2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * Abstract: Contain all routines that are required for FSA host/adapter
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <linux/semaphore.h>
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_host.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_cmnd.h>
53 * fib_map_alloc - allocate the fib objects
54 * @dev: Adapter to allocate for
56 * Allocate and map the shared PCI space for the FIB blocks used to
57 * talk to the Adaptec firmware.
60 static int fib_map_alloc(struct aac_dev
*dev
)
63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 dev
->pdev
, dev
->max_fib_size
, dev
->scsi_host_ptr
->can_queue
,
65 AAC_NUM_MGT_FIB
, &dev
->hw_fib_pa
));
66 if((dev
->hw_fib_va
= pci_alloc_consistent(dev
->pdev
, dev
->max_fib_size
67 * (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
),
68 &dev
->hw_fib_pa
))==NULL
)
74 * aac_fib_map_free - free the fib objects
75 * @dev: Adapter to free
77 * Free the PCI mappings and the memory allocated for FIB blocks
81 void aac_fib_map_free(struct aac_dev
*dev
)
83 pci_free_consistent(dev
->pdev
,
84 dev
->max_fib_size
* (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
),
85 dev
->hw_fib_va
, dev
->hw_fib_pa
);
86 dev
->hw_fib_va
= NULL
;
91 * aac_fib_setup - setup the fibs
92 * @dev: Adapter to set up
94 * Allocate the PCI space for the fibs, map it and then intialise the
95 * fib area, the unmapped fib data and also the free list
98 int aac_fib_setup(struct aac_dev
* dev
)
101 struct hw_fib
*hw_fib
;
102 dma_addr_t hw_fib_pa
;
105 while (((i
= fib_map_alloc(dev
)) == -ENOMEM
)
106 && (dev
->scsi_host_ptr
->can_queue
> (64 - AAC_NUM_MGT_FIB
))) {
107 dev
->init
->MaxIoCommands
= cpu_to_le32((dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
) >> 1);
108 dev
->scsi_host_ptr
->can_queue
= le32_to_cpu(dev
->init
->MaxIoCommands
) - AAC_NUM_MGT_FIB
;
113 hw_fib
= dev
->hw_fib_va
;
114 hw_fib_pa
= dev
->hw_fib_pa
;
115 memset(hw_fib
, 0, dev
->max_fib_size
* (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
));
117 * Initialise the fibs
119 for (i
= 0, fibptr
= &dev
->fibs
[i
];
120 i
< (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
);
124 fibptr
->hw_fib_va
= hw_fib
;
125 fibptr
->data
= (void *) fibptr
->hw_fib_va
->data
;
126 fibptr
->next
= fibptr
+1; /* Forward chain the fibs */
127 init_MUTEX_LOCKED(&fibptr
->event_wait
);
128 spin_lock_init(&fibptr
->event_lock
);
129 hw_fib
->header
.XferState
= cpu_to_le32(0xffffffff);
130 hw_fib
->header
.SenderSize
= cpu_to_le16(dev
->max_fib_size
);
131 fibptr
->hw_fib_pa
= hw_fib_pa
;
132 hw_fib
= (struct hw_fib
*)((unsigned char *)hw_fib
+ dev
->max_fib_size
);
133 hw_fib_pa
= hw_fib_pa
+ dev
->max_fib_size
;
136 * Add the fib chain to the free list
138 dev
->fibs
[dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
- 1].next
= NULL
;
140 * Enable this to debug out of queue space
142 dev
->free_fib
= &dev
->fibs
[0];
147 * aac_fib_alloc - allocate a fib
148 * @dev: Adapter to allocate the fib for
150 * Allocate a fib from the adapter fib pool. If the pool is empty we
154 struct fib
*aac_fib_alloc(struct aac_dev
*dev
)
158 spin_lock_irqsave(&dev
->fib_lock
, flags
);
159 fibptr
= dev
->free_fib
;
161 spin_unlock_irqrestore(&dev
->fib_lock
, flags
);
164 dev
->free_fib
= fibptr
->next
;
165 spin_unlock_irqrestore(&dev
->fib_lock
, flags
);
167 * Set the proper node type code and node byte size
169 fibptr
->type
= FSAFS_NTC_FIB_CONTEXT
;
170 fibptr
->size
= sizeof(struct fib
);
172 * Null out fields that depend on being zero at the start of
175 fibptr
->hw_fib_va
->header
.XferState
= 0;
177 fibptr
->callback
= NULL
;
178 fibptr
->callback_data
= NULL
;
184 * aac_fib_free - free a fib
185 * @fibptr: fib to free up
187 * Frees up a fib and places it on the appropriate queue
190 void aac_fib_free(struct fib
*fibptr
)
194 spin_lock_irqsave(&fibptr
->dev
->fib_lock
, flags
);
195 if (unlikely(fibptr
->flags
& FIB_CONTEXT_FLAG_TIMED_OUT
))
196 aac_config
.fib_timeouts
++;
197 if (fibptr
->hw_fib_va
->header
.XferState
!= 0) {
198 printk(KERN_WARNING
"aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
200 le32_to_cpu(fibptr
->hw_fib_va
->header
.XferState
));
202 fibptr
->next
= fibptr
->dev
->free_fib
;
203 fibptr
->dev
->free_fib
= fibptr
;
204 spin_unlock_irqrestore(&fibptr
->dev
->fib_lock
, flags
);
208 * aac_fib_init - initialise a fib
209 * @fibptr: The fib to initialize
211 * Set up the generic fib fields ready for use
214 void aac_fib_init(struct fib
*fibptr
)
216 struct hw_fib
*hw_fib
= fibptr
->hw_fib_va
;
218 hw_fib
->header
.StructType
= FIB_MAGIC
;
219 hw_fib
->header
.Size
= cpu_to_le16(fibptr
->dev
->max_fib_size
);
220 hw_fib
->header
.XferState
= cpu_to_le32(HostOwned
| FibInitialized
| FibEmpty
| FastResponseCapable
);
221 hw_fib
->header
.SenderFibAddress
= 0; /* Filled in later if needed */
222 hw_fib
->header
.ReceiverFibAddress
= cpu_to_le32(fibptr
->hw_fib_pa
);
223 hw_fib
->header
.SenderSize
= cpu_to_le16(fibptr
->dev
->max_fib_size
);
227 * fib_deallocate - deallocate a fib
228 * @fibptr: fib to deallocate
230 * Will deallocate and return to the free pool the FIB pointed to by the
234 static void fib_dealloc(struct fib
* fibptr
)
236 struct hw_fib
*hw_fib
= fibptr
->hw_fib_va
;
237 BUG_ON(hw_fib
->header
.StructType
!= FIB_MAGIC
);
238 hw_fib
->header
.XferState
= 0;
242 * Commuication primitives define and support the queuing method we use to
243 * support host to adapter commuication. All queue accesses happen through
244 * these routines and are the only routines which have a knowledge of the
245 * how these queues are implemented.
