2 * device driver for Conexant 2388x based TV cards
5 * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
7 * (c) 2005-2006 Mauro Carvalho Chehab <mchehab@kernel.org>
9 * - video_ioctl2 conversion
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
25 #include <linux/init.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/kmod.h>
31 #include <linux/sound.h>
32 #include <linux/interrupt.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35 #include <linux/videodev2.h>
36 #include <linux/mutex.h>
38 #include <media/v4l2-common.h>
39 #include <media/v4l2-ioctl.h>
41 MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
42 MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
43 MODULE_LICENSE("GPL");
45 /* ------------------------------------------------------------------ */
47 unsigned int cx88_core_debug
;
48 module_param_named(core_debug
, cx88_core_debug
, int, 0644);
49 MODULE_PARM_DESC(core_debug
, "enable debug messages [core]");
51 static unsigned int nicam
;
52 module_param(nicam
, int, 0644);
53 MODULE_PARM_DESC(nicam
, "tv audio is nicam");
55 static unsigned int nocomb
;
56 module_param(nocomb
, int, 0644);
57 MODULE_PARM_DESC(nocomb
, "disable comb filter");
59 #define dprintk0(fmt, arg...) \
60 printk(KERN_DEBUG pr_fmt("%s: core:" fmt), \
63 #define dprintk(level, fmt, arg...) do { \
64 if (cx88_core_debug >= level) \
65 printk(KERN_DEBUG pr_fmt("%s: core:" fmt), \
69 static unsigned int cx88_devcount
;
70 static LIST_HEAD(cx88_devlist
);
71 static DEFINE_MUTEX(devlist
);
73 #define NO_SYNC_LINE (-1U)
76 * @lpi: lines per IRQ, or 0 to not generate irqs. Note: IRQ to be
77 * generated _after_ lpi lines are transferred.
79 static __le32
*cx88_risc_field(__le32
*rp
, struct scatterlist
*sglist
,
80 unsigned int offset
, u32 sync_line
,
81 unsigned int bpl
, unsigned int padding
,
82 unsigned int lines
, unsigned int lpi
, bool jump
)
84 struct scatterlist
*sg
;
85 unsigned int line
, todo
, sol
;
88 (*rp
++) = cpu_to_le32(RISC_JUMP
);
92 /* sync instruction */
93 if (sync_line
!= NO_SYNC_LINE
)
94 *(rp
++) = cpu_to_le32(RISC_RESYNC
| sync_line
);
98 for (line
= 0; line
< lines
; line
++) {
99 while (offset
&& offset
>= sg_dma_len(sg
)) {
100 offset
-= sg_dma_len(sg
);
103 if (lpi
&& line
> 0 && !(line
% lpi
))
104 sol
= RISC_SOL
| RISC_IRQ1
| RISC_CNT_INC
;
107 if (bpl
<= sg_dma_len(sg
) - offset
) {
108 /* fits into current chunk */
109 *(rp
++) = cpu_to_le32(RISC_WRITE
| sol
|
111 *(rp
++) = cpu_to_le32(sg_dma_address(sg
) + offset
);
114 /* scanline needs to be split */
116 *(rp
++) = cpu_to_le32(RISC_WRITE
| sol
|
117 (sg_dma_len(sg
) - offset
));
118 *(rp
++) = cpu_to_le32(sg_dma_address(sg
) + offset
);
119 todo
-= (sg_dma_len(sg
) - offset
);
122 while (todo
> sg_dma_len(sg
)) {
123 *(rp
++) = cpu_to_le32(RISC_WRITE
|
125 *(rp
++) = cpu_to_le32(sg_dma_address(sg
));
126 todo
-= sg_dma_len(sg
);
129 *(rp
++) = cpu_to_le32(RISC_WRITE
| RISC_EOL
| todo
);
130 *(rp
++) = cpu_to_le32(sg_dma_address(sg
));
139 int cx88_risc_buffer(struct pci_dev
*pci
, struct cx88_riscmem
*risc
,
140 struct scatterlist
*sglist
,
141 unsigned int top_offset
, unsigned int bottom_offset
,
142 unsigned int bpl
, unsigned int padding
, unsigned int lines
)
144 u32 instructions
, fields
;
148 if (top_offset
!= UNSET
)
150 if (bottom_offset
!= UNSET
)
