x86/amd-iommu: Add function to complete a tlb flush
[linux/fpc-iii.git] / drivers / net / wireless / zd1211rw / zd_chip.c
blob4e79a9800134fda2043e02c445102d85a94fe8f9
1 /* ZD1211 USB-WLAN driver for Linux
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 /* This file implements all the hardware specific functions for the ZD1211
22 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
23 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
29 #include "zd_def.h"
30 #include "zd_chip.h"
31 #include "zd_mac.h"
32 #include "zd_rf.h"
34 void zd_chip_init(struct zd_chip *chip,
35 struct ieee80211_hw *hw,
36 struct usb_interface *intf)
38 memset(chip, 0, sizeof(*chip));
39 mutex_init(&chip->mutex);
40 zd_usb_init(&chip->usb, hw, intf);
41 zd_rf_init(&chip->rf);
44 void zd_chip_clear(struct zd_chip *chip)
46 ZD_ASSERT(!mutex_is_locked(&chip->mutex));
47 zd_usb_clear(&chip->usb);
48 zd_rf_clear(&chip->rf);
49 mutex_destroy(&chip->mutex);
50 ZD_MEMCLEAR(chip, sizeof(*chip));
53 static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
55 u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
56 return scnprintf(buffer, size, "%02x-%02x-%02x",
57 addr[0], addr[1], addr[2]);
60 /* Prints an identifier line, which will support debugging. */
61 static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
63 int i = 0;
65 i = scnprintf(buffer, size, "zd1211%s chip ",
66 zd_chip_is_zd1211b(chip) ? "b" : "");
67 i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
68 i += scnprintf(buffer+i, size-i, " ");
69 i += scnprint_mac_oui(chip, buffer+i, size-i);
70 i += scnprintf(buffer+i, size-i, " ");
71 i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
72 i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
73 chip->patch_cck_gain ? 'g' : '-',
74 chip->patch_cr157 ? '7' : '-',
75 chip->patch_6m_band_edge ? '6' : '-',
76 chip->new_phy_layout ? 'N' : '-',
77 chip->al2230s_bit ? 'S' : '-');
78 return i;
81 static void print_id(struct zd_chip *chip)
83 char buffer[80];
85 scnprint_id(chip, buffer, sizeof(buffer));
86 buffer[sizeof(buffer)-1] = 0;
87 dev_info(zd_chip_dev(chip), "%s\n", buffer);
90 static zd_addr_t inc_addr(zd_addr_t addr)
92 u16 a = (u16)addr;
93 /* Control registers use byte addressing, but everything else uses word
94 * addressing. */
95 if ((a & 0xf000) == CR_START)
96 a += 2;
97 else
98 a += 1;
99 return (zd_addr_t)a;
102 /* Read a variable number of 32-bit values. Parameter count is not allowed to
103 * exceed USB_MAX_IOREAD32_COUNT.
105 int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
106 unsigned int count)
108 int r;
109 int i;
110 zd_addr_t *a16;
111 u16 *v16;
112 unsigned int count16;
114 if (count > USB_MAX_IOREAD32_COUNT)
115 return -EINVAL;
117 /* Allocate a single memory block for values and addresses. */
118 count16 = 2*count;
119 a16 = (zd_addr_t *) kmalloc(count16 * (sizeof(zd_addr_t) + sizeof(u16)),
120 GFP_KERNEL);
121 if (!a16) {
122 dev_dbg_f(zd_chip_dev(chip),
123 "error ENOMEM in allocation of a16\n");
124 r = -ENOMEM;
125 goto out;
127 v16 = (u16 *)(a16 + count16);
129 for (i = 0; i < count; i++) {
130 int j = 2*i;
131 /* We read the high word always first. */
132 a16[j] = inc_addr(addr[i]);
133 a16[j+1] = addr[i];
136 r = zd_ioread16v_locked(chip, v16, a16, count16);
137 if (r) {
138 dev_dbg_f(zd_chip_dev(chip),
139 "error: zd_ioread16v_locked. Error number %d\n", r);
140 goto out;
143 for (i = 0; i < count; i++) {
144 int j = 2*i;
145 values[i] = (v16[j] << 16) | v16[j+1];
148 out:
149 kfree((void *)a16);
150 return r;
153 int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
154 unsigned int count)
156 int i, j, r;
157 struct zd_ioreq16 *ioreqs16;
158 unsigned int count16;
160 ZD_ASSERT(mutex_is_locked(&chip->mutex));
162 if (count == 0)
163 return 0;
164 if (count > USB_MAX_IOWRITE32_COUNT)
165 return -EINVAL;
167 /* Allocate a single memory block for values and addresses. */
168 count16 = 2*count;
169 ioreqs16 = kmalloc(count16 * sizeof(struct zd_ioreq16), GFP_KERNEL);
170 if (!ioreqs16) {
171 r = -ENOMEM;
172 dev_dbg_f(zd_chip_dev(chip),
173 "error %d in ioreqs16 allocation\n", r);
174 goto out;
177 for (i = 0; i < count; i++) {
178 j = 2*i;
179 /* We write the high word always first. */
180 ioreqs16[j].value = ioreqs[i].value >> 16;
181 ioreqs16[j].addr = inc_addr(ioreqs[i].addr);
182 ioreqs16[j+1].value = ioreqs[i].value;
183 ioreqs16[j+1].addr = ioreqs[i].addr;
186 r = zd_usb_iowrite16v(&chip->usb, ioreqs16, count16);
187 #ifdef DEBUG
188 if (r) {
189 dev_dbg_f(zd_chip_dev(chip),
190 "error %d in zd_usb_write16v\n", r);
192 #endif /* DEBUG */
193 out:
194 kfree(ioreqs16);
195 return r;
198 int zd_iowrite16a_locked(struct zd_chip *chip,
199 const struct zd_ioreq16 *ioreqs, unsigned int count)
201 int r;
202 unsigned int i, j, t, max;
204 ZD_ASSERT(mutex_is_locked(&chip->mutex));
205 for (i = 0; i < count; i += j + t) {
206 t = 0;
207 max = count-i;
208 if (max > USB_MAX_IOWRITE16_COUNT)
209 max = USB_MAX_IOWRITE16_COUNT;
210 for (j = 0; j < max; j++) {
211 if (!ioreqs[i+j].addr) {
212 t = 1;
213 break;
217 r = zd_usb_iowrite16v(&chip->usb, &ioreqs[i], j);
218 if (r) {
219 dev_dbg_f(zd_chip_dev(chip),
220 "error zd_usb_iowrite16v. Error number %d\n",
222 return r;
226 return 0;
229 /* Writes a variable number of 32 bit registers. The functions will split
230 * that in several USB requests. A split can be forced by inserting an IO
231 * request with an zero address field.