249 * aac_get_entry - get a queue entry
252 * @entry: Entry return
253 * @index: Index return
254 * @nonotify: notification control
256 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
257 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
261 static int aac_get_entry (struct aac_dev
* dev
, u32 qid
, struct aac_entry
**entry
, u32
* index
, unsigned long *nonotify
)
263 struct aac_queue
* q
;
267 * All of the queues wrap when they reach the end, so we check
268 * to see if they have reached the end and if they have we just
269 * set the index back to zero. This is a wrap. You could or off
270 * the high bits in all updates but this is a bit faster I think.
273 q
= &dev
->queues
->queue
[qid
];
275 idx
= *index
= le32_to_cpu(*(q
->headers
.producer
));
276 /* Interrupt Moderation, only interrupt for first two entries */
277 if (idx
!= le32_to_cpu(*(q
->headers
.consumer
))) {
279 if (qid
== AdapNormCmdQueue
)
280 idx
= ADAP_NORM_CMD_ENTRIES
;
282 idx
= ADAP_NORM_RESP_ENTRIES
;
284 if (idx
!= le32_to_cpu(*(q
->headers
.consumer
)))
288 if (qid
== AdapNormCmdQueue
) {
289 if (*index
>= ADAP_NORM_CMD_ENTRIES
)
290 *index
= 0; /* Wrap to front of the Producer Queue. */
292 if (*index
>= ADAP_NORM_RESP_ENTRIES
)
293 *index
= 0; /* Wrap to front of the Producer Queue. */
297 if ((*index
+ 1) == le32_to_cpu(*(q
->headers
.consumer
))) {
298 printk(KERN_WARNING
"Queue %d full, %u outstanding.\n",
302 *entry
= q
->base
+ *index
;
308 * aac_queue_get - get the next free QE
310 * @index: Returned index
311 * @priority: Priority of fib
312 * @fib: Fib to associate with the queue entry
313 * @wait: Wait if queue full
314 * @fibptr: Driver fib object to go with fib
315 * @nonotify: Don't notify the adapter
317 * Gets the next free QE off the requested priorty adapter command
318 * queue and associates the Fib with the QE. The QE represented by
319 * index is ready to insert on the queue when this routine returns
323 int aac_queue_get(struct aac_dev
* dev
, u32
* index
, u32 qid
, struct hw_fib
* hw_fib
, int wait
, struct fib
* fibptr
, unsigned long *nonotify
)
325 struct aac_entry
* entry
= NULL
;
328 if (qid
== AdapNormCmdQueue
) {
329 /* if no entries wait for some if caller wants to */
330 while (!aac_get_entry(dev
, qid
, &entry
, index
, nonotify
)) {
331 printk(KERN_ERR
"GetEntries failed\n");
334 * Setup queue entry with a command, status and fib mapped
336 entry
->size
= cpu_to_le32(le16_to_cpu(hw_fib
->header
.Size
));
339 while (!aac_get_entry(dev
, qid
, &entry
, index
, nonotify
)) {
340 /* if no entries wait for some if caller wants to */
343 * Setup queue entry with command, status and fib mapped
345 entry
->size
= cpu_to_le32(le16_to_cpu(hw_fib
->header
.Size
));
346 entry
->addr
= hw_fib
->header
.SenderFibAddress
;
347 /* Restore adapters pointer to the FIB */
348 hw_fib
->header
.ReceiverFibAddress
= hw_fib
->header
.SenderFibAddress
; /* Let the adapter now where to find its data */
352 * If MapFib is true than we need to map the Fib and put pointers
353 * in the queue entry.
356 entry
->addr
= cpu_to_le32(fibptr
->hw_fib_pa
);
361 * Define the highest level of host to adapter communication routines.
362 * These routines will support host to adapter FS commuication. These
363 * routines have no knowledge of the commuication method used. This level
364 * sends and receives FIBs. This level has no knowledge of how these FIBs
365 * get passed back and forth.
369 * aac_fib_send - send a fib to the adapter
370 * @command: Command to send
372 * @size: Size of fib data area
373 * @priority: Priority of Fib
374 * @wait: Async/sync select
375 * @reply: True if a reply is wanted
376 * @callback: Called with reply
377 * @callback_data: Passed to callback
379 * Sends the requested FIB to the adapter and optionally will wait for a
380 * response FIB. If the caller does not wish to wait for a response than
381 * an event to wait on must be supplied. This event will be set when a
382 * response FIB is received from the adapter.
385 int aac_fib_send(u16 command
, struct fib
*fibptr
, unsigned long size
,
386 int priority
, int wait
, int reply
, fib_callback callback
,
389 struct aac_dev
* dev
= fibptr
->dev
;
390 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
391 unsigned long flags
= 0;
392 unsigned long qflags
;
394 if (!(hw_fib
->header
.XferState
& cpu_to_le32(HostOwned
)))
397 * There are 5 cases with the wait and reponse requested flags.
398 * The only invalid cases are if the caller requests to wait and
399 * does not request a response and if the caller does not want a
400 * response and the Fib is not allocated from pool. If a response
401 * is not requesed the Fib will just be deallocaed by the DPC
402 * routine when the response comes back from the adapter. No
403 * further processing will be done besides deleting the Fib. We
404 * will have a debug mode where the adapter can notify the host
405 * it had a problem and the host can log that fact.
408 if (wait
&& !reply
) {
410 } else if (!wait
&& reply
) {
411 hw_fib
->header
.XferState
|= cpu_to_le32(Async
| ResponseExpected
);
412 FIB_COUNTER_INCREMENT(aac_config
.AsyncSent
);
413 } else if (!wait
&& !reply
) {
414 hw_fib
->header
.XferState
|= cpu_to_le32(NoResponseExpected
);
415 FIB_COUNTER_INCREMENT(aac_config
.NoResponseSent
);
416 } else if (wait
&& reply
) {
417 hw_fib
->header
.XferState
|= cpu_to_le32(ResponseExpected
);
418 FIB_COUNTER_INCREMENT(aac_config
.NormalSent
);
421 * Map the fib into 32bits by using the fib number
424 hw_fib
->header
.SenderFibAddress
= cpu_to_le32(((u32
)(fibptr
- dev
->fibs
)) << 2);
425 hw_fib
->header
.SenderData
= (u32
)(fibptr
- dev
->fibs
);
427 * Set FIB state to indicate where it came from and if we want a
428 * response from the adapter. Also load the command from the
431 * Map the hw fib pointer as a 32bit value
433 hw_fib
->header
.Command
= cpu_to_le16(command
);
434 hw_fib
->header
.XferState
|= cpu_to_le32(SentFromHost
);
435 fibptr
->hw_fib_va
->header
.Flags
= 0; /* 0 the flags field - internal only*/
437 * Set the size of the Fib we want to send to the adapter
439 hw_fib
->header
.Size
= cpu_to_le16(sizeof(struct aac_fibhdr
) + size
);
440 if (le16_to_cpu(hw_fib
->header
.Size
) > le16_to_cpu(hw_fib
->header
.SenderSize
)) {
444 * Get a queue entry connect the FIB to it and send an notify
445 * the adapter a command is ready.
