x86/amd-iommu: Add function to complete a tlb flush
[linux/fpc-iii.git] / drivers / net / mace.c
blob7d7577b598ea294074f65ae0104050fe09a2199c
1 /*
2 * Network device driver for the MACE ethernet controller on
3 * Apple Powermacs. Assumes it's under a DBDMA controller.
5 * Copyright (C) 1996 Paul Mackerras.
6 */
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/string.h>
14 #include <linux/timer.h>
15 #include <linux/init.h>
16 #include <linux/crc32.h>
17 #include <linux/spinlock.h>
18 #include <linux/bitrev.h>
19 #include <asm/prom.h>
20 #include <asm/dbdma.h>
21 #include <asm/io.h>
22 #include <asm/pgtable.h>
23 #include <asm/macio.h>
25 #include "mace.h"
27 static int port_aaui = -1;
29 #define N_RX_RING 8
30 #define N_TX_RING 6
31 #define MAX_TX_ACTIVE 1
32 #define NCMDS_TX 1 /* dma commands per element in tx ring */
33 #define RX_BUFLEN (ETH_FRAME_LEN + 8)
34 #define TX_TIMEOUT HZ /* 1 second */
36 /* Chip rev needs workaround on HW & multicast addr change */
37 #define BROKEN_ADDRCHG_REV 0x0941
39 /* Bits in transmit DMA status */
40 #define TX_DMA_ERR 0x80
42 struct mace_data {
43 volatile struct mace __iomem *mace;
44 volatile struct dbdma_regs __iomem *tx_dma;
45 int tx_dma_intr;
46 volatile struct dbdma_regs __iomem *rx_dma;
47 int rx_dma_intr;
48 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
49 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
50 struct sk_buff *rx_bufs[N_RX_RING];
51 int rx_fill;
52 int rx_empty;
53 struct sk_buff *tx_bufs[N_TX_RING];
54 int tx_fill;
55 int tx_empty;
56 unsigned char maccc;
57 unsigned char tx_fullup;
58 unsigned char tx_active;
59 unsigned char tx_bad_runt;
60 struct timer_list tx_timeout;
61 int timeout_active;
62 int port_aaui;
63 int chipid;
64 struct macio_dev *mdev;
65 spinlock_t lock;
69 * Number of bytes of private data per MACE: allow enough for
70 * the rx and tx dma commands plus a branch dma command each,
71 * and another 16 bytes to allow us to align the dma command
72 * buffers on a 16 byte boundary.
74 #define PRIV_BYTES (sizeof(struct mace_data) \
75 + (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd))
77 static int mace_open(struct net_device *dev);
78 static int mace_close(struct net_device *dev);
79 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
80 static void mace_set_multicast(struct net_device *dev);
81 static void mace_reset(struct net_device *dev);
82 static int mace_set_address(struct net_device *dev, void *addr);
83 static irqreturn_t mace_interrupt(int irq, void *dev_id);
84 static irqreturn_t mace_txdma_intr(int irq, void *dev_id);
85 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id);
86 static void mace_set_timeout(struct net_device *dev);
87 static void mace_tx_timeout(unsigned long data);
88 static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma);
89 static inline void mace_clean_rings(struct mace_data *mp);
90 static void __mace_set_address(struct net_device *dev, void *addr);
93 * If we can't get a skbuff when we need it, we use this area for DMA.
