x86/amd-iommu: Add function to complete a tlb flush
[linux/fpc-iii.git] / drivers / spi / au1550_spi.c
blob76cbc1a66598a87ad32fcfbcd3207c59f296a175
1 /*
2 * au1550_spi.c - au1550 psc spi controller driver
3 * may work also with au1200, au1210, au1250
4 * will not work on au1000, au1100 and au1500 (no full spi controller there)
6 * Copyright (c) 2006 ATRON electronic GmbH
7 * Author: Jan Nikitenko <jan.nikitenko@gmail.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/errno.h>
27 #include <linux/device.h>
28 #include <linux/platform_device.h>
29 #include <linux/resource.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi_bitbang.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/completion.h>
34 #include <asm/mach-au1x00/au1000.h>
35 #include <asm/mach-au1x00/au1xxx_psc.h>
36 #include <asm/mach-au1x00/au1xxx_dbdma.h>
38 #include <asm/mach-au1x00/au1550_spi.h>
40 static unsigned usedma = 1;
41 module_param(usedma, uint, 0644);
44 #define AU1550_SPI_DEBUG_LOOPBACK
48 #define AU1550_SPI_DBDMA_DESCRIPTORS 1
49 #define AU1550_SPI_DMA_RXTMP_MINSIZE 2048U
51 struct au1550_spi {
52 struct spi_bitbang bitbang;
54 volatile psc_spi_t __iomem *regs;
55 int irq;
56 unsigned freq_max;
57 unsigned freq_min;
59 unsigned len;
60 unsigned tx_count;
61 unsigned rx_count;
62 const u8 *tx;
63 u8 *rx;
65 void (*rx_word)(struct au1550_spi *hw);
66 void (*tx_word)(struct au1550_spi *hw);
67 int (*txrx_bufs)(struct spi_device *spi, struct spi_transfer *t);
68 irqreturn_t (*irq_callback)(struct au1550_spi *hw);
70 struct completion master_done;
72 unsigned usedma;
73 u32 dma_tx_id;
74 u32 dma_rx_id;
75 u32 dma_tx_ch;
76 u32 dma_rx_ch;
78 u8 *dma_rx_tmpbuf;
79 unsigned dma_rx_tmpbuf_size;
80 u32 dma_rx_tmpbuf_addr;
82 struct spi_master *master;
83 struct device *dev;
84 struct au1550_spi_info *pdata;
85 struct resource *ioarea;
89 /* we use an 8-bit memory device for dma transfers to/from spi fifo */
90 static dbdev_tab_t au1550_spi_mem_dbdev =
92 .dev_id = DBDMA_MEM_CHAN,
93 .dev_flags = DEV_FLAGS_ANYUSE|DEV_FLAGS_SYNC,
94 .dev_tsize = 0,
95 .dev_devwidth = 8,
96 .dev_physaddr = 0x00000000,
97 .dev_intlevel = 0,
98 .dev_intpolarity = 0
101 static int ddma_memid; /* id to above mem dma device */
103 static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw);
107 * compute BRG and DIV bits to setup spi clock based on main input clock rate
108 * that was specified in platform data structure
109 * according to au1550 datasheet:
110 * psc_tempclk = psc_mainclk / (2 << DIV)
111 * spiclk = psc_tempclk / (2 * (BRG + 1))
112 * BRG valid range is 4..63
113 * DIV valid range is 0..3
115 static u32 au1550_spi_baudcfg(struct au1550_spi *hw, unsigned speed_hz)
117 u32 mainclk_hz = hw->pdata->mainclk_hz;
118 u32 div, brg;
120 for (div = 0; div < 4; div++) {
121 brg = mainclk_hz / speed_hz / (4 << div);
122 /* now we have BRG+1 in brg, so count with that */
123 if (brg < (4 + 1)) {
124 brg = (4 + 1); /* speed_hz too big */
125 break; /* set lowest brg (div is == 0) */
127 if (brg <= (63 + 1))
128 break; /* we have valid brg and div */
130 if (div == 4) {
131 div = 3; /* speed_hz too small */
132 brg = (63 + 1); /* set highest brg and div */
134 brg--;
135 return PSC_SPICFG_SET_BAUD(brg) | PSC_SPICFG_SET_DIV(div);
138 static inline void au1550_spi_mask_ack_all(struct au1550_spi *hw)
140 hw->regs->psc_spimsk =
141 PSC_SPIMSK_MM | PSC_SPIMSK_RR | PSC_SPIMSK_RO