447 hw_fib
->header
.XferState
|= cpu_to_le32(NormalPriority
);
450 * Fill in the Callback and CallbackContext if we are not
454 fibptr
->callback
= callback
;
455 fibptr
->callback_data
= callback_data
;
456 fibptr
->flags
= FIB_CONTEXT_FLAG
;
461 FIB_COUNTER_INCREMENT(aac_config
.FibsSent
);
463 dprintk((KERN_DEBUG
"Fib contents:.\n"));
464 dprintk((KERN_DEBUG
" Command = %d.\n", le32_to_cpu(hw_fib
->header
.Command
)));
465 dprintk((KERN_DEBUG
" SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount
*)fib_data(fibptr
))->command
)));
466 dprintk((KERN_DEBUG
" XferState = %x.\n", le32_to_cpu(hw_fib
->header
.XferState
)));
467 dprintk((KERN_DEBUG
" hw_fib va being sent=%p\n",fibptr
->hw_fib_va
));
468 dprintk((KERN_DEBUG
" hw_fib pa being sent=%lx\n",(ulong
)fibptr
->hw_fib_pa
));
469 dprintk((KERN_DEBUG
" fib being sent=%p\n",fibptr
));
475 spin_lock_irqsave(&fibptr
->event_lock
, flags
);
476 aac_adapter_deliver(fibptr
);
479 * If the caller wanted us to wait for response wait now.
483 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
484 /* Only set for first known interruptable command */
487 * *VERY* Dangerous to time out a command, the
488 * assumption is made that we have no hope of
489 * functioning because an interrupt routing or other
490 * hardware failure has occurred.
492 unsigned long count
= 36000000L; /* 3 minutes */
493 while (down_trylock(&fibptr
->event_wait
)) {
496 struct aac_queue
* q
= &dev
->queues
->queue
[AdapNormCmdQueue
];
497 spin_lock_irqsave(q
->lock
, qflags
);
499 spin_unlock_irqrestore(q
->lock
, qflags
);
501 printk(KERN_ERR
"aacraid: aac_fib_send: first asynchronous command timed out.\n"
502 "Usually a result of a PCI interrupt routing problem;\n"
503 "update mother board BIOS or consider utilizing one of\n"
504 "the SAFE mode kernel options (acpi, apic etc)\n");
508 if ((blink
= aac_adapter_check_health(dev
)) > 0) {
510 printk(KERN_ERR
"aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
511 "Usually a result of a serious unrecoverable hardware problem\n",
518 } else if (down_interruptible(&fibptr
->event_wait
)) {
520 up(&fibptr
->event_wait
);
522 spin_lock_irqsave(&fibptr
->event_lock
, flags
);
523 if ((fibptr
->done
== 0) || (fibptr
->done
== 2)) {
524 fibptr
->done
= 2; /* Tell interrupt we aborted */
525 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
528 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
529 BUG_ON(fibptr
->done
== 0);
531 if(unlikely(fibptr
->flags
& FIB_CONTEXT_FLAG_TIMED_OUT
))
536 * If the user does not want a response than return success otherwise
546 * aac_consumer_get - get the top of the queue
549 * @entry: Return entry
551 * Will return a pointer to the entry on the top of the queue requested that
552 * we are a consumer of, and return the address of the queue entry. It does
553 * not change the state of the queue.
556 int aac_consumer_get(struct aac_dev
* dev
, struct aac_queue
* q
, struct aac_entry
**entry
)
560 if (le32_to_cpu(*q
->headers
.producer
) == le32_to_cpu(*q
->headers
.consumer
)) {
564 * The consumer index must be wrapped if we have reached
565 * the end of the queue, else we just use the entry
566 * pointed to by the header index
568 if (le32_to_cpu(*q
->headers
.consumer
) >= q
->entries
)
571 index
= le32_to_cpu(*q
->headers
.consumer
);
572 *entry
= q
->base
+ index
;
579 * aac_consumer_free - free consumer entry
584 * Frees up the current top of the queue we are a consumer of. If the
585 * queue was full notify the producer that the queue is no longer full.
588 void aac_consumer_free(struct aac_dev
* dev
, struct aac_queue
*q
, u32 qid
)
593 if ((le32_to_cpu(*q
->headers
.producer
)+1) == le32_to_cpu(*q
->headers
.consumer
))
596 if (le32_to_cpu(*q
->headers
.consumer
) >= q
->entries
)
597 *q
->headers
.consumer
= cpu_to_le32(1);
599 le32_add_cpu(q
->headers
.consumer
, 1);
604 case HostNormCmdQueue
:
605 notify
= HostNormCmdNotFull
;
607 case HostNormRespQueue
:
608 notify
= HostNormRespNotFull
;
614 aac_adapter_notify(dev
, notify
);
619 * aac_fib_adapter_complete - complete adapter issued fib
620 * @fibptr: fib to complete
623 * Will do all necessary work to complete a FIB that was sent from
627 int aac_fib_adapter_complete(struct fib
*fibptr
, unsigned short size
)
629 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
630 struct aac_dev
* dev
= fibptr
->dev
;
631 struct aac_queue
* q
;
632 unsigned long nointr
= 0;
633 unsigned long qflags
;
635 if (hw_fib
->header
.XferState
== 0) {
636 if (dev
->comm_interface
== AAC_COMM_MESSAGE
)
641 * If we plan to do anything check the structure type first.
643 if (hw_fib
->header
.StructType
!= FIB_MAGIC
) {
644 if (dev
->comm_interface
== AAC_COMM_MESSAGE
)
649 * This block handles the case where the adapter had sent us a
650 * command and we have finished processing the command. We
651 * call completeFib when we are done processing the command
652 * and want to send a response back to the adapter. This will
653 * send the completed cdb to the adapter.
655 if (hw_fib
->header
.XferState
& cpu_to_le32(SentFromAdapter
)) {
656 if (dev
->comm_interface
== AAC_COMM_MESSAGE
) {
660 hw_fib
->header
.XferState
|= cpu_to_le32(HostProcessed
);
662 size
+= sizeof(struct aac_fibhdr
);
663 if (size
> le16_to_cpu(hw_fib
->header
.SenderSize
))
665 hw_fib
->header
.Size
= cpu_to_le16(size
);
667 q
= &dev
->queues
->queue
[AdapNormRespQueue
];
668 spin_lock_irqsave(q
->lock
, qflags
);
669 aac_queue_get(dev
, &index
, AdapNormRespQueue
, hw_fib
, 1, NULL
, &nointr
);
670 *(q
->headers
.producer
) = cpu_to_le32(index
+ 1);
671 spin_unlock_irqrestore(q
->lock
, qflags
);
672 if (!(nointr
& (int)aac_config
.irq_mod
))
673 aac_adapter_notify(dev
, AdapNormRespQueue
);
676 printk(KERN_WARNING
"aac_fib_adapter_complete: "
677 "Unknown xferstate detected.\n");
684 * aac_fib_complete - fib completion handler
685 * @fib: FIB to complete
687 * Will do all necessary work to complete a FIB.