95 static unsigned char *dummy_buf;
97 static const struct net_device_ops mace_netdev_ops = {
98 .ndo_open = mace_open,
99 .ndo_stop = mace_close,
100 .ndo_start_xmit = mace_xmit_start,
101 .ndo_set_multicast_list = mace_set_multicast,
102 .ndo_set_mac_address = mace_set_address,
103 .ndo_change_mtu = eth_change_mtu,
104 .ndo_validate_addr = eth_validate_addr,
107 static int __devinit mace_probe(struct macio_dev *mdev, const struct of_device_id *match)
109 struct device_node *mace = macio_get_of_node(mdev);
110 struct net_device *dev;
111 struct mace_data *mp;
112 const unsigned char *addr;
113 int j, rev, rc = -EBUSY;
115 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
116 printk(KERN_ERR "can't use MACE %s: need 3 addrs and 3 irqs\n",
117 mace->full_name);
118 return -ENODEV;
121 addr = of_get_property(mace, "mac-address", NULL);
122 if (addr == NULL) {
123 addr = of_get_property(mace, "local-mac-address", NULL);
124 if (addr == NULL) {
125 printk(KERN_ERR "Can't get mac-address for MACE %s\n",
126 mace->full_name);
127 return -ENODEV;
132 * lazy allocate the driver-wide dummy buffer. (Note that we
133 * never have more than one MACE in the system anyway)
135 if (dummy_buf == NULL) {
136 dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL);
137 if (dummy_buf == NULL) {
138 printk(KERN_ERR "MACE: couldn't allocate dummy buffer\n");
139 return -ENOMEM;
143 if (macio_request_resources(mdev, "mace")) {
144 printk(KERN_ERR "MACE: can't request IO resources !\n");
145 return -EBUSY;
148 dev = alloc_etherdev(PRIV_BYTES);
149 if (!dev) {
150 printk(KERN_ERR "MACE: can't allocate ethernet device !\n");
151 rc = -ENOMEM;
152 goto err_release;
154 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
156 mp = netdev_priv(dev);
157 mp->mdev = mdev;
158 macio_set_drvdata(mdev, dev);
160 dev->base_addr = macio_resource_start(mdev, 0);
161 mp->mace = ioremap(dev->base_addr, 0x1000);
162 if (mp->mace == NULL) {
163 printk(KERN_ERR "MACE: can't map IO resources !\n");
164 rc = -ENOMEM;
165 goto err_free;
167 dev->irq = macio_irq(mdev, 0);
169 rev = addr[0] == 0 && addr[1] == 0xA0;
170 for (j = 0; j < 6; ++j) {
171 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
173 mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) |
174 in_8(&mp->mace->chipid_lo);
177 mp = netdev_priv(dev);
178 mp->maccc = ENXMT | ENRCV;
180 mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000);
181 if (mp->tx_dma == NULL) {
182 printk(KERN_ERR "MACE: can't map TX DMA resources !\n");
183 rc = -ENOMEM;
184 goto err_unmap_io;
186 mp->tx_dma_intr = macio_irq(mdev, 1);
188 mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000);
189 if (mp->rx_dma == NULL) {
190 printk(KERN_ERR "MACE: can't map RX DMA resources !\n");
191 rc = -ENOMEM;
192 goto err_unmap_tx_dma;
194 mp->rx_dma_intr = macio_irq(mdev, 2);
196 mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1);
197 mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1;
199 memset((char *) mp->tx_cmds, 0,
200 (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd));
201 init_timer(&mp->tx_timeout);
202 spin_lock_init(&mp->lock);
203 mp->timeout_active = 0;
205 if (port_aaui >= 0)
206 mp->port_aaui = port_aaui;
207 else {
208 /* Apple Network Server uses the AAUI port */
209 if (machine_is_compatible("AAPL,ShinerESB"))
210 mp->port_aaui = 1;
211 else {
212 #ifdef CONFIG_MACE_AAUI_PORT
213 mp->port_aaui = 1;
214 #else
215 mp->port_aaui = 0;
216 #endif
220 dev->netdev_ops = &mace_netdev_ops;
223 * Most of what is below could be moved to mace_open()
225 mace_reset(dev);