233 int zd_iowrite32a_locked(struct zd_chip *chip,
234 const struct zd_ioreq32 *ioreqs, unsigned int count)
236 int r;
237 unsigned int i, j, t, max;
239 for (i = 0; i < count; i += j + t) {
240 t = 0;
241 max = count-i;
242 if (max > USB_MAX_IOWRITE32_COUNT)
243 max = USB_MAX_IOWRITE32_COUNT;
244 for (j = 0; j < max; j++) {
245 if (!ioreqs[i+j].addr) {
246 t = 1;
247 break;
251 r = _zd_iowrite32v_locked(chip, &ioreqs[i], j);
252 if (r) {
253 dev_dbg_f(zd_chip_dev(chip),
254 "error _zd_iowrite32v_locked."
255 " Error number %d\n", r);
256 return r;
260 return 0;
263 int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
265 int r;
267 mutex_lock(&chip->mutex);
268 r = zd_ioread16_locked(chip, value, addr);
269 mutex_unlock(&chip->mutex);
270 return r;
273 int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
275 int r;
277 mutex_lock(&chip->mutex);
278 r = zd_ioread32_locked(chip, value, addr);
279 mutex_unlock(&chip->mutex);
280 return r;
283 int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
285 int r;
287 mutex_lock(&chip->mutex);
288 r = zd_iowrite16_locked(chip, value, addr);
289 mutex_unlock(&chip->mutex);
290 return r;
293 int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
295 int r;
297 mutex_lock(&chip->mutex);
298 r = zd_iowrite32_locked(chip, value, addr);
299 mutex_unlock(&chip->mutex);
300 return r;
303 int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
304 u32 *values, unsigned int count)
306 int r;
308 mutex_lock(&chip->mutex);
309 r = zd_ioread32v_locked(chip, values, addresses, count);
310 mutex_unlock(&chip->mutex);
311 return r;
314 int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
315 unsigned int count)
317 int r;
319 mutex_lock(&chip->mutex);
320 r = zd_iowrite32a_locked(chip, ioreqs, count);
321 mutex_unlock(&chip->mutex);
322 return r;
325 static int read_pod(struct zd_chip *chip, u8 *rf_type)
327 int r;
328 u32 value;
330 ZD_ASSERT(mutex_is_locked(&chip->mutex));
331 r = zd_ioread32_locked(chip, &value, E2P_POD);
332 if (r)
333 goto error;
334 dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
336 /* FIXME: AL2230 handling (Bit 7 in POD) */
337 *rf_type = value & 0x0f;
338 chip->pa_type = (value >> 16) & 0x0f;
339 chip->patch_cck_gain = (value >> 8) & 0x1;
340 chip->patch_cr157 = (value >> 13) & 0x1;
341 chip->patch_6m_band_edge = (value >> 21) & 0x1;
342 chip->new_phy_layout = (value >> 31) & 0x1;
343 chip->al2230s_bit = (value >> 7) & 0x1;
344 chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
345 chip->supports_tx_led = 1;
346 if (value & (1 << 24)) { /* LED scenario */
347 if (value & (1 << 29))
348 chip->supports_tx_led = 0;
351 dev_dbg_f(zd_chip_dev(chip),
352 "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
353 "patch 6M %d new PHY %d link LED%d tx led %d\n",
354 zd_rf_name(*rf_type), *rf_type,
355 chip->pa_type, chip->patch_cck_gain,
356 chip->patch_cr157, chip->patch_6m_band_edge,
357 chip->new_phy_layout,
358 chip->link_led == LED1 ? 1 : 2,
359 chip->supports_tx_led);
360 return 0;
361 error:
362 *rf_type = 0;
363 chip->pa_type = 0;
364 chip->patch_cck_gain = 0;
365 chip->patch_cr157 = 0;
366 chip->patch_6m_band_edge = 0;
367 chip->new_phy_layout = 0;
368 return r;
371 /* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
372 * CR_MAC_ADDR_P2 must be overwritten
374 int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
376 int r;
377 struct zd_ioreq32 reqs[2] = {
378 [0] = { .addr = CR_MAC_ADDR_P1 },
379 [1] = { .addr = CR_MAC_ADDR_P2 },
382 if (mac_addr) {
383 reqs[0].value = (mac_addr[3] << 24)
384 | (mac_addr[2] << 16)
385 | (mac_addr[1] << 8)
386 | mac_addr[0];
387 reqs[1].value = (mac_addr[5] << 8)
388 | mac_addr[4];
389 dev_dbg_f(zd_chip_dev(chip), "mac addr %pM\n", mac_addr);
390 } else {
391 dev_dbg_f(zd_chip_dev(chip), "set NULL mac\n");
394 mutex_lock(&chip->mutex);
395 r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
396 mutex_unlock(&chip->mutex);
397 return r;
400 int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
402 int r;
403 u32 value;
405 mutex_lock(&chip->mutex);
406 r = zd_ioread32_locked(chip, &value, E2P_SUBID);
407 mutex_unlock(&chip->mutex);
408 if (r)
409 return r;
411 *regdomain = value >> 16;
412 dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
414 return 0;
417 static int read_values(struct zd_chip *chip, u8 *values, size_t count,
418 zd_addr_t e2p_addr, u32 guard)
420 int r;
421 int i;
422 u32 v;
424 ZD_ASSERT(mutex_is_locked(&chip->mutex));
425 for (i = 0;;) {
426 r = zd_ioread32_locked(chip, &v,
427 (zd_addr_t)((u16)e2p_addr+i/2));
428 if (r)
429 return r;
430 v -= guard;
431 if (i+4 < count) {
432 values[i++] = v;
433 values[i++] = v >> 8;
434 values[i++] = v >> 16;
435 values[i++] = v >> 24;
436 continue;
438 for (;i < count; i++)
439 values[i] = v >> (8*(i%3));
440 return 0;
444 static int read_pwr_cal_values(struct zd_chip *chip)
446 return read_values(chip, chip->pwr_cal_values,
447 E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
451 static int read_pwr_int_values(struct zd_chip *chip)
453 return read_values(chip, chip->pwr_int_values,
454 E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
455 E2P_PWR_INT_GUARD);
458 static int read_ofdm_cal_values(struct zd_chip *chip)
460 int r;
461 int i;
462 static const zd_addr_t addresses[] = {
463 E2P_36M_CAL_VALUE1,
464 E2P_48M_CAL_VALUE1,
465 E2P_54M_CAL_VALUE1,