690 int aac_fib_complete(struct fib
*fibptr
)
692 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
695 * Check for a fib which has already been completed
698 if (hw_fib
->header
.XferState
== 0)
701 * If we plan to do anything check the structure type first.
704 if (hw_fib
->header
.StructType
!= FIB_MAGIC
)
707 * This block completes a cdb which orginated on the host and we
708 * just need to deallocate the cdb or reinit it. At this point the
709 * command is complete that we had sent to the adapter and this
710 * cdb could be reused.
712 if((hw_fib
->header
.XferState
& cpu_to_le32(SentFromHost
)) &&
713 (hw_fib
->header
.XferState
& cpu_to_le32(AdapterProcessed
)))
717 else if(hw_fib
->header
.XferState
& cpu_to_le32(SentFromHost
))
720 * This handles the case when the host has aborted the I/O
721 * to the adapter because the adapter is not responding
724 } else if(hw_fib
->header
.XferState
& cpu_to_le32(HostOwned
)) {
733 * aac_printf - handle printf from firmware
737 * Print a message passed to us by the controller firmware on the
741 void aac_printf(struct aac_dev
*dev
, u32 val
)
743 char *cp
= dev
->printfbuf
;
744 if (dev
->printf_enabled
)
746 int length
= val
& 0xffff;
747 int level
= (val
>> 16) & 0xffff;
750 * The size of the printfbuf is set in port.c
751 * There is no variable or define for it
757 if (level
== LOG_AAC_HIGH_ERROR
)
758 printk(KERN_WARNING
"%s:%s", dev
->name
, cp
);
760 printk(KERN_INFO
"%s:%s", dev
->name
, cp
);
767 * aac_handle_aif - Handle a message from the firmware
768 * @dev: Which adapter this fib is from
769 * @fibptr: Pointer to fibptr from adapter
771 * This routine handles a driver notify fib from the adapter and
772 * dispatches it to the appropriate routine for handling.
775 #define AIF_SNIFF_TIMEOUT (30*HZ)
776 static void aac_handle_aif(struct aac_dev
* dev
, struct fib
* fibptr
)
778 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
779 struct aac_aifcmd
* aifcmd
= (struct aac_aifcmd
*)hw_fib
->data
;
780 u32 channel
, id
, lun
, container
;
781 struct scsi_device
*device
;
787 } device_config_needed
= NOTHING
;
789 /* Sniff for container changes */
791 if (!dev
|| !dev
->fsa_dev
)
793 container
= channel
= id
= lun
= (u32
)-1;
796 * We have set this up to try and minimize the number of
797 * re-configures that take place. As a result of this when
798 * certain AIF's come in we will set a flag waiting for another
799 * type of AIF before setting the re-config flag.
801 switch (le32_to_cpu(aifcmd
->command
)) {
802 case AifCmdDriverNotify
:
803 switch (le32_to_cpu(((__le32
*)aifcmd
->data
)[0])) {
805 * Morph or Expand complete
807 case AifDenMorphComplete
:
808 case AifDenVolumeExtendComplete
:
809 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
810 if (container
>= dev
->maximum_num_containers
)
814 * Find the scsi_device associated with the SCSI
815 * address. Make sure we have the right array, and if
816 * so set the flag to initiate a new re-config once we
817 * see an AifEnConfigChange AIF come through.
820 if ((dev
!= NULL
) && (dev
->scsi_host_ptr
!= NULL
)) {
821 device
= scsi_device_lookup(dev
->scsi_host_ptr
,
822 CONTAINER_TO_CHANNEL(container
),
823 CONTAINER_TO_ID(container
),
824 CONTAINER_TO_LUN(container
));
826 dev
->fsa_dev
[container
].config_needed
= CHANGE
;
827 dev
->fsa_dev
[container
].config_waiting_on
= AifEnConfigChange
;
828 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
829 scsi_device_put(device
);
835 * If we are waiting on something and this happens to be
836 * that thing then set the re-configure flag.
838 if (container
!= (u32
)-1) {
839 if (container
>= dev
->maximum_num_containers
)
841 if ((dev
->fsa_dev
[container
].config_waiting_on
==
842 le32_to_cpu(*(__le32
*)aifcmd
->data
)) &&
843 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
844 dev
->fsa_dev
[container
].config_waiting_on
= 0;
845 } else for (container
= 0;
846 container
< dev
->maximum_num_containers
; ++container
) {
847 if ((dev
->fsa_dev
[container
].config_waiting_on
==
848 le32_to_cpu(*(__le32
*)aifcmd
->data
)) &&
849 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
850 dev
->fsa_dev
[container
].config_waiting_on
= 0;
854 case AifCmdEventNotify
:
855 switch (le32_to_cpu(((__le32
*)aifcmd
->data
)[0])) {
856 case AifEnBatteryEvent
:
857 dev
->cache_protected
=
858 (((__le32
*)aifcmd
->data
)[1] == cpu_to_le32(3));
863 case AifEnAddContainer
:
864 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
865 if (container
>= dev
->maximum_num_containers
)
867 dev
->fsa_dev
[container
].config_needed
= ADD
;
868 dev
->fsa_dev
[container
].config_waiting_on
=
870 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
876 case AifEnDeleteContainer
:
877 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
878 if (container
>= dev
->maximum_num_containers
)
880 dev
->fsa_dev
[container
].config_needed
= DELETE
;
881 dev
->fsa_dev
[container
].config_waiting_on
=
883 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
887 * Container change detected. If we currently are not
888 * waiting on something else, setup to wait on a Config Change.
890 case AifEnContainerChange
:
891 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
892 if (container
>= dev
->maximum_num_containers
)
894 if (dev
->fsa_dev
[container
].config_waiting_on
&&
895 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
897 dev
->fsa_dev
[container
].config_needed
= CHANGE
;
898 dev
->fsa_dev
[container
].config_waiting_on
=
900 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
903 case AifEnConfigChange
:
907 case AifEnDeleteJBOD
:
908 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
909 if ((container
>> 28)) {
913 channel
= (container
>> 24) & 0xF;
914 if (channel
>= dev
->maximum_num_channels
) {
918 id
= container
& 0xFFFF;
919 if (id
>= dev
->maximum_num_physicals
) {
923 lun
= (container
>> 16) & 0xFF;
925 channel
= aac_phys_to_logical(channel
);
926 device_config_needed
=
927 (((__le32
*)aifcmd
->data
)[0] ==
928 cpu_to_le32(AifEnAddJBOD
)) ? ADD
: DELETE
;
931 case AifEnEnclosureManagement
:
933 * If in JBOD mode, automatic exposure of new
934 * physical target to be suppressed until configured.
