1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-traffic.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2009 Neterion Inc.
13 ******************************************************************************/
14 #include <linux/etherdevice.h>
16 #include "vxge-traffic.h"
17 #include "vxge-config.h"
18 #include "vxge-main.h"
21 * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
22 * @vp: Virtual Path handle.
24 * Enable vpath interrupts. The function is to be executed the last in
25 * vpath initialization sequence.
27 * See also: vxge_hw_vpath_intr_disable()
29 enum vxge_hw_status
vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle
*vp
)
33 struct __vxge_hw_virtualpath
*vpath
;
34 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
35 enum vxge_hw_status status
= VXGE_HW_OK
;
37 status
= VXGE_HW_ERR_INVALID_HANDLE
;
43 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
44 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
48 vp_reg
= vpath
->vp_reg
;
50 writeq(VXGE_HW_INTR_MASK_ALL
, &vp_reg
->kdfcctl_errors_reg
);
52 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
53 &vp_reg
->general_errors_reg
);
55 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
56 &vp_reg
->pci_config_errors_reg
);
58 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
59 &vp_reg
->mrpcim_to_vpath_alarm_reg
);
61 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
62 &vp_reg
->srpcim_to_vpath_alarm_reg
);
64 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
65 &vp_reg
->vpath_ppif_int_status
);
67 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
68 &vp_reg
->srpcim_msg_to_vpath_reg
);
70 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
71 &vp_reg
->vpath_pcipif_int_status
);
73 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
74 &vp_reg
->prc_alarm_reg
);
76 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
77 &vp_reg
->wrdma_alarm_status
);
79 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
80 &vp_reg
->asic_ntwk_vp_err_reg
);
82 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
83 &vp_reg
->xgmac_vp_int_status
);
85 val64
= readq(&vp_reg
->vpath_general_int_status
);
87 /* Mask unwanted interrupts */
89 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
90 &vp_reg
->vpath_pcipif_int_mask
);
92 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
93 &vp_reg
->srpcim_msg_to_vpath_mask
);
95 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
96 &vp_reg
->srpcim_to_vpath_alarm_mask
);
98 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
99 &vp_reg
->mrpcim_to_vpath_alarm_mask
);
101 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
102 &vp_reg
->pci_config_errors_mask
);
104 /* Unmask the individual interrupts */
106 writeq((u32
)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW
|
107 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW
|
108 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ
|
109 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR
), 0, 32),
110 &vp_reg
->general_errors_mask
);
112 __vxge_hw_pio_mem_write32_upper(
113 (u32
)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR
|
114 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR
|
115 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON
|
116 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON
|
117 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR
|
118 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR
), 0, 32),
119 &vp_reg
->kdfcctl_errors_mask
);
121 __vxge_hw_pio_mem_write32_upper(0, &vp_reg
->vpath_ppif_int_mask
);
123 __vxge_hw_pio_mem_write32_upper(
124 (u32
)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP
, 0, 32),
125 &vp_reg
->prc_alarm_mask
);
127 __vxge_hw_pio_mem_write32_upper(0, &vp_reg
->wrdma_alarm_mask
);
128 __vxge_hw_pio_mem_write32_upper(0, &vp_reg
->xgmac_vp_int_mask
);
130 if (vpath
->hldev
->first_vp_id
!= vpath
->vp_id
)
131 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
132 &vp_reg
->asic_ntwk_vp_err_mask
);
134 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn((
135 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT
|
136 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK
), 0, 32),
137 &vp_reg
->asic_ntwk_vp_err_mask
);
139 __vxge_hw_pio_mem_write32_upper(0,
140 &vp_reg
->vpath_general_int_mask
);
147 * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
148 * @vp: Virtual Path handle.
150 * Disable vpath interrupts. The function is to be executed the last in
151 * vpath initialization sequence.
153 * See also: vxge_hw_vpath_intr_enable()
155 enum vxge_hw_status
vxge_hw_vpath_intr_disable(
156 struct __vxge_hw_vpath_handle
*vp
)
160 struct __vxge_hw_virtualpath
*vpath
;
161 enum vxge_hw_status status
= VXGE_HW_OK
;
162 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
164 status
= VXGE_HW_ERR_INVALID_HANDLE
;
170 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
171 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
174 vp_reg
= vpath
->vp_reg
;
176 __vxge_hw_pio_mem_write32_upper(
177 (u32
)VXGE_HW_INTR_MASK_ALL
,
178 &vp_reg
->vpath_general_int_mask
);
180 val64
= VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath
->vp_id
));
182 writeq(VXGE_HW_INTR_MASK_ALL
, &vp_reg
->kdfcctl_errors_mask
);
184 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
185 &vp_reg
->general_errors_mask
);
187 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
188 &vp_reg
->pci_config_errors_mask
);
190 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
191 &vp_reg
->mrpcim_to_vpath_alarm_mask
);
193 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
194 &vp_reg
->srpcim_to_vpath_alarm_mask
);
196 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
197 &vp_reg
->vpath_ppif_int_mask
);
199 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
200 &vp_reg
->srpcim_msg_to_vpath_mask
);
202 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
203 &vp_reg
->vpath_pcipif_int_mask
);
205 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
206 &vp_reg
->wrdma_alarm_mask
);
208 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
209 &vp_reg
->prc_alarm_mask
);
211 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
212 &vp_reg
->xgmac_vp_int_mask
);
214 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
215 &vp_reg
->asic_ntwk_vp_err_mask
);
222 * vxge_hw_channel_msix_mask - Mask MSIX Vector.
223 * @channeh: Channel for rx or tx handle
226 * The function masks the msix interrupt for the given msix_id
230 void vxge_hw_channel_msix_mask(struct __vxge_hw_channel
*channel
, int msix_id
)
233 __vxge_hw_pio_mem_write32_upper(
234 (u32
)vxge_bVALn(vxge_mBIT(channel
->first_vp_id
+(msix_id
/4)),
236 &channel
->common_reg
->set_msix_mask_vect
[msix_id
%4]);
242 * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
243 * @channeh: Channel for rx or tx handle
246 * The function unmasks the msix interrupt for the given msix_id
251 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel
*channel
, int msix_id
)
254 __vxge_hw_pio_mem_write32_upper(
255 (u32
)vxge_bVALn(vxge_mBIT(channel
->first_vp_id
+(msix_id
/4)),
257 &channel
->common_reg
->clear_msix_mask_vect
[msix_id
%4]);
263 * vxge_hw_device_set_intr_type - Updates the configuration
264 * with new interrupt type.
265 * @hldev: HW device handle.
266 * @intr_mode: New interrupt type
268 u32
vxge_hw_device_set_intr_type(struct __vxge_hw_device
*hldev
, u32 intr_mode
)
271 if ((intr_mode
!= VXGE_HW_INTR_MODE_IRQLINE
) &&
272 (intr_mode
!= VXGE_HW_INTR_MODE_MSIX
) &&
273 (intr_mode
!= VXGE_HW_INTR_MODE_MSIX_ONE_SHOT
) &&
274 (intr_mode
!= VXGE_HW_INTR_MODE_DEF
))
275 intr_mode
= VXGE_HW_INTR_MODE_IRQLINE
;
277 hldev
->config
.intr_mode
= intr_mode
;
282 * vxge_hw_device_intr_enable - Enable interrupts.
283 * @hldev: HW device handle.
284 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
285 * the type(s) of interrupts to enable.
287 * Enable Titan interrupts. The function is to be executed the last in
288 * Titan initialization sequence.
290 * See also: vxge_hw_device_intr_disable()
292 void vxge_hw_device_intr_enable(struct __vxge_hw_device
*hldev
)
298 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
300 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
303 vxge_hw_vpath_intr_enable(
304 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev
->virtual_paths
[i
]));
307 if (hldev
->config
.intr_mode
== VXGE_HW_INTR_MODE_IRQLINE
) {
308 val64
= hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] |
309 hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
];
312 writeq(val64
, &hldev
->common_reg
->tim_int_status0
);
314 writeq(~val64
, &hldev
->common_reg
->tim_int_mask0
);
317 val32
= hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] |
318 hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
];
321 __vxge_hw_pio_mem_write32_upper(val32
,
322 &hldev
->common_reg
->tim_int_status1
);
324 __vxge_hw_pio_mem_write32_upper(~val32
,
325 &hldev
->common_reg
->tim_int_mask1
);
329 val64
= readq(&hldev
->common_reg
->titan_general_int_status
);
331 vxge_hw_device_unmask_all(hldev
);
337 * vxge_hw_device_intr_disable - Disable Titan interrupts.