142 | PSC_SPIMSK_RU | PSC_SPIMSK_TR | PSC_SPIMSK_TO
143 | PSC_SPIMSK_TU | PSC_SPIMSK_SD | PSC_SPIMSK_MD;
144 au_sync();
146 hw->regs->psc_spievent =
147 PSC_SPIEVNT_MM | PSC_SPIEVNT_RR | PSC_SPIEVNT_RO
148 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TR | PSC_SPIEVNT_TO
149 | PSC_SPIEVNT_TU | PSC_SPIEVNT_SD | PSC_SPIEVNT_MD;
150 au_sync();
153 static void au1550_spi_reset_fifos(struct au1550_spi *hw)
155 u32 pcr;
157 hw->regs->psc_spipcr = PSC_SPIPCR_RC | PSC_SPIPCR_TC;
158 au_sync();
159 do {
160 pcr = hw->regs->psc_spipcr;
161 au_sync();
162 } while (pcr != 0);
166 * dma transfers are used for the most common spi word size of 8-bits
167 * we cannot easily change already set up dma channels' width, so if we wanted
168 * dma support for more than 8-bit words (up to 24 bits), we would need to
169 * setup dma channels from scratch on each spi transfer, based on bits_per_word
170 * instead we have pre set up 8 bit dma channels supporting spi 4 to 8 bits
171 * transfers, and 9 to 24 bits spi transfers will be done in pio irq based mode
172 * callbacks to handle dma or pio are set up in au1550_spi_bits_handlers_set()
174 static void au1550_spi_chipsel(struct spi_device *spi, int value)
176 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
177 unsigned cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
178 u32 cfg, stat;
180 switch (value) {
181 case BITBANG_CS_INACTIVE:
182 if (hw->pdata->deactivate_cs)
183 hw->pdata->deactivate_cs(hw->pdata, spi->chip_select,
184 cspol);
185 break;
187 case BITBANG_CS_ACTIVE:
188 au1550_spi_bits_handlers_set(hw, spi->bits_per_word);
190 cfg = hw->regs->psc_spicfg;
191 au_sync();
192 hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE;
193 au_sync();
195 if (spi->mode & SPI_CPOL)
196 cfg |= PSC_SPICFG_BI;
197 else
198 cfg &= ~PSC_SPICFG_BI;
199 if (spi->mode & SPI_CPHA)
200 cfg &= ~PSC_SPICFG_CDE;
201 else
202 cfg |= PSC_SPICFG_CDE;
204 if (spi->mode & SPI_LSB_FIRST)
205 cfg |= PSC_SPICFG_MLF;
206 else
207 cfg &= ~PSC_SPICFG_MLF;
209 if (hw->usedma && spi->bits_per_word <= 8)
210 cfg &= ~PSC_SPICFG_DD_DISABLE;
211 else
212 cfg |= PSC_SPICFG_DD_DISABLE;
213 cfg = PSC_SPICFG_CLR_LEN(cfg);
214 cfg |= PSC_SPICFG_SET_LEN(spi->bits_per_word);
216 cfg = PSC_SPICFG_CLR_BAUD(cfg);
217 cfg &= ~PSC_SPICFG_SET_DIV(3);
218 cfg |= au1550_spi_baudcfg(hw, spi->max_speed_hz);
220 hw->regs->psc_spicfg = cfg | PSC_SPICFG_DE_ENABLE;
221 au_sync();
222 do {
223 stat = hw->regs->psc_spistat;
224 au_sync();
225 } while ((stat & PSC_SPISTAT_DR) == 0);
227 if (hw->pdata->activate_cs)
228 hw->pdata->activate_cs(hw->pdata, spi->chip_select,
229 cspol);
230 break;
234 static int au1550_spi_setupxfer(struct spi_device *spi, struct spi_transfer *t)
236 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
237 unsigned bpw, hz;
238 u32 cfg, stat;
240 bpw = t ? t->bits_per_word : spi->bits_per_word;
241 hz = t ? t->speed_hz : spi->max_speed_hz;
243 if (bpw < 4 || bpw > 24) {
244 dev_err(&spi->dev, "setupxfer: invalid bits_per_word=%d\n",
245 bpw);
246 return -EINVAL;
248 if (hz > spi->max_speed_hz || hz > hw->freq_max || hz < hw->freq_min) {
249 dev_err(&spi->dev, "setupxfer: clock rate=%d out of range\n",
250 hz);
251 return -EINVAL;
254 au1550_spi_bits_handlers_set(hw, spi->bits_per_word);
256 cfg = hw->regs->psc_spicfg;
257 au_sync();
258 hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE;
