1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE 256
22 #define IR_TAB_MAX_SIZE 8192
26 unsigned int repeat_period
;
27 unsigned int scancode_bits
;
29 [RC_PROTO_UNKNOWN
] = { .name
= "unknown", .repeat_period
= 125 },
30 [RC_PROTO_OTHER
] = { .name
= "other", .repeat_period
= 125 },
31 [RC_PROTO_RC5
] = { .name
= "rc-5",
32 .scancode_bits
= 0x1f7f, .repeat_period
= 114 },
33 [RC_PROTO_RC5X_20
] = { .name
= "rc-5x-20",
34 .scancode_bits
= 0x1f7f3f, .repeat_period
= 114 },
35 [RC_PROTO_RC5_SZ
] = { .name
= "rc-5-sz",
36 .scancode_bits
= 0x2fff, .repeat_period
= 114 },
37 [RC_PROTO_JVC
] = { .name
= "jvc",
38 .scancode_bits
= 0xffff, .repeat_period
= 125 },
39 [RC_PROTO_SONY12
] = { .name
= "sony-12",
40 .scancode_bits
= 0x1f007f, .repeat_period
= 100 },
41 [RC_PROTO_SONY15
] = { .name
= "sony-15",
42 .scancode_bits
= 0xff007f, .repeat_period
= 100 },
43 [RC_PROTO_SONY20
] = { .name
= "sony-20",
44 .scancode_bits
= 0x1fff7f, .repeat_period
= 100 },
45 [RC_PROTO_NEC
] = { .name
= "nec",
46 .scancode_bits
= 0xffff, .repeat_period
= 110 },
47 [RC_PROTO_NECX
] = { .name
= "nec-x",
48 .scancode_bits
= 0xffffff, .repeat_period
= 110 },
49 [RC_PROTO_NEC32
] = { .name
= "nec-32",
50 .scancode_bits
= 0xffffffff, .repeat_period
= 110 },
51 [RC_PROTO_SANYO
] = { .name
= "sanyo",
52 .scancode_bits
= 0x1fffff, .repeat_period
= 125 },
53 [RC_PROTO_MCIR2_KBD
] = { .name
= "mcir2-kbd",
54 .scancode_bits
= 0xffffff, .repeat_period
= 100 },
55 [RC_PROTO_MCIR2_MSE
] = { .name
= "mcir2-mse",
56 .scancode_bits
= 0x1fffff, .repeat_period
= 100 },
57 [RC_PROTO_RC6_0
] = { .name
= "rc-6-0",
58 .scancode_bits
= 0xffff, .repeat_period
= 114 },
59 [RC_PROTO_RC6_6A_20
] = { .name
= "rc-6-6a-20",
60 .scancode_bits
= 0xfffff, .repeat_period
= 114 },
61 [RC_PROTO_RC6_6A_24
] = { .name
= "rc-6-6a-24",
62 .scancode_bits
= 0xffffff, .repeat_period
= 114 },
63 [RC_PROTO_RC6_6A_32
] = { .name
= "rc-6-6a-32",
64 .scancode_bits
= 0xffffffff, .repeat_period
= 114 },
65 [RC_PROTO_RC6_MCE
] = { .name
= "rc-6-mce",
66 .scancode_bits
= 0xffff7fff, .repeat_period
= 114 },
67 [RC_PROTO_SHARP
] = { .name
= "sharp",
68 .scancode_bits
= 0x1fff, .repeat_period
= 125 },
69 [RC_PROTO_XMP
] = { .name
= "xmp", .repeat_period
= 125 },
70 [RC_PROTO_CEC
] = { .name
= "cec", .repeat_period
= 0 },
71 [RC_PROTO_IMON
] = { .name
= "imon",
72 .scancode_bits
= 0x7fffffff, .repeat_period
= 114 },
75 /* Used to keep track of known keymaps */
76 static LIST_HEAD(rc_map_list
);
77 static DEFINE_SPINLOCK(rc_map_lock
);
78 static struct led_trigger
*led_feedback
;
80 /* Used to keep track of rc devices */
81 static DEFINE_IDA(rc_ida
);
83 static struct rc_map_list
*seek_rc_map(const char *name
)
85 struct rc_map_list
*map
= NULL
;
87 spin_lock(&rc_map_lock
);
88 list_for_each_entry(map
, &rc_map_list
, list
) {
89 if (!strcmp(name
, map
->map
.name
)) {
90 spin_unlock(&rc_map_lock
);
94 spin_unlock(&rc_map_lock
);
99 struct rc_map
*rc_map_get(const char *name
)
102 struct rc_map_list
*map
;
104 map
= seek_rc_map(name
);
105 #ifdef CONFIG_MODULES
107 int rc
= request_module("%s", name
);
109 pr_err("Couldn't load IR keymap %s\n", name
);
112 msleep(20); /* Give some time for IR to register */
114 map
= seek_rc_map(name
);
118 pr_err("IR keymap %s not found\n", name
);
122 printk(KERN_INFO
"Registered IR keymap %s\n", map
->map
.name
);
126 EXPORT_SYMBOL_GPL(rc_map_get
);
128 int rc_map_register(struct rc_map_list
*map
)
130 spin_lock(&rc_map_lock
);
131 list_add_tail(&map
->list
, &rc_map_list
);
132 spin_unlock(&rc_map_lock
);
135 EXPORT_SYMBOL_GPL(rc_map_register
);
137 void rc_map_unregister(struct rc_map_list
*map
)
139 spin_lock(&rc_map_lock
);
140 list_del(&map
->list
);
141 spin_unlock(&rc_map_lock
);
143 EXPORT_SYMBOL_GPL(rc_map_unregister
);
146 static struct rc_map_table empty
[] = {
147 { 0x2a, KEY_COFFEE
},
150 static struct rc_map_list empty_map
= {
153 .size
= ARRAY_SIZE(empty
),
154 .rc_proto
= RC_PROTO_UNKNOWN
, /* Legacy IR type */
155 .name
= RC_MAP_EMPTY
,
160 * ir_create_table() - initializes a scancode table
161 * @dev: the rc_dev device
162 * @rc_map: the rc_map to initialize
163 * @name: name to assign to the table
164 * @rc_proto: ir type to assign to the new table
165 * @size: initial size of the table
167 * This routine will initialize the rc_map and will allocate
168 * memory to hold at least the specified number of elements.