227 rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev);
228 if (rc) {
229 printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
230 goto err_unmap_rx_dma;
232 rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev);
233 if (rc) {
234 printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr);
235 goto err_free_irq;
237 rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev);
238 if (rc) {
239 printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr);
240 goto err_free_tx_irq;
243 rc = register_netdev(dev);
244 if (rc) {
245 printk(KERN_ERR "MACE: Cannot register net device, aborting.\n");
246 goto err_free_rx_irq;
249 printk(KERN_INFO "%s: MACE at %pM, chip revision %d.%d\n",
250 dev->name, dev->dev_addr,
251 mp->chipid >> 8, mp->chipid & 0xff);
253 return 0;
255 err_free_rx_irq:
256 free_irq(macio_irq(mdev, 2), dev);
257 err_free_tx_irq:
258 free_irq(macio_irq(mdev, 1), dev);
259 err_free_irq:
260 free_irq(macio_irq(mdev, 0), dev);
261 err_unmap_rx_dma:
262 iounmap(mp->rx_dma);
263 err_unmap_tx_dma:
264 iounmap(mp->tx_dma);
265 err_unmap_io:
266 iounmap(mp->mace);
267 err_free:
268 free_netdev(dev);
269 err_release:
270 macio_release_resources(mdev);
272 return rc;
275 static int __devexit mace_remove(struct macio_dev *mdev)
277 struct net_device *dev = macio_get_drvdata(mdev);
278 struct mace_data *mp;
280 BUG_ON(dev == NULL);
282 macio_set_drvdata(mdev, NULL);
284 mp = netdev_priv(dev);
286 unregister_netdev(dev);
288 free_irq(dev->irq, dev);
289 free_irq(mp->tx_dma_intr, dev);
290 free_irq(mp->rx_dma_intr, dev);
292 iounmap(mp->rx_dma);
293 iounmap(mp->tx_dma);
294 iounmap(mp->mace);
296 free_netdev(dev);
298 macio_release_resources(mdev);
300 return 0;
303 static void dbdma_reset(volatile struct dbdma_regs __iomem *dma)
305 int i;
307 out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
310 * Yes this looks peculiar, but apparently it needs to be this
311 * way on some machines.
313 for (i = 200; i > 0; --i)
314 if (ld_le32(&dma->control) & RUN)
315 udelay(1);
318 static void mace_reset(struct net_device *dev)
320 struct mace_data *mp = netdev_priv(dev);
321 volatile struct mace __iomem *mb = mp->mace;
322 int i;
324 /* soft-reset the chip */
325 i = 200;
326 while (--i) {
327 out_8(&mb->biucc, SWRST);
328 if (in_8(&mb->biucc) & SWRST) {
329 udelay(10);
330 continue;
332 break;
334 if (!i) {
335 printk(KERN_ERR "mace: cannot reset chip!\n");
336 return;
339 out_8(&mb->imr, 0xff); /* disable all intrs for now */
340 i = in_8(&mb->ir);
341 out_8(&mb->maccc, 0); /* turn off tx, rx */
343 out_8(&mb->biucc, XMTSP_64);
344 out_8(&mb->utr, RTRD);
345 out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST);
346 out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */
347 out_8(&mb->rcvfc, 0);
349 /* load up the hardware address */
350 __mace_set_address(dev, dev->dev_addr);
352 /* clear the multicast filter */
353 if (mp->chipid == BROKEN_ADDRCHG_REV)
354 out_8(&mb->iac, LOGADDR);
355 else {
356 out_8(&mb->iac, ADDRCHG | LOGADDR);
357 while ((in_8(&mb->iac) & ADDRCHG) != 0)
360 for (i = 0; i < 8; ++i)
361 out_8(&mb->ladrf, 0);
363 /* done changing address */
364 if (mp->chipid != BROKEN_ADDRCHG_REV)
365 out_8(&mb->iac, 0);
367 if (mp->port_aaui)
368 out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO);
369 else
370 out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO);
373 static void __mace_set_address(struct net_device *dev, void *addr)
375 struct mace_data *mp = netdev_priv(dev);
376 volatile struct mace __iomem *mb = mp->mace;
377 unsigned char *p = addr;
378 int i;
380 /* load up the hardware address */