154 * estimate risc mem: worst case is one write per page border +
155 * one write per scan line + syncs + jump (all 2 dwords). Padding
156 * can cause next bpl to start close to a page border. First DMA
157 * region may be smaller than PAGE_SIZE
159 instructions
= fields
* (1 + ((bpl
+ padding
) * lines
) /
162 risc
->size
= instructions
* 8;
164 risc
->cpu
= pci_zalloc_consistent(pci
, risc
->size
, &risc
->dma
);
168 /* write risc instructions */
170 if (top_offset
!= UNSET
)
171 rp
= cx88_risc_field(rp
, sglist
, top_offset
, 0,
172 bpl
, padding
, lines
, 0, true);
173 if (bottom_offset
!= UNSET
)
174 rp
= cx88_risc_field(rp
, sglist
, bottom_offset
, 0x200,
175 bpl
, padding
, lines
, 0,
176 top_offset
== UNSET
);
178 /* save pointer to jmp instruction address */
180 WARN_ON((risc
->jmp
- risc
->cpu
+ 2) * sizeof(*risc
->cpu
) > risc
->size
);
183 EXPORT_SYMBOL(cx88_risc_buffer
);
185 int cx88_risc_databuffer(struct pci_dev
*pci
, struct cx88_riscmem
*risc
,
186 struct scatterlist
*sglist
, unsigned int bpl
,
187 unsigned int lines
, unsigned int lpi
)
193 * estimate risc mem: worst case is one write per page border +
194 * one write per scan line + syncs + jump (all 2 dwords). Here
195 * there is no padding and no sync. First DMA region may be smaller
198 instructions
= 1 + (bpl
* lines
) / PAGE_SIZE
+ lines
;
200 risc
->size
= instructions
* 8;
202 risc
->cpu
= pci_zalloc_consistent(pci
, risc
->size
, &risc
->dma
);
206 /* write risc instructions */
208 rp
= cx88_risc_field(rp
, sglist
, 0, NO_SYNC_LINE
, bpl
, 0,
211 /* save pointer to jmp instruction address */
213 WARN_ON((risc
->jmp
- risc
->cpu
+ 2) * sizeof(*risc
->cpu
) > risc
->size
);
216 EXPORT_SYMBOL(cx88_risc_databuffer
);
219 * our SRAM memory layout
223 * we are going to put all thr risc programs into host memory, so we
224 * can use the whole SDRAM for the DMA fifos. To simplify things, we
225 * use a static memory layout. That surely will waste memory in case
226 * we don't use all DMA channels at the same time (which will be the
227 * case most of the time). But that still gives us enough FIFO space
228 * to be able to deal with insane long pci latencies ...
230 * FIFO space allocations:
231 * channel 21 (y video) - 10.0k
232 * channel 22 (u video) - 2.0k
233 * channel 23 (v video) - 2.0k
234 * channel 24 (vbi) - 4.0k
235 * channels 25+26 (audio) - 4.0k
236 * channel 28 (mpeg) - 4.0k
237 * channel 27 (audio rds)- 3.0k
240 * Every channel has 160 bytes control data (64 bytes instruction
241 * queue and 6 CDT entries), which is close to 2k total.
244 * 0x0000 - 0x03ff CMDs / reserved
245 * 0x0400 - 0x0bff instruction queues + CDs
249 const struct sram_channel cx88_sram_channels
[] = {
251 .name
= "video y / packed",
252 .cmds_start
= 0x180040,
253 .ctrl_start
= 0x180400,
254 .cdt
= 0x180400 + 64,
255 .fifo_start
= 0x180c00,
256 .fifo_size
= 0x002800,
257 .ptr1_reg
= MO_DMA21_PTR1
,
258 .ptr2_reg
= MO_DMA21_PTR2
,
259 .cnt1_reg
= MO_DMA21_CNT1
,
260 .cnt2_reg
= MO_DMA21_CNT2
,
264 .cmds_start
= 0x180080,
265 .ctrl_start
= 0x1804a0,
266 .cdt
= 0x1804a0 + 64,
267 .fifo_start
= 0x183400,
268 .fifo_size
= 0x000800,
269 .ptr1_reg
= MO_DMA22_PTR1
,
270 .ptr2_reg
= MO_DMA22_PTR2
,
271 .cnt1_reg
= MO_DMA22_CNT1
,
272 .cnt2_reg
= MO_DMA22_CNT2
,
276 .cmds_start
= 0x1800c0,
277 .ctrl_start
= 0x180540,
