dev->trans_start = jiffies;
643 if (dmas & DMA_STAT_ERR)
644 printk(KERN_ERR "%s: DMA error\n", dev->name);
646 retval = IRQ_HANDLED;
647 } else
648 retval = IRQ_NONE;
650 return retval;
654 static void korina_check_media(struct net_device *dev, unsigned int init_media)
656 struct korina_private *lp = netdev_priv(dev);
658 mii_check_media(&lp->mii_if, 0, init_media);
660 if (lp->mii_if.full_duplex)
661 writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
662 &lp->eth_regs->ethmac2);
663 else
664 writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
665 &lp->eth_regs->ethmac2);
668 static void korina_poll_media(unsigned long data)
670 struct net_device *dev = (struct net_device *) data;
671 struct korina_private *lp = netdev_priv(dev);
673 korina_check_media(dev, 0);
674 mod_timer(&lp->media_check_timer, jiffies + HZ);
677 static void korina_set_carrier(struct mii_if_info *mii)
679 if (mii->force_media) {
680 /* autoneg is off: Link is always assumed to be up */
681 if (!netif_carrier_ok(mii->dev))
682 netif_carrier_on(mii->dev);
683 } else /* Let MMI library update carrier status */
684 korina_check_media(mii->dev, 0);
687 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
689 struct korina_private *lp = netdev_priv(dev);
690 struct mii_ioctl_data *data = if_mii(rq);
691 int rc;
693 if (!netif_running(dev))
694 return -EINVAL;
695 spin_lock_irq(&lp->lock);
696 rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
697 spin_unlock_irq(&lp->lock);
698 korina_set_carrier(&lp->mii_if);
700 return rc;
703 /* ethtool helpers */
704 static void netdev_get_drvinfo(struct net_device *dev,
705 struct ethtool_drvinfo *info)
707 struct korina_private *lp = netdev_priv(dev);
709 strcpy(info->driver, DRV_NAME);
710 strcpy(info->version, DRV_VERSION);
711 strcpy(info->bus_info, lp->dev->name);
714 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
716 struct korina_private *lp = netdev_priv(dev);
717 int rc;
719 spin_lock_irq(&lp->lock);
720 rc = mii_ethtool_gset(&lp->mii_if, cmd);
721 spin_unlock_irq(&lp->lock);
723 return rc;
726 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
728 struct korina_private *lp = netdev_priv(dev);
729 int rc;
731 spin_lock_irq(&lp->lock);
732 rc = mii_ethtool_sset(&lp->mii_if, cmd);
733 spin_unlock_irq(&lp->lock);
734 korina_set_carrier(&lp->mii_if);
736 return rc;
739 static u32 netdev_get_link(struct net_device *dev)
741 struct korina_private *lp = netdev_priv(dev);
743 return mii_link_ok(&lp->mii_if);
746 static const struct ethtool_ops netdev_ethtool_ops = {
747 .get_drvinfo = netdev_get_drvinfo,
748 .get_settings = netdev_get_settings,
749 .set_settings = netdev_set_settings,
750 .get_link = netdev_get_link,
753 static int korina_alloc_ring(struct net_device *dev)
755 struct korina_private *lp = netdev_priv(dev);
756 struct sk_buff *skb;
757 int i;
759 /* Initialize the transmit descriptors */
760 for (i = 0; i < KORINA_NUM_TDS; i++) {
761 lp->td_ring[i].control = DMA_DESC_IOF;
762 lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
763 lp->td_ring[i].ca = 0;
764 lp->td_ring[i].link = 0;
766 lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
767 lp->tx_full = lp->tx_count = 0;
768 lp->tx_chain_status = desc_empty;
770 /* Initialize the receive descriptors */
771 for (i = 0; i < KORINA_NUM_RDS; i++) {
772 skb = dev_alloc_skb(KORINA_RBSIZE + 2);
773 if (!skb)
774 return -ENOMEM;
775 skb_reserve(skb, 2);
776 lp->rx_skb[i] = skb;
777 lp->rd_ring[i].control = DMA_DESC_IOD |
778 DMA_COUNT(KORINA_RBSIZE);
779 lp->rd_ring[i].devcs = 0;
780 lp->rd_ring[i].ca = CPHYSADDR(skb->data);
781 lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
784 /* loop back receive descriptors, so the last
785 * descriptor points to the first one */
786 lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
787 lp->rd_ring[i - 1].control |= DMA_DESC_COD;
789 lp->rx_next_done = 0;
790 lp->rx_chain_head = 0;
791 lp->rx_chain_tail = 0;
792 lp->rx_chain_status = desc_empty;
794 return 0;
797 static void korina_free_ring(struct net_device *dev)
799 struct korina_private *lp = netdev_priv(dev);
800 int i;
802 for (i = 0; i < KORINA_NUM_RDS; i++) {
803 lp->rd_ring[i].control = 0;
804 if (lp->rx_skb[i])
805 dev_kfree_skb_any(lp->rx_skb[i]);
806 lp->rx_skb[i] = NULL;
809 for (i = 0; i < KORINA_NUM_TDS; i++) {
810 lp->td_ring[i].control = 0;
811 if (lp->tx_skb[i])
812 dev_kfree_skb_any(lp->tx_skb[i]);
813 lp->tx_skb[i] = NULL;
818 * Initialize the RC32434 ethernet controller.
