f81232: switch to ->get_serial()
[linux/fpc-iii.git] / drivers / media / i2c / smiapp-pll.c
blob771db56332b2cad211d948950fabce15332156fb
1 /*
2 * drivers/media/i2c/smiapp-pll.c
4 * Generic driver for SMIA/SMIA++ compliant camera modules
6 * Copyright (C) 2011--2012 Nokia Corporation
7 * Contact: Sakari Ailus <sakari.ailus@iki.fi>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * version 2 as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
19 #include <linux/device.h>
20 #include <linux/gcd.h>
21 #include <linux/lcm.h>
22 #include <linux/module.h>
24 #include "smiapp-pll.h"
26 /* Return an even number or one. */
27 static inline uint32_t clk_div_even(uint32_t a)
29 return max_t(uint32_t, 1, a & ~1);
32 /* Return an even number or one. */
33 static inline uint32_t clk_div_even_up(uint32_t a)
35 if (a == 1)
36 return 1;
37 return (a + 1) & ~1;
40 static inline uint32_t is_one_or_even(uint32_t a)
42 if (a == 1)
43 return 1;
44 if (a & 1)
45 return 0;
47 return 1;
50 static int bounds_check(struct device *dev, uint32_t val,
51 uint32_t min, uint32_t max, char *str)
53 if (val >= min && val <= max)
54 return 0;
56 dev_dbg(dev, "%s out of bounds: %d (%d--%d)\n", str, val, min, max);
58 return -EINVAL;
61 static void print_pll(struct device *dev, struct smiapp_pll *pll)
63 dev_dbg(dev, "pre_pll_clk_div\t%u\n", pll->pre_pll_clk_div);
64 dev_dbg(dev, "pll_multiplier \t%u\n", pll->pll_multiplier);
65 if (!(pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS)) {
66 dev_dbg(dev, "op_sys_clk_div \t%u\n", pll->op.sys_clk_div);
67 dev_dbg(dev, "op_pix_clk_div \t%u\n", pll->op.pix_clk_div);
69 dev_dbg(dev, "vt_sys_clk_div \t%u\n", pll->vt.sys_clk_div);
70 dev_dbg(dev, "vt_pix_clk_div \t%u\n", pll->vt.pix_clk_div);
72 dev_dbg(dev, "ext_clk_freq_hz \t%u\n", pll->ext_clk_freq_hz);
73 dev_dbg(dev, "pll_ip_clk_freq_hz \t%u\n", pll->pll_ip_clk_freq_hz);
74 dev_dbg(dev, "pll_op_clk_freq_hz \t%u\n", pll->pll_op_clk_freq_hz);
75 if (!(pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS)) {
76 dev_dbg(dev, "op_sys_clk_freq_hz \t%u\n",
77 pll->op.sys_clk_freq_hz);
78 dev_dbg(dev, "op_pix_clk_freq_hz \t%u\n",
79 pll->op.pix_clk_freq_hz);
81 dev_dbg(dev, "vt_sys_clk_freq_hz \t%u\n", pll->vt.sys_clk_freq_hz);
82 dev_dbg(dev, "vt_pix_clk_freq_hz \t%u\n", pll->vt.pix_clk_freq_hz);
85 static int check_all_bounds(struct device *dev,
86 const struct smiapp_pll_limits *limits,
87 const struct smiapp_pll_branch_limits *op_limits,
88 struct smiapp_pll *pll,
89 struct smiapp_pll_branch *op_pll)
91 int rval;
93 rval = bounds_check(dev, pll->pll_ip_clk_freq_hz,
94 limits->min_pll_ip_freq_hz,
95 limits->max_pll_ip_freq_hz,
96 "pll_ip_clk_freq_hz");
97 if (!rval)
98 rval = bounds_check(
99 dev, pll->pll_multiplier,
100 limits->min_pll_multiplier, limits->max_pll_multiplier,
101 "pll_multiplier");
102 if (!rval)
103 rval = bounds_check(
104 dev, pll->pll_op_clk_freq_hz,
105 limits->min_pll_op_freq_hz, limits->max_pll_op_freq_hz,
106 "pll_op_clk_freq_hz");
107 if (!rval)
108 rval = bounds_check(
109 dev, op_pll->sys_clk_div,
110 op_limits->min_sys_clk_div, op_limits->max_sys_clk_div,
111 "op_sys_clk_div");
112 if (!rval)
113 rval = bounds_check(
114 dev, op_pll->sys_clk_freq_hz,
115 op_limits->min_sys_clk_freq_hz,
116 op_limits->max_sys_clk_freq_hz,
117 "op_sys_clk_freq_hz");
118 if (!rval)
119 rval = bounds_check(
120 dev, op_pll->pix_clk_freq_hz,
121 op_limits->min_pix_clk_freq_hz,
122 op_limits->max_pix_clk_freq_hz,
123 "op_pix_clk_freq_hz");
126 * If there are no OP clocks, the VT clocks are contained in
127 * the OP clock struct.