278 .cdt
= 0x180540 + 64,
279 .fifo_start
= 0x183c00,
280 .fifo_size
= 0x000800,
281 .ptr1_reg
= MO_DMA23_PTR1
,
282 .ptr2_reg
= MO_DMA23_PTR2
,
283 .cnt1_reg
= MO_DMA23_CNT1
,
284 .cnt2_reg
= MO_DMA23_CNT2
,
288 .cmds_start
= 0x180100,
289 .ctrl_start
= 0x1805e0,
290 .cdt
= 0x1805e0 + 64,
291 .fifo_start
= 0x184400,
292 .fifo_size
= 0x001000,
293 .ptr1_reg
= MO_DMA24_PTR1
,
294 .ptr2_reg
= MO_DMA24_PTR2
,
295 .cnt1_reg
= MO_DMA24_CNT1
,
296 .cnt2_reg
= MO_DMA24_CNT2
,
299 .name
= "audio from",
300 .cmds_start
= 0x180140,
301 .ctrl_start
= 0x180680,
302 .cdt
= 0x180680 + 64,
303 .fifo_start
= 0x185400,
304 .fifo_size
= 0x001000,
305 .ptr1_reg
= MO_DMA25_PTR1
,
306 .ptr2_reg
= MO_DMA25_PTR2
,
307 .cnt1_reg
= MO_DMA25_CNT1
,
308 .cnt2_reg
= MO_DMA25_CNT2
,
312 .cmds_start
= 0x180180,
313 .ctrl_start
= 0x180720,
314 .cdt
= 0x180680 + 64, /* same as audio IN */
315 .fifo_start
= 0x185400, /* same as audio IN */
316 .fifo_size
= 0x001000, /* same as audio IN */
317 .ptr1_reg
= MO_DMA26_PTR1
,
318 .ptr2_reg
= MO_DMA26_PTR2
,
319 .cnt1_reg
= MO_DMA26_CNT1
,
320 .cnt2_reg
= MO_DMA26_CNT2
,
324 .cmds_start
= 0x180200,
325 .ctrl_start
= 0x1807C0,
326 .cdt
= 0x1807C0 + 64,
327 .fifo_start
= 0x186400,
328 .fifo_size
= 0x001000,
329 .ptr1_reg
= MO_DMA28_PTR1
,
330 .ptr2_reg
= MO_DMA28_PTR2
,
331 .cnt1_reg
= MO_DMA28_CNT1
,
332 .cnt2_reg
= MO_DMA28_CNT2
,
336 .cmds_start
= 0x1801C0,
337 .ctrl_start
= 0x180860,
338 .cdt
= 0x180860 + 64,
339 .fifo_start
= 0x187400,
340 .fifo_size
= 0x000C00,
341 .ptr1_reg
= MO_DMA27_PTR1
,
342 .ptr2_reg
= MO_DMA27_PTR2
,
343 .cnt1_reg
= MO_DMA27_CNT1
,
344 .cnt2_reg
= MO_DMA27_CNT2
,
347 EXPORT_SYMBOL(cx88_sram_channels
);
349 int cx88_sram_channel_setup(struct cx88_core
*core
,
350 const struct sram_channel
*ch
,
351 unsigned int bpl
, u32 risc
)
353 unsigned int i
, lines
;
356 bpl
= (bpl
+ 7) & ~7; /* alignment */
358 lines
= ch
->fifo_size
/ bpl
;
364 for (i
= 0; i
< lines
; i
++)
365 cx_write(cdt
+ 16 * i
, ch
->fifo_start
+ bpl
* i
);
368 cx_write(ch
->cmds_start
+ 0, risc
);
369 cx_write(ch
->cmds_start
+ 4, cdt
);
370 cx_write(ch
->cmds_start
+ 8, (lines
* 16) >> 3);
371 cx_write(ch
->cmds_start
+ 12, ch
->ctrl_start
);
372 cx_write(ch
->cmds_start
+ 16, 64 >> 2);
373 for (i
= 20; i
< 64; i
+= 4)
374 cx_write(ch
->cmds_start
+ i
, 0);
377 cx_write(ch
->ptr1_reg
, ch
->fifo_start
);
378 cx_write(ch
->ptr2_reg
, cdt
);
379 cx_write(ch
->cnt1_reg
, (bpl
>> 3) - 1);
380 cx_write(ch
->cnt2_reg
, (lines
* 16) >> 3);
382 dprintk(2, "sram setup %s: bpl=%d lines=%d\n", ch
->name
, bpl
, lines
);
385 EXPORT_SYMBOL(cx88_sram_channel_setup
);
387 /* ------------------------------------------------------------------ */
388 /* debug helper code */
390 static int cx88_risc_decode(u32 risc
)
392 static const char * const instr
[16] = {
393 [RISC_SYNC
>> 28] = "sync",
394 [RISC_WRITE
>> 28] = "write",
395 [RISC_WRITEC
>> 28] = "writec",
396 [RISC_READ
>> 28] = "read",
397 [RISC_READC
>> 28] = "readc",
398 [RISC_JUMP
>> 28] = "jump",
399 [RISC_SKIP
>> 28] = "skip",
400 [RISC_WRITERM
>> 28] = "writerm",
401 [RISC_WRITECM
>> 28] = "writecm",
402 [RISC_WRITECR
>> 28] = "writecr",
404 static int const incr
[16] = {
405 [RISC_WRITE
>> 28] = 2,
406 [RISC_JUMP
>> 28] = 2,
407 [RISC_WRITERM
>> 28] = 3,
408 [RISC_WRITECM
>> 28] = 3,
409 [RISC_WRITECR