820 static int korina_init(struct net_device *dev)
822 struct korina_private *lp = netdev_priv(dev);
824 /* Disable DMA */
825 korina_abort_tx(dev);
826 korina_abort_rx(dev);
828 /* reset ethernet logic */
829 writel(0, &lp->eth_regs->ethintfc);
830 while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
831 dev->trans_start = jiffies;
833 /* Enable Ethernet Interface */
834 writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
836 /* Allocate rings */
837 if (korina_alloc_ring(dev)) {
838 printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
839 korina_free_ring(dev);
840 return -ENOMEM;
843 writel(0, &lp->rx_dma_regs->dmas);
844 /* Start Rx DMA */
845 korina_start_rx(lp, &lp->rd_ring[0]);
847 writel(readl(&lp->tx_dma_regs->dmasm) &
848 ~(DMA_STAT_FINI | DMA_STAT_ERR),
849 &lp->tx_dma_regs->dmasm);
850 writel(readl(&lp->rx_dma_regs->dmasm) &
851 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
852 &lp->rx_dma_regs->dmasm);
854 /* Accept only packets destined for this Ethernet device address */
855 writel(ETH_ARC_AB, &lp->eth_regs->etharc);
857 /* Set all Ether station address registers to their initial values */
858 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
859 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
861 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
862 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
864 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
865 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
867 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
868 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
871 /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
872 writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
873 &lp->eth_regs->ethmac2);
875 /* Back to back inter-packet-gap */
876 writel(0x15, &lp->eth_regs->ethipgt);
877 /* Non - Back to back inter-packet-gap */
878 writel(0x12, &lp->eth_regs->ethipgr);
880 /* Management Clock Prescaler Divisor
881 * Clock independent setting */
882 writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
883 &lp->eth_regs->ethmcp);
885 /* don't transmit until fifo contains 48b */
886 writel(48, &lp->eth_regs->ethfifott);
888 writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
890 napi_enable(&lp->napi);
891 netif_start_queue(dev);
893 return 0;
897 * Restart the RC32434 ethernet controller.
898 * FIXME: check the return status where we call it
900 static int korina_restart(struct net_device *dev)
902 struct korina_private *lp = netdev_priv(dev);
903 int ret;
906 * Disable interrupts
908 disable_irq(lp->rx_irq);
909 disable_irq(lp->tx_irq);
910 disable_irq(lp->ovr_irq);
911 disable_irq(lp->und_irq);
913 writel(readl(&lp->tx_dma_regs->dmasm) |
914 DMA_STAT_FINI | DMA_STAT_ERR,
915 &lp->tx_dma_regs->dmasm);
916 writel(readl(&lp->rx_dma_regs->dmasm) |
917 DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
918 &lp->rx_dma_regs->dmasm);
920 korina_free_ring(dev);
922 napi_disable(&lp->napi);
924 ret = korina_init(dev);
925 if (ret < 0) {
926 printk(KERN_ERR "%s: cannot restart device\n", dev->name);
927 return ret;
929 korina_multicast_list(dev);
931 enable_irq(lp->und_irq);
932 enable_irq(lp->ovr_irq);
933 enable_irq(lp->tx_irq);
934 enable_irq(lp->rx_irq);
936 return ret;
939 static void korina_clear_and_restart(struct net_device *dev, u32 value)
941 struct korina_private *lp = netdev_priv(dev);
943 netif_stop_queue(dev);
944 writel(value, &lp->eth_regs->ethintfc);
945 korina_restart(dev);
948 /* Ethernet Tx Underflow interrupt */
949 static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
951 struct net_device *dev = dev_id;
952 struct korina_private *lp = netdev_priv(dev);
953 unsigned int und;
955 spin_lock(&lp->lock);
957 und = readl(&lp->eth_regs->ethintfc);
959 if (und & ETH_INT_FC_UND)
960 korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
962 spin_unlock(&lp->lock);
964 return IRQ_HANDLED;
967 static void korina_tx_timeout(struct net_device *dev)
969 struct korina_private *lp = netdev_priv(dev);
970 unsigned long flags;
