f81232: switch to ->get_serial()
[linux/fpc-iii.git] / drivers / media / platform / rcar_fdp1.c
blob2a15b7cca338fe6445ae11a8ec275c9e40ac1245
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Renesas R-Car Fine Display Processor
5 * Video format converter and frame deinterlacer device.
7 * Author: Kieran Bingham, <kieran@bingham.xyz>
8 * Copyright (c) 2016 Renesas Electronics Corporation.
10 * This code is developed and inspired from the vim2m, rcar_jpu,
11 * m2m-deinterlace, and vsp1 drivers.
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/fs.h>
18 #include <linux/interrupt.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/timer.h>
27 #include <media/rcar-fcp.h>
28 #include <media/v4l2-ctrls.h>
29 #include <media/v4l2-device.h>
30 #include <media/v4l2-event.h>
31 #include <media/v4l2-ioctl.h>
32 #include <media/v4l2-mem2mem.h>
33 #include <media/videobuf2-dma-contig.h>
35 static unsigned int debug;
36 module_param(debug, uint, 0644);
37 MODULE_PARM_DESC(debug, "activate debug info");
39 /* Minimum and maximum frame width/height */
40 #define FDP1_MIN_W 80U
41 #define FDP1_MIN_H 80U
43 #define FDP1_MAX_W 3840U
44 #define FDP1_MAX_H 2160U
46 #define FDP1_MAX_PLANES 3U
47 #define FDP1_MAX_STRIDE 8190U
49 /* Flags that indicate a format can be used for capture/output */
50 #define FDP1_CAPTURE BIT(0)
51 #define FDP1_OUTPUT BIT(1)
53 #define DRIVER_NAME "rcar_fdp1"
55 /* Number of Job's to have available on the processing queue */
56 #define FDP1_NUMBER_JOBS 8
58 #define dprintk(fdp1, fmt, arg...) \
59 v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg)
62 * FDP1 registers and bits
65 /* FDP1 start register - Imm */
66 #define FD1_CTL_CMD 0x0000
67 #define FD1_CTL_CMD_STRCMD BIT(0)
69 /* Sync generator register - Imm */
70 #define FD1_CTL_SGCMD 0x0004
71 #define FD1_CTL_SGCMD_SGEN BIT(0)
73 /* Register set end register - Imm */
74 #define FD1_CTL_REGEND 0x0008
75 #define FD1_CTL_REGEND_REGEND BIT(0)
77 /* Channel activation register - Vupdt */
78 #define FD1_CTL_CHACT 0x000c
79 #define FD1_CTL_CHACT_SMW BIT(9)
80 #define FD1_CTL_CHACT_WR BIT(8)
81 #define FD1_CTL_CHACT_SMR BIT(3)
82 #define FD1_CTL_CHACT_RD2 BIT(2)
83 #define FD1_CTL_CHACT_RD1 BIT(1)
84 #define FD1_CTL_CHACT_RD0 BIT(0)
86 /* Operation Mode Register - Vupdt */
87 #define FD1_CTL_OPMODE 0x0010
88 #define FD1_CTL_OPMODE_PRG BIT(4)
89 #define FD1_CTL_OPMODE_VIMD_INTERRUPT (0 << 0)
90 #define FD1_CTL_OPMODE_VIMD_BESTEFFORT (1 << 0)
91 #define FD1_CTL_OPMODE_VIMD_NOINTERRUPT (2 << 0)
93 #define FD1_CTL_VPERIOD 0x0014
94 #define FD1_CTL_CLKCTRL 0x0018
95 #define FD1_CTL_CLKCTRL_CSTP_N BIT(0)
97 /* Software reset register */
98 #define FD1_CTL_SRESET 0x001c
99 #define FD1_CTL_SRESET_SRST BIT(0)
101 /* Control status register (V-update-status) */
102 #define FD1_CTL_STATUS 0x0024
103 #define FD1_CTL_STATUS_VINT_CNT_MASK GENMASK(31, 16)
104 #define FD1_CTL_STATUS_VINT_CNT_SHIFT 16
105 #define FD1_CTL_STATUS_SGREGSET BIT(10)
106 #define FD1_CTL_STATUS_SGVERR BIT(9)
107 #define FD1_CTL_STATUS_SGFREND BIT(8)
108 #define FD1_CTL_STATUS_BSY BIT(0)
110 #define FD1_CTL_VCYCLE_STAT 0x0028
112 /* Interrupt enable register */
113 #define FD1_CTL_IRQENB 0x0038
114 /* Interrupt status register */
115 #define FD1_CTL_IRQSTA 0x003c
116 /* Interrupt control register */
117 #define FD1_CTL_IRQFSET 0x0040
119 /* Common IRQ Bit settings */
120 #define FD1_CTL_IRQ_VERE BIT(16)
121 #define FD1_CTL_IRQ_VINTE BIT(4)
122 #define FD1_CTL_IRQ_FREE BIT(0)
123 #define FD1_CTL_IRQ_MASK (FD1_CTL_IRQ_VERE | \
124 FD1_CTL_IRQ_VINTE | \
125 FD1_CTL_IRQ_FREE)
127 /* RPF */
128 #define FD1_RPF_SIZE 0x0060
129 #define FD1_RPF_SIZE_MASK GENMASK(12, 0)
130 #define FD1_RPF_SIZE_H_SHIFT 16
131 #define FD1_RPF_SIZE_V_SHIFT 0
133 #define FD1_RPF_FORMAT 0x0064
134 #define FD1_RPF_FORMAT_CIPM BIT(16)
135 #define FD1_RPF_FORMAT_RSPYCS BIT(13)
136 #define FD1_RPF_FORMAT_RSPUVS BIT(12)
137 #define FD1_RPF_FORMAT_CF BIT(8)
139 #define FD1_RPF_PSTRIDE 0x0068
140 #define FD1_RPF_PSTRIDE_Y_SHIFT 16
141 #define FD1_RPF_PSTRIDE_C_SHIFT 0
143 /* RPF0 Source Component Y Address register */
144 #define FD1_RPF0_ADDR_Y 0x006c
146 /* RPF1 Current Picture Registers */
147 #define FD1_RPF1_ADDR_Y 0x0078
148 #define FD1_RPF1_ADDR_C0 0x007c
149 #define FD1_RPF1_ADDR_C1 0x0080
151 /* RPF2 next picture register */
152 #define FD1_RPF2_ADDR_Y 0x0084
154 #define FD1_RPF_SMSK_ADDR 0x0090
155 #define FD1_RPF_SWAP 0x0094
157 /* WPF */
158 #define FD1_WPF_FORMAT 0x00c0
159 #define FD1_WPF_FORMAT_PDV_SHIFT 24
160 #define FD1_WPF_FORMAT_FCNL BIT(20)
161 #define FD1_WPF_FORMAT_WSPYCS BIT(15)
162 #define FD1_WPF_FORMAT_WSPUVS BIT(14)
163 #define FD1_WPF_FORMAT_WRTM_601_16 (0 << 9)
164 #define FD1_WPF_FORMAT_WRTM_601_0 (1 << 9)
165 #define FD1_WPF_FORMAT_WRTM_709_16 (2 << 9)
166 #define FD1_WPF_FORMAT_CSC BIT(8)
168 #define FD1_WPF_RNDCTL 0x00c4
169 #define FD1_WPF_RNDCTL_CBRM BIT(28)
170 #define FD1_WPF_RNDCTL_CLMD_NOCLIP (0 << 12)
171 #define FD1_WPF_RNDCTL_CLMD_CLIP_16_235 (1 << 12)
172 #define FD1_WPF_RNDCTL_CLMD_CLIP_1_254 (2 << 12)
174 #define FD1_WPF_PSTRIDE 0x00c8
175 #define FD1_WPF_PSTRIDE_Y_SHIFT 16
176 #define FD1_WPF_PSTRIDE_C_SHIFT 0
178 /* WPF Destination picture */
179 #define FD1_WPF_ADDR_Y 0x00cc
180 #define FD1_WPF_ADDR_C0 0x00d0
181 #define FD1_WPF_ADDR_C1 0x00d4
182 #define FD1_WPF_SWAP 0x00d8
183 #define FD1_WPF_SWAP_OSWAP_SHIFT 0
184 #define FD1_WPF_SWAP_SSWAP_SHIFT 4
186 /* WPF/RPF Common */
187 #define FD1_RWPF_SWAP_BYTE BIT(0)
188 #define FD1_RWPF_SWAP_WORD BIT(1)
189 #define FD1_RWPF_SWAP_LWRD BIT(2)
190 #define FD1_RWPF_SWAP_LLWD BIT(3)
192 /* IPC */
193 #define FD1_IPC_MODE 0x0100
194 #define FD1_IPC_MODE_DLI BIT(8)
195 #define FD1_IPC_MODE_DIM_ADAPT2D3D (0 << 0)
196 #define FD1_IPC_MODE_DIM_FIXED2D (1 << 0)
197 #define FD1_IPC_MODE_DIM_FIXED3D (2 << 0)
198 #define FD1_IPC_MODE_DIM_PREVFIELD (3 << 0)
199 #define FD1_IPC_MODE_DIM_NEXTFIELD (4 << 0)
201 #define FD1_IPC_SMSK_THRESH 0x0104
202 #define FD1_IPC_SMSK_THRESH_CONST 0x00010002
204 #define FD1_IPC_COMB_DET 0x0108
205 #define FD1_IPC_COMB_DET_CONST 0x00200040
207 #define FD1_IPC_MOTDEC 0x010c
208 #define FD1_IPC_MOTDEC_CONST 0x00008020
210 /* DLI registers */
211 #define FD1_IPC_DLI_BLEND 0x0120
212 #define FD1_IPC_DLI_BLEND_CONST 0x0080ff02
214 #define FD1_IPC_DLI_HGAIN 0x0124
215 #define FD1_IPC_DLI_HGAIN_CONST 0x001000ff
217 #define FD1_IPC_DLI_SPRS 0x0128
218 #define FD1_IPC_DLI_SPRS_CONST 0x009004ff
220 #define FD1_IPC_DLI_ANGLE 0x012c
221 #define FD1_IPC_DLI_ANGLE_CONST 0x0004080c
223 #define FD1_IPC_DLI_ISOPIX0 0x0130
224 #define FD1_IPC_DLI_ISOPIX0_CONST 0xff10ff10
226 #define FD1_IPC_DLI_ISOPIX1 0x0134
227 #define FD1_IPC_DLI_ISOPIX1_CONST 0x0000ff10
229 /* Sensor registers */
230 #define FD1_IPC_SENSOR_TH0 0x0140
231 #define FD1_IPC_SENSOR_TH0_CONST 0x20208080
233 #define FD1_IPC_SENSOR_TH1 0x0144
234 #define FD1_IPC_SENSOR_TH1_CONST 0
236 #define FD1_IPC_SENSOR_CTL0 0x0170
237 #define FD1_IPC_SENSOR_CTL0_CONST 0x00002201
239 #define FD1_IPC_SENSOR_CTL1 0x0174
240 #define FD1_IPC_SENSOR_CTL1_CONST 0
242 #define FD1_IPC_SENSOR_CTL2 0x0178
243 #define FD1_IPC_SENSOR_CTL2_X_SHIFT 16
244 #define FD1_IPC_SENSOR_CTL2_Y_SHIFT 0
246 #define FD1_IPC_SENSOR_CTL3 0x017c
247 #define FD1_IPC_SENSOR_CTL3_0_SHIFT 16
248 #define FD1_IPC_SENSOR_CTL3_1_SHIFT 0
250 /* Line memory pixel number register */
251 #define FD1_IPC_LMEM 0x01e0
252 #define FD1_IPC_LMEM_LINEAR 1024
253 #define FD1_IPC_LMEM_TILE 960
255 /* Internal Data (HW Version) */
256 #define FD1_IP_INTDATA 0x0800
257 #define FD1_IP_H3_ES1 0x02010101
258 #define FD1_IP_M3W 0x02010202
259 #define FD1_IP_H3 0x02010203
261 /* LUTs */
262 #define FD1_LUT_DIF_ADJ 0x1000
263 #define FD1_LUT_SAD_ADJ 0x1400
264 #define FD1_LUT_BLD_GAIN 0x1800
265 #define FD1_LUT_DIF_GAIN 0x1c00
266 #define FD1_LUT_MDET 0x2000
269 * struct fdp1_fmt - The FDP1 internal format data
270 * @fourcc: the fourcc code, to match the V4L2 API
271 * @bpp: bits per pixel per plane
272 * @num_planes: number of planes
273 * @hsub: horizontal subsampling factor
274 * @vsub: vertical subsampling factor
275 * @fmt: 7-bit format code for the fdp1 hardware
276 * @swap_yc: the Y and C components are swapped (Y comes before C)
277 * @swap_uv: the U and V components are swapped (V comes before U)
278 * @swap: swap register control
279 * @types: types of queue this format is applicable to
281 struct fdp1_fmt {
282 u32 fourcc;
283 u8 bpp[3];
284 u8 num_planes;
285 u8 hsub;
286 u8 vsub;
287 u8 fmt;
288 bool swap_yc;
289 bool swap_uv;
290 u8 swap;
291 u8 types;
294 static const struct fdp1_fmt fdp1_formats[] = {
295 /* RGB formats are only supported by the Write Pixel Formatter */
297 { V4L2_PIX_FMT_RGB332, { 8, 0, 0 }, 1, 1, 1, 0x00, false, false,
298 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
299 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
300 FDP1_CAPTURE },
301 { V4L2_PIX_FMT_XRGB444, { 16, 0, 0 }, 1, 1, 1, 0x01, false, false,
302 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
303 FD1_RWPF_SWAP_WORD,