338 * @hldev: HW device handle.
339 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
340 * the type(s) of interrupts to disable.
342 * Disable Titan interrupts.
344 * See also: vxge_hw_device_intr_enable()
346 void vxge_hw_device_intr_disable(struct __vxge_hw_device
*hldev
)
350 vxge_hw_device_mask_all(hldev
);
352 /* mask all the tim interrupts */
353 writeq(VXGE_HW_INTR_MASK_ALL
, &hldev
->common_reg
->tim_int_mask0
);
354 __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32
,
355 &hldev
->common_reg
->tim_int_mask1
);
357 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
359 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
362 vxge_hw_vpath_intr_disable(
363 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev
->virtual_paths
[i
]));
370 * vxge_hw_device_mask_all - Mask all device interrupts.
371 * @hldev: HW device handle.
373 * Mask all device interrupts.
375 * See also: vxge_hw_device_unmask_all()
377 void vxge_hw_device_mask_all(struct __vxge_hw_device
*hldev
)
381 val64
= VXGE_HW_TITAN_MASK_ALL_INT_ALARM
|
382 VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC
;
384 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32),
385 &hldev
->common_reg
->titan_mask_all_int
);
391 * vxge_hw_device_unmask_all - Unmask all device interrupts.
392 * @hldev: HW device handle.
394 * Unmask all device interrupts.
396 * See also: vxge_hw_device_mask_all()
398 void vxge_hw_device_unmask_all(struct __vxge_hw_device
*hldev
)
402 if (hldev
->config
.intr_mode
== VXGE_HW_INTR_MODE_IRQLINE
)
403 val64
= VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC
;
405 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32),
406 &hldev
->common_reg
->titan_mask_all_int
);
412 * vxge_hw_device_flush_io - Flush io writes.
413 * @hldev: HW device handle.
415 * The function performs a read operation to flush io writes.
419 void vxge_hw_device_flush_io(struct __vxge_hw_device
*hldev
)
423 val32
= readl(&hldev
->common_reg
->titan_general_int_status
);
427 * vxge_hw_device_begin_irq - Begin IRQ processing.
428 * @hldev: HW device handle.
429 * @skip_alarms: Do not clear the alarms
430 * @reason: "Reason" for the interrupt, the value of Titan's
431 * general_int_status register.
433 * The function performs two actions, It first checks whether (shared IRQ) the
434 * interrupt was raised by the device. Next, it masks the device interrupts.
437 * vxge_hw_device_begin_irq() does not flush MMIO writes through the
438 * bridge. Therefore, two back-to-back interrupts are potentially possible.
440 * Returns: 0, if the interrupt is not "ours" (note that in this case the
441 * device remain enabled).
442 * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
445 enum vxge_hw_status
vxge_hw_device_begin_irq(struct __vxge_hw_device
*hldev
,
446 u32 skip_alarms
, u64
*reason
)
452 enum vxge_hw_status ret
= VXGE_HW_OK
;
454 val64
= readq(&hldev
->common_reg
->titan_general_int_status
);
456 if (unlikely(!val64
)) {
457 /* not Titan interrupt */
459 ret
= VXGE_HW_ERR_WRONG_IRQ
;
463 if (unlikely(val64
== VXGE_HW_ALL_FOXES
)) {
465 adapter_status
= readq(&hldev
->common_reg
->adapter_status
);
467 if (adapter_status
== VXGE_HW_ALL_FOXES
) {
469 __vxge_hw_device_handle_error(hldev
,
470 NULL_VPID
, VXGE_HW_EVENT_SLOT_FREEZE
);
472 ret
= VXGE_HW_ERR_SLOT_FREEZE
;
477 hldev
->stats
.sw_dev_info_stats
.total_intr_cnt
++;
481 vpath_mask
= hldev
->vpaths_deployed
>>
482 (64 - VXGE_HW_MAX_VIRTUAL_PATHS
);
485 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask
)) {
486 hldev
->stats
.sw_dev_info_stats
.traffic_intr_cnt
++;
491 hldev
->stats
.sw_dev_info_stats
.not_traffic_intr_cnt
++;
494 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT
)) {
496 enum vxge_hw_status error_level
= VXGE_HW_OK
;
498 hldev
->stats
.sw_dev_err_stats
.vpath_alarms
++;
500 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
502 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
505 ret
= __vxge_hw_vpath_alarm_process(
506 &hldev
->virtual_paths
[i
], skip_alarms
);
508 error_level
= VXGE_HW_SET_LEVEL(ret
, error_level
);
510 if (unlikely((ret
== VXGE_HW_ERR_CRITICAL
) ||
511 (ret
== VXGE_HW_ERR_SLOT_FREEZE
)))
522 * __vxge_hw_device_handle_link_up_ind
523 * @hldev: HW device handle.
525 * Link up indication handler. The function is invoked by HW when
526 * Titan indicates that the link is up for programmable amount of time.
529 __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device
*hldev
)
532 * If the previous link state is not down, return.
534 if (hldev
->link_state
== VXGE_HW_LINK_UP
)
537 hldev
->link_state
= VXGE_HW_LINK_UP
;
540 if (hldev
->uld_callbacks
.link_up
)
541 hldev
->uld_callbacks
.link_up(hldev
);
547 * __vxge_hw_device_handle_link_down_ind
548 * @hldev: HW device handle.
550 * Link down indication handler. The function is invoked by HW when
551 * Titan indicates that the link is down.
554 __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device
*hldev
)
557 * If the previous link state is not down, return.
559 if (hldev
->link_state
== VXGE_HW_LINK_DOWN
)
562 hldev
->link_state
= VXGE_HW_LINK_DOWN
;
565 if (hldev
->uld_callbacks
.link_down
)
566 hldev
->uld_callbacks
.link_down(hldev
);
572 * __vxge_hw_device_handle_error - Handle error
575 * @type: Error type. Please see enum vxge_hw_event{}
580 __vxge_hw_device_handle_error(
581 struct __vxge_hw_device
*hldev
,
583 enum vxge_hw_event type
)
586 case VXGE_HW_EVENT_UNKNOWN
:
588 case VXGE_HW_EVENT_RESET_START
:
589 case VXGE_HW_EVENT_RESET_COMPLETE
:
590 case VXGE_HW_EVENT_LINK_DOWN
:
591 case VXGE_HW_EVENT_LINK_UP
:
593 case VXGE_HW_EVENT_ALARM_CLEARED
:
595 case VXGE_HW_EVENT_ECCERR
:
596 case VXGE_HW_EVENT_MRPCIM_ECCERR
:
598 case VXGE_HW_EVENT_FIFO_ERR
:
599 case VXGE_HW_EVENT_VPATH_ERR
:
600 case VXGE_HW_EVENT_CRITICAL_ERR
:
601 case VXGE_HW_EVENT_SERR
:
603 case VXGE_HW_EVENT_SRPCIM_SERR
:
604 case VXGE_HW_EVENT_MRPCIM_SERR
:
606 case VXGE_HW_EVENT_SLOT_FREEZE
:
614 if (hldev
->uld_callbacks
.crit_err
)
615 hldev
->uld_callbacks
.crit_err(
616 (struct __vxge_hw_device
*)hldev
,
624 * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
625 * condition that has caused the Tx and RX interrupt.
628 * Acknowledge (that is, clear) the condition that has caused
629 * the Tx and Rx interrupt.
630 * See also: vxge_hw_device_begin_irq(),
631 * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
633 void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device
*hldev
)
636 if ((hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
637 (hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
638 writeq((hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] |
639 hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
]),
640 &hldev
->common_reg
->tim_int_status0
);
643 if ((hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
644 (hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
645 __vxge_hw_pio_mem_write32_upper(
646 (hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] |
647 hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
]),
648 &hldev
->common_reg
->tim_int_status1
);
655 * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
657 * @dtrh: Buffer to return the DTR pointer
659 * Allocates a dtr from the reserve array. If the reserve array is empty,
660 * it swaps the reserve and free arrays.
664 vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel
*channel
, void **dtrh
)
668 if (channel
->reserve_ptr
- channel
->reserve_top
> 0) {
670 *dtrh
= channel
->reserve_arr
[--channel
->reserve_ptr
];
675 /* switch between empty and full arrays */
677 /* the idea behind such a design is that by having free and reserved
678 * arrays separated we basically separated irq and non-irq parts.