129 if (pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS)
130 return rval;
132 if (!rval)
133 rval = bounds_check(
134 dev, pll->vt.sys_clk_freq_hz,
135 limits->vt.min_sys_clk_freq_hz,
136 limits->vt.max_sys_clk_freq_hz,
137 "vt_sys_clk_freq_hz");
138 if (!rval)
139 rval = bounds_check(
140 dev, pll->vt.pix_clk_freq_hz,
141 limits->vt.min_pix_clk_freq_hz,
142 limits->vt.max_pix_clk_freq_hz,
143 "vt_pix_clk_freq_hz");
145 return rval;
149 * Heuristically guess the PLL tree for a given common multiplier and
150 * divisor. Begin with the operational timing and continue to video
151 * timing once operational timing has been verified.
153 * @mul is the PLL multiplier and @div is the common divisor
154 * (pre_pll_clk_div and op_sys_clk_div combined). The final PLL
155 * multiplier will be a multiple of @mul.
157 * @return Zero on success, error code on error.
159 static int __smiapp_pll_calculate(
160 struct device *dev, const struct smiapp_pll_limits *limits,
161 const struct smiapp_pll_branch_limits *op_limits,
162 struct smiapp_pll *pll, struct smiapp_pll_branch *op_pll, uint32_t mul,
163 uint32_t div, uint32_t lane_op_clock_ratio)
165 uint32_t sys_div;
166 uint32_t best_pix_div = INT_MAX >> 1;
167 uint32_t vt_op_binning_div;
169 * Higher multipliers (and divisors) are often required than
170 * necessitated by the external clock and the output clocks.
171 * There are limits for all values in the clock tree. These
172 * are the minimum and maximum multiplier for mul.
174 uint32_t more_mul_min, more_mul_max;
175 uint32_t more_mul_factor;
176 uint32_t min_vt_div, max_vt_div, vt_div;
177 uint32_t min_sys_div, max_sys_div;
178 unsigned int i;
181 * Get pre_pll_clk_div so that our pll_op_clk_freq_hz won't be
182 * too high.
184 dev_dbg(dev, "pre_pll_clk_div %u\n", pll->pre_pll_clk_div);
186 /* Don't go above max pll multiplier. */
187 more_mul_max = limits->max_pll_multiplier / mul;
188 dev_dbg(dev, "more_mul_max: max_pll_multiplier check: %u\n",
189 more_mul_max);
190 /* Don't go above max pll op frequency. */
191 more_mul_max =
192 min_t(uint32_t,
193 more_mul_max,
194 limits->max_pll_op_freq_hz
195 / (pll->ext_clk_freq_hz / pll->pre_pll_clk_div * mul));
196 dev_dbg(dev, "more_mul_max: max_pll_op_freq_hz check: %u\n",
197 more_mul_max);
198 /* Don't go above the division capability of op sys clock divider. */
199 more_mul_max = min(more_mul_max,
200 op_limits->max_sys_clk_div * pll->pre_pll_clk_div
201 / div);
202 dev_dbg(dev, "more_mul_max: max_op_sys_clk_div check: %u\n",
203 more_mul_max);
204 /* Ensure we won't go above min_pll_multiplier. */
205 more_mul_max = min(more_mul_max,
206 DIV_ROUND_UP(limits->max_pll_multiplier, mul));
207 dev_dbg(dev, "more_mul_max: min_pll_multiplier check: %u\n",
208 more_mul_max);
210 /* Ensure we won't go below min_pll_op_freq_hz. */
211 more_mul_min = DIV_ROUND_UP(limits->min_pll_op_freq_hz,
212 pll->ext_clk_freq_hz / pll->pre_pll_clk_div
213 * mul);
214 dev_dbg(dev, "more_mul_min: min_pll_op_freq_hz check: %u\n",
215 more_mul_min);
216 /* Ensure we won't go below min_pll_multiplier. */
217 more_mul_min = max(more_mul_min,
218 DIV_ROUND_UP(limits->min_pll_multiplier, mul));
219 dev_dbg(dev, "more_mul_min: min_pll_multiplier check: %u\n",
220 more_mul_min);
222 if (more_mul_min > more_mul_max) {
223 dev_dbg(dev,
224 "unable to compute more_mul_min and more_mul_max\n");