304 FDP1_CAPTURE },
305 { V4L2_PIX_FMT_XRGB555, { 16, 0, 0 }, 1, 1, 1, 0x04, false, false,
306 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
307 FD1_RWPF_SWAP_WORD,
308 FDP1_CAPTURE },
309 { V4L2_PIX_FMT_RGB565, { 16, 0, 0 }, 1, 1, 1, 0x06, false, false,
310 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
311 FD1_RWPF_SWAP_WORD,
312 FDP1_CAPTURE },
313 { V4L2_PIX_FMT_ABGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
314 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
315 FDP1_CAPTURE },
316 { V4L2_PIX_FMT_XBGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
317 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
318 FDP1_CAPTURE },
319 { V4L2_PIX_FMT_ARGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
320 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
321 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
322 FDP1_CAPTURE },
323 { V4L2_PIX_FMT_XRGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
324 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
325 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
326 FDP1_CAPTURE },
327 { V4L2_PIX_FMT_RGB24, { 24, 0, 0 }, 1, 1, 1, 0x15, false, false,
328 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
329 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
330 FDP1_CAPTURE },
331 { V4L2_PIX_FMT_BGR24, { 24, 0, 0 }, 1, 1, 1, 0x18, false, false,
332 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
333 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
334 FDP1_CAPTURE },
335 { V4L2_PIX_FMT_ARGB444, { 16, 0, 0 }, 1, 1, 1, 0x19, false, false,
336 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
337 FD1_RWPF_SWAP_WORD,
338 FDP1_CAPTURE },
339 { V4L2_PIX_FMT_ARGB555, { 16, 0, 0 }, 1, 1, 1, 0x1b, false, false,
340 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
341 FD1_RWPF_SWAP_WORD,
342 FDP1_CAPTURE },
344 /* YUV Formats are supported by Read and Write Pixel Formatters */
346 { V4L2_PIX_FMT_NV16M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, false,
347 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
348 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
349 FDP1_CAPTURE | FDP1_OUTPUT },
350 { V4L2_PIX_FMT_NV61M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, true,
351 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
352 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
353 FDP1_CAPTURE | FDP1_OUTPUT },
354 { V4L2_PIX_FMT_NV12M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, false,
355 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
356 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
357 FDP1_CAPTURE | FDP1_OUTPUT },
358 { V4L2_PIX_FMT_NV21M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, true,
359 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
360 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
361 FDP1_CAPTURE | FDP1_OUTPUT },
362 { V4L2_PIX_FMT_UYVY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, false,
363 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
364 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
365 FDP1_CAPTURE | FDP1_OUTPUT },
366 { V4L2_PIX_FMT_VYUY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, true,
367 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
368 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
369 FDP1_CAPTURE | FDP1_OUTPUT },
370 { V4L2_PIX_FMT_YUYV, { 16, 0, 0 }, 1, 2, 1, 0x47, true, false,
371 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
372 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
373 FDP1_CAPTURE | FDP1_OUTPUT },
374 { V4L2_PIX_FMT_YVYU, { 16, 0, 0 }, 1, 2, 1, 0x47, true, true,
375 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
376 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
377 FDP1_CAPTURE | FDP1_OUTPUT },
378 { V4L2_PIX_FMT_YUV444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, false,
379 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
380 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
381 FDP1_CAPTURE | FDP1_OUTPUT },
382 { V4L2_PIX_FMT_YVU444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, true,
383 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
384 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
385 FDP1_CAPTURE | FDP1_OUTPUT },
386 { V4L2_PIX_FMT_YUV422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, false,
387 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
388 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
389 FDP1_CAPTURE | FDP1_OUTPUT },
390 { V4L2_PIX_FMT_YVU422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, true,
391 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
392 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
393 FDP1_CAPTURE | FDP1_OUTPUT },
394 { V4L2_PIX_FMT_YUV420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, false,
395 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
396 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
397 FDP1_CAPTURE | FDP1_OUTPUT },
398 { V4L2_PIX_FMT_YVU420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, true,
399 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
400 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
401 FDP1_CAPTURE | FDP1_OUTPUT },
404 static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt)
406 return fmt->fmt <= 0x1b; /* Last RGB code */
410 * FDP1 Lookup tables range from 0...255 only
412 * Each table must be less than 256 entries, and all tables
413 * are padded out to 256 entries by duplicating the last value.
415 static const u8 fdp1_diff_adj[] = {
416 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
417 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
418 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
421 static const u8 fdp1_sad_adj[] = {
422 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
423 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
424 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
427 static const u8 fdp1_bld_gain[] = {
428 0x80,
431 static const u8 fdp1_dif_gain[] = {
432 0x80,
435 static const u8 fdp1_mdet[] = {
436 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
437 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
438 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
439 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
440 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
441 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
442 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
443 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
444 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
445 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
446 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
447 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
448 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
449 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
450 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
451 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
452 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
453 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
454 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
455 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
456 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
457 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
458 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
459 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
460 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
461 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
462 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
463 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
464 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
465 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
466 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
467 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
470 /* Per-queue, driver-specific private data */
471 struct fdp1_q_data {
472 const struct fdp1_fmt *fmt;
473 struct v4l2_pix_format_mplane format;
475 unsigned int vsize;
476 unsigned int stride_y;
477 unsigned int stride_c;
480 static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat)
482 const struct fdp1_fmt *fmt;
483 unsigned int i;
485 for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) {
486 fmt = &fdp1_formats[i];
487 if (fmt->fourcc == pixelformat)
488 return fmt;
491 return NULL;
494 enum fdp1_deint_mode {
495 FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */
496 FDP1_ADAPT2D3D,
497 FDP1_FIXED2D,
498 FDP1_FIXED3D,
499 FDP1_PREVFIELD,
500 FDP1_NEXTFIELD,
503 #define FDP1_DEINT_MODE_USES_NEXT(mode) \
504 (mode == FDP1_ADAPT2D3D || \
505 mode == FDP1_FIXED3D || \
506 mode == FDP1_NEXTFIELD)
508 #define FDP1_DEINT_MODE_USES_PREV(mode) \
509 (mode == FDP1_ADAPT2D3D || \
510 mode == FDP1_FIXED3D || \
511 mode == FDP1_PREVFIELD)
514 * FDP1 operates on potentially 3 fields, which are tracked
515 * from the VB buffers using this context structure.