468 for (i = 0; i < 3; i++) {
469 r = read_values(chip, chip->ofdm_cal_values[i],
470 E2P_CHANNEL_COUNT, addresses[i], 0);
471 if (r)
472 return r;
474 return 0;
477 static int read_cal_int_tables(struct zd_chip *chip)
479 int r;
481 r = read_pwr_cal_values(chip);
482 if (r)
483 return r;
484 r = read_pwr_int_values(chip);
485 if (r)
486 return r;
487 r = read_ofdm_cal_values(chip);
488 if (r)
489 return r;
490 return 0;
493 /* phy means physical registers */
494 int zd_chip_lock_phy_regs(struct zd_chip *chip)
496 int r;
497 u32 tmp;
499 ZD_ASSERT(mutex_is_locked(&chip->mutex));
500 r = zd_ioread32_locked(chip, &tmp, CR_REG1);
501 if (r) {
502 dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
503 return r;
506 tmp &= ~UNLOCK_PHY_REGS;
508 r = zd_iowrite32_locked(chip, tmp, CR_REG1);
509 if (r)
510 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
511 return r;
514 int zd_chip_unlock_phy_regs(struct zd_chip *chip)
516 int r;
517 u32 tmp;
519 ZD_ASSERT(mutex_is_locked(&chip->mutex));
520 r = zd_ioread32_locked(chip, &tmp, CR_REG1);
521 if (r) {
522 dev_err(zd_chip_dev(chip),
523 "error ioread32(CR_REG1): %d\n", r);
524 return r;
527 tmp |= UNLOCK_PHY_REGS;
529 r = zd_iowrite32_locked(chip, tmp, CR_REG1);
530 if (r)
531 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
532 return r;
535 /* CR157 can be optionally patched by the EEPROM for original ZD1211 */
536 static int patch_cr157(struct zd_chip *chip)
538 int r;
539 u16 value;
541 if (!chip->patch_cr157)
542 return 0;
544 r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
545 if (r)
546 return r;
548 dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
549 return zd_iowrite32_locked(chip, value >> 8, CR157);
553 * 6M band edge can be optionally overwritten for certain RF's
554 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
555 * bit (for AL2230, AL2230S)
557 static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
559 ZD_ASSERT(mutex_is_locked(&chip->mutex));
560 if (!chip->patch_6m_band_edge)
561 return 0;
563 return zd_rf_patch_6m_band_edge(&chip->rf, channel);
566 /* Generic implementation of 6M band edge patching, used by most RFs via
567 * zd_rf_generic_patch_6m() */
568 int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
570 struct zd_ioreq16 ioreqs[] = {
571 { CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 },
572 { CR47, 0x1e },
575 /* FIXME: Channel 11 is not the edge for all regulatory domains. */
576 if (channel == 1 || channel == 11)
577 ioreqs[0].value = 0x12;
579 dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
580 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
583 static int zd1211_hw_reset_phy(struct zd_chip *chip)
585 static const struct zd_ioreq16 ioreqs[] = {
586 { CR0, 0x0a }, { CR1, 0x06 }, { CR2, 0x26 },
587 { CR3, 0x38 }, { CR4, 0x80 }, { CR9, 0xa0 },
588 { CR10, 0x81 }, { CR11, 0x00 }, { CR12, 0x7f },
589 { CR13, 0x8c }, { CR14, 0x80 }, { CR15, 0x3d },
590 { CR16, 0x20 }, { CR17, 0x1e }, { CR18, 0x0a },
591 { CR19, 0x48 }, { CR20, 0x0c }, { CR21, 0x0c },
592 { CR22, 0x23 }, { CR23, 0x90 }, { CR24, 0x14 },
593 { CR25, 0x40 }, { CR26, 0x10 }, { CR27, 0x19 },
594 { CR28, 0x7f }, { CR29, 0x80 }, { CR30, 0x4b },
595 { CR31, 0x60 }, { CR32, 0x43 }, { CR33, 0x08 },
596 { CR34, 0x06 }, { CR35, 0x0a }, { CR36, 0x00 },
597 { CR37, 0x00 }, { CR38, 0x38 }, { CR39, 0x0c },
598 { CR40, 0x84 }, { CR41, 0x2a }, { CR42, 0x80 },
599 { CR43, 0x10 }, { CR44, 0x12 }, { CR46, 0xff },
600 { CR47, 0x1E }, { CR48, 0x26 }, { CR49, 0x5b },
601 { CR64, 0xd0 }, { CR65, 0x04 }, { CR66, 0x58 },
602 { CR67, 0xc9 }, { CR68, 0x88 }, { CR69, 0x41 },
603 { CR70, 0x23 }, { CR71, 0x10 }, { CR72, 0xff },
604 { CR73, 0x32 }, { CR74, 0x30 }, { CR75, 0x65 },
605 { CR76, 0x41 }, { CR77, 0x1b }, { CR78, 0x30 },
606 { CR79, 0x68 }, { CR80, 0x64 }, { CR81, 0x64 },
607 { CR82, 0x00 }, { CR83, 0x00 }, { CR84, 0x00 },
608 { CR85, 0x02 }, { CR86, 0x00 }, { CR87, 0x00 },
609 { CR88, 0xff }, { CR89, 0xfc }, { CR90, 0x00 },
610 { CR91, 0x00 }, { CR92, 0x00 }, { CR93, 0x08 },
611 { CR94, 0x00 }, { CR95, 0x00 }, { CR96, 0xff },
612 { CR97, 0xe7 }, { CR98, 0x00 }, { CR99, 0x00 },
613 { CR100, 0x00 }, { CR101, 0xae }, { CR102, 0x02 },
614 { CR103, 0x00 }, { CR104, 0x03 }, { CR105, 0x65 },
615 { CR106, 0x04 }, { CR107, 0x00 }, { CR108, 0x0a },
616 { CR109, 0xaa }, { CR110, 0xaa }, { CR111, 0x25 },
617 { CR112, 0x25 }, { CR113, 0x00 }, { CR119, 0x1e },
618 { CR125, 0x90 }, { CR126, 0x00 }, { CR127, 0x00 },
619 { },
620 { CR5, 0x00 }, { CR6, 0x00 }, { CR7, 0x00 },
621 { CR8, 0x00 }, { CR9, 0x20 }, { CR12, 0xf0 },
622 { CR20, 0x0e }, { CR21, 0x0e }, { CR27, 0x10 },
623 { CR44, 0x33 }, { CR47, 0x1E }, { CR83, 0x24 },
624 { CR84, 0x04 }, { CR85, 0x00 }, { CR86, 0x0C },
625 { CR87, 0x12 }, { CR88, 0x0C }, { CR89, 0x00 },
626 { CR90, 0x10 }, { CR91, 0x08 }, { CR93, 0x00 },
627 { CR94, 0x01 }, { CR95, 0x00 }, { CR96, 0x50 },
628 { CR97, 0x37 }, { CR98, 0x35 }, { CR101, 0x13 },
629 { CR102, 0x27 }, { CR103, 0x27 }, { CR104, 0x18 },
630 { CR105, 0x12 }, { CR109, 0x27 }, { CR110, 0x27 },
631 { CR111, 0x27 }, { CR112, 0x27 }, { CR113, 0x27 },
632 { CR114, 0x27 }, { CR115, 0x26 }, { CR116, 0x24 },
633 { CR117, 0xfc }, { CR118, 0xfa }, { CR120, 0x4f },
634 { CR125, 0xaa }, { CR127, 0x03 }, { CR128, 0x14 },
635 { CR129, 0x12 }, { CR130, 0x10 }, { CR131, 0x0C },
636 { CR136, 0xdf }, { CR137, 0x40 }, { CR138, 0xa0 },