170 * return: zero on success or a negative error code
172 static int ir_create_table(struct rc_dev
*dev
, struct rc_map
*rc_map
,
173 const char *name
, u64 rc_proto
, size_t size
)
175 rc_map
->name
= kstrdup(name
, GFP_KERNEL
);
178 rc_map
->rc_proto
= rc_proto
;
179 rc_map
->alloc
= roundup_pow_of_two(size
* sizeof(struct rc_map_table
));
180 rc_map
->size
= rc_map
->alloc
/ sizeof(struct rc_map_table
);
181 rc_map
->scan
= kmalloc(rc_map
->alloc
, GFP_KERNEL
);
188 dev_dbg(&dev
->dev
, "Allocated space for %u keycode entries (%u bytes)\n",
189 rc_map
->size
, rc_map
->alloc
);
194 * ir_free_table() - frees memory allocated by a scancode table
195 * @rc_map: the table whose mappings need to be freed
197 * This routine will free memory alloctaed for key mappings used by given
200 static void ir_free_table(struct rc_map
*rc_map
)
210 * ir_resize_table() - resizes a scancode table if necessary
211 * @dev: the rc_dev device
212 * @rc_map: the rc_map to resize
213 * @gfp_flags: gfp flags to use when allocating memory
215 * This routine will shrink the rc_map if it has lots of
216 * unused entries and grow it if it is full.
218 * return: zero on success or a negative error code
220 static int ir_resize_table(struct rc_dev
*dev
, struct rc_map
*rc_map
,
223 unsigned int oldalloc
= rc_map
->alloc
;
224 unsigned int newalloc
= oldalloc
;
225 struct rc_map_table
*oldscan
= rc_map
->scan
;
226 struct rc_map_table
*newscan
;
228 if (rc_map
->size
== rc_map
->len
) {
229 /* All entries in use -> grow keytable */
230 if (rc_map
->alloc
>= IR_TAB_MAX_SIZE
)
234 dev_dbg(&dev
->dev
, "Growing table to %u bytes\n", newalloc
);
237 if ((rc_map
->len
* 3 < rc_map
->size
) && (oldalloc
> IR_TAB_MIN_SIZE
)) {
238 /* Less than 1/3 of entries in use -> shrink keytable */
240 dev_dbg(&dev
->dev
, "Shrinking table to %u bytes\n", newalloc
);
243 if (newalloc
== oldalloc
)
246 newscan
= kmalloc(newalloc
, gfp_flags
);
250 memcpy(newscan
, rc_map
->scan
, rc_map
->len
* sizeof(struct rc_map_table
));
251 rc_map
->scan
= newscan
;
252 rc_map
->alloc
= newalloc
;
253 rc_map
->size
= rc_map
->alloc
/ sizeof(struct rc_map_table
);
259 * ir_update_mapping() - set a keycode in the scancode->keycode table
260 * @dev: the struct rc_dev device descriptor
261 * @rc_map: scancode table to be adjusted
262 * @index: index of the mapping that needs to be updated
263 * @new_keycode: the desired keycode
265 * This routine is used to update scancode->keycode mapping at given
268 * return: previous keycode assigned to the mapping
271 static unsigned int ir_update_mapping(struct rc_dev
*dev
,
272 struct rc_map
*rc_map
,
274 unsigned int new_keycode
)
276 int old_keycode
= rc_map
->scan
[index
].keycode
;
279 /* Did the user wish to remove the mapping? */
280 if (new_keycode
== KEY_RESERVED
|| new_keycode
== KEY_UNKNOWN
) {
281 dev_dbg(&dev
->dev
, "#%d: Deleting scan 0x%04x\n",
282 index
, rc_map
->scan
[index
].scancode
);
284 memmove(&rc_map
->scan
[index
], &rc_map
->scan
[index
+ 1],
285 (rc_map
->len
- index
) * sizeof(struct rc_map_table
));
287 dev_dbg(&dev
->dev
, "#%d: %s scan 0x%04x with key 0x%04x\n",
289 old_keycode
== KEY_RESERVED
? "New" : "Replacing",
290 rc_map
->scan
[index
].scancode
, new_keycode
);
291 rc_map
->scan
[index
].keycode
= new_keycode
;
292 __set_bit(new_keycode
, dev
->input_dev
->keybit
);
295 if (old_keycode
!= KEY_RESERVED
) {
296 /* A previous mapping was updated... */
297 __clear_bit(old_keycode