516 * Will always be a field or a full frame, never two fields.
518 struct fdp1_field_buffer {
519 struct vb2_v4l2_buffer *vb;
520 dma_addr_t addrs[3];
522 /* Should be NONE:TOP:BOTTOM only */
523 enum v4l2_field field;
525 /* Flag to indicate this is the last field in the vb */
526 bool last_field;
528 /* Buffer queue lists */
529 struct list_head list;
532 struct fdp1_buffer {
533 struct v4l2_m2m_buffer m2m_buf;
534 struct fdp1_field_buffer fields[2];
535 unsigned int num_fields;
538 static inline struct fdp1_buffer *to_fdp1_buffer(struct vb2_v4l2_buffer *vb)
540 return container_of(vb, struct fdp1_buffer, m2m_buf.vb);
543 struct fdp1_job {
544 struct fdp1_field_buffer *previous;
545 struct fdp1_field_buffer *active;
546 struct fdp1_field_buffer *next;
547 struct fdp1_field_buffer *dst;
549 /* A job can only be on one list at a time */
550 struct list_head list;
553 struct fdp1_dev {
554 struct v4l2_device v4l2_dev;
555 struct video_device vfd;
557 struct mutex dev_mutex;
558 spinlock_t irqlock;
559 spinlock_t device_process_lock;
561 void __iomem *regs;
562 unsigned int irq;
563 struct device *dev;
565 /* Job Queues */
566 struct fdp1_job jobs[FDP1_NUMBER_JOBS];
567 struct list_head free_job_list;
568 struct list_head queued_job_list;
569 struct list_head hw_job_list;
571 unsigned int clk_rate;
573 struct rcar_fcp_device *fcp;
574 struct v4l2_m2m_dev *m2m_dev;
577 struct fdp1_ctx {
578 struct v4l2_fh fh;
579 struct fdp1_dev *fdp1;
581 struct v4l2_ctrl_handler hdl;
582 unsigned int sequence;
584 /* Processed buffers in this transaction */
585 u8 num_processed;
587 /* Transaction length (i.e. how many buffers per transaction) */
588 u32 translen;
590 /* Abort requested by m2m */
591 int aborting;
593 /* Deinterlace processing mode */
594 enum fdp1_deint_mode deint_mode;
597 * Adaptive 2D/3D mode uses a shared mask
598 * This is allocated at streamon, if the ADAPT2D3D mode
599 * is requested
601 unsigned int smsk_size;
602 dma_addr_t smsk_addr[2];
603 void *smsk_cpu;
605 /* Capture pipeline, can specify an alpha value
606 * for supported formats. 0-255 only
608 unsigned char alpha;
610 /* Source and destination queue data */
611 struct fdp1_q_data out_q; /* HW Source */
612 struct fdp1_q_data cap_q; /* HW Destination */
615 * Field Queues
616 * Interlaced fields are used on 3 occasions, and tracked in this list.
618 * V4L2 Buffers are tracked inside the fdp1_buffer
619 * and released when the last 'field' completes
621 struct list_head fields_queue;
622 unsigned int buffers_queued;
625 * For de-interlacing we need to track our previous buffer
626 * while preparing our job lists.
628 struct fdp1_field_buffer *previous;
631 static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh)
633 return container_of(fh, struct fdp1_ctx, fh);
636 static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx,
637 enum v4l2_buf_type type)
639 if (V4L2_TYPE_IS_OUTPUT(type))
640 return &ctx->out_q;
641 else
642 return &ctx->cap_q;
646 * list_remove_job: Take the first item off the specified job list
648 * Returns: pointer to a job, or NULL if the list is empty.
650 static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1,
651 struct list_head *list)
653 struct fdp1_job *job;
654 unsigned long flags;
656 spin_lock_irqsave(&fdp1->irqlock, flags);
657 job = list_first_entry_or_null(list, struct fdp1_job, list);
658 if (job)
659 list_del(&job->list);
660 spin_unlock_irqrestore(&fdp1->irqlock, flags);
662 return job;
666 * list_add_job: Add a job to the specified job list
668 * Returns: void - always succeeds
670 static void list_add_job(struct fdp1_dev *fdp1,
671 struct list_head *list,
672 struct fdp1_job *job)
674 unsigned long flags;
676 spin_lock_irqsave(&fdp1->irqlock, flags);
677 list_add_tail(&job->list, list);
678 spin_unlock_irqrestore(&fdp1->irqlock, flags);
681 static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1)
683 return list_remove_job(fdp1, &fdp1->free_job_list);
686 static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job)
688 /* Ensure that all residue from previous jobs is gone */
689 memset(job, 0, sizeof(struct fdp1_job));
691 list_add_job(fdp1, &fdp1->free_job_list, job);
694 static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
696 list_add_job(fdp1, &fdp1->queued_job_list, job);
699 static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1)
701 return list_remove_job(fdp1, &fdp1->queued_job_list);
704 static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
706 list_add_job(fdp1, &fdp1->hw_job_list, job);
709 static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1)
711 return list_remove_job(fdp1, &fdp1->hw_job_list);
715 * Buffer lists handling
717 static void fdp1_field_complete(struct fdp1_ctx *ctx,
718 struct fdp1_field_buffer *fbuf)
720 /* job->previous may be on the first field */
721 if (!fbuf)
722 return;
724 if (fbuf->last_field)
725 v4l2_m2m_buf_done(fbuf->vb, VB2_BUF_STATE_DONE);
728 static void fdp1_queue_field(struct fdp1_ctx *ctx,
729 struct fdp1_field_buffer *fbuf)
731 unsigned long flags;
733 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
734 list_add_tail(&fbuf->list, &ctx->fields_queue);
735 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
737 ctx->buffers_queued++;
740 static struct fdp1_field_buffer *fdp1_dequeue_field(struct fdp1_ctx *ctx)
742 struct fdp1_field_buffer *fbuf;
743 unsigned long flags;
745 ctx->buffers_queued--;
747 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
748 fbuf = list_first_entry_or_null(&ctx->fields_queue,
749 struct fdp1_field_buffer, list);
750 if (fbuf)
751 list_del(&fbuf->list);
752 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
754 return fbuf;
758 * Return the next field in the queue - or NULL,
759 * without removing the item from the list
761 static struct fdp1_field_buffer *fdp1_peek_queued_field(struct fdp1_ctx *ctx)
763 struct fdp1_field_buffer *fbuf;
764 unsigned long flags;
766 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
767 fbuf = list_first_entry_or_null(&ctx->fields_queue,
768 struct fdp1_field_buffer, list);
769 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
771 return fbuf;
774 static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg)
776 u32 value = ioread32(fdp1->regs + reg);
778 if (debug >= 2)
779 dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg);
781 return value;
784 static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg)
786 if (debug >= 2)
787 dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg);
789 iowrite32(val, fdp1->regs + reg);
792 /* IPC registers are to be programmed with constant values */
793 static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx)
795 struct fdp1_dev *fdp1 = ctx->fdp1;
797 fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST, FD1_IPC_SMSK_THRESH);
798 fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST, FD1_IPC_COMB_DET);
799 fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST, FD1_IPC_MOTDEC);
801 fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST, FD1_IPC_DLI_BLEND);
802 fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST, FD1_IPC_DLI_HGAIN);
803 fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST, FD1_IPC_DLI_SPRS);
804 fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST, FD1_IPC_DLI_ANGLE);
805 fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST, FD1_IPC_DLI_ISOPIX0);
806 fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST, FD1_IPC_DLI_ISOPIX1);
810 static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx)
812 struct fdp1_dev *fdp1 = ctx->fdp1;
813 struct fdp1_q_data *src_q_data = &ctx->out_q;
814 unsigned int x0, x1;
815 unsigned int hsize = src_q_data->format.width;
816 unsigned int vsize = src_q_data->format.height;
818 x0 = hsize / 3;
819 x1 = 2 * hsize / 3;
821 fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0);
822 fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1);
823 fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0);
824 fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1);
826 fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) |
827 ((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT),
828 FD1_IPC_SENSOR_CTL2);
830 fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) |
831 (x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT),
832 FD1_IPC_SENSOR_CTL3);
836 * fdp1_write_lut: Write a padded LUT to the hw
838 * FDP1 uses constant data for de-interlacing processing,
839 * with large tables. These hardware tables are all 256 bytes
840 * long, however they often contain repeated data at the end.
842 * The last byte of the table is written to all remaining entries.