>> 28] = 4,
411 static const char * const bits
[] = {
412 "12", "13", "14", "resync",
413 "cnt0", "cnt1", "18", "19",
414 "20", "21", "22", "23",
415 "irq1", "irq2", "eol", "sol",
419 dprintk0("0x%08x [ %s", risc
,
420 instr
[risc
>> 28] ? instr
[risc
>> 28] : "INVALID");
421 for (i
= ARRAY_SIZE(bits
) - 1; i
>= 0; i
--)
422 if (risc
& (1 << (i
+ 12)))
423 pr_cont(" %s", bits
[i
]);
424 pr_cont(" count=%d ]\n", risc
& 0xfff);
425 return incr
[risc
>> 28] ? incr
[risc
>> 28] : 1;
428 void cx88_sram_channel_dump(struct cx88_core
*core
,
429 const struct sram_channel
*ch
)
431 static const char * const name
[] = {
445 unsigned int i
, j
, n
;
447 dprintk0("%s - dma channel status dump\n", ch
->name
);
448 for (i
= 0; i
< ARRAY_SIZE(name
); i
++)
449 dprintk0(" cmds: %-12s: 0x%08x\n",
450 name
[i
], cx_read(ch
->cmds_start
+ 4 * i
));
451 for (n
= 1, i
= 0; i
< 4; i
++) {
452 risc
= cx_read(ch
->cmds_start
+ 4 * (i
+ 11));
453 pr_cont(" risc%d: ", i
);
455 pr_cont("0x%08x [ arg #%d ]\n", risc
, n
);
457 n
= cx88_risc_decode(risc
);
459 for (i
= 0; i
< 16; i
+= n
) {
460 risc
= cx_read(ch
->ctrl_start
+ 4 * i
);
461 dprintk0(" iq %x: ", i
);
462 n
= cx88_risc_decode(risc
);
463 for (j
= 1; j
< n
; j
++) {
464 risc
= cx_read(ch
->ctrl_start
+ 4 * (i
+ j
));
465 pr_cont(" iq %x: 0x%08x [ arg #%d ]\n",
470 dprintk0("fifo: 0x%08x -> 0x%x\n",
471 ch
->fifo_start
, ch
->fifo_start
+ ch
->fifo_size
);
472 dprintk0("ctrl: 0x%08x -> 0x%x\n",
473 ch
->ctrl_start
, ch
->ctrl_start
+ 6 * 16);
474 dprintk0(" ptr1_reg: 0x%08x\n", cx_read(ch
->ptr1_reg
));
475 dprintk0(" ptr2_reg: 0x%08x\n", cx_read(ch
->ptr2_reg
));
476 dprintk0(" cnt1_reg: 0x%08x\n", cx_read(ch
->cnt1_reg
));
477 dprintk0(" cnt2_reg: 0x%08x\n", cx_read(ch
->cnt2_reg
));
479 EXPORT_SYMBOL(cx88_sram_channel_dump
);
481 static const char *cx88_pci_irqs
[32] = {
482 "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
483 "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
484 "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
485 "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
488 void cx88_print_irqbits(const char *tag
, const char *strings
[],
489 int len
, u32 bits
, u32 mask
)
493 dprintk0("%s [0x%x]", tag
, bits
);
494 for (i
= 0; i
< len
; i
++) {
495 if (!(bits
& (1 << i
)))
498 pr_cont(" %s", strings
[i
]);
501 if (!(mask
& (1 << i
)))
507 EXPORT_SYMBOL(cx88_print_irqbits
);
509 /* ------------------------------------------------------------------ */
511 int cx88_core_irq(struct cx88_core
*core
, u32 status
)
515 if (status
& PCI_INT_IR_SMPINT
) {
520 cx88_print_irqbits("irq pci",
521 cx88_pci_irqs
, ARRAY_SIZE(cx88_pci_irqs
),
522 status
, core
->pci_irqmask
);
525 EXPORT_SYMBOL(cx88_core_irq
);
527 void cx88_wakeup(struct cx88_core
*core
,
528 struct cx88_dmaqueue
*q
, u32 count
)
530 struct cx88_buffer
*buf
;
532 buf
= list_entry(q
->active
.next
,
533 struct cx88_buffer
, list
);
534 buf
->vb
.vb2_buf
.timestamp
= ktime_get_ns();
535 buf
->vb
.field
= core
->field
;
536 buf
->vb
.sequence
= q
->count
++;
537 list_del(&buf
->list
);
538 vb2_buffer_done(&buf
->vb
.vb2_buf
, VB2_BUF_STATE_DONE
);
540 EXPORT_SYMBOL(cx88_wakeup
);
542 void cx88_shutdown(struct cx88_core
*core
)
544 /* disable RISC controller + IRQs */
545 cx_write(MO_DEV_CNTRL2
, 0);
547 /* stop dma transfers */