259 au_sync();
261 if (hw->usedma && bpw <= 8)
262 cfg &= ~PSC_SPICFG_DD_DISABLE;
263 else
264 cfg |= PSC_SPICFG_DD_DISABLE;
265 cfg = PSC_SPICFG_CLR_LEN(cfg);
266 cfg |= PSC_SPICFG_SET_LEN(bpw);
268 cfg = PSC_SPICFG_CLR_BAUD(cfg);
269 cfg &= ~PSC_SPICFG_SET_DIV(3);
270 cfg |= au1550_spi_baudcfg(hw, hz);
272 hw->regs->psc_spicfg = cfg;
273 au_sync();
275 if (cfg & PSC_SPICFG_DE_ENABLE) {
276 do {
277 stat = hw->regs->psc_spistat;
278 au_sync();
279 } while ((stat & PSC_SPISTAT_DR) == 0);
282 au1550_spi_reset_fifos(hw);
283 au1550_spi_mask_ack_all(hw);
284 return 0;
287 static int au1550_spi_setup(struct spi_device *spi)
289 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
291 if (spi->bits_per_word < 4 || spi->bits_per_word > 24) {
292 dev_err(&spi->dev, "setup: invalid bits_per_word=%d\n",
293 spi->bits_per_word);
294 return -EINVAL;
297 if (spi->max_speed_hz == 0)
298 spi->max_speed_hz = hw->freq_max;
299 if (spi->max_speed_hz > hw->freq_max
300 || spi->max_speed_hz < hw->freq_min)
301 return -EINVAL;
303 * NOTE: cannot change speed and other hw settings immediately,
304 * otherwise sharing of spi bus is not possible,
305 * so do not call setupxfer(spi, NULL) here
307 return 0;
311 * for dma spi transfers, we have to setup rx channel, otherwise there is
312 * no reliable way how to recognize that spi transfer is done
313 * dma complete callbacks are called before real spi transfer is finished
314 * and if only tx dma channel is set up (and rx fifo overflow event masked)
315 * spi master done event irq is not generated unless rx fifo is empty (emptied)
316 * so we need rx tmp buffer to use for rx dma if user does not provide one
318 static int au1550_spi_dma_rxtmp_alloc(struct au1550_spi *hw, unsigned size)
320 hw->dma_rx_tmpbuf = kmalloc(size, GFP_KERNEL);
321 if (!hw->dma_rx_tmpbuf)
322 return -ENOMEM;
323 hw->dma_rx_tmpbuf_size = size;
324 hw->dma_rx_tmpbuf_addr = dma_map_single(hw->dev, hw->dma_rx_tmpbuf,
325 size, DMA_FROM_DEVICE);
326 if (dma_mapping_error(hw->dev, hw->dma_rx_tmpbuf_addr)) {
327 kfree(hw->dma_rx_tmpbuf);
328 hw->dma_rx_tmpbuf = 0;
329 hw->dma_rx_tmpbuf_size = 0;
330 return -EFAULT;
332 return 0;
335 static void au1550_spi_dma_rxtmp_free(struct au1550_spi *hw)
337 dma_unmap_single(hw->dev, hw->dma_rx_tmpbuf_addr,
338 hw->dma_rx_tmpbuf_size, DMA_FROM_DEVICE);
339 kfree(hw->dma_rx_tmpbuf);
340 hw->dma_rx_tmpbuf = 0;
341 hw->dma_rx_tmpbuf_size = 0;
344 static int au1550_spi_dma_txrxb(struct spi_device *spi, struct spi_transfer *t)
346 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
347 dma_addr_t dma_tx_addr;
348 dma_addr_t dma_rx_addr;
349 u32 res;
351 hw->len = t->len;
352 hw->tx_count = 0;
353 hw->rx_count = 0;
355 hw->tx = t->tx_buf;
356 hw->rx = t->rx_buf;
357 dma_tx_addr = t->tx_dma;
358 dma_rx_addr = t->rx_dma;
361 * check if buffers are already dma mapped, map them otherwise:
362 * - first map the TX buffer, so cache data gets written to memory
363 * - then map the RX buffer, so that cache entries (with
364 * soon-to-be-stale data) get removed
365 * use rx buffer in place of tx if tx buffer was not provided
366 * use temp rx buffer (preallocated or realloc to fit) for rx dma
368 if (t->tx_buf) {
369 if (t->tx_dma == 0) { /* if DMA_ADDR_INVALID, map it */
370 dma_tx_addr = dma_map_single(hw->dev,
371 (void *)t->tx_buf,
372 t->len, DMA_TO_DEVICE);