844 static void fdp1_write_lut(struct fdp1_dev *fdp1, const u8 *lut,
845 unsigned int len, unsigned int base)
847 unsigned int i;
848 u8 pad;
850 /* Tables larger than the hw are clipped */
851 len = min(len, 256u);
853 for (i = 0; i < len; i++)
854 fdp1_write(fdp1, lut[i], base + (i*4));
856 /* Tables are padded with the last entry */
857 pad = lut[i-1];
859 for (; i < 256; i++)
860 fdp1_write(fdp1, pad, base + (i*4));
863 static void fdp1_set_lut(struct fdp1_dev *fdp1)
865 fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj),
866 FD1_LUT_DIF_ADJ);
867 fdp1_write_lut(fdp1, fdp1_sad_adj, ARRAY_SIZE(fdp1_sad_adj),
868 FD1_LUT_SAD_ADJ);
869 fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain),
870 FD1_LUT_BLD_GAIN);
871 fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain),
872 FD1_LUT_DIF_GAIN);
873 fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet),
874 FD1_LUT_MDET);
877 static void fdp1_configure_rpf(struct fdp1_ctx *ctx,
878 struct fdp1_job *job)
880 struct fdp1_dev *fdp1 = ctx->fdp1;
881 u32 picture_size;
882 u32 pstride;
883 u32 format;
884 u32 smsk_addr;
886 struct fdp1_q_data *q_data = &ctx->out_q;
888 /* Picture size is common to Source and Destination frames */
889 picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT)
890 | (q_data->vsize << FD1_RPF_SIZE_V_SHIFT);
892 /* Strides */
893 pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT;
894 if (q_data->format.num_planes > 1)
895 pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT;
897 /* Format control */
898 format = q_data->fmt->fmt;
899 if (q_data->fmt->swap_yc)
900 format |= FD1_RPF_FORMAT_RSPYCS;
902 if (q_data->fmt->swap_uv)
903 format |= FD1_RPF_FORMAT_RSPUVS;
905 if (job->active->field == V4L2_FIELD_BOTTOM) {
906 format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */
907 smsk_addr = ctx->smsk_addr[0];
908 } else {
909 smsk_addr = ctx->smsk_addr[1];
912 /* Deint mode is non-zero when deinterlacing */
913 if (ctx->deint_mode)
914 format |= FD1_RPF_FORMAT_CIPM;
916 fdp1_write(fdp1, format, FD1_RPF_FORMAT);
917 fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP);
918 fdp1_write(fdp1, picture_size, FD1_RPF_SIZE);
919 fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE);
920 fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR);
922 /* Previous Field Channel (CH0) */
923 if (job->previous)
924 fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y);
926 /* Current Field Channel (CH1) */
927 fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y);
928 fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0);
929 fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1);
931 /* Next Field Channel (CH2) */
932 if (job->next)
933 fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y);
936 static void fdp1_configure_wpf(struct fdp1_ctx *ctx,
937 struct fdp1_job *job)
939 struct fdp1_dev *fdp1 = ctx->fdp1;
940 struct fdp1_q_data *src_q_data = &ctx->out_q;
941 struct fdp1_q_data *q_data = &ctx->cap_q;
942 u32 pstride;
943 u32 format;
944 u32 swap;
945 u32 rndctl;
947 pstride = q_data->format.plane_fmt[0].bytesperline
948 << FD1_WPF_PSTRIDE_Y_SHIFT;
950 if (q_data->format.num_planes > 1)
951 pstride |= q_data->format.plane_fmt[1].bytesperline
952 << FD1_WPF_PSTRIDE_C_SHIFT;
954 format = q_data->fmt->fmt; /* Output Format Code */
956 if (q_data->fmt->swap_yc)
957 format |= FD1_WPF_FORMAT_WSPYCS;
959 if (q_data->fmt->swap_uv)
960 format |= FD1_WPF_FORMAT_WSPUVS;
962 if (fdp1_fmt_is_rgb(q_data->fmt)) {
963 /* Enable Colour Space conversion */
964 format |= FD1_WPF_FORMAT_CSC;
966 /* Set WRTM */
967 if (src_q_data->format.ycbcr_enc == V4L2_YCBCR_ENC_709)
968 format |= FD1_WPF_FORMAT_WRTM_709_16;
969 else if (src_q_data->format.quantization ==
970 V4L2_QUANTIZATION_FULL_RANGE)
971 format |= FD1_WPF_FORMAT_WRTM_601_0;
972 else
973 format |= FD1_WPF_FORMAT_WRTM_601_16;
976 /* Set an alpha value into the Pad Value */
977 format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT;
979 /* Determine picture rounding and clipping */
980 rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */
981 rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP;
983 /* WPF Swap needs both ISWAP and OSWAP setting */
984 swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT;
985 swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT;
987 fdp1_write(fdp1, format, FD1_WPF_FORMAT);
988 fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL);
989 fdp1_write(fdp1, swap, FD1_WPF_SWAP);
990 fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE);
992 fdp1_write(fdp1, job->dst->addrs[0], FD1_WPF_ADDR_Y);
993 fdp1_write(fdp1, job->dst->addrs[1], FD1_WPF_ADDR_C0);
994 fdp1_write(fdp1, job->dst->addrs[2], FD1_WPF_ADDR_C1);
997 static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx,
998 struct fdp1_job *job)
1000 struct fdp1_dev *fdp1 = ctx->fdp1;
1001 u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT;
1002 u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */
1003 u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */
1005 /* De-interlacing Mode */
1006 switch (ctx->deint_mode) {
1007 default:
1008 case FDP1_PROGRESSIVE:
1009 dprintk(fdp1, "Progressive Mode\n");
1010 opmode |= FD1_CTL_OPMODE_PRG;
1011 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1012 break;
1013 case FDP1_ADAPT2D3D:
1014 dprintk(fdp1, "Adapt2D3D Mode\n");
1015 if (ctx->sequence == 0 || ctx->aborting)
1016 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1017 else
1018 ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D;
1020 if (ctx->sequence > 1) {
1021 channels |= FD1_CTL_CHACT_SMW;
1022 channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
1025 if (ctx->sequence > 2)
1026 channels |= FD1_CTL_CHACT_SMR;
1028 break;
1029 case FDP1_FIXED3D:
1030 dprintk(fdp1, "Fixed 3D Mode\n");
1031 ipcmode |= FD1_IPC_MODE_DIM_FIXED3D;
1032 /* Except for first and last frame, enable all channels */
1033 if (!(ctx->sequence == 0 || ctx->aborting))
1034 channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
1035 break;
1036 case FDP1_FIXED2D:
1037 dprintk(fdp1, "Fixed 2D Mode\n");
1038 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1039 /* No extra channels enabled */
1040 break;
1041 case FDP1_PREVFIELD:
1042 dprintk(fdp1, "Previous Field Mode\n");
1043 ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD;
1044 channels |= FD1_CTL_CHACT_RD0; /* Previous */
1045 break;
1046 case FDP1_NEXTFIELD:
1047 dprintk(fdp1, "Next Field Mode\n");
1048 ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD;
1049 channels |= FD1_CTL_CHACT_RD2; /* Next */
1050 break;
1053 fdp1_write(fdp1, channels, FD1_CTL_CHACT);
1054 fdp1_write(fdp1, opmode, FD1_CTL_OPMODE);
1055 fdp1_write(fdp1, ipcmode, FD1_IPC_MODE);
1059 * fdp1_device_process() - Run the hardware
1061 * Configure and start the hardware to generate a single frame
1062 * of output given our input parameters.
1064 static int fdp1_device_process(struct fdp1_ctx *ctx)
1067 struct fdp1_dev *fdp1 = ctx->fdp1;
1068 struct fdp1_job *job;
1069 unsigned long flags;
1071 spin_lock_irqsave(&fdp1->device_process_lock, flags);
1073 /* Get a job to process */
1074 job = get_queued_job(fdp1);
1075 if (!job) {
1077 * VINT can call us to see if we can queue another job.
1078 * If we have no work to do, we simply return.
1080 spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
1081 return 0;
1084 /* First Frame only? ... */
1085 fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL);
1087 /* Set the mode, and configuration */
1088 fdp1_configure_deint_mode(ctx, job);
1090 /* DLI Static Configuration */
1091 fdp1_set_ipc_dli(ctx);
1093 /* Sensor Configuration */
1094 fdp1_set_ipc_sensor(ctx);
1096 /* Setup the source picture */
1097 fdp1_configure_rpf(ctx, job);
1099 /* Setup the destination picture */
1100 fdp1_configure_wpf(ctx, job);
1102 /* Line Memory Pixel Number Register for linear access */
1103 fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM);
1105 /* Enable Interrupts */
1106 fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB);
1108 /* Finally, the Immediate Registers */
1110 /* This job is now in the HW queue */
1111 queue_hw_job(fdp1, job);
1113 /* Start the command */
1114 fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD);
1116 /* Registers will update to HW at next VINT */
1117 fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND);
1119 /* Enable VINT Generator */
1120 fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD);
1122 spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
1124 return 0;
1128 * mem2mem callbacks
1132 * job_ready() - check whether an instance is ready to be scheduled to run
1134 static int fdp1_m2m_job_ready(void *priv)
1136 struct fdp1_ctx *ctx = priv;
1137 struct fdp1_q_data *src_q_data = &ctx->out_q;
1138 int srcbufs = 1;
1139 int dstbufs = 1;
1141 dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n",
1142 v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx),
1143 v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx));
1145 /* One output buffer is required for each field */
1146 if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
1147 dstbufs = 2;
1149 if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs
1150 || v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) {
1151 dprintk(ctx->fdp1, "Not enough buffers available\n");
1152 return 0;
1155 return 1;
1158 static void fdp1_m2m_job_abort(void *priv)
1160 struct fdp1_ctx *ctx = priv;
1162 dprintk(ctx->fdp1, "+\n");
1164 /* Will cancel the transaction in the next interrupt handler */
1165 ctx->aborting = 1;
1167 /* Immediate abort sequence */
1168 fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD);
1169 fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET);
1173 * fdp1_prepare_job: Prepare and queue a new job for a single action of work
1175 * Prepare the next field, (or frame in progressive) and an output
1176 * buffer for the hardware to perform a single operation.