679 * i.e. no additional lock need to be done when we free a resource */
681 if (channel
->length
- channel
->free_ptr
> 0) {
683 tmp_arr
= channel
->reserve_arr
;
684 channel
->reserve_arr
= channel
->free_arr
;
685 channel
->free_arr
= tmp_arr
;
686 channel
->reserve_ptr
= channel
->length
;
687 channel
->reserve_top
= channel
->free_ptr
;
688 channel
->free_ptr
= channel
->length
;
690 channel
->stats
->reserve_free_swaps_cnt
++;
692 goto _alloc_after_swap
;
695 channel
->stats
->full_cnt
++;
698 return VXGE_HW_INF_OUT_OF_DESCRIPTORS
;
702 * vxge_hw_channel_dtr_post - Post a dtr to the channel
706 * Posts a dtr to work array.
709 void vxge_hw_channel_dtr_post(struct __vxge_hw_channel
*channel
, void *dtrh
)
711 vxge_assert(channel
->work_arr
[channel
->post_index
] == NULL
);
713 channel
->work_arr
[channel
->post_index
++] = dtrh
;
716 if (channel
->post_index
== channel
->length
)
717 channel
->post_index
= 0;
721 * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
723 * @dtr: Buffer to return the next completed DTR pointer
725 * Returns the next completed dtr with out removing it from work array
729 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel
*channel
, void **dtrh
)
731 vxge_assert(channel
->compl_index
< channel
->length
);
733 *dtrh
= channel
->work_arr
[channel
->compl_index
];
738 * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
739 * @channel: Channel handle
741 * Removes the next completed dtr from work array
744 void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel
*channel
)
746 channel
->work_arr
[channel
->compl_index
] = NULL
;
749 if (++channel
->compl_index
== channel
->length
)
750 channel
->compl_index
= 0;
752 channel
->stats
->total_compl_cnt
++;
756 * vxge_hw_channel_dtr_free - Frees a dtr
757 * @channel: Channel handle
760 * Returns the dtr to free array
763 void vxge_hw_channel_dtr_free(struct __vxge_hw_channel
*channel
, void *dtrh
)
765 channel
->free_arr
[--channel
->free_ptr
] = dtrh
;
769 * vxge_hw_channel_dtr_count
770 * @channel: Channel handle. Obtained via vxge_hw_channel_open().
772 * Retreive number of DTRs available. This function can not be called
773 * from data path. ring_initial_replenishi() is the only user.
775 int vxge_hw_channel_dtr_count(struct __vxge_hw_channel
*channel
)
777 return (channel
->reserve_ptr
- channel
->reserve_top
) +
778 (channel
->length
- channel
->free_ptr
);
782 * vxge_hw_ring_rxd_reserve - Reserve ring descriptor.
783 * @ring: Handle to the ring object used for receive
784 * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
785 * with a valid handle.
787 * Reserve Rx descriptor for the subsequent filling-in driver
788 * and posting on the corresponding channel (@channelh)
789 * via vxge_hw_ring_rxd_post().
791 * Returns: VXGE_HW_OK - success.
792 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
795 enum vxge_hw_status
vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring
*ring
,
798 enum vxge_hw_status status
;
799 struct __vxge_hw_channel
*channel
;
801 channel
= &ring
->channel
;
803 status
= vxge_hw_channel_dtr_alloc(channel
, rxdh
);
805 if (status
== VXGE_HW_OK
) {
806 struct vxge_hw_ring_rxd_1
*rxdp
=
807 (struct vxge_hw_ring_rxd_1
*)*rxdh
;
809 rxdp
->control_0
= rxdp
->control_1
= 0;
816 * vxge_hw_ring_rxd_free - Free descriptor.
817 * @ring: Handle to the ring object used for receive
818 * @rxdh: Descriptor handle.
820 * Free the reserved descriptor. This operation is "symmetrical" to
821 * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
824 * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
827 * - reserved (vxge_hw_ring_rxd_reserve);
829 * - posted (vxge_hw_ring_rxd_post);
831 * - completed (vxge_hw_ring_rxd_next_completed);
833 * - and recycled again (vxge_hw_ring_rxd_free).
835 * For alternative state transitions and more details please refer to
839 void vxge_hw_ring_rxd_free(struct __vxge_hw_ring
*ring
, void *rxdh
)
841 struct __vxge_hw_channel
*channel
;
843 channel
= &ring
->channel
;
845 vxge_hw_channel_dtr_free(channel
, rxdh
);
850 * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
851 * @ring: Handle to the ring object used for receive
852 * @rxdh: Descriptor handle.
854 * This routine prepares a rxd and posts
856 void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring
*ring
, void *rxdh
)
858 struct __vxge_hw_channel
*channel
;
860 channel
= &ring
->channel
;
862 vxge_hw_channel_dtr_post(channel
, rxdh
);
866 * vxge_hw_ring_rxd_post_post - Process rxd after post.
867 * @ring: Handle to the ring object used for receive
868 * @rxdh: Descriptor handle.
870 * Processes rxd after post
872 void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring
*ring
, void *rxdh
)
874 struct vxge_hw_ring_rxd_1
*rxdp
= (struct vxge_hw_ring_rxd_1
*)rxdh
;
875 struct __vxge_hw_channel
*channel
;
877 channel
= &ring
->channel
;
879 rxdp
->control_0
|= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER
;
881 if (ring
->stats
->common_stats
.usage_cnt
> 0)
882 ring
->stats
->common_stats
.usage_cnt
--;
886 * vxge_hw_ring_rxd_post - Post descriptor on the ring.
887 * @ring: Handle to the ring object used for receive
888 * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
890 * Post descriptor on the ring.
891 * Prior to posting the descriptor should be filled in accordance with
892 * Host/Titan interface specification for a given service (LL, etc.).
895 void vxge_hw_ring_rxd_post(struct __vxge_hw_ring
*ring
, void *rxdh
)
897 struct vxge_hw_ring_rxd_1
*rxdp
= (struct vxge_hw_ring_rxd_1
*)rxdh
;
898 struct __vxge_hw_channel
*channel
;
900 channel
= &ring
->channel
;
903 rxdp
->control_0
|= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER
;
905 vxge_hw_channel_dtr_post(channel
, rxdh
);
907 if (ring
->stats
->common_stats
.usage_cnt
> 0)
908 ring
->stats
->common_stats
.usage_cnt
--;
912 * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
913 * @ring: Handle to the ring object used for receive
914 * @rxdh: Descriptor handle.
916 * Processes rxd after post with memory barrier.
918 void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring
*ring
, void *rxdh
)
920 struct __vxge_hw_channel
*channel
;
922 channel
= &ring
->channel
;
925 vxge_hw_ring_rxd_post_post(ring
, rxdh
);
929 * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
930 * @ring: Handle to the ring object used for receive
931 * @rxdh: Descriptor handle. Returned by HW.
932 * @t_code: Transfer code, as per Titan User Guide,
933 * Receive Descriptor Format. Returned by HW.
935 * Retrieve the _next_ completed descriptor.
936 * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
937 * driver of new completed descriptors. After that
938 * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
939 * completions (the very first completion is passed by HW via
940 * vxge_hw_ring_callback_f).
942 * Implementation-wise, the driver is free to call
943 * vxge_hw_ring_rxd_next_completed either immediately from inside the
944 * ring callback, or in a deferred fashion and separate (from HW)
947 * Non-zero @t_code means failure to fill-in receive buffer(s)
949 * For instance, parity error detected during the data transfer.
950 * In this case Titan will complete the descriptor and indicate
951 * for the host that the received data is not to be used.
952 * For details please refer to Titan User Guide.
954 * Returns: VXGE_HW_OK - success.
955 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
956 * are currently available for processing.