972 spin_lock_irqsave(&lp->lock, flags);
973 korina_restart(dev);
974 spin_unlock_irqrestore(&lp->lock, flags);
977 /* Ethernet Rx Overflow interrupt */
978 static irqreturn_t
979 korina_ovr_interrupt(int irq, void *dev_id)
981 struct net_device *dev = dev_id;
982 struct korina_private *lp = netdev_priv(dev);
983 unsigned int ovr;
985 spin_lock(&lp->lock);
986 ovr = readl(&lp->eth_regs->ethintfc);
988 if (ovr & ETH_INT_FC_OVR)
989 korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
991 spin_unlock(&lp->lock);
993 return IRQ_HANDLED;
996 #ifdef CONFIG_NET_POLL_CONTROLLER
997 static void korina_poll_controller(struct net_device *dev)
999 disable_irq(dev->irq);
1000 korina_tx_dma_interrupt(dev->irq, dev);
1001 enable_irq(dev->irq);
1003 #endif
1005 static int korina_open(struct net_device *dev)
1007 struct korina_private *lp = netdev_priv(dev);
1008 int ret;
1010 /* Initialize */
1011 ret = korina_init(dev);
1012 if (ret < 0) {
1013 printk(KERN_ERR "%s: cannot open device\n", dev->name);
1014 goto out;
1017 /* Install the interrupt handler
1018 * that handles the Done Finished
1019 * Ovr and Und Events */
1020 ret = request_irq(lp->rx_irq, &korina_rx_dma_interrupt,
1021 IRQF_DISABLED, "Korina ethernet Rx", dev);
1022 if (ret < 0) {
1023 printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1024 dev->name, lp->rx_irq);
1025 goto err_release;
1027 ret = request_irq(lp->tx_irq, &korina_tx_dma_interrupt,
1028 IRQF_DISABLED, "Korina ethernet Tx", dev);
1029 if (ret < 0) {
1030 printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1031 dev->name, lp->tx_irq);
1032 goto err_free_rx_irq;
1035 /* Install handler for overrun error. */
1036 ret = request_irq(lp->ovr_irq, &korina_ovr_interrupt,
1037 IRQF_DISABLED, "Ethernet Overflow", dev);
1038 if (ret < 0) {
1039 printk(KERN_ERR "%s: unable to get OVR IRQ %d\n",
1040 dev->name, lp->ovr_irq);
1041 goto err_free_tx_irq;
1044 /* Install handler for underflow error. */
1045 ret = request_irq(lp->und_irq, &korina_und_interrupt,
1046 IRQF_DISABLED, "Ethernet Underflow", dev);
1047 if (ret < 0) {
1048 printk(KERN_ERR "%s: unable to get UND IRQ %d\n",
1049 dev->name, lp->und_irq);
1050 goto err_free_ovr_irq;
1052 mod_timer(&lp->media_check_timer, jiffies + 1);
1053 out:
1054 return ret;
1056 err_free_ovr_irq:
1057 free_irq(lp->ovr_irq, dev);
1058 err_free_tx_irq:
1059 free_irq(lp->tx_irq, dev);
1060 err_free_rx_irq:
1061 free_irq(lp->rx_irq, dev);
1062 err_release:
1063 korina_free_ring(dev);
1064 goto out;
1067 static int korina_close(struct net_device *dev)
1069 struct korina_private *lp = netdev_priv(dev);
1070 u32 tmp;
1072 del_timer(&lp->media_check_timer);
1074 /* Disable interrupts */
1075 disable_irq(lp->rx_irq);
1076 disable_irq(lp->tx_irq);
1077 disable_irq(lp->ovr_irq);
1078 disable_irq(lp->und_irq);
1080 korina_abort_tx(dev);
1081 tmp = readl(&lp->tx_dma_regs->dmasm);
1082 tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1083 writel(tmp, &lp->tx_dma_regs->dmasm);
1085 korina_abort_rx(dev);
1086 tmp = readl(&lp->rx_dma_regs->dmasm);
1087 tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1088 writel(tmp, &lp->rx_dma_regs->dmasm);
1090 korina_free_ring(dev);
1092 napi_disable(&lp->napi);
1094 free_irq(lp->rx_irq, dev);
1095 free_irq(lp->tx_irq, dev);
1096 free_irq(lp->ovr_irq, dev);
1097 free_irq(lp->und_irq, dev);
1099 return 0;
1102 static const struct net_device_ops korina_netdev_ops = {
1103 .ndo_open = korina_open,
1104 .ndo_stop = korina_close,
1105 .ndo_start_xmit = korina_send_packet,
1106 .ndo_set_multicast_list = korina_multicast_list,
1107 .ndo_tx_timeout = korina_tx_timeout,
1108 .ndo_do_ioctl = korina_ioctl,
1109 .ndo_change_mtu = eth_change_mtu,
1110 .ndo_validate_addr = eth_validate_addr,
1111 .ndo_set_mac_address = eth_mac_addr,
1112 #ifdef CONFIG_NET_POLL_CONTROLLER
1113 .ndo_poll_controller = korina_poll_controller,
1114 #endif
1117 static int korina_probe(struct platform_device *pdev)
1119 struct korina_device *bif = platform_get_drvdata(pdev);
1120 struct korina_private *lp;
1121 struct net_device *dev;