1178 static struct fdp1_job *fdp1_prepare_job(struct fdp1_ctx *ctx)
1180 struct vb2_v4l2_buffer *vbuf;
1181 struct fdp1_buffer *fbuf;
1182 struct fdp1_dev *fdp1 = ctx->fdp1;
1183 struct fdp1_job *job;
1184 unsigned int buffers_required = 1;
1186 dprintk(fdp1, "+\n");
1188 if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode))
1189 buffers_required = 2;
1191 if (ctx->buffers_queued < buffers_required)
1192 return NULL;
1194 job = fdp1_job_alloc(fdp1);
1195 if (!job) {
1196 dprintk(fdp1, "No free jobs currently available\n");
1197 return NULL;
1200 job->active = fdp1_dequeue_field(ctx);
1201 if (!job->active) {
1202 /* Buffer check should prevent this ever happening */
1203 dprintk(fdp1, "No input buffers currently available\n");
1205 fdp1_job_free(fdp1, job);
1206 return NULL;
1209 dprintk(fdp1, "+ Buffer en-route...\n");
1211 /* Source buffers have been prepared on our buffer_queue
1212 * Prepare our Output buffer
1214 vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1215 fbuf = to_fdp1_buffer(vbuf);
1216 job->dst = &fbuf->fields[0];
1218 job->active->vb->sequence = ctx->sequence;
1219 job->dst->vb->sequence = ctx->sequence;
1220 ctx->sequence++;
1222 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) {
1223 job->previous = ctx->previous;
1225 /* Active buffer becomes the next job's previous buffer */
1226 ctx->previous = job->active;
1229 if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) {
1230 /* Must be called after 'active' is dequeued */
1231 job->next = fdp1_peek_queued_field(ctx);
1234 /* Transfer timestamps and flags from src->dst */
1236 job->dst->vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp;
1238 job->dst->vb->flags = job->active->vb->flags &
1239 V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1241 /* Ideally, the frame-end function will just 'check' to see
1242 * if there are more jobs instead
1244 ctx->translen++;
1246 /* Finally, Put this job on the processing queue */
1247 queue_job(fdp1, job);
1249 dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen);
1251 return job;
1254 /* fdp1_m2m_device_run() - prepares and starts the device for an M2M task
1256 * A single input buffer is taken and serialised into our fdp1_buffer
1257 * queue. The queue is then processed to create as many jobs as possible
1258 * from our available input.
1260 static void fdp1_m2m_device_run(void *priv)
1262 struct fdp1_ctx *ctx = priv;
1263 struct fdp1_dev *fdp1 = ctx->fdp1;
1264 struct vb2_v4l2_buffer *src_vb;
1265 struct fdp1_buffer *buf;
1266 unsigned int i;
1268 dprintk(fdp1, "+\n");
1270 ctx->translen = 0;
1272 /* Get our incoming buffer of either one or two fields, or one frame */
1273 src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1274 buf = to_fdp1_buffer(src_vb);
1276 for (i = 0; i < buf->num_fields; i++) {
1277 struct fdp1_field_buffer *fbuf = &buf->fields[i];
1279 fdp1_queue_field(ctx, fbuf);
1280 dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n",
1281 i, fbuf->last_field);
1284 /* Queue as many jobs as our data provides for */
1285 while (fdp1_prepare_job(ctx))
1288 if (ctx->translen == 0) {
1289 dprintk(fdp1, "No jobs were processed. M2M action complete\n");
1290 v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
1291 return;
1294 /* Kick the job processing action */
1295 fdp1_device_process(ctx);
1299 * device_frame_end:
1301 * Handles the M2M level after a buffer completion event.
1303 static void device_frame_end(struct fdp1_dev *fdp1,
1304 enum vb2_buffer_state state)
1306 struct fdp1_ctx *ctx;
1307 unsigned long flags;
1308 struct fdp1_job *job = get_hw_queued_job(fdp1);
1310 dprintk(fdp1, "+\n");
1312 ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev);
1314 if (ctx == NULL) {
1315 v4l2_err(&fdp1->v4l2_dev,
1316 "Instance released before the end of transaction\n");
1317 return;
1320 ctx->num_processed++;
1323 * fdp1_field_complete will call buf_done only when the last vb2_buffer
1324 * reference is complete
1326 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
1327 fdp1_field_complete(ctx, job->previous);
1328 else
1329 fdp1_field_complete(ctx, job->active);
1331 spin_lock_irqsave(&fdp1->irqlock, flags);
1332 v4l2_m2m_buf_done(job->dst->vb, state);
1333 job->dst = NULL;
1334 spin_unlock_irqrestore(&fdp1->irqlock, flags);
1336 /* Move this job back to the free job list */
1337 fdp1_job_free(fdp1, job);
1339 dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n",
1340 ctx->num_processed, ctx->translen);
1342 if (ctx->num_processed == ctx->translen ||
1343 ctx->aborting) {
1344 dprintk(ctx->fdp1, "Finishing transaction\n");
1345 ctx->num_processed = 0;
1346 v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
1347 } else {
1349 * For pipelined performance support, this would
1350 * be called from a VINT handler
1352 fdp1_device_process(ctx);
1357 * video ioctls
1359 static int fdp1_vidioc_querycap(struct file *file, void *priv,
1360 struct v4l2_capability *cap)
1362 strlcpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
1363 strlcpy(cap->card, DRIVER_NAME, sizeof(cap->card));
1364 snprintf(cap->bus_info, sizeof(cap->bus_info),
1365 "platform:%s", DRIVER_NAME);
1366 return 0;
1369 static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type)
1371 unsigned int i, num;
1373 num = 0;
1375 for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) {
1376 if (fdp1_formats[i].types & type) {
1377 if (num == f->index)
1378 break;
1379 ++num;
1383 /* Format not found */
1384 if (i >= ARRAY_SIZE(fdp1_formats))
1385 return -EINVAL;
1387 /* Format found */
1388 f->pixelformat = fdp1_formats[i].fourcc;
1390 return 0;
1393 static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv,
1394 struct v4l2_fmtdesc *f)
1396 return fdp1_enum_fmt(f, FDP1_CAPTURE);
1399 static int fdp1_enum_fmt_vid_out(struct file *file, void *priv,
1400 struct v4l2_fmtdesc *f)
1402 return fdp1_enum_fmt(f, FDP1_OUTPUT);
1405 static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
1407 struct fdp1_q_data *q_data;
1408 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1410 if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type))
1411 return -EINVAL;
1413 q_data = get_q_data(ctx, f->type);
1414 f->fmt.pix_mp = q_data->format;
1416 return 0;
1419 static void fdp1_compute_stride(struct v4l2_pix_format_mplane *pix,
1420 const struct fdp1_fmt *fmt)
1422 unsigned int i;
1424 /* Compute and clamp the stride and image size. */
1425 for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) {
1426 unsigned int hsub = i > 0 ? fmt->hsub : 1;
1427 unsigned int vsub = i > 0 ? fmt->vsub : 1;
1428 /* From VSP : TODO: Confirm alignment limits for FDP1 */
1429 unsigned int align = 128;
1430 unsigned int bpl;
1432 bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
1433 pix->width / hsub * fmt->bpp[i] / 8,
1434 round_down(FDP1_MAX_STRIDE, align));
1436 pix->plane_fmt[i].bytesperline = round_up(bpl, align);
1437 pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
1438 * pix->height / vsub;
1440 memset(pix->plane_fmt[i].reserved, 0,
1441 sizeof(pix->plane_fmt[i].reserved));
1444 if (fmt->num_planes == 3) {
1445 /* The two chroma planes must have the same stride. */
1446 pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
1447 pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
1449 memset(pix->plane_fmt[2].reserved, 0,
1450 sizeof(pix->plane_fmt[2].reserved));
1454 static void fdp1_try_fmt_output(struct fdp1_ctx *ctx,
1455 const struct fdp1_fmt **fmtinfo,
1456 struct v4l2_pix_format_mplane *pix)
1458 const struct fdp1_fmt *fmt;
1459 unsigned int width;
1460 unsigned int height;
1462 /* Validate the pixel format to ensure the output queue supports it. */
1463 fmt = fdp1_find_format(pix->pixelformat);
1464 if (!fmt || !(fmt->types & FDP1_OUTPUT))
1465 fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
1467 if (fmtinfo)
1468 *fmtinfo = fmt;
1470 pix->pixelformat = fmt->fourcc;
1471 pix->num_planes = fmt->num_planes;
1474 * Progressive video and all interlaced field orders are acceptable.
1475 * Default to V4L2_FIELD_INTERLACED.
1477 if (pix->field != V4L2_FIELD_NONE &&
1478 pix->field != V4L2_FIELD_ALTERNATE &&
1479 !V4L2_FIELD_HAS_BOTH(pix->field))
1480 pix->field = V4L2_FIELD_INTERLACED;
1483 * The deinterlacer doesn't care about the colorspace, accept all values
1484 * and default to V4L2_COLORSPACE_SMPTE170M. The YUV to RGB conversion
1485 * at the output of the deinterlacer supports a subset of encodings and
1486 * quantization methods and will only be available when the colorspace
1487 * allows it.
1489 if (pix->colorspace == V4L2_COLORSPACE_DEFAULT)
1490 pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
1493 * Align the width and height for YUV 4:2:2 and 4:2:0 formats and clamp
1494 * them to the supported frame size range. The height boundary are
1495 * related to the full frame, divide them by two when the format passes
1496 * fields in separate buffers.