938 switch (le32_to_cpu(((__le32
*)aifcmd
->data
)[3])) {
939 case EM_DRIVE_INSERTION
:
940 case EM_DRIVE_REMOVAL
:
941 container
= le32_to_cpu(
942 ((__le32
*)aifcmd
->data
)[2]);
943 if ((container
>> 28)) {
947 channel
= (container
>> 24) & 0xF;
948 if (channel
>= dev
->maximum_num_channels
) {
952 id
= container
& 0xFFFF;
953 lun
= (container
>> 16) & 0xFF;
955 if (id
>= dev
->maximum_num_physicals
) {
957 if ((0x2000 <= id
) || lun
|| channel
||
958 ((channel
= (id
>> 7) & 0x3F) >=
959 dev
->maximum_num_channels
))
964 channel
= aac_phys_to_logical(channel
);
965 device_config_needed
=
966 (((__le32
*)aifcmd
->data
)[3]
967 == cpu_to_le32(EM_DRIVE_INSERTION
)) ?
975 * If we are waiting on something and this happens to be
976 * that thing then set the re-configure flag.
978 if (container
!= (u32
)-1) {
979 if (container
>= dev
->maximum_num_containers
)
981 if ((dev
->fsa_dev
[container
].config_waiting_on
==
982 le32_to_cpu(*(__le32
*)aifcmd
->data
)) &&
983 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
984 dev
->fsa_dev
[container
].config_waiting_on
= 0;
985 } else for (container
= 0;
986 container
< dev
->maximum_num_containers
; ++container
) {
987 if ((dev
->fsa_dev
[container
].config_waiting_on
==
988 le32_to_cpu(*(__le32
*)aifcmd
->data
)) &&
989 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
990 dev
->fsa_dev
[container
].config_waiting_on
= 0;
994 case AifCmdJobProgress
:
996 * These are job progress AIF's. When a Clear is being
997 * done on a container it is initially created then hidden from
998 * the OS. When the clear completes we don't get a config
999 * change so we monitor the job status complete on a clear then
1000 * wait for a container change.
1003 if (((__le32
*)aifcmd
->data
)[1] == cpu_to_le32(AifJobCtrZero
) &&
1004 (((__le32
*)aifcmd
->data
)[6] == ((__le32
*)aifcmd
->data
)[5] ||
1005 ((__le32
*)aifcmd
->data
)[4] == cpu_to_le32(AifJobStsSuccess
))) {
1007 container
< dev
->maximum_num_containers
;
1010 * Stomp on all config sequencing for all
1013 dev
->fsa_dev
[container
].config_waiting_on
=
1014 AifEnContainerChange
;
1015 dev
->fsa_dev
[container
].config_needed
= ADD
;
1016 dev
->fsa_dev
[container
].config_waiting_stamp
=
1020 if (((__le32
*)aifcmd
->data
)[1] == cpu_to_le32(AifJobCtrZero
) &&
1021 ((__le32
*)aifcmd
->data
)[6] == 0 &&
1022 ((__le32
*)aifcmd
->data
)[4] == cpu_to_le32(AifJobStsRunning
)) {
1024 container
< dev
->maximum_num_containers
;
1027 * Stomp on all config sequencing for all
1030 dev
->fsa_dev
[container
].config_waiting_on
=
1031 AifEnContainerChange
;
1032 dev
->fsa_dev
[container
].config_needed
= DELETE
;
1033 dev
->fsa_dev
[container
].config_waiting_stamp
=
1042 if (device_config_needed
== NOTHING
)
1043 for (; container
< dev
->maximum_num_containers
; ++container
) {
1044 if ((dev
->fsa_dev
[container
].config_waiting_on
== 0) &&
1045 (dev
->fsa_dev
[container
].config_needed
!= NOTHING
) &&
1046 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
)) {
1047 device_config_needed
=
1048 dev
->fsa_dev
[container
].config_needed
;
1049 dev
->fsa_dev
[container
].config_needed
= NOTHING
;
1050 channel
= CONTAINER_TO_CHANNEL(container
);
1051 id
= CONTAINER_TO_ID(container
);
1052 lun
= CONTAINER_TO_LUN(container
);
1056 if (device_config_needed
== NOTHING
)
1060 * If we decided that a re-configuration needs to be done,
1061 * schedule it here on the way out the door, please close the door
1066 * Find the scsi_device associated with the SCSI address,
1067 * and mark it as changed, invalidating the cache. This deals
1068 * with changes to existing device IDs.
1071 if (!dev
|| !dev
->scsi_host_ptr
)
1074 * force reload of disk info via aac_probe_container
1076 if ((channel
== CONTAINER_CHANNEL
) &&
1077 (device_config_needed
!= NOTHING
)) {
1078 if (dev
->fsa_dev
[container
].valid
== 1)
1079 dev
->fsa_dev
[container
].valid
= 2;
1080 aac_probe_container(dev
, container
);
1082 device
= scsi_device_lookup(dev
->scsi_host_ptr
, channel
, id
, lun
);
1084 switch (device_config_needed
) {
1086 if (scsi_device_online(device
)) {
1087 scsi_device_set_state(device
, SDEV_OFFLINE
);
1088 sdev_printk(KERN_INFO
, device
,
1089 "Device offlined - %s\n",
1090 (channel
== CONTAINER_CHANNEL
) ?
1092 "enclosure services event");
1096 if (!scsi_device_online(device
)) {
1097 sdev_printk(KERN_INFO
, device
,
1098 "Device online - %s\n",
1099 (channel
== CONTAINER_CHANNEL
) ?
1101 "enclosure services event");
1102 scsi_device_set_state(device
, SDEV_RUNNING
);
1106 if ((channel
== CONTAINER_CHANNEL
)
1107 && (!dev
->fsa_dev
[container
].valid
)) {
1108 if (!scsi_device_online(device
))
1110 scsi_device_set_state(device
, SDEV_OFFLINE
);
1111 sdev_printk(KERN_INFO
, device
,
1112 "Device offlined - %s\n",
1116 scsi_rescan_device(&device
->sdev_gendev
);
1121 scsi_device_put(device
);
1122 device_config_needed
= NOTHING
;
1124 if (device_config_needed
== ADD
)
1125 scsi_add_device(dev
->scsi_host_ptr
, channel
, id
, lun
);
1126 if (channel
== CONTAINER_CHANNEL
) {
1128 device_config_needed
= NOTHING
;
1133 static int _aac_reset_adapter(struct aac_dev
*aac
, int forced
)
1137 struct Scsi_Host
*host
;
1138 struct scsi_device
*dev
;
1139 struct scsi_cmnd
*command
;
1140 struct scsi_cmnd
*command_list
;
1145 * - host is locked, unless called by the aacraid thread.
1146 * (a matter of convenience, due to legacy issues surrounding
1147 * eh_host_adapter_reset).
1148 * - in_reset is asserted, so no new i/o is getting to the
1150 * - The card is dead, or will be very shortly ;-/ so no new
1151 * commands are completing in the interrupt service.
1153 host
= aac
->scsi_host_ptr
;
1154 scsi_block_requests(host
);
1155 aac_adapter_disable_int(aac
);
1156 if (aac
->thread
->pid
!= current
->pid
) {
1157 spin_unlock_irq(host
->host_lock
);
1158 kthread_stop(aac
->thread
);
1163 * If a positive health, means in a known DEAD PANIC
1164 * state and the adapter could be reset to `try again'.