373 if (dma_mapping_error(hw->dev, dma_tx_addr))
374 dev_err(hw->dev, "tx dma map error\n");
378 if (t->rx_buf) {
379 if (t->rx_dma == 0) { /* if DMA_ADDR_INVALID, map it */
380 dma_rx_addr = dma_map_single(hw->dev,
381 (void *)t->rx_buf,
382 t->len, DMA_FROM_DEVICE);
383 if (dma_mapping_error(hw->dev, dma_rx_addr))
384 dev_err(hw->dev, "rx dma map error\n");
386 } else {
387 if (t->len > hw->dma_rx_tmpbuf_size) {
388 int ret;
390 au1550_spi_dma_rxtmp_free(hw);
391 ret = au1550_spi_dma_rxtmp_alloc(hw, max(t->len,
392 AU1550_SPI_DMA_RXTMP_MINSIZE));
393 if (ret < 0)
394 return ret;
396 hw->rx = hw->dma_rx_tmpbuf;
397 dma_rx_addr = hw->dma_rx_tmpbuf_addr;
398 dma_sync_single_for_device(hw->dev, dma_rx_addr,
399 t->len, DMA_FROM_DEVICE);
402 if (!t->tx_buf) {
403 dma_sync_single_for_device(hw->dev, dma_rx_addr,
404 t->len, DMA_BIDIRECTIONAL);
405 hw->tx = hw->rx;
408 /* put buffers on the ring */
409 res = au1xxx_dbdma_put_dest(hw->dma_rx_ch, hw->rx, t->len);
410 if (!res)
411 dev_err(hw->dev, "rx dma put dest error\n");
413 res = au1xxx_dbdma_put_source(hw->dma_tx_ch, (void *)hw->tx, t->len);
414 if (!res)
415 dev_err(hw->dev, "tx dma put source error\n");
417 au1xxx_dbdma_start(hw->dma_rx_ch);
418 au1xxx_dbdma_start(hw->dma_tx_ch);
420 /* by default enable nearly all events interrupt */
421 hw->regs->psc_spimsk = PSC_SPIMSK_SD;
422 au_sync();
424 /* start the transfer */
425 hw->regs->psc_spipcr = PSC_SPIPCR_MS;
426 au_sync();
428 wait_for_completion(&hw->master_done);
430 au1xxx_dbdma_stop(hw->dma_tx_ch);
431 au1xxx_dbdma_stop(hw->dma_rx_ch);
433 if (!t->rx_buf) {
434 /* using the temporal preallocated and premapped buffer */
435 dma_sync_single_for_cpu(hw->dev, dma_rx_addr, t->len,
436 DMA_FROM_DEVICE);
438 /* unmap buffers if mapped above */
439 if (t->rx_buf && t->rx_dma == 0 )
440 dma_unmap_single(hw->dev, dma_rx_addr, t->len,
441 DMA_FROM_DEVICE);
442 if (t->tx_buf && t->tx_dma == 0 )
443 dma_unmap_single(hw->dev, dma_tx_addr, t->len,
444 DMA_TO_DEVICE);
446 return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count;
449 static irqreturn_t au1550_spi_dma_irq_callback(struct au1550_spi *hw)
451 u32 stat, evnt;
453 stat = hw->regs->psc_spistat;
454 evnt = hw->regs->psc_spievent;
455 au_sync();
456 if ((stat & PSC_SPISTAT_DI) == 0) {
457 dev_err(hw->dev, "Unexpected IRQ!\n");
458 return IRQ_NONE;
461 if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO
462 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TO
463 | PSC_SPIEVNT_TU | PSC_SPIEVNT_SD))
464 != 0) {
466 * due to an spi error we consider transfer as done,
467 * so mask all events until before next transfer start
468 * and stop the possibly running dma immediatelly
470 au1550_spi_mask_ack_all(hw);
471 au1xxx_dbdma_stop(hw->dma_rx_ch);
472 au1xxx_dbdma_stop(hw->dma_tx_ch);
474 /* get number of transfered bytes */
475 hw->rx_count = hw->len - au1xxx_get_dma_residue(hw->dma_rx_ch);
476 hw->tx_count = hw->len - au1xxx_get_dma_residue(hw->dma_tx_ch);
478 au1xxx_dbdma_reset(hw->dma_rx_ch);
479 au1xxx_dbdma_reset(hw->dma_tx_ch);
480 au1550_spi_reset_fifos(hw);
482 if (evnt == PSC_SPIEVNT_RO)
483 dev_err(hw->dev,
484 "dma transfer: receive FIFO overflow!\n");
485 else
486 dev_err(hw->dev,
487 "dma transfer: unexpected SPI error "
488 "(event=0x%x stat=0x%x)!\n", evnt, stat);
490 complete(&hw->master_done);
491 return IRQ_HANDLED;
494 if ((evnt & PSC_SPIEVNT_MD) != 0) {