1498 width = round_down(pix->width, fmt->hsub);
1499 pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W);
1501 height = round_down(pix->height, fmt->vsub);
1502 if (pix->field == V4L2_FIELD_ALTERNATE)
1503 pix->height = clamp(height, FDP1_MIN_H / 2, FDP1_MAX_H / 2);
1504 else
1505 pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H);
1507 fdp1_compute_stride(pix, fmt);
1510 static void fdp1_try_fmt_capture(struct fdp1_ctx *ctx,
1511 const struct fdp1_fmt **fmtinfo,
1512 struct v4l2_pix_format_mplane *pix)
1514 struct fdp1_q_data *src_data = &ctx->out_q;
1515 enum v4l2_colorspace colorspace;
1516 enum v4l2_ycbcr_encoding ycbcr_enc;
1517 enum v4l2_quantization quantization;
1518 const struct fdp1_fmt *fmt;
1519 bool allow_rgb;
1522 * Validate the pixel format. We can only accept RGB output formats if
1523 * the input encoding and quantization are compatible with the format
1524 * conversions supported by the hardware. The supported combinations are
1526 * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_LIM_RANGE
1527 * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_FULL_RANGE
1528 * V4L2_YCBCR_ENC_709 + V4L2_QUANTIZATION_LIM_RANGE
1530 colorspace = src_data->format.colorspace;
1532 ycbcr_enc = src_data->format.ycbcr_enc;
1533 if (ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT)
1534 ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(colorspace);
1536 quantization = src_data->format.quantization;
1537 if (quantization == V4L2_QUANTIZATION_DEFAULT)
1538 quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, colorspace,
1539 ycbcr_enc);
1541 allow_rgb = ycbcr_enc == V4L2_YCBCR_ENC_601 ||
1542 (ycbcr_enc == V4L2_YCBCR_ENC_709 &&
1543 quantization == V4L2_QUANTIZATION_LIM_RANGE);
1545 fmt = fdp1_find_format(pix->pixelformat);
1546 if (!fmt || (!allow_rgb && fdp1_fmt_is_rgb(fmt)))
1547 fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
1549 if (fmtinfo)
1550 *fmtinfo = fmt;
1552 pix->pixelformat = fmt->fourcc;
1553 pix->num_planes = fmt->num_planes;
1554 pix->field = V4L2_FIELD_NONE;
1557 * The colorspace on the capture queue is copied from the output queue
1558 * as the hardware can't change the colorspace. It can convert YCbCr to
1559 * RGB though, in which case the encoding and quantization are set to
1560 * default values as anything else wouldn't make sense.
1562 pix->colorspace = src_data->format.colorspace;
1563 pix->xfer_func = src_data->format.xfer_func;
1565 if (fdp1_fmt_is_rgb(fmt)) {
1566 pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
1567 pix->quantization = V4L2_QUANTIZATION_DEFAULT;
1568 } else {
1569 pix->ycbcr_enc = src_data->format.ycbcr_enc;
1570 pix->quantization = src_data->format.quantization;
1574 * The frame width is identical to the output queue, and the height is
1575 * either doubled or identical depending on whether the output queue
1576 * field order contains one or two fields per frame.
1578 pix->width = src_data->format.width;
1579 if (src_data->format.field == V4L2_FIELD_ALTERNATE)
1580 pix->height = 2 * src_data->format.height;
1581 else
1582 pix->height = src_data->format.height;
1584 fdp1_compute_stride(pix, fmt);
1587 static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
1589 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1591 if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
1592 fdp1_try_fmt_output(ctx, NULL, &f->fmt.pix_mp);
1593 else
1594 fdp1_try_fmt_capture(ctx, NULL, &f->fmt.pix_mp);
1596 dprintk(ctx->fdp1, "Try %s format: %4.4s (0x%08x) %ux%u field %u\n",
1597 V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
1598 (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
1599 f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
1601 return 0;
1604 static void fdp1_set_format(struct fdp1_ctx *ctx,
1605 struct v4l2_pix_format_mplane *pix,
1606 enum v4l2_buf_type type)
1608 struct fdp1_q_data *q_data = get_q_data(ctx, type);
1609 const struct fdp1_fmt *fmtinfo;
1611 if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
1612 fdp1_try_fmt_output(ctx, &fmtinfo, pix);
1613 else
1614 fdp1_try_fmt_capture(ctx, &fmtinfo, pix);
1616 q_data->fmt = fmtinfo;
1617 q_data->format = *pix;
1619 q_data->vsize = pix->height;
1620 if (pix->field != V4L2_FIELD_NONE)
1621 q_data->vsize /= 2;
1623 q_data->stride_y = pix->plane_fmt[0].bytesperline;
1624 q_data->stride_c = pix->plane_fmt[1].bytesperline;
1626 /* Adjust strides for interleaved buffers */
1627 if (pix->field == V4L2_FIELD_INTERLACED ||
1628 pix->field == V4L2_FIELD_INTERLACED_TB ||
1629 pix->field == V4L2_FIELD_INTERLACED_BT) {
1630 q_data->stride_y *= 2;
1631 q_data->stride_c *= 2;
1634 /* Propagate the format from the output node to the capture node. */
1635 if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
1636 struct fdp1_q_data *dst_data = &ctx->cap_q;
1639 * Copy the format, clear the per-plane bytes per line and image
1640 * size, override the field and double the height if needed.
1642 dst_data->format = q_data->format;
1643 memset(dst_data->format.plane_fmt, 0,
1644 sizeof(dst_data->format.plane_fmt));
1646 dst_data->format.field = V4L2_FIELD_NONE;
1647 if (pix->field == V4L2_FIELD_ALTERNATE)
1648 dst_data->format.height *= 2;
1650 fdp1_try_fmt_capture(ctx, &dst_data->fmt, &dst_data->format);
1652 dst_data->vsize = dst_data->format.height;
1653 dst_data->stride_y = dst_data->format.plane_fmt[0].bytesperline;
1654 dst_data->stride_c = dst_data->format.plane_fmt[1].bytesperline;
1658 static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
1660 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1661 struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
1662 struct vb2_queue *vq = v4l2_m2m_get_vq(m2m_ctx, f->type);
1664 if (vb2_is_busy(vq)) {
1665 v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__);
1666 return -EBUSY;
1669 fdp1_set_format(ctx, &f->fmt.pix_mp, f->type);
1671 dprintk(ctx->fdp1, "Set %s format: %4.4s (0x%08x) %ux%u field %u\n",
1672 V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
1673 (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
1674 f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
1676 return 0;
1679 static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl)
1681 struct fdp1_ctx *ctx =
1682 container_of(ctrl->handler, struct fdp1_ctx, hdl);
1683 struct fdp1_q_data *src_q_data = &ctx->out_q;
1685 switch (ctrl->id) {
1686 case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE:
1687 if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
1688 ctrl->val = 2;
1689 else
1690 ctrl->val = 1;
1691 return 0;
1694 return 1;
1697 static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl)
1699 struct fdp1_ctx *ctx =
1700 container_of(ctrl->handler, struct fdp1_ctx, hdl);
1702 switch (ctrl->id) {
1703 case V4L2_CID_ALPHA_COMPONENT:
1704 ctx->alpha = ctrl->val;
1705 break;
1707 case V4L2_CID_DEINTERLACING_MODE:
1708 ctx->deint_mode = ctrl->val;
1709 break;
1712 return 0;
1715 static const struct v4l2_ctrl_ops fdp1_ctrl_ops = {
1716 .s_ctrl = fdp1_s_ctrl,
1717 .g_volatile_ctrl = fdp1_g_ctrl,
1720 static const char * const fdp1_ctrl_deint_menu[] = {
1721 "Progressive",
1722 "Adaptive 2D/3D",
1723 "Fixed 2D",
1724 "Fixed 3D",
1725 "Previous field",
1726 "Next field",
1727 NULL
1730 static const struct v4l2_ioctl_ops fdp1_ioctl_ops = {
1731 .vidioc_querycap = fdp1_vidioc_querycap,
1733 .vidioc_enum_fmt_vid_cap_mplane = fdp1_enum_fmt_vid_cap,
1734 .vidioc_enum_fmt_vid_out_mplane = fdp1_enum_fmt_vid_out,
1735 .vidioc_g_fmt_vid_cap_mplane = fdp1_g_fmt,
1736 .vidioc_g_fmt_vid_out_mplane = fdp1_g_fmt,
1737 .vidioc_try_fmt_vid_cap_mplane = fdp1_try_fmt,
1738 .vidioc_try_fmt_vid_out_mplane = fdp1_try_fmt,
1739 .vidioc_s_fmt_vid_cap_mplane = fdp1_s_fmt,
1740 .vidioc_s_fmt_vid_out_mplane = fdp1_s_fmt,
1742 .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs,
1743 .vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
1744 .vidioc_qbuf = v4l2_m2m_ioctl_qbuf,
1745 .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
1746 .vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf,
1747 .vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs,
1748 .vidioc_expbuf = v4l2_m2m_ioctl_expbuf,
1750 .vidioc_streamon = v4l2_m2m_ioctl_streamon,
1751 .vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
1753 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1754 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1758 * Queue operations
1761 static int fdp1_queue_setup(struct vb2_queue *vq,
1762 unsigned int *nbuffers, unsigned int *nplanes,
1763 unsigned int sizes[],
1764 struct device *alloc_ctxs[])
1766 struct fdp1_ctx *ctx = vb2_get_drv_priv(vq);
1767 struct fdp1_q_data *q_data;
1768 unsigned int i;
1770 q_data = get_q_data(ctx, vq->type);
1772 if (*nplanes) {
1773 if (*nplanes > FDP1_MAX_PLANES)
1774 return -EINVAL;
1776 return 0;
1779 *nplanes = q_data->format.num_planes;
1781 for (i = 0; i < *nplanes; i++)
1782 sizes[i] = q_data->format.plane_fmt[i].sizeimage;
1784 return 0;
1787 static void fdp1_buf_prepare_field(struct fdp1_q_data *q_data,
1788 struct vb2_v4l2_buffer *vbuf,
1789 unsigned int field_num)
1791 struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
1792 struct fdp1_field_buffer *fbuf = &buf->fields[field_num];
1793 unsigned int num_fields;
1794 unsigned int i;
1796 num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
1798 fbuf->vb = vbuf;
1799 fbuf->last_field = (field_num + 1) == num_fields;
1801 for (i = 0; i < vbuf->vb2_buf.num_planes; ++i)
1802 fbuf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vbuf->vb2_buf, i);
1804 switch (vbuf->field) {
1805 case V4L2_FIELD_INTERLACED:
1807 * Interlaced means bottom-top for 60Hz TV standards (NTSC) and
1808 * top-bottom for 50Hz. As TV standards are not applicable to
1809 * the mem-to-mem API, use the height as a heuristic.