637 { CR139, 0xb0 }, { CR140, 0x99 }, { CR141, 0x82 },
638 { CR142, 0x54 }, { CR143, 0x1c }, { CR144, 0x6c },
639 { CR147, 0x07 }, { CR148, 0x4c }, { CR149, 0x50 },
640 { CR150, 0x0e }, { CR151, 0x18 }, { CR160, 0xfe },
641 { CR161, 0xee }, { CR162, 0xaa }, { CR163, 0xfa },
642 { CR164, 0xfa }, { CR165, 0xea }, { CR166, 0xbe },
643 { CR167, 0xbe }, { CR168, 0x6a }, { CR169, 0xba },
644 { CR170, 0xba }, { CR171, 0xba },
645 /* Note: CR204 must lead the CR203 */
646 { CR204, 0x7d },
647 { },
648 { CR203, 0x30 },
651 int r, t;
653 dev_dbg_f(zd_chip_dev(chip), "\n");
655 r = zd_chip_lock_phy_regs(chip);
656 if (r)
657 goto out;
659 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
660 if (r)
661 goto unlock;
663 r = patch_cr157(chip);
664 unlock:
665 t = zd_chip_unlock_phy_regs(chip);
666 if (t && !r)
667 r = t;
668 out:
669 return r;
672 static int zd1211b_hw_reset_phy(struct zd_chip *chip)
674 static const struct zd_ioreq16 ioreqs[] = {
675 { CR0, 0x14 }, { CR1, 0x06 }, { CR2, 0x26 },
676 { CR3, 0x38 }, { CR4, 0x80 }, { CR9, 0xe0 },
677 { CR10, 0x81 },
678 /* power control { { CR11, 1 << 6 }, */
679 { CR11, 0x00 },
680 { CR12, 0xf0 }, { CR13, 0x8c }, { CR14, 0x80 },
681 { CR15, 0x3d }, { CR16, 0x20 }, { CR17, 0x1e },
682 { CR18, 0x0a }, { CR19, 0x48 },
683 { CR20, 0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
684 { CR21, 0x0e }, { CR22, 0x23 }, { CR23, 0x90 },
685 { CR24, 0x14 }, { CR25, 0x40 }, { CR26, 0x10 },
686 { CR27, 0x10 }, { CR28, 0x7f }, { CR29, 0x80 },
687 { CR30, 0x4b }, /* ASIC/FWT, no jointly decoder */
688 { CR31, 0x60 }, { CR32, 0x43 }, { CR33, 0x08 },
689 { CR34, 0x06 }, { CR35, 0x0a }, { CR36, 0x00 },
690 { CR37, 0x00 }, { CR38, 0x38 }, { CR39, 0x0c },
691 { CR40, 0x84 }, { CR41, 0x2a }, { CR42, 0x80 },
692 { CR43, 0x10 }, { CR44, 0x33 }, { CR46, 0xff },
693 { CR47, 0x1E }, { CR48, 0x26 }, { CR49, 0x5b },
694 { CR64, 0xd0 }, { CR65, 0x04 }, { CR66, 0x58 },
695 { CR67, 0xc9 }, { CR68, 0x88 }, { CR69, 0x41 },
696 { CR70, 0x23 }, { CR71, 0x10 }, { CR72, 0xff },
697 { CR73, 0x32 }, { CR74, 0x30 }, { CR75, 0x65 },
698 { CR76, 0x41 }, { CR77, 0x1b }, { CR78, 0x30 },
699 { CR79, 0xf0 }, { CR80, 0x64 }, { CR81, 0x64 },
700 { CR82, 0x00 }, { CR83, 0x24 }, { CR84, 0x04 },
701 { CR85, 0x00 }, { CR86, 0x0c }, { CR87, 0x12 },
702 { CR88, 0x0c }, { CR89, 0x00 }, { CR90, 0x58 },
703 { CR91, 0x04 }, { CR92, 0x00 }, { CR93, 0x00 },
704 { CR94, 0x01 },
705 { CR95, 0x20 }, /* ZD1211B */
706 { CR96, 0x50 }, { CR97, 0x37 }, { CR98, 0x35 },
707 { CR99, 0x00 }, { CR100, 0x01 }, { CR101, 0x13 },
708 { CR102, 0x27 }, { CR103, 0x27 }, { CR104, 0x18 },
709 { CR105, 0x12 }, { CR106, 0x04 }, { CR107, 0x00 },
710 { CR108, 0x0a }, { CR109, 0x27 }, { CR110, 0x27 },
711 { CR111, 0x27 }, { CR112, 0x27 }, { CR113, 0x27 },
712 { CR114, 0x27 }, { CR115, 0x26 }, { CR116, 0x24 },
713 { CR117, 0xfc }, { CR118, 0xfa }, { CR119, 0x1e },
714 { CR125, 0x90 }, { CR126, 0x00 }, { CR127, 0x00 },
715 { CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 },
716 { CR131, 0x0c }, { CR136, 0xdf }, { CR137, 0xa0 },
717 { CR138, 0xa8 }, { CR139, 0xb4 }, { CR140, 0x98 },
718 { CR141, 0x82 }, { CR142, 0x53 }, { CR143, 0x1c },
719 { CR144, 0x6c }, { CR147, 0x07 }, { CR148, 0x40 },
720 { CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
721 { CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
722 { CR151, 0x18 }, { CR159, 0x70 }, { CR160, 0xfe },
723 { CR161, 0xee }, { CR162, 0xaa }, { CR163, 0xfa },
724 { CR164, 0xfa }, { CR165, 0xea }, { CR166, 0xbe },
725 { CR167, 0xbe }, { CR168, 0x6a }, { CR169, 0xba },
726 { CR170, 0xba }, { CR171, 0xba },
727 /* Note: CR204 must lead the CR203 */
728 { CR204, 0x7d },
730 { CR203, 0x30 },
733 int r, t;
735 dev_dbg_f(zd_chip_dev(chip), "\n");
737 r = zd_chip_lock_phy_regs(chip);
738 if (r)
739 goto out;
741 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
742 t = zd_chip_unlock_phy_regs(chip);
743 if (t && !r)
744 r = t;
745 out:
746 return r;
749 static int hw_reset_phy(struct zd_chip *chip)
751 return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
752 zd1211_hw_reset_phy(chip);
755 static int zd1211_hw_init_hmac(struct zd_chip *chip)
757 static const struct zd_ioreq32 ioreqs[] = {
758 { CR_ZD1211_RETRY_MAX, 0x2 },
759 { CR_RX_THRESHOLD, 0x000c0640 },
762 dev_dbg_f(zd_chip_dev(chip), "\n");
763 ZD_ASSERT(mutex_is_locked(&chip->mutex));
764 return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
767 static int zd1211b_hw_init_hmac(struct zd_chip *chip)
769 static const struct zd_ioreq32 ioreqs[] = {
770 { CR_ZD1211B_RETRY_MAX, 0x02020202 },
771 { CR_ZD1211B_CWIN_MAX_MIN_AC0, 0x007f003f },
772 { CR_ZD1211B_CWIN_MAX_MIN_AC1, 0x007f003f },
773 { CR_ZD1211B_CWIN_MAX_MIN_AC2, 0x003f001f },
774 { CR_ZD1211B_CWIN_MAX_MIN_AC3, 0x001f000f },
775 { CR_ZD1211B_AIFS_CTL1, 0x00280028 },
776 { CR_ZD1211B_AIFS_CTL2, 0x008C003C },
777 { CR_ZD1211B_TXOP, 0x01800824 },
778 { CR_RX_THRESHOLD, 0x000c0eff, },
781 dev_dbg_f(zd_chip_dev(chip), "\n");
782 ZD_ASSERT(mutex_is_locked(&chip->mutex));
783 return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
786 static int hw_init_hmac(struct zd_chip *chip)
788 int r;
789 static const struct zd_ioreq32 ioreqs[] = {
790 { CR_ACK_TIMEOUT_EXT, 0x20 },
791 { CR_ADDA_MBIAS_WARMTIME, 0x30000808 },
792 { CR_SNIFFER_ON, 0 },
793 { CR_RX_FILTER, STA_RX_FILTER },
794 { CR_GROUP_HASH_P1, 0x00 },