381 if (mp->chipid == BROKEN_ADDRCHG_REV)
382 out_8(&mb->iac, PHYADDR);
383 else {
384 out_8(&mb->iac, ADDRCHG | PHYADDR);
385 while ((in_8(&mb->iac) & ADDRCHG) != 0)
388 for (i = 0; i < 6; ++i)
389 out_8(&mb->padr, dev->dev_addr[i] = p[i]);
390 if (mp->chipid != BROKEN_ADDRCHG_REV)
391 out_8(&mb->iac, 0);
394 static int mace_set_address(struct net_device *dev, void *addr)
396 struct mace_data *mp = netdev_priv(dev);
397 volatile struct mace __iomem *mb = mp->mace;
398 unsigned long flags;
400 spin_lock_irqsave(&mp->lock, flags);
402 __mace_set_address(dev, addr);
404 /* note: setting ADDRCHG clears ENRCV */
405 out_8(&mb->maccc, mp->maccc);
407 spin_unlock_irqrestore(&mp->lock, flags);
408 return 0;
411 static inline void mace_clean_rings(struct mace_data *mp)
413 int i;
415 /* free some skb's */
416 for (i = 0; i < N_RX_RING; ++i) {
417 if (mp->rx_bufs[i] != NULL) {
418 dev_kfree_skb(mp->rx_bufs[i]);
419 mp->rx_bufs[i] = NULL;
422 for (i = mp->tx_empty; i != mp->tx_fill; ) {
423 dev_kfree_skb(mp->tx_bufs[i]);
424 if (++i >= N_TX_RING)
425 i = 0;
429 static int mace_open(struct net_device *dev)
431 struct mace_data *mp = netdev_priv(dev);
432 volatile struct mace __iomem *mb = mp->mace;
433 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
434 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
435 volatile struct dbdma_cmd *cp;
436 int i;
437 struct sk_buff *skb;
438 unsigned char *data;
440 /* reset the chip */
441 mace_reset(dev);
443 /* initialize list of sk_buffs for receiving and set up recv dma */
444 mace_clean_rings(mp);
445 memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd));
446 cp = mp->rx_cmds;
447 for (i = 0; i < N_RX_RING - 1; ++i) {
448 skb = dev_alloc_skb(RX_BUFLEN + 2);
449 if (!skb) {
450 data = dummy_buf;
451 } else {
452 skb_reserve(skb, 2); /* so IP header lands on 4-byte bdry */
453 data = skb->data;
455 mp->rx_bufs[i] = skb;
456 st_le16(&cp->req_count, RX_BUFLEN);
457 st_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
458 st_le32(&cp->phy_addr, virt_to_bus(data));
459 cp->xfer_status = 0;
460 ++cp;
462 mp->rx_bufs[i] = NULL;
463 st_le16(&cp->command, DBDMA_STOP);
464 mp->rx_fill = i;
465 mp->rx_empty = 0;
467 /* Put a branch back to the beginning of the receive command list */
468 ++cp;
469 st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
470 st_le32(&cp->cmd_dep, virt_to_bus(mp->rx_cmds));
472 /* start rx dma */
473 out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
474 out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds));
475 out_le32(&rd->control, (RUN << 16) | RUN);
477 /* put a branch at the end of the tx command list */
478 cp = mp->tx_cmds + NCMDS_TX * N_TX_RING;
479 st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
480 st_le32(&cp->cmd_dep, virt_to_bus(mp->tx_cmds));
482 /* reset tx dma */
483 out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
484 out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds));
485 mp->tx_fill = 0;
486 mp->tx_empty = 0;
487 mp->tx_fullup = 0;
488 mp->tx_active = 0;
489 mp->tx_bad_runt = 0;
491 /* turn it on! */
492 out_8(&mb->maccc, mp->maccc);
493 /* enable all interrupts except receive interrupts */
494 out_8(&mb->imr, RCVINT);
496 return 0;
499 static int mace_close(struct net_device *dev)
501 struct mace_data *mp = netdev_priv(dev);
502 volatile struct mace __iomem *mb = mp->mace;
503 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
504 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
506 /* disable rx and tx */
507 out_8(&mb->maccc, 0);
508 out_8(&mb->imr, 0xff); /* disable all intrs */
510 /* disable rx and tx dma */