1811 fbuf->field = (q_data->format.height < 576) == field_num
1812 ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
1813 break;
1814 case V4L2_FIELD_INTERLACED_TB:
1815 case V4L2_FIELD_SEQ_TB:
1816 fbuf->field = field_num ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
1817 break;
1818 case V4L2_FIELD_INTERLACED_BT:
1819 case V4L2_FIELD_SEQ_BT:
1820 fbuf->field = field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
1821 break;
1822 default:
1823 fbuf->field = vbuf->field;
1824 break;
1827 /* Buffer is completed */
1828 if (!field_num)
1829 return;
1831 /* Adjust buffer addresses for second field */
1832 switch (vbuf->field) {
1833 case V4L2_FIELD_INTERLACED:
1834 case V4L2_FIELD_INTERLACED_TB:
1835 case V4L2_FIELD_INTERLACED_BT:
1836 for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
1837 fbuf->addrs[i] +=
1838 (i == 0 ? q_data->stride_y : q_data->stride_c);
1839 break;
1840 case V4L2_FIELD_SEQ_TB:
1841 case V4L2_FIELD_SEQ_BT:
1842 for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
1843 fbuf->addrs[i] += q_data->vsize *
1844 (i == 0 ? q_data->stride_y : q_data->stride_c);
1845 break;
1849 static int fdp1_buf_prepare(struct vb2_buffer *vb)
1851 struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1852 struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_queue->type);
1853 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1854 struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
1855 unsigned int i;
1857 if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) {
1858 bool field_valid = true;
1860 /* Validate the buffer field. */
1861 switch (q_data->format.field) {
1862 case V4L2_FIELD_NONE:
1863 if (vbuf->field != V4L2_FIELD_NONE)
1864 field_valid = false;
1865 break;
1867 case V4L2_FIELD_ALTERNATE:
1868 if (vbuf->field != V4L2_FIELD_TOP &&
1869 vbuf->field != V4L2_FIELD_BOTTOM)
1870 field_valid = false;
1871 break;
1873 case V4L2_FIELD_INTERLACED:
1874 case V4L2_FIELD_SEQ_TB:
1875 case V4L2_FIELD_SEQ_BT:
1876 case V4L2_FIELD_INTERLACED_TB:
1877 case V4L2_FIELD_INTERLACED_BT:
1878 if (vbuf->field != q_data->format.field)
1879 field_valid = false;
1880 break;
1883 if (!field_valid) {
1884 dprintk(ctx->fdp1,
1885 "buffer field %u invalid for format field %u\n",
1886 vbuf->field, q_data->format.field);
1887 return -EINVAL;
1889 } else {
1890 vbuf->field = V4L2_FIELD_NONE;
1893 /* Validate the planes sizes. */
1894 for (i = 0; i < q_data->format.num_planes; i++) {
1895 unsigned long size = q_data->format.plane_fmt[i].sizeimage;
1897 if (vb2_plane_size(vb, i) < size) {
1898 dprintk(ctx->fdp1,
1899 "data will not fit into plane [%u/%u] (%lu < %lu)\n",
1900 i, q_data->format.num_planes,
1901 vb2_plane_size(vb, i), size);
1902 return -EINVAL;
1905 /* We have known size formats all around */
1906 vb2_set_plane_payload(vb, i, size);
1909 buf->num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
1910 for (i = 0; i < buf->num_fields; ++i)
1911 fdp1_buf_prepare_field(q_data, vbuf, i);
1913 return 0;
1916 static void fdp1_buf_queue(struct vb2_buffer *vb)
1918 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1919 struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1921 v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
1924 static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count)
1926 struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
1927 struct fdp1_q_data *q_data = get_q_data(ctx, q->type);
1929 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1931 * Force our deint_mode when we are progressive,
1932 * ignoring any setting on the device from the user,
1933 * Otherwise, lock in the requested de-interlace mode.
1935 if (q_data->format.field == V4L2_FIELD_NONE)
1936 ctx->deint_mode = FDP1_PROGRESSIVE;
1938 if (ctx->deint_mode == FDP1_ADAPT2D3D) {
1939 u32 stride;
1940 dma_addr_t smsk_base;
1941 const u32 bpp = 2; /* bytes per pixel */
1943 stride = round_up(q_data->format.width, 8);
1945 ctx->smsk_size = bpp * stride * q_data->vsize;
1947 ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev,
1948 ctx->smsk_size, &smsk_base, GFP_KERNEL);
1950 if (ctx->smsk_cpu == NULL) {
1951 dprintk(ctx->fdp1, "Failed to alloc smsk\n");
1952 return -ENOMEM;
1955 ctx->smsk_addr[0] = smsk_base;
1956 ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2);
1960 return 0;
1963 static void fdp1_stop_streaming(struct vb2_queue *q)
1965 struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
1966 struct vb2_v4l2_buffer *vbuf;
1967 unsigned long flags;
1969 while (1) {
1970 if (V4L2_TYPE_IS_OUTPUT(q->type))
1971 vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1972 else
1973 vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1974 if (vbuf == NULL)
1975 break;
1976 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
1977 v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR);
1978 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
1981 /* Empty Output queues */
1982 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1983 /* Empty our internal queues */
1984 struct fdp1_field_buffer *fbuf;
1986 /* Free any queued buffers */
1987 fbuf = fdp1_dequeue_field(ctx);
1988 while (fbuf != NULL) {
1989 fdp1_field_complete(ctx, fbuf);
1990 fbuf = fdp1_dequeue_field(ctx);
1993 /* Free smsk_data */
1994 if (ctx->smsk_cpu) {
1995 dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size,
1996 ctx->smsk_cpu, ctx->smsk_addr[0]);
1997 ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0;
1998 ctx->smsk_cpu = NULL;
2001 WARN(!list_empty(&ctx->fields_queue),
2002 "Buffer queue not empty");
2003 } else {
2004 /* Empty Capture queues (Jobs) */
2005 struct fdp1_job *job;
2007 job = get_queued_job(ctx->fdp1);
2008 while (job) {
2009 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
2010 fdp1_field_complete(ctx, job->previous);
2011 else
2012 fdp1_field_complete(ctx, job->active);
2014 v4l2_m2m_buf_done(job->dst->vb, VB2_BUF_STATE_ERROR);
2015 job->dst = NULL;
2017 job = get_queued_job(ctx->fdp1);
2020 /* Free any held buffer in the ctx */
2021 fdp1_field_complete(ctx, ctx->previous);
2023 WARN(!list_empty(&ctx->fdp1->queued_job_list),
2024 "Queued Job List not empty");
2026 WARN(!list_empty(&ctx->fdp1->hw_job_list),
2027 "HW Job list not empty");
2031 static const struct vb2_ops fdp1_qops = {
2032 .queue_setup = fdp1_queue_setup,
2033 .buf_prepare = fdp1_buf_prepare,
2034 .buf_queue = fdp1_buf_queue,
2035 .start_streaming = fdp1_start_streaming,
2036 .stop_streaming = fdp1_stop_streaming,
2037 .wait_prepare = vb2_ops_wait_prepare,
2038 .wait_finish = vb2_ops_wait_finish,
2041 static int queue_init(void *priv, struct vb2_queue *src_vq,
2042 struct vb2_queue *dst_vq)
2044 struct fdp1_ctx *ctx = priv;
2045 int ret;
2047 src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
2048 src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
2049 src_vq->drv_priv = ctx;
2050 src_vq->buf_struct_size = sizeof(struct fdp1_buffer);
2051 src_vq->ops = &fdp1_qops;
2052 src_vq->mem_ops = &vb2_dma_contig_memops;
2053 src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2054 src_vq->lock = &ctx->fdp1->dev_mutex;
2055 src_vq->dev = ctx->fdp1->dev;
2057 ret = vb2_queue_init(src_vq);
2058 if (ret)
2059 return ret;
2061 dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
2062 dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
2063 dst_vq->drv_priv = ctx;
2064 dst_vq->buf_struct_size = sizeof(struct fdp1_buffer);
2065 dst_vq->ops = &fdp1_qops;
2066 dst_vq->mem_ops = &vb2_dma_contig_memops;
2067 dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2068 dst_vq->lock = &ctx->fdp1->dev_mutex;
2069 dst_vq->dev = ctx->fdp1->dev;
2071 return vb2_queue_init(dst_vq);
2075 * File operations
2077 static int fdp1_open(struct file *file)
2079 struct fdp1_dev *fdp1 = video_drvdata(file);
2080 struct v4l2_pix_format_mplane format;
2081 struct fdp1_ctx *ctx = NULL;
2082 struct v4l2_ctrl *ctrl;
2083 int ret = 0;
2085 if (mutex_lock_interruptible(&fdp1->dev_mutex))
2086 return -ERESTARTSYS;
2088 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2089 if (!ctx) {
2090 ret = -ENOMEM;
2091 goto done;
2094 v4l2_fh_init(&ctx->fh, video_devdata(file));
2095 file->private_data = &ctx->fh;
2096 ctx->fdp1 = fdp1;
2098 /* Initialise Queues */
2099 INIT_LIST_HEAD(&ctx->fields_queue);
2101 ctx->translen = 1;
2102 ctx->sequence = 0;
2104 /* Initialise controls */
2106 v4l2_ctrl_handler_init(&ctx->hdl, 3);
2107 v4l2_ctrl_new_std_menu_items(&ctx->hdl, &fdp1_ctrl_ops,
2108 V4L2_CID_DEINTERLACING_MODE,
2109 FDP1_NEXTFIELD, BIT(0), FDP1_FIXED3D,
2110 fdp1_ctrl_deint_menu);
2112 ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
2113 V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1);
2114 if (ctrl)
2115 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
2117 v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
2118 V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255);