958 * See also: vxge_hw_ring_callback_f{},
959 * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
961 enum vxge_hw_status
vxge_hw_ring_rxd_next_completed(
962 struct __vxge_hw_ring
*ring
, void **rxdh
, u8
*t_code
)
964 struct __vxge_hw_channel
*channel
;
965 struct vxge_hw_ring_rxd_1
*rxdp
;
966 enum vxge_hw_status status
= VXGE_HW_OK
;
968 channel
= &ring
->channel
;
970 vxge_hw_channel_dtr_try_complete(channel
, rxdh
);
972 rxdp
= (struct vxge_hw_ring_rxd_1
*)*rxdh
;
974 status
= VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS
;
978 /* check whether it is not the end */
979 if (!(rxdp
->control_0
& VXGE_HW_RING_RXD_LIST_OWN_ADAPTER
)) {
981 vxge_assert(((struct vxge_hw_ring_rxd_1
*)rxdp
)->host_control
!=
985 vxge_hw_channel_dtr_complete(channel
);
987 *t_code
= (u8
)VXGE_HW_RING_RXD_T_CODE_GET(rxdp
->control_0
);
989 vxge_assert(*t_code
!= VXGE_HW_RING_RXD_T_CODE_UNUSED
);
991 ring
->stats
->common_stats
.usage_cnt
++;
992 if (ring
->stats
->common_stats
.usage_max
<
993 ring
->stats
->common_stats
.usage_cnt
)
994 ring
->stats
->common_stats
.usage_max
=
995 ring
->stats
->common_stats
.usage_cnt
;
1001 /* reset it. since we don't want to return
1002 * garbage to the driver */
1004 status
= VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS
;
1010 * vxge_hw_ring_handle_tcode - Handle transfer code.
1011 * @ring: Handle to the ring object used for receive
1012 * @rxdh: Descriptor handle.
1013 * @t_code: One of the enumerated (and documented in the Titan user guide)
1016 * Handle descriptor's transfer code. The latter comes with each completed
1019 * Returns: one of the enum vxge_hw_status{} enumerated types.
1020 * VXGE_HW_OK - for success.
1021 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1023 enum vxge_hw_status
vxge_hw_ring_handle_tcode(
1024 struct __vxge_hw_ring
*ring
, void *rxdh
, u8 t_code
)
1026 struct __vxge_hw_channel
*channel
;
1027 enum vxge_hw_status status
= VXGE_HW_OK
;
1029 channel
= &ring
->channel
;
1031 /* If the t_code is not supported and if the
1032 * t_code is other than 0x5 (unparseable packet
1033 * such as unknown UPV6 header), Drop it !!!
1036 if (t_code
== 0 || t_code
== 5) {
1037 status
= VXGE_HW_OK
;
1042 status
= VXGE_HW_ERR_INVALID_TCODE
;
1046 ring
->stats
->rxd_t_code_err_cnt
[t_code
]++;
1052 * __vxge_hw_non_offload_db_post - Post non offload doorbell
1055 * @txdl_ptr: The starting location of the TxDL in host memory
1056 * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1057 * @no_snoop: No snoop flags
1059 * This function posts a non-offload doorbell to doorbell FIFO
1062 static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo
*fifo
,
1063 u64 txdl_ptr
, u32 num_txds
, u32 no_snoop
)
1065 struct __vxge_hw_channel
*channel
;
1067 channel
= &fifo
->channel
;
1069 writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW
) |
1070 VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds
) |
1071 VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop
),
1072 &fifo
->nofl_db
->control_0
);
1076 writeq(txdl_ptr
, &fifo
->nofl_db
->txdl_ptr
);
1082 * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1084 * @fifoh: Handle to the fifo object used for non offload send
1086 u32
vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo
*fifoh
)
1088 return vxge_hw_channel_dtr_count(&fifoh
->channel
);
1092 * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1093 * @fifoh: Handle to the fifo object used for non offload send
1094 * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1095 * with a valid handle.
1096 * @txdl_priv: Buffer to return the pointer to per txdl space
1098 * Reserve a single TxDL (that is, fifo descriptor)
1099 * for the subsequent filling-in by driver)
1100 * and posting on the corresponding channel (@channelh)
1101 * via vxge_hw_fifo_txdl_post().
1103 * Note: it is the responsibility of driver to reserve multiple descriptors
1104 * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1105 * carries up to configured number (fifo.max_frags) of contiguous buffers.
1107 * Returns: VXGE_HW_OK - success;
1108 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1111 enum vxge_hw_status
vxge_hw_fifo_txdl_reserve(
1112 struct __vxge_hw_fifo
*fifo
,
1113 void **txdlh
, void **txdl_priv
)
1115 struct __vxge_hw_channel
*channel
;
1116 enum vxge_hw_status status
;
1119 channel
= &fifo
->channel
;
1121 status
= vxge_hw_channel_dtr_alloc(channel
, txdlh
);
1123 if (status
== VXGE_HW_OK
) {
1124 struct vxge_hw_fifo_txd
*txdp
=
1125 (struct vxge_hw_fifo_txd
*)*txdlh
;
1126 struct __vxge_hw_fifo_txdl_priv
*priv
;
1128 priv
= __vxge_hw_fifo_txdl_priv(fifo
, txdp
);
1130 /* reset the TxDL's private */
1131 priv
->align_dma_offset
= 0;
1132 priv
->align_vaddr_start
= priv
->align_vaddr
;
1133 priv
->align_used_frags
= 0;
1135 priv
->alloc_frags
= fifo
->config
->max_frags
;
1136 priv
->next_txdl_priv
= NULL
;
1138 *txdl_priv
= (void *)(size_t)txdp
->host_control
;
1140 for (i
= 0; i
< fifo
->config
->max_frags
; i
++) {
1141 txdp
= ((struct vxge_hw_fifo_txd
*)*txdlh
) + i
;
1142 txdp
->control_0
= txdp
->control_1
= 0;
1150 * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1152 * @fifo: Handle to the fifo object used for non offload send
1153 * @txdlh: Descriptor handle.
1154 * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1156 * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1157 * @size: Size of the data buffer (in bytes).
1159 * This API is part of the preparation of the transmit descriptor for posting
1160 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1161 * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1162 * All three APIs fill in the fields of the fifo descriptor,
1163 * in accordance with the Titan specification.
1166 void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo
*fifo
,
1167 void *txdlh
, u32 frag_idx
,
1168 dma_addr_t dma_pointer
, u32 size
)
1170 struct __vxge_hw_fifo_txdl_priv
*txdl_priv
;
1171 struct vxge_hw_fifo_txd
*txdp
, *txdp_last
;
1172 struct __vxge_hw_channel
*channel
;
1174 channel
= &fifo
->channel
;
1176 txdl_priv
= __vxge_hw_fifo_txdl_priv(fifo
, txdlh
);
1177 txdp
= (struct vxge_hw_fifo_txd
*)txdlh
+ txdl_priv
->frags
;
1180 txdp
->control_0
= txdp
->control_1
= 0;
1182 txdp
->control_0
|= VXGE_HW_FIFO_TXD_GATHER_CODE(
1183 VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST
);
1184 txdp
->control_1
|= fifo
->interrupt_type
;
1185 txdp
->control_1
|= VXGE_HW_FIFO_TXD_INT_NUMBER(
1187 if (txdl_priv
->frags
) {
1188 txdp_last
= (struct vxge_hw_fifo_txd
*)txdlh
+
1189 (txdl_priv
->frags
- 1);
1190 txdp_last
->control_0
|= VXGE_HW_FIFO_TXD_GATHER_CODE(
1191 VXGE_HW_FIFO_TXD_GATHER_CODE_LAST
);
1195 vxge_assert(frag_idx
< txdl_priv
->alloc_frags
);
1197 txdp
->buffer_pointer
= (u64
)dma_pointer
;
1198 txdp
->control_0
|= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size
);
1199 fifo
->stats
->total_buffers
++;
1204 * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1205 * @fifo: Handle to the fifo object used for non offload send
1206 * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1207 * @frags: Number of contiguous buffers that are part of a single
1208 * transmit operation.
1210 * Post descriptor on the 'fifo' type channel for transmission.
1211 * Prior to posting the descriptor should be filled in accordance with
1212 * Host/Titan interface specification for a given service (LL, etc.).