, dev
->input_dev
->keybit
);
298 /* ... but another scancode might use the same keycode */
299 for (i
= 0; i
< rc_map
->len
; i
++) {
300 if (rc_map
->scan
[i
].keycode
== old_keycode
) {
301 __set_bit(old_keycode
, dev
->input_dev
->keybit
);
306 /* Possibly shrink the keytable, failure is not a problem */
307 ir_resize_table(dev
, rc_map
, GFP_ATOMIC
);
314 * ir_establish_scancode() - set a keycode in the scancode->keycode table
315 * @dev: the struct rc_dev device descriptor
316 * @rc_map: scancode table to be searched
317 * @scancode: the desired scancode
318 * @resize: controls whether we allowed to resize the table to
319 * accommodate not yet present scancodes
321 * This routine is used to locate given scancode in rc_map.
322 * If scancode is not yet present the routine will allocate a new slot
325 * return: index of the mapping containing scancode in question
326 * or -1U in case of failure.
328 static unsigned int ir_establish_scancode(struct rc_dev
*dev
,
329 struct rc_map
*rc_map
,
330 unsigned int scancode
,
336 * Unfortunately, some hardware-based IR decoders don't provide
337 * all bits for the complete IR code. In general, they provide only
338 * the command part of the IR code. Yet, as it is possible to replace
339 * the provided IR with another one, it is needed to allow loading
340 * IR tables from other remotes. So, we support specifying a mask to
341 * indicate the valid bits of the scancodes.
343 if (dev
->scancode_mask
)
344 scancode
&= dev
->scancode_mask
;
346 /* First check if we already have a mapping for this ir command */
347 for (i
= 0; i
< rc_map
->len
; i
++) {
348 if (rc_map
->scan
[i
].scancode
== scancode
)
351 /* Keytable is sorted from lowest to highest scancode */
352 if (rc_map
->scan
[i
].scancode
>= scancode
)
356 /* No previous mapping found, we might need to grow the table */
357 if (rc_map
->size
== rc_map
->len
) {
358 if (!resize
|| ir_resize_table(dev
, rc_map
, GFP_ATOMIC
))
362 /* i is the proper index to insert our new keycode */
364 memmove(&rc_map
->scan
[i
+ 1], &rc_map
->scan
[i
],
365 (rc_map
->len
- i
) * sizeof(struct rc_map_table
));
366 rc_map
->scan
[i
].scancode
= scancode
;
367 rc_map
->scan
[i
].keycode
= KEY_RESERVED
;
374 * ir_setkeycode() - set a keycode in the scancode->keycode table
375 * @idev: the struct input_dev device descriptor
376 * @ke: Input keymap entry
377 * @old_keycode: result
379 * This routine is used to handle evdev EVIOCSKEY ioctl.
381 * return: -EINVAL if the keycode could not be inserted, otherwise zero.
383 static int ir_setkeycode(struct input_dev
*idev
,
384 const struct input_keymap_entry
*ke
,
385 unsigned int *old_keycode
)
387 struct rc_dev
*rdev
= input_get_drvdata(idev
);
388 struct rc_map
*rc_map
= &rdev
->rc_map
;
390 unsigned int scancode
;
394 spin_lock_irqsave(&rc_map
->lock
, flags
);
396 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
398 if (index
>= rc_map
->len
) {
403 retval
= input_scancode_to_scalar(ke
, &scancode
);
407 index
= ir_establish_scancode(rdev
, rc_map
, scancode
, true);
408 if (index
>= rc_map
->len
) {
414 *old_keycode
= ir_update_mapping(rdev
, rc_map
, index
, ke
->keycode
);
417 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
422 * ir_setkeytable() - sets several entries in the scancode->keycode table
423 * @dev: the struct rc_dev device descriptor
424 * @from: the struct rc_map to copy entries from
426 * This routine is used to handle table initialization.