548 cx_write(MO_VID_DMACNTRL
, 0x0);
549 cx_write(MO_AUD_DMACNTRL
, 0x0);
550 cx_write(MO_TS_DMACNTRL
, 0x0);
551 cx_write(MO_VIP_DMACNTRL
, 0x0);
552 cx_write(MO_GPHST_DMACNTRL
, 0x0);
554 /* stop interrupts */
555 cx_write(MO_PCI_INTMSK
, 0x0);
556 cx_write(MO_VID_INTMSK
, 0x0);
557 cx_write(MO_AUD_INTMSK
, 0x0);
558 cx_write(MO_TS_INTMSK
, 0x0);
559 cx_write(MO_VIP_INTMSK
, 0x0);
560 cx_write(MO_GPHST_INTMSK
, 0x0);
563 cx_write(VID_CAPTURE_CONTROL
, 0);
565 EXPORT_SYMBOL(cx88_shutdown
);
567 int cx88_reset(struct cx88_core
*core
)
572 /* clear irq status */
573 cx_write(MO_VID_INTSTAT
, 0xFFFFFFFF); // Clear PIV int
574 cx_write(MO_PCI_INTSTAT
, 0xFFFFFFFF); // Clear PCI int
575 cx_write(MO_INT1_STAT
, 0xFFFFFFFF); // Clear RISC int
581 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH21
],
583 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH22
], 128, 0);
584 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH23
], 128, 0);
585 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH24
], 128, 0);
586 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH25
], 128, 0);
587 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH26
], 128, 0);
588 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH28
],
590 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH27
], 128, 0);
593 cx_write(MO_INPUT_FORMAT
, ((1 << 13) | // agc enable
594 (1 << 12) | // agc gain
595 (1 << 11) | // adaptibe agc
596 (0 << 10) | // chroma agc
597 (0 << 9) | // ckillen
600 /* setup image format */
601 cx_andor(MO_COLOR_CTRL
, 0x4000, 0x4000);
603 /* setup FIFO Thresholds */
604 cx_write(MO_PDMA_STHRSH
, 0x0807);
605 cx_write(MO_PDMA_DTHRSH
, 0x0807);
607 /* fixes flashing of image */
608 cx_write(MO_AGC_SYNC_TIP1
, 0x0380000F);
609 cx_write(MO_AGC_BACK_VBI
, 0x00E00555);
611 cx_write(MO_VID_INTSTAT
, 0xFFFFFFFF); // Clear PIV int
612 cx_write(MO_PCI_INTSTAT
, 0xFFFFFFFF); // Clear PCI int
613 cx_write(MO_INT1_STAT
, 0xFFFFFFFF); // Clear RISC int
615 /* Reset on-board parts */
616 cx_write(MO_SRST_IO
, 0);
617 usleep_range(10000, 20000);
618 cx_write(MO_SRST_IO
, 1);
622 EXPORT_SYMBOL(cx88_reset
);
624 /* ------------------------------------------------------------------ */
626 static inline unsigned int norm_swidth(v4l2_std_id norm
)
628 return (norm
& (V4L2_STD_MN
& ~V4L2_STD_PAL_Nc
)) ? 754 : 922;
631 static inline unsigned int norm_hdelay(v4l2_std_id norm
)
633 return (norm
& (V4L2_STD_MN
& ~V4L2_STD_PAL_Nc
)) ? 135 : 186;
636 static inline unsigned int norm_vdelay(v4l2_std_id norm
)
638 return (norm
& V4L2_STD_625_50
) ? 0x24 : 0x18;
641 static inline unsigned int norm_fsc8(v4l2_std_id norm
)
643 if (norm
& V4L2_STD_PAL_M
)
644 return 28604892; // 3.575611 MHz
646 if (norm
& (V4L2_STD_PAL_Nc
))
647 return 28656448; // 3.582056 MHz
649 if (norm
& V4L2_STD_NTSC
) // All NTSC/M and variants
650 return 28636360; // 3.57954545 MHz +/- 10 Hz
653 * SECAM have also different sub carrier for chroma,
654 * but step_db and step_dr, at cx88_set_tvnorm already handles that.
656 * The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N
659 return 35468950; // 4.43361875 MHz +/- 5 Hz
662 static inline unsigned int norm_htotal(v4l2_std_id norm
)
664 unsigned int fsc4
= norm_fsc8(norm
) / 2;
666 /* returns 4*FSC / vtotal / frames per seconds */
667 return (norm
& V4L2_STD_625_50
) ?