511 st_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
512 st_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
514 mace_clean_rings(mp);
516 return 0;
519 static inline void mace_set_timeout(struct net_device *dev)
521 struct mace_data *mp = netdev_priv(dev);
523 if (mp->timeout_active)
524 del_timer(&mp->tx_timeout);
525 mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
526 mp->tx_timeout.function = mace_tx_timeout;
527 mp->tx_timeout.data = (unsigned long) dev;
528 add_timer(&mp->tx_timeout);
529 mp->timeout_active = 1;
532 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
534 struct mace_data *mp = netdev_priv(dev);
535 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
536 volatile struct dbdma_cmd *cp, *np;
537 unsigned long flags;
538 int fill, next, len;
540 /* see if there's a free slot in the tx ring */
541 spin_lock_irqsave(&mp->lock, flags);
542 fill = mp->tx_fill;
543 next = fill + 1;
544 if (next >= N_TX_RING)
545 next = 0;
546 if (next == mp->tx_empty) {
547 netif_stop_queue(dev);
548 mp->tx_fullup = 1;
549 spin_unlock_irqrestore(&mp->lock, flags);
550 return NETDEV_TX_BUSY; /* can't take it at the moment */
552 spin_unlock_irqrestore(&mp->lock, flags);
554 /* partially fill in the dma command block */
555 len = skb->len;
556 if (len > ETH_FRAME_LEN) {
557 printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len);
558 len = ETH_FRAME_LEN;
560 mp->tx_bufs[fill] = skb;
561 cp = mp->tx_cmds + NCMDS_TX * fill;
562 st_le16(&cp->req_count, len);
563 st_le32(&cp->phy_addr, virt_to_bus(skb->data));
565 np = mp->tx_cmds + NCMDS_TX * next;
566 out_le16(&np->command, DBDMA_STOP);
568 /* poke the tx dma channel */
569 spin_lock_irqsave(&mp->lock, flags);
570 mp->tx_fill = next;
571 if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) {
572 out_le16(&cp->xfer_status, 0);
573 out_le16(&cp->command, OUTPUT_LAST);
574 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
575 ++mp->tx_active;
576 mace_set_timeout(dev);
578 if (++next >= N_TX_RING)
579 next = 0;
580 if (next == mp->tx_empty)
581 netif_stop_queue(dev);
582 spin_unlock_irqrestore(&mp->lock, flags);
584 return NETDEV_TX_OK;
587 static void mace_set_multicast(struct net_device *dev)
589 struct mace_data *mp = netdev_priv(dev);
590 volatile struct mace __iomem *mb = mp->mace;
591 int i, j;
592 u32 crc;
593 unsigned long flags;
595 spin_lock_irqsave(&mp->lock, flags);
596 mp->maccc &= ~PROM;
597 if (dev->flags & IFF_PROMISC) {
598 mp->maccc |= PROM;
599 } else {
600 unsigned char multicast_filter[8];
601 struct dev_mc_list *dmi = dev->mc_list;
603 if (dev->flags & IFF_ALLMULTI) {
604 for (i = 0; i < 8; i++)
605 multicast_filter[i] = 0xff;
606 } else {
607 for (i = 0; i < 8; i++)
608 multicast_filter[i] = 0;
609 for (i = 0; i < dev->mc_count; i++) {
610 crc = ether_crc_le(6, dmi->dmi_addr);
611 j = crc >> 26; /* bit number in multicast_filter */
612 multicast_filter[j >> 3] |= 1 << (j & 7);
613 dmi = dmi->next;
616 #if 0
617 printk("Multicast filter :");
618 for (i = 0; i < 8; i++)
619 printk("%02x ", multicast_filter[i]);
620 printk("\n");
621 #endif
623 if (mp->chipid == BROKEN_ADDRCHG_REV)
624 out_8(&mb->iac, LOGADDR);
625 else {
626 out_8(&mb->iac, ADDRCHG | LOGADDR);
627 while ((in_8(&mb->iac) & ADDRCHG) != 0)
630 for (i = 0; i < 8; ++i)
631 out_8(&mb->ladrf, multicast_filter[i]);
632 if (mp->chipid != BROKEN_ADDRCHG_REV)
633 out_8(&mb->iac, 0);
635 /* reset maccc */
636 out_8(&mb->maccc, mp->maccc);
637 spin_unlock_irqrestore(&mp->lock, flags);
640 static void mace_handle_misc_intrs(struct mace_data *mp, int intr, struct net_device *dev)