495 /* transfer completed successfully */
496 au1550_spi_mask_ack_all(hw);
497 hw->rx_count = hw->len;
498 hw->tx_count = hw->len;
499 complete(&hw->master_done);
501 return IRQ_HANDLED;
505 /* routines to handle different word sizes in pio mode */
506 #define AU1550_SPI_RX_WORD(size, mask) \
507 static void au1550_spi_rx_word_##size(struct au1550_spi *hw) \
509 u32 fifoword = hw->regs->psc_spitxrx & (u32)(mask); \
510 au_sync(); \
511 if (hw->rx) { \
512 *(u##size *)hw->rx = (u##size)fifoword; \
513 hw->rx += (size) / 8; \
515 hw->rx_count += (size) / 8; \
518 #define AU1550_SPI_TX_WORD(size, mask) \
519 static void au1550_spi_tx_word_##size(struct au1550_spi *hw) \
521 u32 fifoword = 0; \
522 if (hw->tx) { \
523 fifoword = *(u##size *)hw->tx & (u32)(mask); \
524 hw->tx += (size) / 8; \
526 hw->tx_count += (size) / 8; \
527 if (hw->tx_count >= hw->len) \
528 fifoword |= PSC_SPITXRX_LC; \
529 hw->regs->psc_spitxrx = fifoword; \
530 au_sync(); \
533 AU1550_SPI_RX_WORD(8,0xff)
534 AU1550_SPI_RX_WORD(16,0xffff)
535 AU1550_SPI_RX_WORD(32,0xffffff)
536 AU1550_SPI_TX_WORD(8,0xff)
537 AU1550_SPI_TX_WORD(16,0xffff)
538 AU1550_SPI_TX_WORD(32,0xffffff)
540 static int au1550_spi_pio_txrxb(struct spi_device *spi, struct spi_transfer *t)
542 u32 stat, mask;
543 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
545 hw->tx = t->tx_buf;
546 hw->rx = t->rx_buf;
547 hw->len = t->len;
548 hw->tx_count = 0;
549 hw->rx_count = 0;
551 /* by default enable nearly all events after filling tx fifo */
552 mask = PSC_SPIMSK_SD;
554 /* fill the transmit FIFO */
555 while (hw->tx_count < hw->len) {
557 hw->tx_word(hw);
559 if (hw->tx_count >= hw->len) {
560 /* mask tx fifo request interrupt as we are done */
561 mask |= PSC_SPIMSK_TR;
564 stat = hw->regs->psc_spistat;
565 au_sync();
566 if (stat & PSC_SPISTAT_TF)
567 break;
570 /* enable event interrupts */
571 hw->regs->psc_spimsk = mask;
572 au_sync();
574 /* start the transfer */
575 hw->regs->psc_spipcr = PSC_SPIPCR_MS;
576 au_sync();
578 wait_for_completion(&hw->master_done);
580 return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count;
583 static irqreturn_t au1550_spi_pio_irq_callback(struct au1550_spi *hw)
585 int busy;
586 u32 stat, evnt;
588 stat = hw->regs->psc_spistat;
589 evnt = hw->regs->psc_spievent;
590 au_sync();
591 if ((stat & PSC_SPISTAT_DI) == 0) {
592 dev_err(hw->dev, "Unexpected IRQ!\n");
593 return IRQ_NONE;
596 if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO
597 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TO
598 | PSC_SPIEVNT_SD))
599 != 0) {
601 * due to an error we consider transfer as done,
602 * so mask all events until before next transfer start
604 au1550_spi_mask_ack_all(hw);
605 au1550_spi_reset_fifos(hw);
606 dev_err(hw->dev,
607 "pio transfer: unexpected SPI error "
608 "(event=0x%x stat=0x%x)!\n", evnt, stat);
609 complete(&hw->master_done);
610 return IRQ_HANDLED;
614 * while there is something to read from rx fifo
615 * or there is a space to write to tx fifo:
617 do {
618 busy = 0;
619 stat = hw->regs->psc_spistat;
620 au_sync();
623 * Take care to not let the Rx FIFO overflow.
625 * We only write a byte if we have read one at least. Initially,
626 * the write fifo is full, so we should read from the read fifo
627 * first.
628 * In case we miss a word from the read fifo, we should get a
629 * RO event and should back out.