1215 void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo
*fifo
, void *txdlh
)
1217 struct __vxge_hw_fifo_txdl_priv
*txdl_priv
;
1218 struct vxge_hw_fifo_txd
*txdp_last
;
1219 struct vxge_hw_fifo_txd
*txdp_first
;
1220 struct __vxge_hw_channel
*channel
;
1222 channel
= &fifo
->channel
;
1224 txdl_priv
= __vxge_hw_fifo_txdl_priv(fifo
, txdlh
);
1225 txdp_first
= (struct vxge_hw_fifo_txd
*)txdlh
;
1227 txdp_last
= (struct vxge_hw_fifo_txd
*)txdlh
+ (txdl_priv
->frags
- 1);
1228 txdp_last
->control_0
|=
1229 VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST
);
1230 txdp_first
->control_0
|= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER
;
1232 vxge_hw_channel_dtr_post(&fifo
->channel
, txdlh
);
1234 __vxge_hw_non_offload_db_post(fifo
,
1235 (u64
)(size_t)txdl_priv
->dma_addr
,
1236 txdl_priv
->frags
- 1,
1237 fifo
->no_snoop_bits
);
1239 fifo
->stats
->total_posts
++;
1240 fifo
->stats
->common_stats
.usage_cnt
++;
1241 if (fifo
->stats
->common_stats
.usage_max
<
1242 fifo
->stats
->common_stats
.usage_cnt
)
1243 fifo
->stats
->common_stats
.usage_max
=
1244 fifo
->stats
->common_stats
.usage_cnt
;
1248 * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1249 * @fifo: Handle to the fifo object used for non offload send
1250 * @txdlh: Descriptor handle. Returned by HW.
1251 * @t_code: Transfer code, as per Titan User Guide,
1252 * Transmit Descriptor Format.
1255 * Retrieve the _next_ completed descriptor.
1256 * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1257 * driver of new completed descriptors. After that
1258 * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1259 * completions (the very first completion is passed by HW via
1260 * vxge_hw_channel_callback_f).
1262 * Implementation-wise, the driver is free to call
1263 * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1264 * channel callback, or in a deferred fashion and separate (from HW)
1267 * Non-zero @t_code means failure to process the descriptor.
1268 * The failure could happen, for instance, when the link is
1269 * down, in which case Titan completes the descriptor because it
1270 * is not able to send the data out.
1272 * For details please refer to Titan User Guide.
1274 * Returns: VXGE_HW_OK - success.
1275 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1276 * are currently available for processing.
1279 enum vxge_hw_status
vxge_hw_fifo_txdl_next_completed(
1280 struct __vxge_hw_fifo
*fifo
, void **txdlh
,
1281 enum vxge_hw_fifo_tcode
*t_code
)
1283 struct __vxge_hw_channel
*channel
;
1284 struct vxge_hw_fifo_txd
*txdp
;
1285 enum vxge_hw_status status
= VXGE_HW_OK
;
1287 channel
= &fifo
->channel
;
1289 vxge_hw_channel_dtr_try_complete(channel
, txdlh
);
1291 txdp
= (struct vxge_hw_fifo_txd
*)*txdlh
;
1293 status
= VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS
;
1297 /* check whether host owns it */
1298 if (!(txdp
->control_0
& VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER
)) {
1300 vxge_assert(txdp
->host_control
!= 0);
1302 vxge_hw_channel_dtr_complete(channel
);
1304 *t_code
= (u8
)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp
->control_0
);
1306 if (fifo
->stats
->common_stats
.usage_cnt
> 0)
1307 fifo
->stats
->common_stats
.usage_cnt
--;
1309 status
= VXGE_HW_OK
;
1313 /* no more completions */
1315 status
= VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS
;
1321 * vxge_hw_fifo_handle_tcode - Handle transfer code.
1322 * @fifo: Handle to the fifo object used for non offload send
1323 * @txdlh: Descriptor handle.
1324 * @t_code: One of the enumerated (and documented in the Titan user guide)
1327 * Handle descriptor's transfer code. The latter comes with each completed
1330 * Returns: one of the enum vxge_hw_status{} enumerated types.
1331 * VXGE_HW_OK - for success.
1332 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1334 enum vxge_hw_status
vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo
*fifo
,
1336 enum vxge_hw_fifo_tcode t_code
)
1338 struct __vxge_hw_channel
*channel
;
1340 enum vxge_hw_status status
= VXGE_HW_OK
;
1341 channel
= &fifo
->channel
;
1343 if (((t_code
& 0x7) < 0) || ((t_code
& 0x7) > 0x4)) {
1344 status
= VXGE_HW_ERR_INVALID_TCODE
;
1348 fifo
->stats
->txd_t_code_err_cnt
[t_code
]++;
1354 * vxge_hw_fifo_txdl_free - Free descriptor.
1355 * @fifo: Handle to the fifo object used for non offload send
1356 * @txdlh: Descriptor handle.
1358 * Free the reserved descriptor. This operation is "symmetrical" to
1359 * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1362 * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1365 * - reserved (vxge_hw_fifo_txdl_reserve);
1367 * - posted (vxge_hw_fifo_txdl_post);
1369 * - completed (vxge_hw_fifo_txdl_next_completed);
1371 * - and recycled again (vxge_hw_fifo_txdl_free).
1373 * For alternative state transitions and more details please refer to
1377 void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo
*fifo
, void *txdlh
)
1379 struct __vxge_hw_fifo_txdl_priv
*txdl_priv
;
1381 struct __vxge_hw_channel
*channel
;
1383 channel
= &fifo
->channel
;
1385 txdl_priv
= __vxge_hw_fifo_txdl_priv(fifo
,
1386 (struct vxge_hw_fifo_txd
*)txdlh
);
1388 max_frags
= fifo
->config
->max_frags
;
1390 vxge_hw_channel_dtr_free(channel
, txdlh
);
1394 * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1395 * to MAC address table.
1396 * @vp: Vpath handle.
1397 * @macaddr: MAC address to be added for this vpath into the list
1398 * @macaddr_mask: MAC address mask for macaddr
1399 * @duplicate_mode: Duplicate MAC address add mode. Please see
1400 * enum vxge_hw_vpath_mac_addr_add_mode{}
1402 * Adds the given mac address and mac address mask into the list for this
1404 * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1405 * vxge_hw_vpath_mac_addr_get_next
1409 vxge_hw_vpath_mac_addr_add(
1410 struct __vxge_hw_vpath_handle
*vp
,
1411 u8 (macaddr
)[ETH_ALEN
],
1412 u8 (macaddr_mask
)[ETH_ALEN
],
1413 enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode
)
1418 enum vxge_hw_status status
= VXGE_HW_OK
;
1421 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1425 for (i
= 0; i
< ETH_ALEN
; i
++) {
1427 data1
|= (u8
)macaddr
[i
];
1430 data2
|= (u8
)macaddr_mask
[i
];
1433 switch (duplicate_mode
) {
1434 case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE
:
1437 case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE
:
1440 case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE
:
1448 status
= __vxge_hw_vpath_rts_table_set(vp
,
1449 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY
,
1450 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
,
1452 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1
),
1453 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2
)|
1454 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i
));
1460 * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1461 * from MAC address table.
1462 * @vp: Vpath handle.
1463 * @macaddr: First MAC address entry for this vpath in the list
1464 * @macaddr_mask: MAC address mask for macaddr
1466 * Returns the first mac address and mac address mask in the list for this
1468 * see also: vxge_hw_vpath_mac_addr_get_next
1472 vxge_hw_vpath_mac_addr_get(
1473 struct __vxge_hw_vpath_handle
*vp
,
1474 u8 (macaddr
)[ETH_ALEN
],
1475 u8 (macaddr_mask
)[ETH_ALEN
])
1480 enum vxge_hw_status status
= VXGE_HW_OK
;
1483 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1487 status
= __vxge_hw_vpath_rts_table_get(vp
,
1488 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY
,
1489 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
,
1492 if (status
!= VXGE_HW_OK
)
1495 data1
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1
);
1497 data2
= VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2
);
1499 for (i
= ETH_ALEN
; i
> 0; i
--) {
1500 macaddr
[i
-1] = (u8
)(data1
& 0xFF);
1503 macaddr_mask
[i
-1] = (u8
)(data2
& 0xFF);
1511 * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1513 * from MAC address table.
1514 * @vp: Vpath handle.
1515 * @macaddr: Next MAC address entry for this vpath in the list
1516 * @macaddr_mask: MAC address mask for macaddr
1518 * Returns the next mac address and mac address mask in the list for this
1520 * see also: vxge_hw_vpath_mac_addr_get
1524 vxge_hw_vpath_mac_addr_get_next(
1525 struct __vxge_hw_vpath_handle
*vp
,
1526 u8 (macaddr
)[ETH_ALEN
],
1527 u8 (macaddr_mask
)[ETH_ALEN
])
1532 enum vxge_hw_status status
= VXGE_HW_OK
;
1535 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1539 status
= __vxge_hw_vpath_rts_table_get(vp
,
1540 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY
,
1541 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
,
1544 if (status
!= VXGE_HW_OK
)
1547 data1
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1
);
1549 data2
= VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2
);
1551 for (i
= ETH_ALEN
; i
> 0; i
--) {
1552 macaddr
[i
-1] = (u8
)(data1
& 0xFF);
1555 macaddr_mask
[i
-1] = (u8
)(data2
& 0xFF);
1564 * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1565 * to MAC address table.