795 { CR_GROUP_HASH_P2, 0x80000000 },
796 { CR_REG1, 0xa4 },
797 { CR_ADDA_PWR_DWN, 0x7f },
798 { CR_BCN_PLCP_CFG, 0x00f00401 },
799 { CR_PHY_DELAY, 0x00 },
800 { CR_ACK_TIMEOUT_EXT, 0x80 },
801 { CR_ADDA_PWR_DWN, 0x00 },
802 { CR_ACK_TIME_80211, 0x100 },
803 { CR_RX_PE_DELAY, 0x70 },
804 { CR_PS_CTRL, 0x10000000 },
805 { CR_RTS_CTS_RATE, 0x02030203 },
806 { CR_AFTER_PNP, 0x1 },
807 { CR_WEP_PROTECT, 0x114 },
808 { CR_IFS_VALUE, IFS_VALUE_DEFAULT },
809 { CR_CAM_MODE, MODE_AP_WDS},
812 ZD_ASSERT(mutex_is_locked(&chip->mutex));
813 r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
814 if (r)
815 return r;
817 return zd_chip_is_zd1211b(chip) ?
818 zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
821 struct aw_pt_bi {
822 u32 atim_wnd_period;
823 u32 pre_tbtt;
824 u32 beacon_interval;
827 static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
829 int r;
830 static const zd_addr_t aw_pt_bi_addr[] =
831 { CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
832 u32 values[3];
834 r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
835 ARRAY_SIZE(aw_pt_bi_addr));
836 if (r) {
837 memset(s, 0, sizeof(*s));
838 return r;
841 s->atim_wnd_period = values[0];
842 s->pre_tbtt = values[1];
843 s->beacon_interval = values[2];
844 return 0;
847 static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
849 struct zd_ioreq32 reqs[3];
851 if (s->beacon_interval <= 5)
852 s->beacon_interval = 5;
853 if (s->pre_tbtt < 4 || s->pre_tbtt >= s->beacon_interval)
854 s->pre_tbtt = s->beacon_interval - 1;
855 if (s->atim_wnd_period >= s->pre_tbtt)
856 s->atim_wnd_period = s->pre_tbtt - 1;
858 reqs[0].addr = CR_ATIM_WND_PERIOD;
859 reqs[0].value = s->atim_wnd_period;
860 reqs[1].addr = CR_PRE_TBTT;
861 reqs[1].value = s->pre_tbtt;
862 reqs[2].addr = CR_BCN_INTERVAL;
863 reqs[2].value = s->beacon_interval;
865 return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
869 static int set_beacon_interval(struct zd_chip *chip, u32 interval)
871 int r;
872 struct aw_pt_bi s;
874 ZD_ASSERT(mutex_is_locked(&chip->mutex));
875 r = get_aw_pt_bi(chip, &s);
876 if (r)
877 return r;
878 s.beacon_interval = interval;
879 return set_aw_pt_bi(chip, &s);
882 int zd_set_beacon_interval(struct zd_chip *chip, u32 interval)
884 int r;
886 mutex_lock(&chip->mutex);
887 r = set_beacon_interval(chip, interval);
888 mutex_unlock(&chip->mutex);
889 return r;
892 static int hw_init(struct zd_chip *chip)
894 int r;
896 dev_dbg_f(zd_chip_dev(chip), "\n");
897 ZD_ASSERT(mutex_is_locked(&chip->mutex));
898 r = hw_reset_phy(chip);
899 if (r)
900 return r;
902 r = hw_init_hmac(chip);
903 if (r)
904 return r;
906 return set_beacon_interval(chip, 100);
909 static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
911 return (zd_addr_t)((u16)chip->fw_regs_base + offset);
914 #ifdef DEBUG
915 static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
916 const char *addr_string)
918 int r;
919 u32 value;
921 r = zd_ioread32_locked(chip, &value, addr);
922 if (r) {
923 dev_dbg_f(zd_chip_dev(chip),
924 "error reading %s. Error number %d\n", addr_string, r);
925 return r;
928 dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
929 addr_string, (unsigned int)value);
930 return 0;
933 static int test_init(struct zd_chip *chip)
935 int r;
937 r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
938 if (r)
939 return r;
940 r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
941 if (r)
942 return r;
943 return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
946 static void dump_fw_registers(struct zd_chip *chip)
948 const zd_addr_t addr[4] = {
949 fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
950 fw_reg_addr(chip, FW_REG_USB_SPEED),
951 fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
952 fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
955 int r;
956 u16 values[4];
958 r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
959 ARRAY_SIZE(addr));
960 if (r) {
961 dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
963 return;
966 dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
967 dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
968 dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
969 dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
971 #endif /* DEBUG */
973 static int print_fw_version(struct zd_chip *chip)
975 int r;
976 u16 version;
978 r = zd_ioread16_locked(chip, &version,
979 fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
980 if (r)
981 return r;
983 dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
984 return 0;
987 static int set_mandatory_rates(struct zd_chip *chip, int gmode)
989 u32 rates;
990 ZD_ASSERT(mutex_is_locked(&chip->mutex));
991 /* This sets the mandatory rates, which only depend from the standard
992 * that the device is supporting. Until further notice we should try
993 * to support 802.11g also for full speed USB.
995 if (!gmode)
996 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
997 else
998 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
999 CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
1001 return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1004 int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
1005 int preamble)
1007 u32 value = 0;
1009 dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