631 if (!(stat & PSC_SPISTAT_RE) && hw->rx_count < hw->len) {
632 hw->rx_word(hw);
633 busy = 1;
635 if (!(stat & PSC_SPISTAT_TF) && hw->tx_count < hw->len)
636 hw->tx_word(hw);
638 } while (busy);
640 hw->regs->psc_spievent = PSC_SPIEVNT_RR | PSC_SPIEVNT_TR;
641 au_sync();
644 * Restart the SPI transmission in case of a transmit underflow.
645 * This seems to work despite the notes in the Au1550 data book
646 * of Figure 8-4 with flowchart for SPI master operation:
648 * """Note 1: An XFR Error Interrupt occurs, unless masked,
649 * for any of the following events: Tx FIFO Underflow,
650 * Rx FIFO Overflow, or Multiple-master Error
651 * Note 2: In case of a Tx Underflow Error, all zeroes are
652 * transmitted."""
654 * By simply restarting the spi transfer on Tx Underflow Error,
655 * we assume that spi transfer was paused instead of zeroes
656 * transmittion mentioned in the Note 2 of Au1550 data book.
658 if (evnt & PSC_SPIEVNT_TU) {
659 hw->regs->psc_spievent = PSC_SPIEVNT_TU | PSC_SPIEVNT_MD;
660 au_sync();
661 hw->regs->psc_spipcr = PSC_SPIPCR_MS;
662 au_sync();
665 if (hw->rx_count >= hw->len) {
666 /* transfer completed successfully */
667 au1550_spi_mask_ack_all(hw);
668 complete(&hw->master_done);
670 return IRQ_HANDLED;
673 static int au1550_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
675 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
676 return hw->txrx_bufs(spi, t);
679 static irqreturn_t au1550_spi_irq(int irq, void *dev)
681 struct au1550_spi *hw = dev;
682 return hw->irq_callback(hw);
685 static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw)
687 if (bpw <= 8) {
688 if (hw->usedma) {
689 hw->txrx_bufs = &au1550_spi_dma_txrxb;
690 hw->irq_callback = &au1550_spi_dma_irq_callback;
691 } else {
692 hw->rx_word = &au1550_spi_rx_word_8;
693 hw->tx_word = &au1550_spi_tx_word_8;
694 hw->txrx_bufs = &au1550_spi_pio_txrxb;
695 hw->irq_callback = &au1550_spi_pio_irq_callback;
697 } else if (bpw <= 16) {
698 hw->rx_word = &au1550_spi_rx_word_16;
699 hw->tx_word = &au1550_spi_tx_word_16;
700 hw->txrx_bufs = &au1550_spi_pio_txrxb;
701 hw->irq_callback = &au1550_spi_pio_irq_callback;
702 } else {
703 hw->rx_word = &au1550_spi_rx_word_32;
704 hw->tx_word = &au1550_spi_tx_word_32;
705 hw->txrx_bufs = &au1550_spi_pio_txrxb;
706 hw->irq_callback = &au1550_spi_pio_irq_callback;
710 static void __init au1550_spi_setup_psc_as_spi(struct au1550_spi *hw)
712 u32 stat, cfg;
714 /* set up the PSC for SPI mode */
715 hw->regs->psc_ctrl = PSC_CTRL_DISABLE;
716 au_sync();
717 hw->regs->psc_sel = PSC_SEL_PS_SPIMODE;
718 au_sync();
720 hw->regs->psc_spicfg = 0;
721 au_sync();
723 hw->regs->psc_ctrl = PSC_CTRL_ENABLE;
724 au_sync();
726 do {
727 stat = hw->regs->psc_spistat;
728 au_sync();
729 } while ((stat & PSC_SPISTAT_SR) == 0);
732 cfg = hw->usedma ? 0 : PSC_SPICFG_DD_DISABLE;
733 cfg |= PSC_SPICFG_SET_LEN(8);
734 cfg |= PSC_SPICFG_RT_FIFO8 | PSC_SPICFG_TT_FIFO8;
735 /* use minimal allowed brg and div values as initial setting: */
736 cfg |= PSC_SPICFG_SET_BAUD(4) | PSC_SPICFG_SET_DIV(0);
738 #ifdef AU1550_SPI_DEBUG_LOOPBACK
739 cfg |= PSC_SPICFG_LB;
740 #endif
742 hw->regs->psc_spicfg = cfg;
743 au_sync();
745 au1550_spi_mask_ack_all(hw);
747 hw->regs->psc_spicfg |= PSC_SPICFG_DE_ENABLE;
748 au_sync();
750 do {
751 stat = hw->regs->psc_spistat;
752 au_sync();