642 volatile struct mace __iomem *mb = mp->mace;
643 static int mace_babbles, mace_jabbers;
645 if (intr & MPCO)
646 dev->stats.rx_missed_errors += 256;
647 dev->stats.rx_missed_errors += in_8(&mb->mpc); /* reading clears it */
648 if (intr & RNTPCO)
649 dev->stats.rx_length_errors += 256;
650 dev->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */
651 if (intr & CERR)
652 ++dev->stats.tx_heartbeat_errors;
653 if (intr & BABBLE)
654 if (mace_babbles++ < 4)
655 printk(KERN_DEBUG "mace: babbling transmitter\n");
656 if (intr & JABBER)
657 if (mace_jabbers++ < 4)
658 printk(KERN_DEBUG "mace: jabbering transceiver\n");
661 static irqreturn_t mace_interrupt(int irq, void *dev_id)
663 struct net_device *dev = (struct net_device *) dev_id;
664 struct mace_data *mp = netdev_priv(dev);
665 volatile struct mace __iomem *mb = mp->mace;
666 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
667 volatile struct dbdma_cmd *cp;
668 int intr, fs, i, stat, x;
669 int xcount, dstat;
670 unsigned long flags;
671 /* static int mace_last_fs, mace_last_xcount; */
673 spin_lock_irqsave(&mp->lock, flags);
674 intr = in_8(&mb->ir); /* read interrupt register */
675 in_8(&mb->xmtrc); /* get retries */
676 mace_handle_misc_intrs(mp, intr, dev);
678 i = mp->tx_empty;
679 while (in_8(&mb->pr) & XMTSV) {
680 del_timer(&mp->tx_timeout);
681 mp->timeout_active = 0;
683 * Clear any interrupt indication associated with this status
684 * word. This appears to unlatch any error indication from
685 * the DMA controller.
687 intr = in_8(&mb->ir);
688 if (intr != 0)
689 mace_handle_misc_intrs(mp, intr, dev);
690 if (mp->tx_bad_runt) {
691 fs = in_8(&mb->xmtfs);
692 mp->tx_bad_runt = 0;
693 out_8(&mb->xmtfc, AUTO_PAD_XMIT);
694 continue;
696 dstat = ld_le32(&td->status);
697 /* stop DMA controller */
698 out_le32(&td->control, RUN << 16);
700 * xcount is the number of complete frames which have been
701 * written to the fifo but for which status has not been read.
703 xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
704 if (xcount == 0 || (dstat & DEAD)) {
706 * If a packet was aborted before the DMA controller has
707 * finished transferring it, it seems that there are 2 bytes
708 * which are stuck in some buffer somewhere. These will get
709 * transmitted as soon as we read the frame status (which
710 * reenables the transmit data transfer request). Turning
711 * off the DMA controller and/or resetting the MACE doesn't
712 * help. So we disable auto-padding and FCS transmission
713 * so the two bytes will only be a runt packet which should
714 * be ignored by other stations.
716 out_8(&mb->xmtfc, DXMTFCS);
718 fs = in_8(&mb->xmtfs);
719 if ((fs & XMTSV) == 0) {
720 printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n",
721 fs, xcount, dstat);
722 mace_reset(dev);
724 * XXX mace likes to hang the machine after a xmtfs error.
725 * This is hard to reproduce, reseting *may* help
728 cp = mp->tx_cmds + NCMDS_TX * i;
729 stat = ld_le16(&cp->xfer_status);
730 if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) {
732 * Check whether there were in fact 2 bytes written to
733 * the transmit FIFO.
735 udelay(1);
736 x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
737 if (x != 0) {
738 /* there were two bytes with an end-of-packet indication */
739 mp->tx_bad_runt = 1;
740 mace_set_timeout(dev);
741 } else {
743 * Either there weren't the two bytes buffered up, or they
744 * didn't have an end-of-packet indication.
745 * We flush the transmit FIFO just in case (by setting the
746 * XMTFWU bit with the transmitter disabled).