1010 value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1011 value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1013 /* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1014 value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1015 value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
1016 value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
1017 value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1019 return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1022 int zd_chip_enable_hwint(struct zd_chip *chip)
1024 int r;
1026 mutex_lock(&chip->mutex);
1027 r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1028 mutex_unlock(&chip->mutex);
1029 return r;
1032 static int disable_hwint(struct zd_chip *chip)
1034 return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1037 int zd_chip_disable_hwint(struct zd_chip *chip)
1039 int r;
1041 mutex_lock(&chip->mutex);
1042 r = disable_hwint(chip);
1043 mutex_unlock(&chip->mutex);
1044 return r;
1047 static int read_fw_regs_offset(struct zd_chip *chip)
1049 int r;
1051 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1052 r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1053 FWRAW_REGS_ADDR);
1054 if (r)
1055 return r;
1056 dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1057 (u16)chip->fw_regs_base);
1059 return 0;
1062 /* Read mac address using pre-firmware interface */
1063 int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1065 dev_dbg_f(zd_chip_dev(chip), "\n");
1066 return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1067 ETH_ALEN);
1070 int zd_chip_init_hw(struct zd_chip *chip)
1072 int r;
1073 u8 rf_type;
1075 dev_dbg_f(zd_chip_dev(chip), "\n");
1077 mutex_lock(&chip->mutex);
1079 #ifdef DEBUG
1080 r = test_init(chip);
1081 if (r)
1082 goto out;
1083 #endif
1084 r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1085 if (r)
1086 goto out;
1088 r = read_fw_regs_offset(chip);
1089 if (r)
1090 goto out;
1092 /* GPI is always disabled, also in the other driver.
1094 r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1095 if (r)
1096 goto out;
1097 r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1098 if (r)
1099 goto out;
1100 /* Currently we support IEEE 802.11g for full and high speed USB.
1101 * It might be discussed, whether we should suppport pure b mode for
1102 * full speed USB.
1104 r = set_mandatory_rates(chip, 1);
1105 if (r)
1106 goto out;
1107 /* Disabling interrupts is certainly a smart thing here.
1109 r = disable_hwint(chip);
1110 if (r)
1111 goto out;
1112 r = read_pod(chip, &rf_type);
1113 if (r)
1114 goto out;
1115 r = hw_init(chip);
1116 if (r)
1117 goto out;
1118 r = zd_rf_init_hw(&chip->rf, rf_type);
1119 if (r)
1120 goto out;
1122 r = print_fw_version(chip);
1123 if (r)
1124 goto out;
1126 #ifdef DEBUG
1127 dump_fw_registers(chip);
1128 r = test_init(chip);
1129 if (r)
1130 goto out;
1131 #endif /* DEBUG */
1133 r = read_cal_int_tables(chip);
1134 if (r)
1135 goto out;
1137 print_id(chip);
1138 out:
1139 mutex_unlock(&chip->mutex);
1140 return r;
1143 static int update_pwr_int(struct zd_chip *chip, u8 channel)
1145 u8 value = chip->pwr_int_values[channel - 1];
1146 return zd_iowrite16_locked(chip, value, CR31);
1149 static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1151 u8 value = chip->pwr_cal_values[channel-1];
1152 return zd_iowrite16_locked(chip, value, CR68);
1155 static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1157 struct zd_ioreq16 ioreqs[3];
1159 ioreqs[0].addr = CR67;
1160 ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1161 ioreqs[1].addr = CR66;
1162 ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1163 ioreqs[2].addr = CR65;
1164 ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1166 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1169 static int update_channel_integration_and_calibration(struct zd_chip *chip,
1170 u8 channel)
1172 int r;
1174 if (!zd_rf_should_update_pwr_int(&chip->rf))
1175 return 0;
1177 r = update_pwr_int(chip, channel);
1178 if (r)
1179 return r;
1180 if (zd_chip_is_zd1211b(chip)) {
1181 static const struct zd_ioreq16 ioreqs[] = {
1182 { CR69, 0x28 },
1184 { CR69, 0x2a },
1187 r = update_ofdm_cal(chip, channel);
1188 if (r)
1189 return r;
1190 r = update_pwr_cal(chip, channel);
1191 if (r)
1192 return r;
1193 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1194 if (r)
1195 return r;
1198 return 0;
1201 /* The CCK baseband gain can be optionally patched by the EEPROM */
1202 static int patch_cck_gain(struct zd_chip *chip)
1204 int r;
1205 u32 value;
1207 if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
1208 return 0;
1210 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1211 r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1212 if (r)
1213 return r;
1214 dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1215 return zd_iowrite16_locked(chip, value & 0xff, CR47);
1218 int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1220 int r, t;
1222 mutex_lock(&chip->mutex);
1223 r = zd_chip_lock_phy_regs(chip);
1224 if (r)
1225 goto out;
1226 r = zd_rf_set_channel(&chip->rf, channel);
1227 if (r)
1228 goto unlock;
1229 r = update_channel_integration_and_calibration(chip, channel);
1230 if (r)
1231 goto unlock;
1232 r = patch_cck_gain(chip);
1233 if (r)
1234 goto unlock;
1235 r = patch_6m_band_edge(chip, channel);
1236 if (r)
1237 goto unlock;