753 } while ((stat & PSC_SPISTAT_DR) == 0);
755 au1550_spi_reset_fifos(hw);
759 static int __init au1550_spi_probe(struct platform_device *pdev)
761 struct au1550_spi *hw;
762 struct spi_master *master;
763 struct resource *r;
764 int err = 0;
766 master = spi_alloc_master(&pdev->dev, sizeof(struct au1550_spi));
767 if (master == NULL) {
768 dev_err(&pdev->dev, "No memory for spi_master\n");
769 err = -ENOMEM;
770 goto err_nomem;
773 /* the spi->mode bits understood by this driver: */
774 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
776 hw = spi_master_get_devdata(master);
778 hw->master = spi_master_get(master);
779 hw->pdata = pdev->dev.platform_data;
780 hw->dev = &pdev->dev;
782 if (hw->pdata == NULL) {
783 dev_err(&pdev->dev, "No platform data supplied\n");
784 err = -ENOENT;
785 goto err_no_pdata;
788 r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
789 if (!r) {
790 dev_err(&pdev->dev, "no IRQ\n");
791 err = -ENODEV;
792 goto err_no_iores;
794 hw->irq = r->start;
796 hw->usedma = 0;
797 r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
798 if (r) {
799 hw->dma_tx_id = r->start;
800 r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
801 if (r) {
802 hw->dma_rx_id = r->start;
803 if (usedma && ddma_memid) {
804 if (pdev->dev.dma_mask == NULL)
805 dev_warn(&pdev->dev, "no dma mask\n");
806 else
807 hw->usedma = 1;
812 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
813 if (!r) {
814 dev_err(&pdev->dev, "no mmio resource\n");
815 err = -ENODEV;
816 goto err_no_iores;
819 hw->ioarea = request_mem_region(r->start, sizeof(psc_spi_t),
820 pdev->name);
821 if (!hw->ioarea) {
822 dev_err(&pdev->dev, "Cannot reserve iomem region\n");
823 err = -ENXIO;
824 goto err_no_iores;
827 hw->regs = (psc_spi_t __iomem *)ioremap(r->start, sizeof(psc_spi_t));
828 if (!hw->regs) {
829 dev_err(&pdev->dev, "cannot ioremap\n");
830 err = -ENXIO;
831 goto err_ioremap;
834 platform_set_drvdata(pdev, hw);
836 init_completion(&hw->master_done);
838 hw->bitbang.master = hw->master;
839 hw->bitbang.setup_transfer = au1550_spi_setupxfer;
840 hw->bitbang.chipselect = au1550_spi_chipsel;
841 hw->bitbang.master->setup = au1550_spi_setup;
842 hw->bitbang.txrx_bufs = au1550_spi_txrx_bufs;
844 if (hw->usedma) {
845 hw->dma_tx_ch = au1xxx_dbdma_chan_alloc(ddma_memid,
846 hw->dma_tx_id, NULL, (void *)hw);
847 if (hw->dma_tx_ch == 0) {
848 dev_err(&pdev->dev,
849 "Cannot allocate tx dma channel\n");
850 err = -ENXIO;
851 goto err_no_txdma;
853 au1xxx_dbdma_set_devwidth(hw->dma_tx_ch, 8);
854 if (au1xxx_dbdma_ring_alloc(hw->dma_tx_ch,
855 AU1550_SPI_DBDMA_DESCRIPTORS) == 0) {
856 dev_err(&pdev->dev,
857 "Cannot allocate tx dma descriptors\n");
858 err = -ENXIO;
859 goto err_no_txdma_descr;
863 hw->dma_rx_ch = au1xxx_dbdma_chan_alloc(hw->dma_rx_id,
864 ddma_memid, NULL, (void *)hw);
865 if (hw->dma_rx_ch == 0) {
866 dev_err(&pdev->dev,
867 "Cannot allocate rx dma channel\n");
868 err = -ENXIO;
869 goto err_no_rxdma;
871 au1xxx_dbdma_set_devwidth(hw->dma_rx_ch, 8);
872 if (au1xxx_dbdma_ring_alloc(hw->dma_rx_ch,
873 AU1550_SPI_DBDMA_DESCRIPTORS) == 0) {
874 dev_err(&pdev->dev,
875 "Cannot allocate rx dma descriptors\n");
876 err = -ENXIO;
877 goto err_no_rxdma_descr;
880 err = au1550_spi_dma_rxtmp_alloc(hw,
881 AU1550_SPI_DMA_RXTMP_MINSIZE);
882 if (err < 0) {
883 dev_err(&pdev->dev,