1122 struct resource *r;
1123 int rc;
1125 dev = alloc_etherdev(sizeof(struct korina_private));
1126 if (!dev) {
1127 printk(KERN_ERR DRV_NAME ": alloc_etherdev failed\n");
1128 return -ENOMEM;
1130 SET_NETDEV_DEV(dev, &pdev->dev);
1131 lp = netdev_priv(dev);
1133 bif->dev = dev;
1134 memcpy(dev->dev_addr, bif->mac, 6);
1136 lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
1137 lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
1138 lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
1139 lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
1141 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
1142 dev->base_addr = r->start;
1143 lp->eth_regs = ioremap_nocache(r->start, r->end - r->start);
1144 if (!lp->eth_regs) {
1145 printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1146 rc = -ENXIO;
1147 goto probe_err_out;
1150 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
1151 lp->rx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
1152 if (!lp->rx_dma_regs) {
1153 printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1154 rc = -ENXIO;
1155 goto probe_err_dma_rx;
1158 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
1159 lp->tx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
1160 if (!lp->tx_dma_regs) {
1161 printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1162 rc = -ENXIO;
1163 goto probe_err_dma_tx;
1166 lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
1167 if (!lp->td_ring) {
1168 printk(KERN_ERR DRV_NAME ": cannot allocate descriptors\n");
1169 rc = -ENXIO;
1170 goto probe_err_td_ring;
1173 dma_cache_inv((unsigned long)(lp->td_ring),
1174 TD_RING_SIZE + RD_RING_SIZE);
1176 /* now convert TD_RING pointer to KSEG1 */
1177 lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
1178 lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
1180 spin_lock_init(&lp->lock);
1181 /* just use the rx dma irq */
1182 dev->irq = lp->rx_irq;
1183 lp->dev = dev;
1185 dev->netdev_ops = &korina_netdev_ops;
1186 dev->ethtool_ops = &netdev_ethtool_ops;
1187 dev->watchdog_timeo = TX_TIMEOUT;
1188 netif_napi_add(dev, &lp->napi, korina_poll, 64);
1190 lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
1191 lp->mii_if.dev = dev;
1192 lp->mii_if.mdio_read = mdio_read;
1193 lp->mii_if.mdio_write = mdio_write;
1194 lp->mii_if.phy_id = lp->phy_addr;
1195 lp->mii_if.phy_id_mask = 0x1f;
1196 lp->mii_if.reg_num_mask = 0x1f;
1198 rc = register_netdev(dev);
1199 if (rc < 0) {
1200 printk(KERN_ERR DRV_NAME
1201 ": cannot register net device: %d\n", rc);
1202 goto probe_err_register;
1204 setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
1206 printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1207 dev->name);
1208 out:
1209 return rc;
1211 probe_err_register:
1212 kfree(lp->td_ring);
1213 probe_err_td_ring:
1214 iounmap(lp->tx_dma_regs);
1215 probe_err_dma_tx:
1216 iounmap(lp->rx_dma_regs);
1217 probe_err_dma_rx:
1218 iounmap(lp->eth_regs);
1219 probe_err_out:
1220 free_netdev(dev);
1221 goto out;
1224 static int korina_remove(struct platform_device *pdev)
1226 struct korina_device *bif = platform_get_drvdata(pdev);
1227 struct korina_private *lp = netdev_priv(bif->dev);
1229 iounmap(lp->eth_regs);
1230 iounmap(lp->rx_dma_regs);
1231 iounmap(lp->tx_dma_regs);
1233 platform_set_drvdata(pdev, NULL);
1234 unregister_netdev(bif->dev);
1235 free_netdev(bif->dev);
1237 return 0;
1240 static struct platform_driver korina_driver = {
1241 .driver.name = "korina",
1242 .probe = korina_probe,
1243 .remove = korina_remove,
1246 static int __init korina_init_module(void)
1248 return platform_driver_register(&korina_driver);
1251 static void korina_cleanup_module(void)
1253 return platform_driver_unregister(&korina_driver);
1256 module_init(korina_init_module);
1257 module_exit(korina_cleanup_module);
1259 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1260 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1261 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1262 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1263 MODULE_LICENSE("GPL");