668 ((fsc4
+ 312) / 625 + 12) / 25 :
669 ((fsc4
+ 262) / 525 * 1001 + 15000) / 30000;
672 static inline unsigned int norm_vbipack(v4l2_std_id norm
)
674 return (norm
& V4L2_STD_625_50
) ? 511 : 400;
677 int cx88_set_scale(struct cx88_core
*core
, unsigned int width
,
678 unsigned int height
, enum v4l2_field field
)
680 unsigned int swidth
= norm_swidth(core
->tvnorm
);
681 unsigned int sheight
= norm_maxh(core
->tvnorm
);
684 dprintk(1, "set_scale: %dx%d [%s%s,%s]\n", width
, height
,
685 V4L2_FIELD_HAS_TOP(field
) ? "T" : "",
686 V4L2_FIELD_HAS_BOTTOM(field
) ? "B" : "",
687 v4l2_norm_to_name(core
->tvnorm
));
688 if (!V4L2_FIELD_HAS_BOTH(field
))
691 // recalc H delay and scale registers
692 value
= (width
* norm_hdelay(core
->tvnorm
)) / swidth
;
694 cx_write(MO_HDELAY_EVEN
, value
);
695 cx_write(MO_HDELAY_ODD
, value
);
696 dprintk(1, "set_scale: hdelay 0x%04x (width %d)\n", value
, swidth
);
698 value
= (swidth
* 4096 / width
) - 4096;
699 cx_write(MO_HSCALE_EVEN
, value
);
700 cx_write(MO_HSCALE_ODD
, value
);
701 dprintk(1, "set_scale: hscale 0x%04x\n", value
);
703 cx_write(MO_HACTIVE_EVEN
, width
);
704 cx_write(MO_HACTIVE_ODD
, width
);
705 dprintk(1, "set_scale: hactive 0x%04x\n", width
);
707 // recalc V scale Register (delay is constant)
708 cx_write(MO_VDELAY_EVEN
, norm_vdelay(core
->tvnorm
));
709 cx_write(MO_VDELAY_ODD
, norm_vdelay(core
->tvnorm
));
710 dprintk(1, "set_scale: vdelay 0x%04x\n", norm_vdelay(core
->tvnorm
));
712 value
= (0x10000 - (sheight
* 512 / height
- 512)) & 0x1fff;
713 cx_write(MO_VSCALE_EVEN
, value
);
714 cx_write(MO_VSCALE_ODD
, value
);
715 dprintk(1, "set_scale: vscale 0x%04x\n", value
);
717 cx_write(MO_VACTIVE_EVEN
, sheight
);
718 cx_write(MO_VACTIVE_ODD
, sheight
);
719 dprintk(1, "set_scale: vactive 0x%04x\n", sheight
);
723 value
|= (1 << 19); // CFILT (default)
724 if (core
->tvnorm
& V4L2_STD_SECAM
) {
728 if (INPUT(core
->input
).type
== CX88_VMUX_SVIDEO
)
729 value
|= (1 << 13) | (1 << 5);
730 if (field
== V4L2_FIELD_INTERLACED
)
731 value
|= (1 << 3); // VINT (interlaced vertical scaling)
733 value
|= (1 << 0); // 3-tap interpolation
735 value
|= (1 << 1); // 5-tap interpolation
737 value
|= (3 << 5); // disable comb filter
739 cx_andor(MO_FILTER_EVEN
, 0x7ffc7f, value
); /* preserve PEAKEN, PSEL */
740 cx_andor(MO_FILTER_ODD
, 0x7ffc7f, value
);
741 dprintk(1, "set_scale: filter 0x%04x\n", value
);
745 EXPORT_SYMBOL(cx88_set_scale
);
747 static const u32 xtal
= 28636363;
749 static int set_pll(struct cx88_core
*core
, int prescale
, u32 ofreq
)
751 static const u32 pre
[] = { 0, 0, 0, 3, 2, 1 };
761 pll
= ofreq
* 8 * prescale
* (u64
)(1 << 20);
763 reg
= (pll
& 0x3ffffff) | (pre
[prescale
] << 26);
764 if (((reg
>> 20) & 0x3f) < 14) {
765 pr_err("pll out of range\n");
769 dprintk(1, "set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n",
770 reg
, cx_read(MO_PLL_REG
), ofreq
);
771 cx_write(MO_PLL_REG
, reg
);
772 for (i
= 0; i
< 100; i
++) {
773 reg
= cx_read(MO_DEVICE_STATUS
);
774 if (reg
& (1 << 2)) {
775 dprintk(1, "pll locked [pre=%d,ofreq=%d]\n",
779 dprintk(1, "pll not locked yet, waiting ...\n");
780 usleep_range(10000, 20000);
782 dprintk(1, "pll NOT locked [pre=%d,ofreq=%d]\n", prescale
, ofreq
);
786 int cx88_start_audio_dma(struct cx88_core
*core
)
788 /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
789 int bpl
= cx88_sram_channels
[SRAM_CH25
].fifo_size
/ 4;
791 int rds_bpl
= cx88_sram_channels
[SRAM_CH27
].fifo_size
/ AUD_RDS_LINES
;
793 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
794 if (cx_read(MO_AUD_DMACNTRL
) & 0x10)
797 /* setup fifo + format */
798 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH25
], bpl
, 0);
799 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH26
], bpl
, 0);
800 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH27
],