1566 * @vp: Vpath handle.
1567 * @macaddr: MAC address to be added for this vpath into the list
1568 * @macaddr_mask: MAC address mask for macaddr
1570 * Delete the given mac address and mac address mask into the list for this
1572 * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1573 * vxge_hw_vpath_mac_addr_get_next
1577 vxge_hw_vpath_mac_addr_delete(
1578 struct __vxge_hw_vpath_handle
*vp
,
1579 u8 (macaddr
)[ETH_ALEN
],
1580 u8 (macaddr_mask
)[ETH_ALEN
])
1585 enum vxge_hw_status status
= VXGE_HW_OK
;
1588 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1592 for (i
= 0; i
< ETH_ALEN
; i
++) {
1594 data1
|= (u8
)macaddr
[i
];
1597 data2
|= (u8
)macaddr_mask
[i
];
1600 status
= __vxge_hw_vpath_rts_table_set(vp
,
1601 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY
,
1602 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
,
1604 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1
),
1605 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2
));
1611 * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1613 * @vp: Vpath handle.
1614 * @vid: vlan id to be added for this vpath into the list
1616 * Adds the given vlan id into the list for this vpath.
1617 * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and
1618 * vxge_hw_vpath_vid_get_next
1622 vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle
*vp
, u64 vid
)
1624 enum vxge_hw_status status
= VXGE_HW_OK
;
1627 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1631 status
= __vxge_hw_vpath_rts_table_set(vp
,
1632 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY
,
1633 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID
,
1634 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid
), 0);
1640 * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath
1641 * from vlan id table.
1642 * @vp: Vpath handle.
1643 * @vid: Buffer to return vlan id
1645 * Returns the first vlan id in the list for this vpath.
1646 * see also: vxge_hw_vpath_vid_get_next
1650 vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle
*vp
, u64
*vid
)
1653 enum vxge_hw_status status
= VXGE_HW_OK
;
1656 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1660 status
= __vxge_hw_vpath_rts_table_get(vp
,
1661 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY
,
1662 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID
,
1665 *vid
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid
);
1671 * vxge_hw_vpath_vid_get_next - Get the next vid entry for this vpath
1672 * from vlan id table.
1673 * @vp: Vpath handle.
1674 * @vid: Buffer to return vlan id
1676 * Returns the next vlan id in the list for this vpath.
1677 * see also: vxge_hw_vpath_vid_get
1681 vxge_hw_vpath_vid_get_next(struct __vxge_hw_vpath_handle
*vp
, u64
*vid
)
1684 enum vxge_hw_status status
= VXGE_HW_OK
;
1687 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1691 status
= __vxge_hw_vpath_rts_table_get(vp
,
1692 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY
,
1693 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID
,
1696 *vid
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid
);
1702 * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
1704 * @vp: Vpath handle.
1705 * @vid: vlan id to be added for this vpath into the list
1707 * Adds the given vlan id into the list for this vpath.
1708 * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and
1709 * vxge_hw_vpath_vid_get_next
1713 vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle
*vp
, u64 vid
)
1715 enum vxge_hw_status status
= VXGE_HW_OK
;
1718 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1722 status
= __vxge_hw_vpath_rts_table_set(vp
,
1723 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY
,
1724 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID
,
1725 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid
), 0);
1731 * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
1732 * @vp: Vpath handle.
1734 * Enable promiscuous mode of Titan-e operation.
1736 * See also: vxge_hw_vpath_promisc_disable().
1738 enum vxge_hw_status
vxge_hw_vpath_promisc_enable(
1739 struct __vxge_hw_vpath_handle
*vp
)
1742 struct __vxge_hw_virtualpath
*vpath
;
1743 enum vxge_hw_status status
= VXGE_HW_OK
;
1745 if ((vp
== NULL
) || (vp
->vpath
->ringh
== NULL
)) {
1746 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1752 /* Enable promiscous mode for function 0 only */
1753 if (!(vpath
->hldev
->access_rights
&
1754 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
))
1757 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
1759 if (!(val64
& VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN
)) {
1761 val64
|= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN
|
1762 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
|
1763 VXGE_HW_RXMAC_VCFG0_BCAST_EN
|
1764 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN
;
1766 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
1773 * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
1774 * @vp: Vpath handle.
1776 * Disable promiscuous mode of Titan-e operation.
1778 * See also: vxge_hw_vpath_promisc_enable().
1780 enum vxge_hw_status
vxge_hw_vpath_promisc_disable(
1781 struct __vxge_hw_vpath_handle
*vp
)
1784 struct __vxge_hw_virtualpath
*vpath
;
1785 enum vxge_hw_status status
= VXGE_HW_OK
;
1787 if ((vp
== NULL
) || (vp
->vpath
->ringh
== NULL
)) {
1788 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1794 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
1796 if (val64
& VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN
) {
1798 val64
&= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN
|
1799 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
|
1800 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN
);
1802 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
1809 * vxge_hw_vpath_bcast_enable - Enable broadcast
1810 * @vp: Vpath handle.
1812 * Enable receiving broadcasts.
1814 enum vxge_hw_status
vxge_hw_vpath_bcast_enable(
1815 struct __vxge_hw_vpath_handle
*vp
)
1818 struct __vxge_hw_virtualpath
*vpath
;
1819 enum vxge_hw_status status
= VXGE_HW_OK
;
1821 if ((vp
== NULL
) || (vp
->vpath
->ringh
== NULL
)) {
1822 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1828 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
1830 if (!(val64
& VXGE_HW_RXMAC_VCFG0_BCAST_EN
)) {
1831 val64
|= VXGE_HW_RXMAC_VCFG0_BCAST_EN
;
1832 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
1839 * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
1840 * @vp: Vpath handle.
1842 * Enable Titan-e multicast addresses.
1843 * Returns: VXGE_HW_OK on success.
1846 enum vxge_hw_status
vxge_hw_vpath_mcast_enable(
1847 struct __vxge_hw_vpath_handle
*vp
)
1850 struct __vxge_hw_virtualpath
*vpath
;
1851 enum vxge_hw_status status
= VXGE_HW_OK
;
1853 if ((vp
== NULL
) || (vp
->vpath
->ringh
== NULL
)) {
1854 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1860 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
1862 if (!(val64
& VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
)) {
1863 val64
|= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
;
1864 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
1871 * vxge_hw_vpath_mcast_disable - Disable multicast addresses.
1872 * @vp: Vpath handle.
1874 * Disable Titan-e multicast addresses.
1875 * Returns: VXGE_HW_OK - success.
1876 * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
1880 vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle
*vp
)
1883 struct __vxge_hw_virtualpath
*vpath
;
1884 enum vxge_hw_status status
= VXGE_HW_OK
;
1886 if ((vp
== NULL
) || (vp
->vpath
->ringh
== NULL
)) {
1887 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1893 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
1895 if (val64
& VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
) {
1896 val64
&= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
;
1897 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
1904 * __vxge_hw_vpath_alarm_process - Process Alarms.
1905 * @vpath: Virtual Path.
1906 * @skip_alarms: Do not clear the alarms
1908 * Process vpath alarms.