1166 retval
= aac_adapter_restart(aac
, forced
? 0 : aac_adapter_check_health(aac
));
1172 * Loop through the fibs, close the synchronous FIBS
1174 for (retval
= 1, index
= 0; index
< (aac
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
); index
++) {
1175 struct fib
*fib
= &aac
->fibs
[index
];
1176 if (!(fib
->hw_fib_va
->header
.XferState
& cpu_to_le32(NoResponseExpected
| Async
)) &&
1177 (fib
->hw_fib_va
->header
.XferState
& cpu_to_le32(ResponseExpected
))) {
1178 unsigned long flagv
;
1179 spin_lock_irqsave(&fib
->event_lock
, flagv
);
1180 up(&fib
->event_wait
);
1181 spin_unlock_irqrestore(&fib
->event_lock
, flagv
);
1186 /* Give some extra time for ioctls to complete. */
1189 index
= aac
->cardtype
;
1192 * Re-initialize the adapter, first free resources, then carefully
1193 * apply the initialization sequence to come back again. Only risk
1194 * is a change in Firmware dropping cache, it is assumed the caller
1195 * will ensure that i/o is queisced and the card is flushed in that
1198 aac_fib_map_free(aac
);
1199 pci_free_consistent(aac
->pdev
, aac
->comm_size
, aac
->comm_addr
, aac
->comm_phys
);
1200 aac
->comm_addr
= NULL
;
1204 free_irq(aac
->pdev
->irq
, aac
);
1205 kfree(aac
->fsa_dev
);
1206 aac
->fsa_dev
= NULL
;
1207 quirks
= aac_get_driver_ident(index
)->quirks
;
1208 if (quirks
& AAC_QUIRK_31BIT
) {
1209 if (((retval
= pci_set_dma_mask(aac
->pdev
, DMA_BIT_MASK(31)))) ||
1210 ((retval
= pci_set_consistent_dma_mask(aac
->pdev
, DMA_BIT_MASK(31)))))
1213 if (((retval
= pci_set_dma_mask(aac
->pdev
, DMA_BIT_MASK(32)))) ||
1214 ((retval
= pci_set_consistent_dma_mask(aac
->pdev
, DMA_BIT_MASK(32)))))
1217 if ((retval
= (*(aac_get_driver_ident(index
)->init
))(aac
)))
1219 if (quirks
& AAC_QUIRK_31BIT
)
1220 if ((retval
= pci_set_dma_mask(aac
->pdev
, DMA_BIT_MASK(32))))
1223 aac
->thread
= kthread_run(aac_command_thread
, aac
, aac
->name
);
1224 if (IS_ERR(aac
->thread
)) {
1225 retval
= PTR_ERR(aac
->thread
);
1229 (void)aac_get_adapter_info(aac
);
1230 if ((quirks
& AAC_QUIRK_34SG
) && (host
->sg_tablesize
> 34)) {
1231 host
->sg_tablesize
= 34;
1232 host
->max_sectors
= (host
->sg_tablesize
* 8) + 112;
1234 if ((quirks
& AAC_QUIRK_17SG
) && (host
->sg_tablesize
> 17)) {
1235 host
->sg_tablesize
= 17;
1236 host
->max_sectors
= (host
->sg_tablesize
* 8) + 112;
1238 aac_get_config_status(aac
, 1);
1239 aac_get_containers(aac
);
1241 * This is where the assumption that the Adapter is quiesced
1244 command_list
= NULL
;
1245 __shost_for_each_device(dev
, host
) {
1246 unsigned long flags
;
1247 spin_lock_irqsave(&dev
->list_lock
, flags
);
1248 list_for_each_entry(command
, &dev
->cmd_list
, list
)
1249 if (command
->SCp
.phase
== AAC_OWNER_FIRMWARE
) {
1250 command
->SCp
.buffer
= (struct scatterlist
*)command_list
;
1251 command_list
= command
;
1253 spin_unlock_irqrestore(&dev
->list_lock
, flags
);
1255 while ((command
= command_list
)) {
1256 command_list
= (struct scsi_cmnd
*)command
->SCp
.buffer
;
1257 command
->SCp
.buffer
= NULL
;
1258 command
->result
= DID_OK
<< 16
1259 | COMMAND_COMPLETE
<< 8
1260 | SAM_STAT_TASK_SET_FULL
;
1261 command
->SCp
.phase
= AAC_OWNER_ERROR_HANDLER
;
1262 command
->scsi_done(command
);
1268 scsi_unblock_requests(host
);
1270 spin_lock_irq(host
->host_lock
);
1275 int aac_reset_adapter(struct aac_dev
* aac
, int forced
)
1277 unsigned long flagv
= 0;
1279 struct Scsi_Host
* host
;
1281 if (spin_trylock_irqsave(&aac
->fib_lock
, flagv
) == 0)
1284 if (aac
->in_reset
) {
1285 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1289 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1292 * Wait for all commands to complete to this specific
1293 * target (block maximum 60 seconds). Although not necessary,
1294 * it does make us a good storage citizen.
1296 host
= aac
->scsi_host_ptr
;
1297 scsi_block_requests(host
);
1298 if (forced
< 2) for (retval
= 60; retval
; --retval
) {
1299 struct scsi_device
* dev
;
1300 struct scsi_cmnd
* command
;
1303 __shost_for_each_device(dev
, host
) {
1304 spin_lock_irqsave(&dev
->list_lock
, flagv
);
1305 list_for_each_entry(command
, &dev
->cmd_list
, list
) {
1306 if (command
->SCp
.phase
== AAC_OWNER_FIRMWARE
) {
1311 spin_unlock_irqrestore(&dev
->list_lock
, flagv
);
1317 * We can exit If all the commands are complete
1324 /* Quiesce build, flush cache, write through mode */
1326 aac_send_shutdown(aac
);
1327 spin_lock_irqsave(host
->host_lock
, flagv
);
1328 retval
= _aac_reset_adapter(aac
, forced
? forced
: ((aac_check_reset
!= 0) && (aac_check_reset
!= 1)));
1329 spin_unlock_irqrestore(host
->host_lock
, flagv
);
1331 if ((forced
< 2) && (retval
== -ENODEV
)) {
1332 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1333 struct fib
* fibctx
= aac_fib_alloc(aac
);
1335 struct aac_pause
*cmd
;
1338 aac_fib_init(fibctx
);
1340 cmd
= (struct aac_pause
*) fib_data(fibctx
);
1342 cmd
->command
= cpu_to_le32(VM_ContainerConfig
);
1343 cmd
->type
= cpu_to_le32(CT_PAUSE_IO
);
1344 cmd
->timeout
= cpu_to_le32(1);
1345 cmd
->min
= cpu_to_le32(1);
1346 cmd
->noRescan
= cpu_to_le32(1);
1347 cmd
->count
= cpu_to_le32(0);
1349 status
= aac_fib_send(ContainerCommand
,
1351 sizeof(struct aac_pause
),
1353 -2 /* Timeout silently */, 1,
1357 aac_fib_complete(fibctx
);
1358 aac_fib_free(fibctx
);
1365 int aac_check_health(struct aac_dev
* aac
)
1368 unsigned long time_now
, flagv
= 0;
1369 struct list_head
* entry
;
1370 struct Scsi_Host
* host
;
1372 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1373 if (spin_trylock_irqsave(&aac
->fib_lock
, flagv
) == 0)
1376 if (aac
->in_reset
|| !(BlinkLED
= aac_adapter_check_health(aac
))) {
1377 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1384 * aac_aifcmd.command = AifCmdEventNotify = 1
1385 * aac_aifcmd.seqnum = 0xFFFFFFFF
1386 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1387 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1388 * aac.aifcmd.data[2] = AifHighPriority = 3
1389 * aac.aifcmd.data[3] = BlinkLED
1392 time_now
= jiffies
/HZ
;
1393 entry
= aac
->fib_list
.next
;
1396 * For each Context that is on the
1397 * fibctxList, make a copy of the
1398 * fib, and then set the event to wake up the
1399 * thread that is waiting for it.