803 cx_write(MO_AUDD_LNGTH
, bpl
); /* fifo bpl size */
804 cx_write(MO_AUDR_LNGTH
, rds_bpl
); /* fifo bpl size */
806 /* enable Up, Down and Audio RDS fifo */
807 cx_write(MO_AUD_DMACNTRL
, 0x0007);
812 int cx88_stop_audio_dma(struct cx88_core
*core
)
814 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
815 if (cx_read(MO_AUD_DMACNTRL
) & 0x10)
819 cx_write(MO_AUD_DMACNTRL
, 0x0000);
824 static int set_tvaudio(struct cx88_core
*core
)
826 v4l2_std_id norm
= core
->tvnorm
;
828 if (INPUT(core
->input
).type
!= CX88_VMUX_TELEVISION
&&
829 INPUT(core
->input
).type
!= CX88_VMUX_CABLE
)
832 if (V4L2_STD_PAL_BG
& norm
) {
833 core
->tvaudio
= WW_BG
;
835 } else if (V4L2_STD_PAL_DK
& norm
) {
836 core
->tvaudio
= WW_DK
;
838 } else if (V4L2_STD_PAL_I
& norm
) {
839 core
->tvaudio
= WW_I
;
841 } else if (V4L2_STD_SECAM_L
& norm
) {
842 core
->tvaudio
= WW_L
;
844 } else if ((V4L2_STD_SECAM_B
| V4L2_STD_SECAM_G
| V4L2_STD_SECAM_H
) &
846 core
->tvaudio
= WW_BG
;
848 } else if (V4L2_STD_SECAM_DK
& norm
) {
849 core
->tvaudio
= WW_DK
;
851 } else if ((V4L2_STD_NTSC_M
& norm
) ||
852 (V4L2_STD_PAL_M
& norm
)) {
853 core
->tvaudio
= WW_BTSC
;
855 } else if (V4L2_STD_NTSC_M_JP
& norm
) {
856 core
->tvaudio
= WW_EIAJ
;
859 pr_info("tvaudio support needs work for this tv norm [%s], sorry\n",
860 v4l2_norm_to_name(core
->tvnorm
));
861 core
->tvaudio
= WW_NONE
;
865 cx_andor(MO_AFECFG_IO
, 0x1f, 0x0);
866 cx88_set_tvaudio(core
);
867 /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
870 * This should be needed only on cx88-alsa. It seems that some cx88 chips have
871 * bugs and does require DMA enabled for it to work.
873 cx88_start_audio_dma(core
);
877 int cx88_set_tvnorm(struct cx88_core
*core
, v4l2_std_id norm
)
882 u32 step_db
, step_dr
;
884 u32 bdelay
, agcdelay
, htotal
;
885 u32 cxiformat
, cxoformat
;
887 if (norm
== core
->tvnorm
)
889 if (core
->v4ldev
&& (vb2_is_busy(&core
->v4ldev
->vb2_vidq
) ||
890 vb2_is_busy(&core
->v4ldev
->vb2_vbiq
)))
892 if (core
->dvbdev
&& vb2_is_busy(&core
->dvbdev
->vb2_mpegq
))
895 fsc8
= norm_fsc8(norm
);
901 if (norm
& V4L2_STD_NTSC_M_JP
) {
902 cxiformat
= VideoFormatNTSCJapan
;
903 cxoformat
= 0x181f0008;
904 } else if (norm
& V4L2_STD_NTSC_443
) {
905 cxiformat
= VideoFormatNTSC443
;
906 cxoformat
= 0x181f0008;
907 } else if (norm
& V4L2_STD_PAL_M
) {
908 cxiformat
= VideoFormatPALM
;
909 cxoformat
= 0x1c1f0008;
910 } else if (norm
& V4L2_STD_PAL_N
) {
911 cxiformat
= VideoFormatPALN
;
912 cxoformat
= 0x1c1f0008;
913 } else if (norm
& V4L2_STD_PAL_Nc
) {
914 cxiformat
= VideoFormatPALNC
;
915 cxoformat
= 0x1c1f0008;
916 } else if (norm
& V4L2_STD_PAL_60
) {
917 cxiformat
= VideoFormatPAL60
;
918 cxoformat
= 0x181f0008;
919 } else if (norm
& V4L2_STD_NTSC
) {
920 cxiformat
= VideoFormatNTSC
;
921 cxoformat
= 0x181f0008;
922 } else if (norm
& V4L2_STD_SECAM
) {
923 step_db
= 4250000 * 8;
924 step_dr
= 4406250 * 8;
926 cxiformat
= VideoFormatSECAM
;
927 cxoformat
= 0x181f0008;
929 cxiformat
= VideoFormatPAL
;
930 cxoformat
= 0x181f0008;
933 dprintk(1, "set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
934 v4l2_norm_to_name(core
->tvnorm
), fsc8
, adc_clock
, vdec_clock
,
936 set_pll(core
, 2, vdec_clock
);
938 dprintk(1, "set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n",
939 cxiformat
, cx_read(MO_INPUT_FORMAT
) & 0x0f);
941 * Chroma AGC must be disabled if SECAM is used, we enable it
942 * by default on PAL and NTSC
944 cx_andor(MO_INPUT_FORMAT
, 0x40f,
945 norm
& V4L2_STD_SECAM
? cxiformat
: cxiformat
| 0x400);
947 // FIXME: as-is from DScaler
948 dprintk(1, "set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
949 cxoformat
, cx_read(MO_OUTPUT_FORMAT
));
950 cx_write(MO_OUTPUT_FORMAT
, cxoformat
);
952 // MO_SCONV_REG = adc clock / video dec clock * 2^17
953 tmp64
= adc_clock
* (u64
)(1 << 17);
954 do_div(tmp64