748 out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT);
749 out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU);
750 udelay(1);
751 out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT);
752 out_8(&mb->xmtfc, AUTO_PAD_XMIT);
755 /* dma should have finished */
756 if (i == mp->tx_fill) {
757 printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n",
758 fs, xcount, dstat);
759 continue;
761 /* Update stats */
762 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
763 ++dev->stats.tx_errors;
764 if (fs & LCAR)
765 ++dev->stats.tx_carrier_errors;
766 if (fs & (UFLO|LCOL|RTRY))
767 ++dev->stats.tx_aborted_errors;
768 } else {
769 dev->stats.tx_bytes += mp->tx_bufs[i]->len;
770 ++dev->stats.tx_packets;
772 dev_kfree_skb_irq(mp->tx_bufs[i]);
773 --mp->tx_active;
774 if (++i >= N_TX_RING)
775 i = 0;
776 #if 0
777 mace_last_fs = fs;
778 mace_last_xcount = xcount;
779 #endif
782 if (i != mp->tx_empty) {
783 mp->tx_fullup = 0;
784 netif_wake_queue(dev);
786 mp->tx_empty = i;
787 i += mp->tx_active;
788 if (i >= N_TX_RING)
789 i -= N_TX_RING;
790 if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) {
791 do {
792 /* set up the next one */
793 cp = mp->tx_cmds + NCMDS_TX * i;
794 out_le16(&cp->xfer_status, 0);
795 out_le16(&cp->command, OUTPUT_LAST);
796 ++mp->tx_active;
797 if (++i >= N_TX_RING)
798 i = 0;
799 } while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE);
800 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
801 mace_set_timeout(dev);
803 spin_unlock_irqrestore(&mp->lock, flags);
804 return IRQ_HANDLED;
807 static void mace_tx_timeout(unsigned long data)
809 struct net_device *dev = (struct net_device *) data;
810 struct mace_data *mp = netdev_priv(dev);
811 volatile struct mace __iomem *mb = mp->mace;
812 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
813 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
814 volatile struct dbdma_cmd *cp;
815 unsigned long flags;
816 int i;
818 spin_lock_irqsave(&mp->lock, flags);
819 mp->timeout_active = 0;
820 if (mp->tx_active == 0 && !mp->tx_bad_runt)
821 goto out;
823 /* update various counters */
824 mace_handle_misc_intrs(mp, in_8(&mb->ir), dev);
826 cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty;
828 /* turn off both tx and rx and reset the chip */
829 out_8(&mb->maccc, 0);
830 printk(KERN_ERR "mace: transmit timeout - resetting\n");
831 dbdma_reset(td);
832 mace_reset(dev);
834 /* restart rx dma */
835 cp = bus_to_virt(ld_le32(&rd->cmdptr));
836 dbdma_reset(rd);
837 out_le16(&cp->xfer_status, 0);
838 out_le32(&rd->cmdptr, virt_to_bus(cp));
839 out_le32(&rd->control, (RUN << 16) | RUN);
841 /* fix up the transmit side */
842 i = mp->tx_empty;
843 mp->tx_active = 0;
844 ++dev->stats.tx_errors;
845 if (mp->tx_bad_runt) {
846 mp->tx_bad_runt = 0;
847 } else if (i != mp->tx_fill) {
848 dev_kfree_skb(mp->tx_bufs[i]);
849 if (++i >= N_TX_RING)
850 i = 0;
851 mp->tx_empty = i;
853 mp->tx_fullup = 0;
854 netif_wake_queue(dev);
855 if (i != mp->tx_fill) {
856 cp = mp->tx_cmds + NCMDS_TX * i;
857 out_le16(&cp->xfer_status, 0);
858 out_le16(&cp->command, OUTPUT_LAST);
859 out_le32(&td->cmdptr, virt_to_bus(cp));
860 out_le32(&td->control, (RUN << 16) | RUN);
861 ++mp->tx_active;
862 mace_set_timeout(dev);
865 /* turn it back on */
866 out_8(&mb->imr, RCVINT);
867 out_8(&mb->maccc, mp->maccc);
869 out:
870 spin_unlock_irqrestore(&mp->lock, flags);
873 static irqreturn_t mace_txdma_intr(int irq, void *dev_id)
875 return IRQ_HANDLED;
878 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id)
880 struct net_device *dev = (struct net_device *) dev_id;
881 struct mace_data *mp = netdev_priv(dev);
882 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