428 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
430 static int ir_setkeytable(struct rc_dev
*dev
,
431 const struct rc_map
*from
)
433 struct rc_map
*rc_map
= &dev
->rc_map
;
434 unsigned int i
, index
;
437 rc
= ir_create_table(dev
, rc_map
, from
->name
, from
->rc_proto
,
442 for (i
= 0; i
< from
->size
; i
++) {
443 index
= ir_establish_scancode(dev
, rc_map
,
444 from
->scan
[i
].scancode
, false);
445 if (index
>= rc_map
->len
) {
450 ir_update_mapping(dev
, rc_map
, index
,
451 from
->scan
[i
].keycode
);
455 ir_free_table(rc_map
);
460 static int rc_map_cmp(const void *key
, const void *elt
)
462 const unsigned int *scancode
= key
;
463 const struct rc_map_table
*e
= elt
;
465 if (*scancode
< e
->scancode
)
467 else if (*scancode
> e
->scancode
)
473 * ir_lookup_by_scancode() - locate mapping by scancode
474 * @rc_map: the struct rc_map to search
475 * @scancode: scancode to look for in the table
477 * This routine performs binary search in RC keykeymap table for
480 * return: index in the table, -1U if not found
482 static unsigned int ir_lookup_by_scancode(const struct rc_map
*rc_map
,
483 unsigned int scancode
)
485 struct rc_map_table
*res
;
487 res
= bsearch(&scancode
, rc_map
->scan
, rc_map
->len
,
488 sizeof(struct rc_map_table
), rc_map_cmp
);
492 return res
- rc_map
->scan
;
496 * ir_getkeycode() - get a keycode from the scancode->keycode table
497 * @idev: the struct input_dev device descriptor
498 * @ke: Input keymap entry
500 * This routine is used to handle evdev EVIOCGKEY ioctl.
502 * return: always returns zero.
504 static int ir_getkeycode(struct input_dev
*idev
,
505 struct input_keymap_entry
*ke
)
507 struct rc_dev
*rdev
= input_get_drvdata(idev
);
508 struct rc_map
*rc_map
= &rdev
->rc_map
;
509 struct rc_map_table
*entry
;
512 unsigned int scancode
;
515 spin_lock_irqsave(&rc_map
->lock
, flags
);
517 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
520 retval
= input_scancode_to_scalar(ke
, &scancode
);
524 index
= ir_lookup_by_scancode(rc_map
, scancode
);
527 if (index
< rc_map
->len
) {
528 entry
= &rc_map
->scan
[index
];
531 ke
->keycode
= entry
->keycode
;
532 ke
->len
= sizeof(entry
->scancode
);
533 memcpy(ke
->scancode
, &entry
->scancode
, sizeof(entry
->scancode
));
535 } else if (!(ke
->flags
& INPUT_KEYMAP_BY_INDEX
)) {
537 * We do not really know the valid range of scancodes
538 * so let's respond with KEY_RESERVED to anything we
539 * do not have mapping for [yet].
542 ke
->keycode
= KEY_RESERVED
;
551 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
556 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
557 * @dev: the struct rc_dev descriptor of the device
558 * @scancode: the scancode to look for
560 * This routine is used by drivers which need to convert a scancode to a
561 * keycode. Normally it should not be used since drivers should have no
562 * interest in keycodes.
564 * return: the corresponding keycode, or KEY_RESERVED
566 u32
rc_g_keycode_from_table(struct rc_dev
*dev
, u32 scancode
)
568 struct rc_map
*rc_map
= &dev
->rc_map
;
569 unsigned int keycode
;
573 spin_lock_irqsave(&rc_map
->lock
, flags
);
575 index
= ir_lookup_by_scancode(rc_map
, scancode
);
576 keycode
= index
< rc_map
->len
?
577 rc_map
->scan
[index
].keycode
: KEY_RESERVED
;
579 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
581 if (keycode
!= KEY_RESERVED
)
582 dev_dbg(&dev
->dev
, "%s: scancode 0x%04x keycode 0x%02x\n",
583 dev
->device_name
, scancode
, keycode
);
587 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table
);
590 * ir_do_keyup() - internal function to signal the release of a keypress
591 * @dev: the struct rc_dev descriptor of the device
592 * @sync: whether or not to call input_sync
594 * This function is used internally to release a keypress, it must be
595 * called with keylock held.
597 static void ir_do_keyup(struct rc_dev
*dev
, bool sync
)
599 if (!dev
->keypressed
)
602 dev_dbg(&dev
->dev
, "keyup key 0x%04x\n", dev
->last_keycode
);
603 del_timer(&dev
->timer_repeat
);
604 input_report_key(dev
->input_dev
, dev
->last_keycode
, 0);
605 led_trigger_event(led_feedback
, LED_OFF
);
607 input_sync(dev
->input_dev
);
608 dev
->keypressed
= false;
612 * rc_keyup() - signals the release of a keypress
613 * @dev: the struct rc_dev descriptor of the device
615 * This routine is used to signal that a key has been released on the
618 void rc_keyup(struct rc_dev
*dev
)
622 spin_lock_irqsave(&dev
->keylock
, flags
);
623 ir_do_keyup(dev
, true);
624 spin_unlock_irqrestore(&dev
->keylock
, flags
);
626 EXPORT_SYMBOL_GPL(rc_keyup
);
629 * ir_timer_keyup() - generates a keyup event after a timeout
631 * @t: a pointer to the struct timer_list
633 * This routine will generate a keyup event some time after a keydown event
634 * is generated when no further activity has been detected.