2120 if (ctx->hdl.error) {
2121 ret = ctx->hdl.error;
2122 v4l2_ctrl_handler_free(&ctx->hdl);
2123 goto done;
2126 ctx->fh.ctrl_handler = &ctx->hdl;
2127 v4l2_ctrl_handler_setup(&ctx->hdl);
2129 /* Configure default parameters. */
2130 memset(&format, 0, sizeof(format));
2131 fdp1_set_format(ctx, &format, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
2133 ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init);
2135 if (IS_ERR(ctx->fh.m2m_ctx)) {
2136 ret = PTR_ERR(ctx->fh.m2m_ctx);
2138 v4l2_ctrl_handler_free(&ctx->hdl);
2139 kfree(ctx);
2140 goto done;
2143 /* Perform any power management required */
2144 pm_runtime_get_sync(fdp1->dev);
2146 v4l2_fh_add(&ctx->fh);
2148 dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n",
2149 ctx, ctx->fh.m2m_ctx);
2151 done:
2152 mutex_unlock(&fdp1->dev_mutex);
2153 return ret;
2156 static int fdp1_release(struct file *file)
2158 struct fdp1_dev *fdp1 = video_drvdata(file);
2159 struct fdp1_ctx *ctx = fh_to_ctx(file->private_data);
2161 dprintk(fdp1, "Releasing instance %p\n", ctx);
2163 v4l2_fh_del(&ctx->fh);
2164 v4l2_fh_exit(&ctx->fh);
2165 v4l2_ctrl_handler_free(&ctx->hdl);
2166 mutex_lock(&fdp1->dev_mutex);
2167 v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2168 mutex_unlock(&fdp1->dev_mutex);
2169 kfree(ctx);
2171 pm_runtime_put(fdp1->dev);
2173 return 0;
2176 static const struct v4l2_file_operations fdp1_fops = {
2177 .owner = THIS_MODULE,
2178 .open = fdp1_open,
2179 .release = fdp1_release,
2180 .poll = v4l2_m2m_fop_poll,
2181 .unlocked_ioctl = video_ioctl2,
2182 .mmap = v4l2_m2m_fop_mmap,
2185 static const struct video_device fdp1_videodev = {
2186 .name = DRIVER_NAME,
2187 .vfl_dir = VFL_DIR_M2M,
2188 .fops = &fdp1_fops,
2189 .device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
2190 .ioctl_ops = &fdp1_ioctl_ops,
2191 .minor = -1,
2192 .release = video_device_release_empty,
2195 static const struct v4l2_m2m_ops m2m_ops = {
2196 .device_run = fdp1_m2m_device_run,
2197 .job_ready = fdp1_m2m_job_ready,
2198 .job_abort = fdp1_m2m_job_abort,
2201 static irqreturn_t fdp1_irq_handler(int irq, void *dev_id)
2203 struct fdp1_dev *fdp1 = dev_id;
2204 u32 int_status;
2205 u32 ctl_status;
2206 u32 vint_cnt;
2207 u32 cycles;
2209 int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA);
2210 cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT);
2211 ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS);
2212 vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >>
2213 FD1_CTL_STATUS_VINT_CNT_SHIFT;
2215 /* Clear interrupts */
2216 fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA);
2218 if (debug >= 2) {
2219 dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status,
2220 int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]",
2221 int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]",
2222 int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]");
2224 dprintk(fdp1, "CycleStatus = %d (%dms)\n",
2225 cycles, cycles/(fdp1->clk_rate/1000));
2227 dprintk(fdp1,
2228 "Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n",
2229 ctl_status, vint_cnt,
2230 ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "",
2231 ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "",
2232 ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "",
2233 ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : "");
2234 dprintk(fdp1, "***********************************\n");
2237 /* Spurious interrupt */
2238 if (!(FD1_CTL_IRQ_MASK & int_status))
2239 return IRQ_NONE;
2241 /* Work completed, release the frame */
2242 if (FD1_CTL_IRQ_VERE & int_status)
2243 device_frame_end(fdp1, VB2_BUF_STATE_ERROR);
2244 else if (FD1_CTL_IRQ_FREE & int_status)
2245 device_frame_end(fdp1, VB2_BUF_STATE_DONE);
2247 return IRQ_HANDLED;
2250 static int fdp1_probe(struct platform_device *pdev)
2252 struct fdp1_dev *fdp1;
2253 struct video_device *vfd;
2254 struct device_node *fcp_node;
2255 struct resource *res;
2256 struct clk *clk;
2257 unsigned int i;
2259 int ret;
2260 int hw_version;
2262 fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL);
2263 if (!fdp1)
2264 return -ENOMEM;
2266 INIT_LIST_HEAD(&fdp1->free_job_list);
2267 INIT_LIST_HEAD(&fdp1->queued_job_list);
2268 INIT_LIST_HEAD(&fdp1->hw_job_list);
2270 /* Initialise the jobs on the free list */
2271 for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++)
2272 list_add(&fdp1->jobs[i].list, &fdp1->free_job_list);
2274 mutex_init(&fdp1->dev_mutex);
2276 spin_lock_init(&fdp1->irqlock);
2277 spin_lock_init(&fdp1->device_process_lock);
2278 fdp1->dev = &pdev->dev;
2279 platform_set_drvdata(pdev, fdp1);
2281 /* Memory-mapped registers */
2282 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2283 fdp1->regs = devm_ioremap_resource(&pdev->dev, res);
2284 if (IS_ERR(fdp1->regs))
2285 return PTR_ERR(fdp1->regs);
2287 /* Interrupt service routine registration */
2288 fdp1->irq = ret = platform_get_irq(pdev, 0);
2289 if (ret < 0) {
2290 dev_err(&pdev->dev, "cannot find IRQ\n");
2291 return ret;
2294 ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0,
2295 dev_name(&pdev->dev), fdp1);
2296 if (ret) {
2297 dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq);
2298 return ret;
2301 /* FCP */
2302 fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0);
2303 if (fcp_node) {
2304 fdp1->fcp = rcar_fcp_get(fcp_node);
2305 of_node_put(fcp_node);
2306 if (IS_ERR(fdp1->fcp)) {
2307 dev_err(&pdev->dev, "FCP not found (%ld)\n",
2308 PTR_ERR(fdp1->fcp));
2309 return PTR_ERR(fdp1->fcp);
2313 /* Determine our clock rate */
2314 clk = clk_get(&pdev->dev, NULL);
2315 if (IS_ERR(clk))
2316 return PTR_ERR(clk);
2318 fdp1->clk_rate = clk_get_rate(clk);
2319 clk_put(clk);
2321 /* V4L2 device registration */
2322 ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev);
2323 if (ret) {
2324 v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
2325 return ret;
2328 /* M2M registration */
2329 fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops);
2330 if (IS_ERR(fdp1->m2m_dev)) {
2331 v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n");
2332 ret = PTR_ERR(fdp1->m2m_dev);
2333 goto unreg_dev;
2336 /* Video registration */
2337 fdp1->vfd = fdp1_videodev;
2338 vfd = &fdp1->vfd;
2339 vfd->lock = &fdp1->dev_mutex;
2340 vfd->v4l2_dev = &fdp1->v4l2_dev;
2341 video_set_drvdata(vfd, fdp1);
2342 strlcpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name));
2344 ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
2345 if (ret) {
2346 v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
2347 goto release_m2m;
2350 v4l2_info(&fdp1->v4l2_dev,
2351 "Device registered as /dev/video%d\n", vfd->num);
2353 /* Power up the cells to read HW */
2354 pm_runtime_enable(&pdev->dev);
2355 pm_runtime_get_sync(fdp1->dev);
2357 hw_version = fdp1_read(fdp1, FD1_IP_INTDATA);
2358 switch (hw_version) {
2359 case FD1_IP_H3_ES1:
2360 dprintk(fdp1, "FDP1 Version R-Car H3 ES1\n");
2361 break;
2362 case FD1_IP_M3W:
2363 dprintk(fdp1, "FDP1 Version R-Car M3-W\n");
2364 break;
2365 case FD1_IP_H3:
2366 dprintk(fdp1, "FDP1 Version R-Car H3\n");
2367 break;
2368 default:
2369 dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n",
2370 hw_version);
2373 /* Allow the hw to sleep until an open call puts it to use */
2374 pm_runtime_put(fdp1->dev);
2376 return 0;
2378 release_m2m:
2379 v4l2_m2m_release(fdp1->m2m_dev);
2381 unreg_dev:
2382 v4l2_device_unregister(&fdp1->v4l2_dev);
2384 return ret;
2387 static int fdp1_remove(struct platform_device *pdev)
2389 struct fdp1_dev *fdp1 = platform_get_drvdata(pdev);
2391 v4l2_m2m_release(fdp1->m2m_dev);
2392 video_unregister_device(&fdp1->vfd);
2393 v4l2_device_unregister(&fdp1->v4l2_dev);
2394 pm_runtime_disable(&pdev->dev);
2396 return 0;
2399 static int __maybe_unused fdp1_pm_runtime_suspend(struct device *dev)
2401 struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
2403 rcar_fcp_disable(fdp1->fcp);
2405 return 0;
2408 static int __maybe_unused fdp1_pm_runtime_resume(struct device *dev)
2410 struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
2412 /* Program in the static LUTs */
2413 fdp1_set_lut(fdp1);
2415 return rcar_fcp_enable(fdp1->fcp);
2418 static const struct dev_pm_ops fdp1_pm_ops = {
2419 SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend,
2420 fdp1_pm_runtime_resume,
2421 NULL)
2424 static const struct of_device_id fdp1_dt_ids[] = {
2425 { .compatible = "renesas,fdp1" },
2426 { },
2428 MODULE_DEVICE_TABLE(of, fdp1_dt_ids);
2430 static struct platform_driver fdp1_pdrv = {
2431 .probe = fdp1_probe,
2432 .remove = fdp1_remove,
2433 .driver = {
2434 .name = DRIVER_NAME,
2435 .of_match_table = fdp1_dt_ids,
2436 .pm = &fdp1_pm_ops,
2440 module_platform_driver(fdp1_pdrv);
2442 MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver");
2443 MODULE_AUTHOR("Kieran Bingham <kieran@bingham.xyz>");
2444 MODULE_LICENSE("GPL");
2445 MODULE_ALIAS("platform:" DRIVER_NAME);