1401 while (entry
!= &aac
->fib_list
) {
1403 * Extract the fibctx
1405 struct aac_fib_context
*fibctx
= list_entry(entry
, struct aac_fib_context
, next
);
1406 struct hw_fib
* hw_fib
;
1409 * Check if the queue is getting
1412 if (fibctx
->count
> 20) {
1414 * It's *not* jiffies folks,
1415 * but jiffies / HZ, so do not
1418 u32 time_last
= fibctx
->jiffies
;
1420 * Has it been > 2 minutes
1421 * since the last read off
1424 if ((time_now
- time_last
) > aif_timeout
) {
1425 entry
= entry
->next
;
1426 aac_close_fib_context(aac
, fibctx
);
1431 * Warning: no sleep allowed while
1434 hw_fib
= kzalloc(sizeof(struct hw_fib
), GFP_ATOMIC
);
1435 fib
= kzalloc(sizeof(struct fib
), GFP_ATOMIC
);
1436 if (fib
&& hw_fib
) {
1437 struct aac_aifcmd
* aif
;
1439 fib
->hw_fib_va
= hw_fib
;
1442 fib
->type
= FSAFS_NTC_FIB_CONTEXT
;
1443 fib
->size
= sizeof (struct fib
);
1444 fib
->data
= hw_fib
->data
;
1445 aif
= (struct aac_aifcmd
*)hw_fib
->data
;
1446 aif
->command
= cpu_to_le32(AifCmdEventNotify
);
1447 aif
->seqnum
= cpu_to_le32(0xFFFFFFFF);
1448 ((__le32
*)aif
->data
)[0] = cpu_to_le32(AifEnExpEvent
);
1449 ((__le32
*)aif
->data
)[1] = cpu_to_le32(AifExeFirmwarePanic
);
1450 ((__le32
*)aif
->data
)[2] = cpu_to_le32(AifHighPriority
);
1451 ((__le32
*)aif
->data
)[3] = cpu_to_le32(BlinkLED
);
1454 * Put the FIB onto the
1457 list_add_tail(&fib
->fiblink
, &fibctx
->fib_list
);
1460 * Set the event to wake up the
1461 * thread that will waiting.
1463 up(&fibctx
->wait_sem
);
1465 printk(KERN_WARNING
"aifd: didn't allocate NewFib.\n");
1469 entry
= entry
->next
;
1472 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1475 printk(KERN_ERR
"%s: Host adapter dead %d\n", aac
->name
, BlinkLED
);
1479 printk(KERN_ERR
"%s: Host adapter BLINK LED 0x%x\n", aac
->name
, BlinkLED
);
1481 if (!aac_check_reset
|| ((aac_check_reset
== 1) &&
1482 (aac
->supplement_adapter_info
.SupportedOptions2
&
1483 AAC_OPTION_IGNORE_RESET
)))
1485 host
= aac
->scsi_host_ptr
;
1486 if (aac
->thread
->pid
!= current
->pid
)
1487 spin_lock_irqsave(host
->host_lock
, flagv
);
1488 BlinkLED
= _aac_reset_adapter(aac
, aac_check_reset
!= 1);
1489 if (aac
->thread
->pid
!= current
->pid
)
1490 spin_unlock_irqrestore(host
->host_lock
, flagv
);
1500 * aac_command_thread - command processing thread
1501 * @dev: Adapter to monitor
1503 * Waits on the commandready event in it's queue. When the event gets set
1504 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1505 * until the queue is empty. When the queue is empty it will wait for
1509 int aac_command_thread(void *data
)
1511 struct aac_dev
*dev
= data
;
1512 struct hw_fib
*hw_fib
, *hw_newfib
;
1513 struct fib
*fib
, *newfib
;
1514 struct aac_fib_context
*fibctx
;
1515 unsigned long flags
;
1516 DECLARE_WAITQUEUE(wait
, current
);
1517 unsigned long next_jiffies
= jiffies
+ HZ
;
1518 unsigned long next_check_jiffies
= next_jiffies
;
1519 long difference
= HZ
;
1522 * We can only have one thread per adapter for AIF's.
1524 if (dev
->aif_thread
)
1528 * Let the DPC know it has a place to send the AIF's to.
1530 dev
->aif_thread
= 1;
1531 add_wait_queue(&dev
->queues
->queue
[HostNormCmdQueue
].cmdready
, &wait
);
1532 set_current_state(TASK_INTERRUPTIBLE
);
1533 dprintk ((KERN_INFO
"aac_command_thread start\n"));
1535 spin_lock_irqsave(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1536 while(!list_empty(&(dev
->queues
->queue
[HostNormCmdQueue
].cmdq
))) {
1537 struct list_head
*entry
;
1538 struct aac_aifcmd
* aifcmd
;
1540 set_current_state(TASK_RUNNING
);
1542 entry
= dev
->queues
->queue
[HostNormCmdQueue
].cmdq
.next
;
1545 spin_unlock_irqrestore(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1546 fib
= list_entry(entry
, struct fib
, fiblink
);
1548 * We will process the FIB here or pass it to a
1549 * worker thread that is TBD. We Really can't
1550 * do anything at this point since we don't have
1551 * anything defined for this thread to do.
1553 hw_fib
= fib
->hw_fib_va
;
1554 memset(fib
, 0, sizeof(struct fib
));
1555 fib
->type
= FSAFS_NTC_FIB_CONTEXT
;
1556 fib
->size
= sizeof(struct fib
);
1557 fib
->hw_fib_va
= hw_fib
;
1558 fib
->data
= hw_fib
->data
;
1561 * We only handle AifRequest fibs from the adapter.