636 static void ir_timer_keyup(struct timer_list
*t
)
638 struct rc_dev
*dev
= from_timer(dev
, t
, timer_keyup
);
642 * ir->keyup_jiffies is used to prevent a race condition if a
643 * hardware interrupt occurs at this point and the keyup timer
644 * event is moved further into the future as a result.
646 * The timer will then be reactivated and this function called
647 * again in the future. We need to exit gracefully in that case
648 * to allow the input subsystem to do its auto-repeat magic or
649 * a keyup event might follow immediately after the keydown.
651 spin_lock_irqsave(&dev
->keylock
, flags
);
652 if (time_is_before_eq_jiffies(dev
->keyup_jiffies
))
653 ir_do_keyup(dev
, true);
654 spin_unlock_irqrestore(&dev
->keylock
, flags
);
658 * ir_timer_repeat() - generates a repeat event after a timeout
660 * @t: a pointer to the struct timer_list
662 * This routine will generate a soft repeat event every REP_PERIOD
665 static void ir_timer_repeat(struct timer_list
*t
)
667 struct rc_dev
*dev
= from_timer(dev
, t
, timer_repeat
);
668 struct input_dev
*input
= dev
->input_dev
;
671 spin_lock_irqsave(&dev
->keylock
, flags
);
672 if (dev
->keypressed
) {
673 input_event(input
, EV_KEY
, dev
->last_keycode
, 2);
675 if (input
->rep
[REP_PERIOD
])
676 mod_timer(&dev
->timer_repeat
, jiffies
+
677 msecs_to_jiffies(input
->rep
[REP_PERIOD
]));
679 spin_unlock_irqrestore(&dev
->keylock
, flags
);
682 static unsigned int repeat_period(int protocol
)
684 if (protocol
>= ARRAY_SIZE(protocols
))
687 return protocols
[protocol
].repeat_period
;
691 * rc_repeat() - signals that a key is still pressed
692 * @dev: the struct rc_dev descriptor of the device
694 * This routine is used by IR decoders when a repeat message which does
695 * not include the necessary bits to reproduce the scancode has been
698 void rc_repeat(struct rc_dev
*dev
)
701 unsigned int timeout
= nsecs_to_jiffies(dev
->timeout
) +
702 msecs_to_jiffies(repeat_period(dev
->last_protocol
));
703 struct lirc_scancode sc
= {
704 .scancode
= dev
->last_scancode
, .rc_proto
= dev
->last_protocol
,
705 .keycode
= dev
->keypressed
? dev
->last_keycode
: KEY_RESERVED
,
706 .flags
= LIRC_SCANCODE_FLAG_REPEAT
|
707 (dev
->last_toggle
? LIRC_SCANCODE_FLAG_TOGGLE
: 0)
710 ir_lirc_scancode_event(dev
, &sc
);
712 spin_lock_irqsave(&dev
->keylock
, flags
);
714 input_event(dev
->input_dev
, EV_MSC
, MSC_SCAN
, dev
->last_scancode
);
715 input_sync(dev
->input_dev
);
717 if (dev
->keypressed
) {
718 dev
->keyup_jiffies
= jiffies
+ timeout
;
719 mod_timer(&dev
->timer_keyup
, dev
->keyup_jiffies
);
722 spin_unlock_irqrestore(&dev
->keylock
, flags
);
724 EXPORT_SYMBOL_GPL(rc_repeat
);
727 * ir_do_keydown() - internal function to process a keypress
728 * @dev: the struct rc_dev descriptor of the device
729 * @protocol: the protocol of the keypress
730 * @scancode: the scancode of the keypress
731 * @keycode: the keycode of the keypress
732 * @toggle: the toggle value of the keypress
734 * This function is used internally to register a keypress, it must be
735 * called with keylock held.