, vdec_clock
);
955 dprintk(1, "set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n",
956 (u32
)tmp64
, cx_read(MO_SCONV_REG
));
957 cx_write(MO_SCONV_REG
, (u32
)tmp64
);
959 // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
960 tmp64
= step_db
* (u64
)(1 << 22);
961 do_div(tmp64
, vdec_clock
);
962 dprintk(1, "set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n",
963 (u32
)tmp64
, cx_read(MO_SUB_STEP
));
964 cx_write(MO_SUB_STEP
, (u32
)tmp64
);
966 // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
967 tmp64
= step_dr
* (u64
)(1 << 22);
968 do_div(tmp64
, vdec_clock
);
969 dprintk(1, "set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n",
970 (u32
)tmp64
, cx_read(MO_SUB_STEP_DR
));
971 cx_write(MO_SUB_STEP_DR
, (u32
)tmp64
);
974 bdelay
= vdec_clock
* 65 / 20000000 + 21;
975 agcdelay
= vdec_clock
* 68 / 20000000 + 15;
977 "set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
978 (bdelay
<< 8) | agcdelay
, cx_read(MO_AGC_BURST
),
980 cx_write(MO_AGC_BURST
, (bdelay
<< 8) | agcdelay
);
983 tmp64
= norm_htotal(norm
) * (u64
)vdec_clock
;
987 "set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n",
988 htotal
, cx_read(MO_HTOTAL
), (u32
)tmp64
);
989 cx_andor(MO_HTOTAL
, 0x07ff, htotal
);
991 // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
992 // the effective vbi offset ~244 samples, the same as the Bt8x8
993 cx_write(MO_VBI_PACKET
, (10 << 11) | norm_vbipack(norm
));
995 // this is needed as well to set all tvnorm parameter
996 cx88_set_scale(core
, 320, 240, V4L2_FIELD_INTERLACED
);
1002 call_all(core
, video
, s_std
, norm
);
1005 * The chroma_agc control should be inaccessible
1006 * if the video format is SECAM
1008 v4l2_ctrl_grab(core
->chroma_agc
, cxiformat
== VideoFormatSECAM
);
1013 EXPORT_SYMBOL(cx88_set_tvnorm
);
1015 /* ------------------------------------------------------------------ */
1017 void cx88_vdev_init(struct cx88_core
*core
,
1018 struct pci_dev
*pci
,
1019 struct video_device
*vfd
,
1020 const struct video_device
*template_
,
1026 * The dev pointer of v4l2_device is NULL, instead we set the
1027 * video_device dev_parent pointer to the correct PCI bus device.
1028 * This driver is a rare example where there is one v4l2_device,
1029 * but the video nodes have different parent (PCI) devices.
1031 vfd
->v4l2_dev
= &core
->v4l2_dev
;
1032 vfd
->dev_parent
= &pci
->dev
;
1033 vfd
->release
= video_device_release_empty
;
1034 vfd
->lock
= &core
->lock
;
1035 snprintf(vfd
->name
, sizeof(vfd
->name
), "%s %s (%s)",
1036 core
->name
, type
, core
->board
.name
);
1038 EXPORT_SYMBOL(cx88_vdev_init
);
1040 struct cx88_core
*cx88_core_get(struct pci_dev
*pci
)
1042 struct cx88_core
*core
;
1044 mutex_lock(&devlist
);
1045 list_for_each_entry(core
, &cx88_devlist
, devlist
) {
1046 if (pci
->bus
->number
!= core
->pci_bus
)
1048 if (PCI_SLOT(pci
->devfn
) != core
->pci_slot
)
1051 if (cx88_get_resources(core
, pci
) != 0) {
1052 mutex_unlock(&devlist
);
1055 refcount_inc(&core
->refcount
);
1056 mutex_unlock(&devlist
);
1060 core
= cx88_core_create(pci
, cx88_devcount
);
1063 list_add_tail(&core
->devlist
, &cx88_devlist
);
1066 mutex_unlock(&devlist
);
1069 EXPORT_SYMBOL(cx88_core_get
);
1071 void cx88_core_put(struct cx88_core
*core
, struct pci_dev
*pci
)
1073 release_mem_region(pci_resource_start(pci
, 0),
1074 pci_resource_len(pci
, 0));
1076 if (!refcount_dec_and_test(&core
->refcount
))
1079 mutex_lock(&devlist
);
1081 if (core
->i2c_rc
== 0) {
1083 i2c_unregister_device(core
->i2c_rtc
);
1084 i2c_del_adapter(&core
->i2c_adap
);
1086 list_del(&core
->devlist
);
1087 iounmap(core
->lmmio
);
1089 mutex_unlock(&devlist
);
1090 v4l2_ctrl_handler_free(&core
->video_hdl
);
1091 v4l2_ctrl_handler_free(&core
->audio_hdl
);
1092 v4l2_device_unregister(&core
->v4l2_dev
);
1095 EXPORT_SYMBOL(cx88_core_put
);