225 return -EINVAL;
228 more_mul_factor = lcm(div, pll->pre_pll_clk_div) / div;
229 dev_dbg(dev, "more_mul_factor: %u\n", more_mul_factor);
230 more_mul_factor = lcm(more_mul_factor, op_limits->min_sys_clk_div);
231 dev_dbg(dev, "more_mul_factor: min_op_sys_clk_div: %d\n",
232 more_mul_factor);
233 i = roundup(more_mul_min, more_mul_factor);
234 if (!is_one_or_even(i))
235 i <<= 1;
237 dev_dbg(dev, "final more_mul: %u\n", i);
238 if (i > more_mul_max) {
239 dev_dbg(dev, "final more_mul is bad, max %u\n", more_mul_max);
240 return -EINVAL;
243 pll->pll_multiplier = mul * i;
244 op_pll->sys_clk_div = div * i / pll->pre_pll_clk_div;
245 dev_dbg(dev, "op_sys_clk_div: %u\n", op_pll->sys_clk_div);
247 pll->pll_ip_clk_freq_hz = pll->ext_clk_freq_hz
248 / pll->pre_pll_clk_div;
250 pll->pll_op_clk_freq_hz = pll->pll_ip_clk_freq_hz
251 * pll->pll_multiplier;
253 /* Derive pll_op_clk_freq_hz. */
254 op_pll->sys_clk_freq_hz =
255 pll->pll_op_clk_freq_hz / op_pll->sys_clk_div;
257 op_pll->pix_clk_div = pll->bits_per_pixel;
258 dev_dbg(dev, "op_pix_clk_div: %u\n", op_pll->pix_clk_div);
260 op_pll->pix_clk_freq_hz =
261 op_pll->sys_clk_freq_hz / op_pll->pix_clk_div;
263 if (pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS) {
264 /* No OP clocks --- VT clocks are used instead. */
265 goto out_skip_vt_calc;
269 * Some sensors perform analogue binning and some do this
270 * digitally. The ones doing this digitally can be roughly be
271 * found out using this formula. The ones doing this digitally
272 * should run at higher clock rate, so smaller divisor is used
273 * on video timing side.
275 if (limits->min_line_length_pck_bin > limits->min_line_length_pck
276 / pll->binning_horizontal)
277 vt_op_binning_div = pll->binning_horizontal;
278 else
279 vt_op_binning_div = 1;
280 dev_dbg(dev, "vt_op_binning_div: %u\n", vt_op_binning_div);
283 * Profile 2 supports vt_pix_clk_div E [4, 10]
285 * Horizontal binning can be used as a base for difference in
286 * divisors. One must make sure that horizontal blanking is
287 * enough to accommodate the CSI-2 sync codes.
289 * Take scaling factor into account as well.
291 * Find absolute limits for the factor of vt divider.
293 dev_dbg(dev, "scale_m: %u\n", pll->scale_m);
294 min_vt_div = DIV_ROUND_UP(op_pll->pix_clk_div * op_pll->sys_clk_div
295 * pll->scale_n,
296 lane_op_clock_ratio * vt_op_binning_div
297 * pll->scale_m);
299 /* Find smallest and biggest allowed vt divisor. */
300 dev_dbg(dev, "min_vt_div: %u\n", min_vt_div);
301 min_vt_div = max(min_vt_div,
302 DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
303 limits->vt.max_pix_clk_freq_hz));
304 dev_dbg(dev, "min_vt_div: max_vt_pix_clk_freq_hz: %u\n",
305 min_vt_div);
306 min_vt_div = max_t(uint32_t, min_vt_div,
307 limits->vt.min_pix_clk_div
308 * limits->vt.min_sys_clk_div);
309 dev_dbg(dev, "min_vt_div: min_vt_clk_div: %u\n", min_vt_div);
311 max_vt_div = limits->vt.max_sys_clk_div * limits->vt.max_pix_clk_div;
312 dev_dbg(dev, "max_vt_div: %u\n", max_vt_div);
313 max_vt_div = min(max_vt_div,
314 DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
315 limits->vt.min_pix_clk_freq_hz));
316 dev_dbg(dev, "max_vt_div: min_vt_pix_clk_freq_hz: %u\n",
317 max_vt_div);
320 * Find limitsits for sys_clk_div. Not all values are possible
321 * with all values of pix_clk_div.