1911 enum vxge_hw_status
__vxge_hw_vpath_alarm_process(
1912 struct __vxge_hw_virtualpath
*vpath
,
1918 struct __vxge_hw_device
*hldev
= NULL
;
1919 enum vxge_hw_event alarm_event
= VXGE_HW_EVENT_UNKNOWN
;
1921 struct vxge_hw_vpath_stats_sw_info
*sw_stats
;
1922 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
1924 if (vpath
== NULL
) {
1925 alarm_event
= VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN
,
1930 hldev
= vpath
->hldev
;
1931 vp_reg
= vpath
->vp_reg
;
1932 alarm_status
= readq(&vp_reg
->vpath_general_int_status
);
1934 if (alarm_status
== VXGE_HW_ALL_FOXES
) {
1935 alarm_event
= VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE
,
1940 sw_stats
= vpath
->sw_stats
;
1942 if (alarm_status
& ~(
1943 VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT
|
1944 VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT
|
1945 VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT
|
1946 VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT
)) {
1947 sw_stats
->error_stats
.unknown_alarms
++;
1949 alarm_event
= VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN
,
1954 if (alarm_status
& VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT
) {
1956 val64
= readq(&vp_reg
->xgmac_vp_int_status
);
1959 VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT
) {
1961 val64
= readq(&vp_reg
->asic_ntwk_vp_err_reg
);
1964 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT
) &&
1966 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK
))) ||
1968 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR
)
1970 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR
)
1972 sw_stats
->error_stats
.network_sustained_fault
++;
1975 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT
,
1976 &vp_reg
->asic_ntwk_vp_err_mask
);
1978 __vxge_hw_device_handle_link_down_ind(hldev
);
1979 alarm_event
= VXGE_HW_SET_LEVEL(
1980 VXGE_HW_EVENT_LINK_DOWN
, alarm_event
);
1984 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK
) &&
1986 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT
))) ||
1988 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR
)
1990 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR
)
1993 sw_stats
->error_stats
.network_sustained_ok
++;
1996 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK
,
1997 &vp_reg
->asic_ntwk_vp_err_mask
);
1999 __vxge_hw_device_handle_link_up_ind(hldev
);
2000 alarm_event
= VXGE_HW_SET_LEVEL(
2001 VXGE_HW_EVENT_LINK_UP
, alarm_event
);
2004 writeq(VXGE_HW_INTR_MASK_ALL
,
2005 &vp_reg
->asic_ntwk_vp_err_reg
);
2007 alarm_event
= VXGE_HW_SET_LEVEL(
2008 VXGE_HW_EVENT_ALARM_CLEARED
, alarm_event
);
2015 if (alarm_status
& VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT
) {
2017 pic_status
= readq(&vp_reg
->vpath_ppif_int_status
);
2020 VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT
) {
2022 val64
= readq(&vp_reg
->general_errors_reg
);
2023 mask64
= readq(&vp_reg
->general_errors_mask
);
2026 VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET
) &
2028 sw_stats
->error_stats
.ini_serr_det
++;
2030 alarm_event
= VXGE_HW_SET_LEVEL(
2031 VXGE_HW_EVENT_SERR
, alarm_event
);
2035 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW
) &
2037 sw_stats
->error_stats
.dblgen_fifo0_overflow
++;
2039 alarm_event
= VXGE_HW_SET_LEVEL(
2040 VXGE_HW_EVENT_FIFO_ERR
, alarm_event
);
2044 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR
) &
2046 sw_stats
->error_stats
.statsb_pif_chain_error
++;
2049 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ
) &
2051 sw_stats
->error_stats
.statsb_drop_timeout
++;
2054 VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS
) &
2056 sw_stats
->error_stats
.target_illegal_access
++;
2059 writeq(VXGE_HW_INTR_MASK_ALL
,
2060 &vp_reg
->general_errors_reg
);
2061 alarm_event
= VXGE_HW_SET_LEVEL(
2062 VXGE_HW_EVENT_ALARM_CLEARED
,
2068 VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT
) {
2070 val64
= readq(&vp_reg
->kdfcctl_errors_reg
);
2071 mask64
= readq(&vp_reg
->kdfcctl_errors_mask
);
2074 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR
) &
2076 sw_stats
->error_stats
.kdfcctl_fifo0_overwrite
++;
2078 alarm_event
= VXGE_HW_SET_LEVEL(
2079 VXGE_HW_EVENT_FIFO_ERR
,
2084 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON
) &
2086 sw_stats
->error_stats
.kdfcctl_fifo0_poison
++;
2088 alarm_event
= VXGE_HW_SET_LEVEL(
2089 VXGE_HW_EVENT_FIFO_ERR
,
2094 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR
) &
2096 sw_stats
->error_stats
.kdfcctl_fifo0_dma_error
++;
2098 alarm_event
= VXGE_HW_SET_LEVEL(
2099 VXGE_HW_EVENT_FIFO_ERR
,
2104 writeq(VXGE_HW_INTR_MASK_ALL
,
2105 &vp_reg
->kdfcctl_errors_reg
);
2106 alarm_event
= VXGE_HW_SET_LEVEL(
2107 VXGE_HW_EVENT_ALARM_CLEARED
,
2114 if (alarm_status
& VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT
) {
2116 val64
= readq(&vp_reg
->wrdma_alarm_status
);
2118 if (val64
& VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT
) {
2120 val64
= readq(&vp_reg
->prc_alarm_reg
);
2121 mask64
= readq(&vp_reg
->prc_alarm_mask
);
2123 if ((val64
& VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP
)&
2125 sw_stats
->error_stats
.prc_ring_bumps
++;
2127 if ((val64
& VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR
) &
2129 sw_stats
->error_stats
.prc_rxdcm_sc_err
++;
2131 alarm_event
= VXGE_HW_SET_LEVEL(
2132 VXGE_HW_EVENT_VPATH_ERR
,
2136 if ((val64
& VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT
)
2138 sw_stats
->error_stats
.prc_rxdcm_sc_abort
++;
2140 alarm_event
= VXGE_HW_SET_LEVEL(
2141 VXGE_HW_EVENT_VPATH_ERR
,
2145 if ((val64
& VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR
)
2147 sw_stats
->error_stats
.prc_quanta_size_err
++;
2149 alarm_event
= VXGE_HW_SET_LEVEL(
2150 VXGE_HW_EVENT_VPATH_ERR
,
2155 writeq(VXGE_HW_INTR_MASK_ALL
,
2156 &vp_reg
->prc_alarm_reg
);
2157 alarm_event
= VXGE_HW_SET_LEVEL(
2158 VXGE_HW_EVENT_ALARM_CLEARED
,
2164 hldev
->stats
.sw_dev_err_stats
.vpath_alarms
++;
2166 if ((alarm_event
== VXGE_HW_EVENT_ALARM_CLEARED
) ||
2167 (alarm_event
== VXGE_HW_EVENT_UNKNOWN
))
2170 __vxge_hw_device_handle_error(hldev
, vpath
->vp_id
, alarm_event
);
2172 if (alarm_event
== VXGE_HW_EVENT_SERR
)
2173 return VXGE_HW_ERR_CRITICAL
;
2175 return (alarm_event
== VXGE_HW_EVENT_SLOT_FREEZE
) ?
2176 VXGE_HW_ERR_SLOT_FREEZE
:
2177 (alarm_event
== VXGE_HW_EVENT_FIFO_ERR
) ? VXGE_HW_ERR_FIFO
:
2182 * vxge_hw_vpath_alarm_process - Process Alarms.
2183 * @vpath: Virtual Path.
2184 * @skip_alarms: Do not clear the alarms
2186 * Process vpath alarms.
2189 enum vxge_hw_status
vxge_hw_vpath_alarm_process(
2190 struct __vxge_hw_vpath_handle
*vp
,
2193 enum vxge_hw_status status
= VXGE_HW_OK
;
2196 status
= VXGE_HW_ERR_INVALID_HANDLE
;
2200 status
= __vxge_hw_vpath_alarm_process(vp
->vpath
, skip_alarms
);
2206 * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2208 * @vp: Virtual Path handle.
2209 * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2210 * interrupts(Can be repeated). If fifo or ring are not enabled
2211 * the MSIX vector for that should be set to 0
2212 * @alarm_msix_id: MSIX vector for alarm.
2214 * This API will associate a given MSIX vector numbers with the four TIM
2215 * interrupts and alarm interrupt.
2218 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle
*vp
, int *tim_msix_id
,
2222 struct __vxge_hw_virtualpath
*vpath
= vp
->vpath
;
2223 struct vxge_hw_vpath_reg __iomem
*vp_reg
= vpath
->vp_reg
;
2224 u32 first_vp_id
= vpath
->hldev
->first_vp_id
;
2226 val64
= VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2227 (first_vp_id
* 4) + tim_msix_id
[0]) |
2228 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2229 (first_vp_id
* 4) + tim_msix_id
[1]) |
2230 VXGE_HW_INTERRUPT_CFG0_GROUP2_MSIX_FOR_TXTI(
2231 (first_vp_id
* 4) + tim_msix_id
[2]);
2233 val64
|= VXGE_HW_INTERRUPT_CFG0_GROUP3_MSIX_FOR_TXTI(
2234 (first_vp_id
* 4) + tim_msix_id
[3]);
2236 writeq(val64
, &vp_reg
->interrupt_cfg0
);
2238 writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2239 (first_vp_id
* 4) + alarm_msix_id
),
2240 &vp_reg
->interrupt_cfg2
);
2242 if (vpath
->hldev
->config
.intr_mode
==
2243 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT
) {
2244 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(
2245 VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN
,
2246 0, 32), &vp_reg
->one_shot_vect1_en
);
2249 if (vpath
->hldev
->config
.intr_mode
==
2250 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT
) {
2251 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(
2252 VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN
,
2253 0, 32), &vp_reg
->one_shot_vect2_en
);
2255 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(
2256 VXGE_HW_ONE_SHOT_VECT3_EN_ONE_SHOT_VECT3_EN
,
2257 0, 32), &vp_reg
->one_shot_vect3_en
);
2264 * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2265 * @vp: Virtual Path handle.