1238 r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1239 unlock:
1240 t = zd_chip_unlock_phy_regs(chip);
1241 if (t && !r)
1242 r = t;
1243 out:
1244 mutex_unlock(&chip->mutex);
1245 return r;
1248 u8 zd_chip_get_channel(struct zd_chip *chip)
1250 u8 channel;
1252 mutex_lock(&chip->mutex);
1253 channel = chip->rf.channel;
1254 mutex_unlock(&chip->mutex);
1255 return channel;
1258 int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
1260 const zd_addr_t a[] = {
1261 fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1262 CR_LED,
1265 int r;
1266 u16 v[ARRAY_SIZE(a)];
1267 struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1268 [0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
1269 [1] = { CR_LED },
1271 u16 other_led;
1273 mutex_lock(&chip->mutex);
1274 r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
1275 if (r)
1276 goto out;
1278 other_led = chip->link_led == LED1 ? LED2 : LED1;
1280 switch (status) {
1281 case ZD_LED_OFF:
1282 ioreqs[0].value = FW_LINK_OFF;
1283 ioreqs[1].value = v[1] & ~(LED1|LED2);
1284 break;
1285 case ZD_LED_SCANNING:
1286 ioreqs[0].value = FW_LINK_OFF;
1287 ioreqs[1].value = v[1] & ~other_led;
1288 if (get_seconds() % 3 == 0) {
1289 ioreqs[1].value &= ~chip->link_led;
1290 } else {
1291 ioreqs[1].value |= chip->link_led;
1293 break;
1294 case ZD_LED_ASSOCIATED:
1295 ioreqs[0].value = FW_LINK_TX;
1296 ioreqs[1].value = v[1] & ~other_led;
1297 ioreqs[1].value |= chip->link_led;
1298 break;
1299 default:
1300 r = -EINVAL;
1301 goto out;
1304 if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1305 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1306 if (r)
1307 goto out;
1309 r = 0;
1310 out:
1311 mutex_unlock(&chip->mutex);
1312 return r;
1315 int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
1317 int r;
1319 if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1320 return -EINVAL;
1322 mutex_lock(&chip->mutex);
1323 r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1324 mutex_unlock(&chip->mutex);
1325 return r;
1328 static int ofdm_qual_db(u8 status_quality, u8 zd_rate, unsigned int size)
1330 static const u16 constants[] = {
1331 715, 655, 585, 540, 470, 410, 360, 315,
1332 270, 235, 205, 175, 150, 125, 105, 85,
1333 65, 50, 40, 25, 15
1336 int i;
1337 u32 x;
1339 /* It seems that their quality parameter is somehow per signal
1340 * and is now transferred per bit.
1342 switch (zd_rate) {
1343 case ZD_OFDM_RATE_6M:
1344 case ZD_OFDM_RATE_12M:
1345 case ZD_OFDM_RATE_24M:
1346 size *= 2;
1347 break;
1348 case ZD_OFDM_RATE_9M:
1349 case ZD_OFDM_RATE_18M:
1350 case ZD_OFDM_RATE_36M:
1351 case ZD_OFDM_RATE_54M:
1352 size *= 4;
1353 size /= 3;
1354 break;
1355 case ZD_OFDM_RATE_48M:
1356 size *= 3;
1357 size /= 2;
1358 break;
1359 default:
1360 return -EINVAL;
1363 x = (10000 * status_quality)/size;
1364 for (i = 0; i < ARRAY_SIZE(constants); i++) {
1365 if (x > constants[i])
1366 break;
1369 switch (zd_rate) {
1370 case ZD_OFDM_RATE_6M:
1371 case ZD_OFDM_RATE_9M:
1372 i += 3;
1373 break;
1374 case ZD_OFDM_RATE_12M:
1375 case ZD_OFDM_RATE_18M:
1376 i += 5;
1377 break;
1378 case ZD_OFDM_RATE_24M:
1379 case ZD_OFDM_RATE_36M:
1380 i += 9;
1381 break;
1382 case ZD_OFDM_RATE_48M:
1383 case ZD_OFDM_RATE_54M:
1384 i += 15;
1385 break;
1386 default:
1387 return -EINVAL;
1390 return i;
1393 static int ofdm_qual_percent(u8 status_quality, u8 zd_rate, unsigned int size)
1395 int r;
1397 r = ofdm_qual_db(status_quality, zd_rate, size);
1398 ZD_ASSERT(r >= 0);
1399 if (r < 0)
1400 r = 0;
1402 r = (r * 100)/29;
1403 return r <= 100 ? r : 100;
1406 static unsigned int log10times100(unsigned int x)
1408 static const u8 log10[] = {
1410 0, 30, 47, 60, 69, 77, 84, 90, 95, 100,
1411 104, 107, 111, 114, 117, 120, 123, 125, 127, 130,
1412 132, 134, 136, 138, 139, 141, 143, 144, 146, 147,
1413 149, 150, 151, 153, 154, 155, 156, 157, 159, 160,
1414 161, 162, 163, 164, 165, 166, 167, 168, 169, 169,
1415 170, 171, 172, 173, 174, 174, 175, 176, 177, 177,
1416 178, 179, 179, 180, 181, 181, 182, 183, 183, 184,
1417 185, 185, 186, 186, 187, 188, 188, 189, 189, 190,
1418 190, 191, 191, 192, 192, 193, 193, 194, 194, 195,
1419 195, 196, 196, 197, 197, 198, 198, 199, 199, 200,
1420 200, 200, 201, 201, 202, 202, 202, 203, 203, 204,
1421 204, 204, 205, 205, 206, 206, 206, 207, 207, 207,
1422 208, 208, 208, 209, 209, 210, 210, 210, 211, 211,
1423 211, 212, 212, 212, 213, 213, 213, 213, 214, 214,
1424 214, 215, 215, 215, 216, 216, 216, 217, 217, 217,
1425 217, 218, 218, 218, 219, 219, 219, 219, 220, 220,
1426 220, 220, 221, 221, 221, 222, 222, 222, 222, 223,
1427 223, 223, 223, 224, 224, 224, 224,
1430 return x < ARRAY_SIZE(log10) ? log10[x] : 225;
1433 enum {
1434 MAX_CCK_EVM_DB = 45,
1437 static int cck_evm_db(u8 status_quality)
1439 return (20 * log10times100(status_quality)) / 100;
1442 static int cck_snr_db(u8 status_quality)
1444 int r = MAX_CCK_EVM_DB - cck_evm_db(status_quality);
1445 ZD_ASSERT(r >= 0);
1446 return r;
1449 static int cck_qual_percent(u8 status_quality)
1451 int r;
1453 r = cck_snr_db(status_quality);
1454 r = (100*r)/17;
1455 return r <= 100 ? r : 100;
1458 static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1460 return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1463 u8 zd_rx_qual_percent(const void *rx_frame, unsigned int size,
1464 const struct rx_status *status)
1466 return (status->frame_status&ZD_RX_OFDM) ?