1563 aifcmd
= (struct aac_aifcmd
*) hw_fib
->data
;
1564 if (aifcmd
->command
== cpu_to_le32(AifCmdDriverNotify
)) {
1565 /* Handle Driver Notify Events */
1566 aac_handle_aif(dev
, fib
);
1567 *(__le32
*)hw_fib
->data
= cpu_to_le32(ST_OK
);
1568 aac_fib_adapter_complete(fib
, (u16
)sizeof(u32
));
1570 /* The u32 here is important and intended. We are using
1571 32bit wrapping time to fit the adapter field */
1573 u32 time_now
, time_last
;
1574 unsigned long flagv
;
1576 struct hw_fib
** hw_fib_pool
, ** hw_fib_p
;
1577 struct fib
** fib_pool
, ** fib_p
;
1580 if ((aifcmd
->command
==
1581 cpu_to_le32(AifCmdEventNotify
)) ||
1583 cpu_to_le32(AifCmdJobProgress
))) {
1584 aac_handle_aif(dev
, fib
);
1587 time_now
= jiffies
/HZ
;
1590 * Warning: no sleep allowed while
1591 * holding spinlock. We take the estimate
1592 * and pre-allocate a set of fibs outside the
1595 num
= le32_to_cpu(dev
->init
->AdapterFibsSize
)
1596 / sizeof(struct hw_fib
); /* some extra */
1597 spin_lock_irqsave(&dev
->fib_lock
, flagv
);
1598 entry
= dev
->fib_list
.next
;
1599 while (entry
!= &dev
->fib_list
) {
1600 entry
= entry
->next
;
1603 spin_unlock_irqrestore(&dev
->fib_lock
, flagv
);
1607 && ((hw_fib_pool
= kmalloc(sizeof(struct hw_fib
*) * num
, GFP_KERNEL
)))
1608 && ((fib_pool
= kmalloc(sizeof(struct fib
*) * num
, GFP_KERNEL
)))) {
1609 hw_fib_p
= hw_fib_pool
;
1611 while (hw_fib_p
< &hw_fib_pool
[num
]) {
1612 if (!(*(hw_fib_p
++) = kmalloc(sizeof(struct hw_fib
), GFP_KERNEL
))) {
1616 if (!(*(fib_p
++) = kmalloc(sizeof(struct fib
), GFP_KERNEL
))) {
1617 kfree(*(--hw_fib_p
));
1621 if ((num
= hw_fib_p
- hw_fib_pool
) == 0) {
1631 spin_lock_irqsave(&dev
->fib_lock
, flagv
);
1632 entry
= dev
->fib_list
.next
;
1634 * For each Context that is on the
1635 * fibctxList, make a copy of the
1636 * fib, and then set the event to wake up the
1637 * thread that is waiting for it.
1639 hw_fib_p
= hw_fib_pool
;
1641 while (entry
!= &dev
->fib_list
) {
1643 * Extract the fibctx
1645 fibctx
= list_entry(entry
, struct aac_fib_context
, next
);
1647 * Check if the queue is getting
1650 if (fibctx
->count
> 20)
1653 * It's *not* jiffies folks,
1654 * but jiffies / HZ so do not
1657 time_last
= fibctx
->jiffies
;
1659 * Has it been > 2 minutes
1660 * since the last read off
1663 if ((time_now
- time_last
) > aif_timeout
) {
1664 entry
= entry
->next
;
1665 aac_close_fib_context(dev
, fibctx
);
1670 * Warning: no sleep allowed while
1673 if (hw_fib_p
< &hw_fib_pool
[num
]) {
1674 hw_newfib
= *hw_fib_p
;
1675 *(hw_fib_p
++) = NULL
;
1679 * Make the copy of the FIB
1681 memcpy(hw_newfib
, hw_fib
, sizeof(struct hw_fib
));
1682 memcpy(newfib
, fib
, sizeof(struct fib
));
1683 newfib
->hw_fib_va
= hw_newfib
;
1685 * Put the FIB onto the
1688 list_add_tail(&newfib
->fiblink
, &fibctx
->fib_list
);
1691 * Set the event to wake up the
1692 * thread that is waiting.
1694 up(&fibctx
->wait_sem
);
1696 printk(KERN_WARNING
"aifd: didn't allocate NewFib.\n");
1698 entry
= entry
->next
;
1701 * Set the status of this FIB
1703 *(__le32
*)hw_fib
->data
= cpu_to_le32(ST_OK
);
1704 aac_fib_adapter_complete(fib
, sizeof(u32
));
1705 spin_unlock_irqrestore(&dev
->fib_lock
, flagv
);
1706 /* Free up the remaining resources */
1707 hw_fib_p
= hw_fib_pool
;
1709 while (hw_fib_p
< &hw_fib_pool
[num
]) {
1719 spin_lock_irqsave(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1722 * There are no more AIF's
1724 spin_unlock_irqrestore(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1727 * Background activity
1729 if ((time_before(next_check_jiffies
,next_jiffies
))
1730 && ((difference
= next_check_jiffies
- jiffies
) <= 0)) {
1731 next_check_jiffies
= next_jiffies
;
1732 if (aac_check_health(dev
) == 0) {
1733 difference
= ((long)(unsigned)check_interval
)
1735 next_check_jiffies
= jiffies
+ difference
;
1736 } else if (!dev
->queues
)
1739 if (!time_before(next_check_jiffies
,next_jiffies
)
1740 && ((difference
= next_jiffies
- jiffies
) <= 0)) {
1744 /* Don't even try to talk to adapter if its sick */
1745 ret
= aac_check_health(dev
);
1746 if (!ret
&& !dev
->queues
)
1748 next_check_jiffies
= jiffies
1749 + ((long)(unsigned)check_interval
)
1751 do_gettimeofday(&now
);
1753 /* Synchronize our watches */
1754 if (((1000000 - (1000000 / HZ
)) > now
.tv_usec
)
1755 && (now
.tv_usec
> (1000000 / HZ
)))
1756 difference
= (((1000000 - now
.tv_usec
) * HZ
)
1757 + 500000) / 1000000;
1758 else if (ret
== 0) {
1761 if ((fibptr
= aac_fib_alloc(dev
))) {
1764 aac_fib_init(fibptr
);
1766 info
= (__le32
*) fib_data(fibptr
);
1767 if (now
.tv_usec
> 500000)
1770 *info
= cpu_to_le32(now
.tv_sec
);
1772 (void)aac_fib_send(SendHostTime
,
1779 aac_fib_complete(fibptr
);
1780 aac_fib_free(fibptr
);
1782 difference
= (long)(unsigned)update_interval
*HZ
;
1785 difference
= 10 * HZ
;
1787 next_jiffies
= jiffies
+ difference
;
1788 if (time_before(next_check_jiffies
,next_jiffies
))
1789 difference
= next_check_jiffies
- jiffies
;
1791 if (difference
<= 0)
1793 set_current_state(TASK_INTERRUPTIBLE
);
1794 schedule_timeout(difference
);
1796 if (kthread_should_stop())
1800 remove_wait_queue(&dev
->queues
->queue
[HostNormCmdQueue
].cmdready
, &wait
);
1801 dev
->aif_thread
= 0;