323 min_sys_div = limits->vt.min_sys_clk_div;
324 dev_dbg(dev, "min_sys_div: %u\n", min_sys_div);
325 min_sys_div = max(min_sys_div,
326 DIV_ROUND_UP(min_vt_div,
327 limits->vt.max_pix_clk_div));
328 dev_dbg(dev, "min_sys_div: max_vt_pix_clk_div: %u\n", min_sys_div);
329 min_sys_div = max(min_sys_div,
330 pll->pll_op_clk_freq_hz
331 / limits->vt.max_sys_clk_freq_hz);
332 dev_dbg(dev, "min_sys_div: max_pll_op_clk_freq_hz: %u\n", min_sys_div);
333 min_sys_div = clk_div_even_up(min_sys_div);
334 dev_dbg(dev, "min_sys_div: one or even: %u\n", min_sys_div);
336 max_sys_div = limits->vt.max_sys_clk_div;
337 dev_dbg(dev, "max_sys_div: %u\n", max_sys_div);
338 max_sys_div = min(max_sys_div,
339 DIV_ROUND_UP(max_vt_div,
340 limits->vt.min_pix_clk_div));
341 dev_dbg(dev, "max_sys_div: min_vt_pix_clk_div: %u\n", max_sys_div);
342 max_sys_div = min(max_sys_div,
343 DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
344 limits->vt.min_pix_clk_freq_hz));
345 dev_dbg(dev, "max_sys_div: min_vt_pix_clk_freq_hz: %u\n", max_sys_div);
348 * Find pix_div such that a legal pix_div * sys_div results
349 * into a value which is not smaller than div, the desired
350 * divisor.
352 for (vt_div = min_vt_div; vt_div <= max_vt_div;
353 vt_div += 2 - (vt_div & 1)) {
354 for (sys_div = min_sys_div;
355 sys_div <= max_sys_div;
356 sys_div += 2 - (sys_div & 1)) {
357 uint16_t pix_div = DIV_ROUND_UP(vt_div, sys_div);
359 if (pix_div < limits->vt.min_pix_clk_div
360 || pix_div > limits->vt.max_pix_clk_div) {
361 dev_dbg(dev,
362 "pix_div %u too small or too big (%u--%u)\n",
363 pix_div,
364 limits->vt.min_pix_clk_div,
365 limits->vt.max_pix_clk_div);
366 continue;
369 /* Check if this one is better. */
370 if (pix_div * sys_div
371 <= roundup(min_vt_div, best_pix_div))
372 best_pix_div = pix_div;
374 if (best_pix_div < INT_MAX >> 1)
375 break;
378 pll->vt.sys_clk_div = DIV_ROUND_UP(min_vt_div, best_pix_div);
379 pll->vt.pix_clk_div = best_pix_div;
381 pll->vt.sys_clk_freq_hz =
382 pll->pll_op_clk_freq_hz / pll->vt.sys_clk_div;
383 pll->vt.pix_clk_freq_hz =
384 pll->vt.sys_clk_freq_hz / pll->vt.pix_clk_div;
386 out_skip_vt_calc:
387 pll->pixel_rate_csi =
388 op_pll->pix_clk_freq_hz * lane_op_clock_ratio;
389 pll->pixel_rate_pixel_array = pll->vt.pix_clk_freq_hz;
391 return check_all_bounds(dev, limits, op_limits, pll, op_pll);
394 int smiapp_pll_calculate(struct device *dev,
395 const struct smiapp_pll_limits *limits,
396 struct smiapp_pll *pll)
398 const struct smiapp_pll_branch_limits *op_limits = &limits->op;
399 struct smiapp_pll_branch *op_pll = &pll->op;
400 uint16_t min_pre_pll_clk_div;
401 uint16_t max_pre_pll_clk_div;
402 uint32_t lane_op_clock_ratio;
403 uint32_t mul, div;
404 unsigned int i;
405 int rval = -EINVAL;
407 if (pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS) {
409 * If there's no OP PLL at all, use the VT values
410 * instead. The OP values are ignored for the rest of
411 * the PLL calculation.