2268 * The function masks the msix interrupt for the given msix_id
2271 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2276 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle
*vp
, int msix_id
)
2278 struct __vxge_hw_device
*hldev
= vp
->vpath
->hldev
;
2279 __vxge_hw_pio_mem_write32_upper(
2280 (u32
) vxge_bVALn(vxge_mBIT(hldev
->first_vp_id
+
2281 (msix_id
/ 4)), 0, 32),
2282 &hldev
->common_reg
->set_msix_mask_vect
[msix_id
% 4]);
2288 * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2289 * @vp: Virtual Path handle.
2292 * The function clears the msix interrupt for the given msix_id
2295 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2300 vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle
*vp
, int msix_id
)
2302 struct __vxge_hw_device
*hldev
= vp
->vpath
->hldev
;
2303 if (hldev
->config
.intr_mode
==
2304 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT
) {
2305 __vxge_hw_pio_mem_write32_upper(
2306 (u32
)vxge_bVALn(vxge_mBIT(hldev
->first_vp_id
+
2307 (msix_id
/4)), 0, 32),
2308 &hldev
->common_reg
->
2309 clr_msix_one_shot_vec
[msix_id
%4]);
2311 __vxge_hw_pio_mem_write32_upper(
2312 (u32
)vxge_bVALn(vxge_mBIT(hldev
->first_vp_id
+
2313 (msix_id
/4)), 0, 32),
2314 &hldev
->common_reg
->
2315 clear_msix_mask_vect
[msix_id
%4]);
2322 * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2323 * @vp: Virtual Path handle.
2326 * The function unmasks the msix interrupt for the given msix_id
2329 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2334 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle
*vp
, int msix_id
)
2336 struct __vxge_hw_device
*hldev
= vp
->vpath
->hldev
;
2337 __vxge_hw_pio_mem_write32_upper(
2338 (u32
)vxge_bVALn(vxge_mBIT(hldev
->first_vp_id
+
2339 (msix_id
/4)), 0, 32),
2340 &hldev
->common_reg
->clear_msix_mask_vect
[msix_id
%4]);
2346 * vxge_hw_vpath_msix_mask_all - Mask all MSIX vectors for the vpath.
2347 * @vp: Virtual Path handle.
2349 * The function masks all msix interrupt for the given vpath
2353 vxge_hw_vpath_msix_mask_all(struct __vxge_hw_vpath_handle
*vp
)
2356 __vxge_hw_pio_mem_write32_upper(
2357 (u32
)vxge_bVALn(vxge_mBIT(vp
->vpath
->vp_id
), 0, 32),
2358 &vp
->vpath
->hldev
->common_reg
->set_msix_mask_all_vect
);
2364 * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2365 * @vp: Virtual Path handle.
2367 * Mask Tx and Rx vpath interrupts.
2369 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2371 void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle
*vp
)
2373 u64 tim_int_mask0
[4] = {[0 ...3] = 0};
2374 u32 tim_int_mask1
[4] = {[0 ...3] = 0};
2376 struct __vxge_hw_device
*hldev
= vp
->vpath
->hldev
;
2378 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0
,
2379 tim_int_mask1
, vp
->vpath
->vp_id
);
2381 val64
= readq(&hldev
->common_reg
->tim_int_mask0
);
2383 if ((tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
2384 (tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
2385 writeq((tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] |
2386 tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
] | val64
),
2387 &hldev
->common_reg
->tim_int_mask0
);
2390 val64
= readl(&hldev
->common_reg
->tim_int_mask1
);
2392 if ((tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
2393 (tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
2394 __vxge_hw_pio_mem_write32_upper(
2395 (tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] |
2396 tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
] | val64
),
2397 &hldev
->common_reg
->tim_int_mask1
);
2404 * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2405 * @vp: Virtual Path handle.
2407 * Unmask Tx and Rx vpath interrupts.
2409 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2411 void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle
*vp
)
2413 u64 tim_int_mask0
[4] = {[0 ...3] = 0};
2414 u32 tim_int_mask1
[4] = {[0 ...3] = 0};
2416 struct __vxge_hw_device
*hldev
= vp
->vpath
->hldev
;
2418 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0
,
2419 tim_int_mask1
, vp
->vpath
->vp_id
);
2421 val64
= readq(&hldev
->common_reg
->tim_int_mask0
);
2423 if ((tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
2424 (tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
2425 writeq((~(tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] |
2426 tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
])) & val64
,
2427 &hldev
->common_reg
->tim_int_mask0
);
2430 if ((tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
2431 (tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
2432 __vxge_hw_pio_mem_write32_upper(
2433 (~(tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] |
2434 tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
])) & val64
,
2435 &hldev
->common_reg
->tim_int_mask1
);
2442 * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2443 * descriptors and process the same.
2444 * @ring: Handle to the ring object used for receive
2446 * The function polls the Rx for the completed descriptors and calls
2447 * the driver via supplied completion callback.
2449 * Returns: VXGE_HW_OK, if the polling is completed successful.
2450 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2451 * descriptors available which are yet to be processed.
2453 * See also: vxge_hw_vpath_poll_rx()
2455 enum vxge_hw_status
vxge_hw_vpath_poll_rx(struct __vxge_hw_ring
*ring
)
2458 enum vxge_hw_status status
= VXGE_HW_OK
;
2465 status
= vxge_hw_ring_rxd_next_completed(ring
, &first_rxdh
, &t_code
);
2466 if (status
== VXGE_HW_OK
)
2467 ring
->callback(ring
, first_rxdh
,
2468 t_code
, ring
->channel
.userdata
);
2470 if (ring
->cmpl_cnt
!= 0) {
2471 ring
->doorbell_cnt
+= ring
->cmpl_cnt
;
2472 if (ring
->doorbell_cnt
>= ring
->rxds_limit
) {
2474 * Each RxD is of 4 qwords, update the number of
2475 * qwords replenished
2477 new_count
= (ring
->doorbell_cnt
* 4);
2479 /* For each block add 4 more qwords */
2480 ring
->total_db_cnt
+= ring
->doorbell_cnt
;
2481 if (ring
->total_db_cnt
>= ring
->rxds_per_block
) {
2483 /* Reset total count */
2484 ring
->total_db_cnt
%= ring
->rxds_per_block
;
2486 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count
),
2487 &ring
->vp_reg
->prc_rxd_doorbell
);
2489 readl(&ring
->common_reg
->titan_general_int_status
);
2490 ring
->doorbell_cnt
= 0;
2498 * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2500 * @fifo: Handle to the fifo object used for non offload send
2502 * The function polls the Tx for the completed descriptors and calls
2503 * the driver via supplied completion callback.
2505 * Returns: VXGE_HW_OK, if the polling is completed successful.
2506 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2507 * descriptors available which are yet to be processed.
2509 * See also: vxge_hw_vpath_poll_tx().
2511 enum vxge_hw_status
vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo
*fifo
,
2512 struct sk_buff
***skb_ptr
, int nr_skb
,
2515 enum vxge_hw_fifo_tcode t_code
;
2517 enum vxge_hw_status status
= VXGE_HW_OK
;
2518 struct __vxge_hw_channel
*channel
;
2520 channel
= &fifo
->channel
;
2522 status
= vxge_hw_fifo_txdl_next_completed(fifo
,
2523 &first_txdlh
, &t_code
);
2524 if (status
== VXGE_HW_OK
)
2525 if (fifo
->callback(fifo
, first_txdlh
, t_code
,
2526 channel
->userdata
, skb_ptr
, nr_skb
, more
) != VXGE_HW_OK
)
2527 status
= VXGE_HW_COMPLETIONS_REMAIN
;