883 volatile struct dbdma_cmd *cp, *np;
884 int i, nb, stat, next;
885 struct sk_buff *skb;
886 unsigned frame_status;
887 static int mace_lost_status;
888 unsigned char *data;
889 unsigned long flags;
891 spin_lock_irqsave(&mp->lock, flags);
892 for (i = mp->rx_empty; i != mp->rx_fill; ) {
893 cp = mp->rx_cmds + i;
894 stat = ld_le16(&cp->xfer_status);
895 if ((stat & ACTIVE) == 0) {
896 next = i + 1;
897 if (next >= N_RX_RING)
898 next = 0;
899 np = mp->rx_cmds + next;
900 if (next != mp->rx_fill
901 && (ld_le16(&np->xfer_status) & ACTIVE) != 0) {
902 printk(KERN_DEBUG "mace: lost a status word\n");
903 ++mace_lost_status;
904 } else
905 break;
907 nb = ld_le16(&cp->req_count) - ld_le16(&cp->res_count);
908 out_le16(&cp->command, DBDMA_STOP);
909 /* got a packet, have a look at it */
910 skb = mp->rx_bufs[i];
911 if (!skb) {
912 ++dev->stats.rx_dropped;
913 } else if (nb > 8) {
914 data = skb->data;
915 frame_status = (data[nb-3] << 8) + data[nb-4];
916 if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) {
917 ++dev->stats.rx_errors;
918 if (frame_status & RS_OFLO)
919 ++dev->stats.rx_over_errors;
920 if (frame_status & RS_FRAMERR)
921 ++dev->stats.rx_frame_errors;
922 if (frame_status & RS_FCSERR)
923 ++dev->stats.rx_crc_errors;
924 } else {
925 /* Mace feature AUTO_STRIP_RCV is on by default, dropping the
926 * FCS on frames with 802.3 headers. This means that Ethernet
927 * frames have 8 extra octets at the end, while 802.3 frames
928 * have only 4. We need to correctly account for this. */
929 if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */
930 nb -= 4;
931 else /* Ethernet header; mace includes FCS */
932 nb -= 8;
933 skb_put(skb, nb);
934 skb->protocol = eth_type_trans(skb, dev);
935 dev->stats.rx_bytes += skb->len;
936 netif_rx(skb);
937 mp->rx_bufs[i] = NULL;
938 ++dev->stats.rx_packets;
940 } else {
941 ++dev->stats.rx_errors;
942 ++dev->stats.rx_length_errors;
945 /* advance to next */
946 if (++i >= N_RX_RING)
947 i = 0;
949 mp->rx_empty = i;
951 i = mp->rx_fill;
952 for (;;) {
953 next = i + 1;
954 if (next >= N_RX_RING)
955 next = 0;
956 if (next == mp->rx_empty)
957 break;
958 cp = mp->rx_cmds + i;
959 skb = mp->rx_bufs[i];
960 if (!skb) {
961 skb = dev_alloc_skb(RX_BUFLEN + 2);
962 if (skb) {
963 skb_reserve(skb, 2);
964 mp->rx_bufs[i] = skb;
967 st_le16(&cp->req_count, RX_BUFLEN);
968 data = skb? skb->data: dummy_buf;
969 st_le32(&cp->phy_addr, virt_to_bus(data));
970 out_le16(&cp->xfer_status, 0);
971 out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
972 #if 0
973 if ((ld_le32(&rd->status) & ACTIVE) != 0) {
974 out_le32(&rd->control, (PAUSE << 16) | PAUSE);
975 while ((in_le32(&rd->status) & ACTIVE) != 0)
978 #endif
979 i = next;
981 if (i != mp->rx_fill) {
982 out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE));
983 mp->rx_fill = i;
985 spin_unlock_irqrestore(&mp->lock, flags);
986 return IRQ_HANDLED;
989 static struct of_device_id mace_match[] =
992 .name = "mace",
996 MODULE_DEVICE_TABLE (of, mace_match);
998 static struct macio_driver mace_driver =
1000 .name = "mace",
1001 .match_table = mace_match,
1002 .probe = mace_probe,
1003 .remove = mace_remove,
1007 static int __init mace_init(void)
1009 return macio_register_driver(&mace_driver);
1012 static void __exit mace_cleanup(void)
1014 macio_unregister_driver(&mace_driver);
1016 kfree(dummy_buf);
1017 dummy_buf = NULL;
1020 MODULE_AUTHOR("Paul Mackerras");
1021 MODULE_DESCRIPTION("PowerMac MACE driver.");
1022 module_param(port_aaui, int, 0);
1023 MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
1024 MODULE_LICENSE("GPL");
1026 module_init(mace_init);
1027 module_exit(mace_cleanup);