884 "Cannot allocate initial rx dma tmp buffer\n");
885 goto err_dma_rxtmp_alloc;
889 au1550_spi_bits_handlers_set(hw, 8);
891 err = request_irq(hw->irq, au1550_spi_irq, 0, pdev->name, hw);
892 if (err) {
893 dev_err(&pdev->dev, "Cannot claim IRQ\n");
894 goto err_no_irq;
897 master->bus_num = pdev->id;
898 master->num_chipselect = hw->pdata->num_chipselect;
901 * precompute valid range for spi freq - from au1550 datasheet:
902 * psc_tempclk = psc_mainclk / (2 << DIV)
903 * spiclk = psc_tempclk / (2 * (BRG + 1))
904 * BRG valid range is 4..63
905 * DIV valid range is 0..3
906 * round the min and max frequencies to values that would still
907 * produce valid brg and div
910 int min_div = (2 << 0) * (2 * (4 + 1));
911 int max_div = (2 << 3) * (2 * (63 + 1));
912 hw->freq_max = hw->pdata->mainclk_hz / min_div;
913 hw->freq_min = hw->pdata->mainclk_hz / (max_div + 1) + 1;
916 au1550_spi_setup_psc_as_spi(hw);
918 err = spi_bitbang_start(&hw->bitbang);
919 if (err) {
920 dev_err(&pdev->dev, "Failed to register SPI master\n");
921 goto err_register;
924 dev_info(&pdev->dev,
925 "spi master registered: bus_num=%d num_chipselect=%d\n",
926 master->bus_num, master->num_chipselect);
928 return 0;
930 err_register:
931 free_irq(hw->irq, hw);
933 err_no_irq:
934 au1550_spi_dma_rxtmp_free(hw);
936 err_dma_rxtmp_alloc:
937 err_no_rxdma_descr:
938 if (hw->usedma)
939 au1xxx_dbdma_chan_free(hw->dma_rx_ch);
941 err_no_rxdma:
942 err_no_txdma_descr:
943 if (hw->usedma)
944 au1xxx_dbdma_chan_free(hw->dma_tx_ch);
946 err_no_txdma:
947 iounmap((void __iomem *)hw->regs);
949 err_ioremap:
950 release_resource(hw->ioarea);
951 kfree(hw->ioarea);
953 err_no_iores:
954 err_no_pdata:
955 spi_master_put(hw->master);
957 err_nomem:
958 return err;
961 static int __exit au1550_spi_remove(struct platform_device *pdev)
963 struct au1550_spi *hw = platform_get_drvdata(pdev);
965 dev_info(&pdev->dev, "spi master remove: bus_num=%d\n",
966 hw->master->bus_num);
968 spi_bitbang_stop(&hw->bitbang);
969 free_irq(hw->irq, hw);
970 iounmap((void __iomem *)hw->regs);
971 release_resource(hw->ioarea);
972 kfree(hw->ioarea);
974 if (hw->usedma) {
975 au1550_spi_dma_rxtmp_free(hw);
976 au1xxx_dbdma_chan_free(hw->dma_rx_ch);
977 au1xxx_dbdma_chan_free(hw->dma_tx_ch);
980 platform_set_drvdata(pdev, NULL);
982 spi_master_put(hw->master);
983 return 0;
986 /* work with hotplug and coldplug */
987 MODULE_ALIAS("platform:au1550-spi");
989 static struct platform_driver au1550_spi_drv = {
990 .remove = __exit_p(au1550_spi_remove),
991 .driver = {
992 .name = "au1550-spi",
993 .owner = THIS_MODULE,
997 static int __init au1550_spi_init(void)
1000 * create memory device with 8 bits dev_devwidth
1001 * needed for proper byte ordering to spi fifo
1003 if (usedma) {
1004 ddma_memid = au1xxx_ddma_add_device(&au1550_spi_mem_dbdev);
1005 if (!ddma_memid)
1006 printk(KERN_ERR "au1550-spi: cannot add memory"
1007 "dbdma device\n");
1009 return platform_driver_probe(&au1550_spi_drv, au1550_spi_probe);
1011 module_init(au1550_spi_init);
1013 static void __exit au1550_spi_exit(void)
1015 if (usedma && ddma_memid)
1016 au1xxx_ddma_del_device(ddma_memid);
1017 platform_driver_unregister(&au1550_spi_drv);
1019 module_exit(au1550_spi_exit);
1021 MODULE_DESCRIPTION("Au1550 PSC SPI Driver");
1022 MODULE_AUTHOR("Jan Nikitenko <jan.nikitenko@gmail.com>");
1023 MODULE_LICENSE("GPL");