737 static void ir_do_keydown(struct rc_dev
*dev
, enum rc_proto protocol
,
738 u32 scancode
, u32 keycode
, u8 toggle
)
740 bool new_event
= (!dev
->keypressed
||
741 dev
->last_protocol
!= protocol
||
742 dev
->last_scancode
!= scancode
||
743 dev
->last_toggle
!= toggle
);
744 struct lirc_scancode sc
= {
745 .scancode
= scancode
, .rc_proto
= protocol
,
746 .flags
= toggle
? LIRC_SCANCODE_FLAG_TOGGLE
: 0,
750 ir_lirc_scancode_event(dev
, &sc
);
752 if (new_event
&& dev
->keypressed
)
753 ir_do_keyup(dev
, false);
755 input_event(dev
->input_dev
, EV_MSC
, MSC_SCAN
, scancode
);
757 dev
->last_protocol
= protocol
;
758 dev
->last_scancode
= scancode
;
759 dev
->last_toggle
= toggle
;
760 dev
->last_keycode
= keycode
;
762 if (new_event
&& keycode
!= KEY_RESERVED
) {
763 /* Register a keypress */
764 dev
->keypressed
= true;
766 dev_dbg(&dev
->dev
, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
767 dev
->device_name
, keycode
, protocol
, scancode
);
768 input_report_key(dev
->input_dev
, keycode
, 1);
770 led_trigger_event(led_feedback
, LED_FULL
);
774 * For CEC, start sending repeat messages as soon as the first
775 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
776 * is non-zero. Otherwise, the input layer will generate repeat
779 if (!new_event
&& keycode
!= KEY_RESERVED
&&
780 dev
->allowed_protocols
== RC_PROTO_BIT_CEC
&&
781 !timer_pending(&dev
->timer_repeat
) &&
782 dev
->input_dev
->rep
[REP_PERIOD
] &&
783 !dev
->input_dev
->rep
[REP_DELAY
]) {
784 input_event(dev
->input_dev
, EV_KEY
, keycode
, 2);
785 mod_timer(&dev
->timer_repeat
, jiffies
+
786 msecs_to_jiffies(dev
->input_dev
->rep
[REP_PERIOD
]));
789 input_sync(dev
->input_dev
);
793 * rc_keydown() - generates input event for a key press
794 * @dev: the struct rc_dev descriptor of the device
795 * @protocol: the protocol for the keypress
796 * @scancode: the scancode for the keypress
797 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
798 * support toggle values, this should be set to zero)
800 * This routine is used to signal that a key has been pressed on the
803 void rc_keydown(struct rc_dev
*dev
, enum rc_proto protocol
, u32 scancode
,
807 u32 keycode
= rc_g_keycode_from_table(dev
, scancode
);
809 spin_lock_irqsave(&dev
->keylock
, flags
);
810 ir_do_keydown(dev
, protocol
, scancode
, keycode
, toggle
);
812 if (dev
->keypressed
) {
813 dev
->keyup_jiffies
= jiffies
+ nsecs_to_jiffies(dev
->timeout
) +
814 msecs_to_jiffies(repeat_period(protocol
));
815 mod_timer(&dev
->timer_keyup
, dev
->keyup_jiffies
);
817 spin_unlock_irqrestore(&dev
->keylock
, flags
);
819 EXPORT_SYMBOL_GPL(rc_keydown
);
822 * rc_keydown_notimeout() - generates input event for a key press without
823 * an automatic keyup event at a later time
824 * @dev: the struct rc_dev descriptor of the device
825 * @protocol: the protocol for the keypress
826 * @scancode: the scancode for the keypress
827 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
828 * support toggle values, this should be set to zero)
830 * This routine is used to signal that a key has been pressed on the
831 * remote control. The driver must manually call rc_keyup() at a later stage.
833 void rc_keydown_notimeout(struct rc_dev
*dev
, enum rc_proto protocol
,
834 u32 scancode
, u8 toggle
)
837 u32 keycode
= rc_g_keycode_from_table(dev
, scancode
);
839 spin_lock_irqsave(&dev
->keylock
, flags
);
840 ir_do_keydown(dev
, protocol
, scancode
, keycode
, toggle
);
841 spin_unlock_irqrestore(&dev
->keylock
, flags
);
843 EXPORT_SYMBOL_GPL(rc_keydown_notimeout
);
846 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
847 * For nec, it should do the opposite of ir_nec_bytes_to_scancode()
849 * @scancode: scancode
851 bool rc_validate_scancode(enum rc_proto proto
, u32 scancode
)
855 * NECX has a 16-bit address; if the lower 8 bits match the upper
856 * 8 bits inverted, then the address would match regular nec.
859 if ((((scancode
>> 16) ^ ~(scancode
>> 8)) & 0xff) == 0)
863 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
864 * of the command match the upper 8 bits inverted, then it would
865 * be either NEC or NECX.
868 if ((((scancode
>> 8) ^ ~scancode
) & 0xff) == 0)
872 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
873 * is regular mode-6a 32 bit
875 case RC_PROTO_RC6_MCE
:
876 if ((scancode
& 0xffff0000) != 0x800f0000)
879 case RC_PROTO_RC6_6A_32
:
880 if ((scancode
& 0xffff0000) == 0x800f0000)
891 * rc_validate_filter() - checks that the scancode and mask are valid and
892 * provides sensible defaults
893 * @dev: the struct rc_dev descriptor of the device
894 * @filter: the scancode and mask
896 * return: 0 or -EINVAL if the filter is not valid
898 static int rc_validate_filter(struct rc_dev
*dev
,
899 struct rc_scancode_filter
*filter
)
901 u32 mask
, s
= filter
->data
;
902 enum rc_proto protocol
= dev
->wakeup_protocol
;
904 if (protocol
>= ARRAY_SIZE(protocols
))
907 mask
= protocols
[protocol
].scancode_bits
;
909 if (!rc_validate_scancode(protocol
, s
))
912 filter
->data
&= mask
;
913 filter
->mask
&= mask
;
916 * If we have to raw encode the IR for wakeup, we cannot have a mask
918 if (dev
->encode_wakeup
&& filter
->mask
!= 0 && filter
->mask
!= mask
)
924 int rc_open(struct rc_dev
*rdev
)
931 mutex_lock(&rdev
->lock
);
933 if (!rdev
->registered
) {
936 if (!rdev
->users
++ && rdev
->open
)
937 rval
= rdev
->open(rdev
);
943 mutex_unlock(&rdev
->lock
);
948 static int ir_open(struct input_dev
*idev
)
950 struct rc_dev
*rdev
= input_get_drvdata(idev
);
952 return rc_open(rdev
);
955 void rc_close(struct rc_dev
*rdev
)
958 mutex_lock(&rdev
->lock
);
960 if (!--rdev
->users
&& rdev
->close
&& rdev
->registered
)
963 mutex_unlock(&rdev
->lock
);
967 static void ir_close(struct input_dev
*idev
)
969 struct rc_dev
*rdev
= input_get_drvdata(idev
);
973 /* class for /sys/class/rc */
974 static char *rc_devnode(struct device
*dev
, umode_t
*mode
)
976 return kasprintf(GFP_KERNEL
, "rc/%s", dev_name(dev
));
979 static struct class rc_class
= {
981 .devnode
= rc_devnode
,
985 * These are the protocol textual descriptions that are
986 * used by the sysfs protocols file. Note that the order
987 * of the entries is relevant.