1467 ofdm_qual_percent(status->signal_quality_ofdm,
1468 zd_rate_from_ofdm_plcp_header(rx_frame),
1469 size) :
1470 cck_qual_percent(status->signal_quality_cck);
1474 * zd_rx_rate - report zd-rate
1475 * @rx_frame - received frame
1476 * @rx_status - rx_status as given by the device
1478 * This function converts the rate as encoded in the received packet to the
1479 * zd-rate, we are using on other places in the driver.
1481 u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
1483 u8 zd_rate;
1484 if (status->frame_status & ZD_RX_OFDM) {
1485 zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
1486 } else {
1487 switch (zd_cck_plcp_header_signal(rx_frame)) {
1488 case ZD_CCK_PLCP_SIGNAL_1M:
1489 zd_rate = ZD_CCK_RATE_1M;
1490 break;
1491 case ZD_CCK_PLCP_SIGNAL_2M:
1492 zd_rate = ZD_CCK_RATE_2M;
1493 break;
1494 case ZD_CCK_PLCP_SIGNAL_5M5:
1495 zd_rate = ZD_CCK_RATE_5_5M;
1496 break;
1497 case ZD_CCK_PLCP_SIGNAL_11M:
1498 zd_rate = ZD_CCK_RATE_11M;
1499 break;
1500 default:
1501 zd_rate = 0;
1505 return zd_rate;
1508 int zd_chip_switch_radio_on(struct zd_chip *chip)
1510 int r;
1512 mutex_lock(&chip->mutex);
1513 r = zd_switch_radio_on(&chip->rf);
1514 mutex_unlock(&chip->mutex);
1515 return r;
1518 int zd_chip_switch_radio_off(struct zd_chip *chip)
1520 int r;
1522 mutex_lock(&chip->mutex);
1523 r = zd_switch_radio_off(&chip->rf);
1524 mutex_unlock(&chip->mutex);
1525 return r;
1528 int zd_chip_enable_int(struct zd_chip *chip)
1530 int r;
1532 mutex_lock(&chip->mutex);
1533 r = zd_usb_enable_int(&chip->usb);
1534 mutex_unlock(&chip->mutex);
1535 return r;
1538 void zd_chip_disable_int(struct zd_chip *chip)
1540 mutex_lock(&chip->mutex);
1541 zd_usb_disable_int(&chip->usb);
1542 mutex_unlock(&chip->mutex);
1545 int zd_chip_enable_rxtx(struct zd_chip *chip)
1547 int r;
1549 mutex_lock(&chip->mutex);
1550 zd_usb_enable_tx(&chip->usb);
1551 r = zd_usb_enable_rx(&chip->usb);
1552 mutex_unlock(&chip->mutex);
1553 return r;
1556 void zd_chip_disable_rxtx(struct zd_chip *chip)
1558 mutex_lock(&chip->mutex);
1559 zd_usb_disable_rx(&chip->usb);
1560 zd_usb_disable_tx(&chip->usb);
1561 mutex_unlock(&chip->mutex);
1564 int zd_rfwritev_locked(struct zd_chip *chip,
1565 const u32* values, unsigned int count, u8 bits)
1567 int r;
1568 unsigned int i;
1570 for (i = 0; i < count; i++) {
1571 r = zd_rfwrite_locked(chip, values[i], bits);
1572 if (r)
1573 return r;
1576 return 0;
1580 * We can optionally program the RF directly through CR regs, if supported by
1581 * the hardware. This is much faster than the older method.
1583 int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1585 struct zd_ioreq16 ioreqs[] = {
1586 { CR244, (value >> 16) & 0xff },
1587 { CR243, (value >> 8) & 0xff },
1588 { CR242, value & 0xff },
1590 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1591 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1594 int zd_rfwritev_cr_locked(struct zd_chip *chip,
1595 const u32 *values, unsigned int count)
1597 int r;
1598 unsigned int i;
1600 for (i = 0; i < count; i++) {
1601 r = zd_rfwrite_cr_locked(chip, values[i]);
1602 if (r)
1603 return r;
1606 return 0;
1609 int zd_chip_set_multicast_hash(struct zd_chip *chip,
1610 struct zd_mc_hash *hash)
1612 struct zd_ioreq32 ioreqs[] = {
1613 { CR_GROUP_HASH_P1, hash->low },
1614 { CR_GROUP_HASH_P2, hash->high },
1617 return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1620 u64 zd_chip_get_tsf(struct zd_chip *chip)
1622 int r;
1623 static const zd_addr_t aw_pt_bi_addr[] =
1624 { CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
1625 u32 values[2];
1626 u64 tsf;
1628 mutex_lock(&chip->mutex);
1629 r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
1630 ARRAY_SIZE(aw_pt_bi_addr));
1631 mutex_unlock(&chip->mutex);
1632 if (r)
1633 return 0;
1635 tsf = values[1];
1636 tsf = (tsf << 32) | values[0];
1638 return tsf;