413 op_limits = &limits->vt;
414 op_pll = &pll->vt;
417 if (pll->flags & SMIAPP_PLL_FLAG_OP_PIX_CLOCK_PER_LANE)
418 lane_op_clock_ratio = pll->csi2.lanes;
419 else
420 lane_op_clock_ratio = 1;
421 dev_dbg(dev, "lane_op_clock_ratio: %u\n", lane_op_clock_ratio);
423 dev_dbg(dev, "binning: %ux%u\n", pll->binning_horizontal,
424 pll->binning_vertical);
426 switch (pll->bus_type) {
427 case SMIAPP_PLL_BUS_TYPE_CSI2:
428 /* CSI transfers 2 bits per clock per lane; thus times 2 */
429 pll->pll_op_clk_freq_hz = pll->link_freq * 2
430 * (pll->csi2.lanes / lane_op_clock_ratio);
431 break;
432 case SMIAPP_PLL_BUS_TYPE_PARALLEL:
433 pll->pll_op_clk_freq_hz = pll->link_freq * pll->bits_per_pixel
434 / DIV_ROUND_UP(pll->bits_per_pixel,
435 pll->parallel.bus_width);
436 break;
437 default:
438 return -EINVAL;
441 /* Figure out limits for pre-pll divider based on extclk */
442 dev_dbg(dev, "min / max pre_pll_clk_div: %u / %u\n",
443 limits->min_pre_pll_clk_div, limits->max_pre_pll_clk_div);
444 max_pre_pll_clk_div =
445 min_t(uint16_t, limits->max_pre_pll_clk_div,
446 clk_div_even(pll->ext_clk_freq_hz /
447 limits->min_pll_ip_freq_hz));
448 min_pre_pll_clk_div =
449 max_t(uint16_t, limits->min_pre_pll_clk_div,
450 clk_div_even_up(
451 DIV_ROUND_UP(pll->ext_clk_freq_hz,
452 limits->max_pll_ip_freq_hz)));
453 dev_dbg(dev, "pre-pll check: min / max pre_pll_clk_div: %u / %u\n",
454 min_pre_pll_clk_div, max_pre_pll_clk_div);
456 i = gcd(pll->pll_op_clk_freq_hz, pll->ext_clk_freq_hz);
457 mul = div_u64(pll->pll_op_clk_freq_hz, i);
458 div = pll->ext_clk_freq_hz / i;
459 dev_dbg(dev, "mul %u / div %u\n", mul, div);
461 min_pre_pll_clk_div =
462 max_t(uint16_t, min_pre_pll_clk_div,
463 clk_div_even_up(
464 DIV_ROUND_UP(mul * pll->ext_clk_freq_hz,
465 limits->max_pll_op_freq_hz)));
466 dev_dbg(dev, "pll_op check: min / max pre_pll_clk_div: %u / %u\n",
467 min_pre_pll_clk_div, max_pre_pll_clk_div);
469 for (pll->pre_pll_clk_div = min_pre_pll_clk_div;
470 pll->pre_pll_clk_div <= max_pre_pll_clk_div;
471 pll->pre_pll_clk_div += 2 - (pll->pre_pll_clk_div & 1)) {
472 rval = __smiapp_pll_calculate(dev, limits, op_limits, pll,
473 op_pll, mul, div,
474 lane_op_clock_ratio);
475 if (rval)
476 continue;
478 print_pll(dev, pll);
479 return 0;
482 dev_dbg(dev, "unable to compute pre_pll divisor\n");
484 return rval;
486 EXPORT_SYMBOL_GPL(smiapp_pll_calculate);
488 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
489 MODULE_DESCRIPTION("Generic SMIA/SMIA++ PLL calculator");
490 MODULE_LICENSE("GPL");