989 static const struct {
992 const char *module_name
;
994 { RC_PROTO_BIT_NONE
, "none", NULL
},
995 { RC_PROTO_BIT_OTHER
, "other", NULL
},
996 { RC_PROTO_BIT_UNKNOWN
, "unknown", NULL
},
998 RC_PROTO_BIT_RC5X_20
, "rc-5", "ir-rc5-decoder" },
1001 RC_PROTO_BIT_NEC32
, "nec", "ir-nec-decoder" },
1002 { RC_PROTO_BIT_RC6_0
|
1003 RC_PROTO_BIT_RC6_6A_20
|
1004 RC_PROTO_BIT_RC6_6A_24
|
1005 RC_PROTO_BIT_RC6_6A_32
|
1006 RC_PROTO_BIT_RC6_MCE
, "rc-6", "ir-rc6-decoder" },
1007 { RC_PROTO_BIT_JVC
, "jvc", "ir-jvc-decoder" },
1008 { RC_PROTO_BIT_SONY12
|
1009 RC_PROTO_BIT_SONY15
|
1010 RC_PROTO_BIT_SONY20
, "sony", "ir-sony-decoder" },
1011 { RC_PROTO_BIT_RC5_SZ
, "rc-5-sz", "ir-rc5-decoder" },
1012 { RC_PROTO_BIT_SANYO
, "sanyo", "ir-sanyo-decoder" },
1013 { RC_PROTO_BIT_SHARP
, "sharp", "ir-sharp-decoder" },
1014 { RC_PROTO_BIT_MCIR2_KBD
|
1015 RC_PROTO_BIT_MCIR2_MSE
, "mce_kbd", "ir-mce_kbd-decoder" },
1016 { RC_PROTO_BIT_XMP
, "xmp", "ir-xmp-decoder" },
1017 { RC_PROTO_BIT_CEC
, "cec", NULL
},
1018 { RC_PROTO_BIT_IMON
, "imon", "ir-imon-decoder" },
1022 * struct rc_filter_attribute - Device attribute relating to a filter type.
1023 * @attr: Device attribute.
1024 * @type: Filter type.
1025 * @mask: false for filter value, true for filter mask.
1027 struct rc_filter_attribute
{
1028 struct device_attribute attr
;
1029 enum rc_filter_type type
;
1032 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1034 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
1035 struct rc_filter_attribute dev_attr_##_name = { \
1036 .attr = __ATTR(_name, _mode, _show, _store), \
1042 * show_protocols() - shows the current IR protocol(s)
1043 * @device: the device descriptor
1044 * @mattr: the device attribute struct
1045 * @buf: a pointer to the output buffer
1047 * This routine is a callback routine for input read the IR protocol type(s).
1048 * it is trigged by reading /sys/class/rc/rc?/protocols.
1049 * It returns the protocol names of supported protocols.
1050 * Enabled protocols are printed in brackets.
1052 * dev->lock is taken to guard against races between
1053 * store_protocols and show_protocols.
1055 static ssize_t
show_protocols(struct device
*device
,
1056 struct device_attribute
*mattr
, char *buf
)
1058 struct rc_dev
*dev
= to_rc_dev(device
);
1059 u64 allowed
, enabled
;
1063 mutex_lock(&dev
->lock
);
1065 enabled
= dev
->enabled_protocols
;
1066 allowed
= dev
->allowed_protocols
;
1067 if (dev
->raw
&& !allowed
)
1068 allowed
= ir_raw_get_allowed_protocols();
1070 mutex_unlock(&dev
->lock
);
1072 dev_dbg(&dev
->dev
, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1073 __func__
, (long long)allowed
, (long long)enabled
);
1075 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
1076 if (allowed
& enabled
& proto_names
[i
].type
)
1077 tmp
+= sprintf(tmp
, "[%s] ", proto_names
[i
].name
);
1078 else if (allowed
& proto_names
[i
].type
)
1079 tmp
+= sprintf(tmp
, "%s ", proto_names
[i
].name
);
1081 if (allowed
& proto_names
[i
].type
)
1082 allowed
&= ~proto_names
[i
].type
;
1086 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1087 tmp
+= sprintf(tmp
, "[lirc] ");
1094 return tmp
+ 1 - buf
;
1098 * parse_protocol_change() - parses a protocol change request
1099 * @dev: rc_dev device
1100 * @protocols: pointer to the bitmask of current protocols
1101 * @buf: pointer to the buffer with a list of changes
1103 * Writing "+proto" will add a protocol to the protocol mask.
1104 * Writing "-proto" will remove a protocol from protocol mask.
1105 * Writing "proto" will enable only "proto".
1106 * Writing "none" will disable all protocols.
1107 * Returns the number of changes performed or a negative error code.
1109 static int parse_protocol_change(struct rc_dev
*dev
, u64
*protocols
,
1114 bool enable
, disable
;
1118 while ((tmp
= strsep((char **)&buf
, " \n")) != NULL
) {
1126 } else if (*tmp
== '-') {
1135 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
1136 if (!strcasecmp(tmp
, proto_names
[i
].name
)) {
1137 mask
= proto_names
[i
].type
;
1142 if (i
== ARRAY_SIZE(proto_names
)) {
1143 if (!strcasecmp(tmp
, "lirc"))
1146 dev_dbg(&dev
->dev
, "Unknown protocol: '%s'\n",
1157 *protocols
&= ~mask
;
1163 dev_dbg(&dev
->dev
, "Protocol not specified\n");
1170 void ir_raw_load_modules(u64
*protocols
)
1175 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
1176 if (proto_names
[i
].type
== RC_PROTO_BIT_NONE
||
1177 proto_names
[i
].type
& (RC_PROTO_BIT_OTHER
|
1178 RC_PROTO_BIT_UNKNOWN
))
1181 available
= ir_raw_get_allowed_protocols();
1182 if (!(*protocols
& proto_names
[i
].type
& ~available
))
1185 if (!proto_names
[i
].module_name
) {
1186 pr_err("Can't enable IR protocol %s\n",
1187 proto_names
[i
].name
);
1188 *protocols
&= ~proto_names
[i
].type
;
1192 ret
= request_module("%s", proto_names
[i
].module_name
);
1194 pr_err("Couldn't load IR protocol module %s\n",
1195 proto_names
[i
].module_name
);
1196 *protocols
&= ~proto_names
[i
].type
;
1200 available
= ir_raw_get_allowed_protocols();
1201 if (!(*protocols
& proto_names
[i
].type
& ~available
))
1204 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1205 proto_names
[i
].module_name
,
1206 proto_names
[i
].name
);
1207 *protocols
&= ~proto_names
[i
].type
;
1212 * store_protocols() - changes the current/wakeup IR protocol(s)
1213 * @device: the device descriptor
1214 * @mattr: the device attribute struct
1215 * @buf: a pointer to the input buffer
1216 * @len: length of the input buffer
1218 * This routine is for changing the IR protocol type.
1219 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1220 * See parse_protocol_change() for the valid commands.
1221 * Returns @len on success or a negative error code.
1223 * dev->lock is taken to guard against races between
1224 * store_protocols and show_protocols.
1226 static ssize_t
store_protocols(struct device
*device
,
1227 struct device_attribute
*mattr
,
1228 const char *buf
, size_t len
)
1230 struct rc_dev
*dev
= to_rc_dev(device
);
1231 u64
*current_protocols
;
1232 struct rc_scancode_filter
*filter
;
1233 u64 old_protocols
, new_protocols
;
1236 dev_dbg(&dev
->dev
, "Normal protocol change requested\n");
1237 current_protocols
= &dev
->enabled_protocols
;
1238 filter
= &dev
->scancode_filter
;
1240 if (!dev
->change_protocol
) {
1241 dev_dbg(&dev
->dev
, "Protocol switching not supported\n");
1245 mutex_lock(&dev
->lock
);
1247 old_protocols
= *current_protocols
;
1248 new_protocols
= old_protocols
;
1249 rc
= parse_protocol_change(dev
, &new_protocols
, buf
);
1253 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1254 ir_raw_load_modules(&new_protocols
);
1256 rc
= dev
->change_protocol(dev
, &new_protocols
);
1258 dev_dbg(&dev
->dev
, "Error setting protocols to 0x%llx\n",
1259 (long long)new_protocols
);
1263 if (new_protocols
!= old_protocols
) {
1264 *current_protocols
= new_protocols
;
1265 dev_dbg(&dev
->dev
, "Protocols changed to 0x%llx\n",
1266 (long long)new_protocols
);
1270 * If a protocol change was attempted the filter may need updating, even
1271 * if the actual protocol mask hasn't changed (since the driver may have
1272 * cleared the filter).
1273 * Try setting the same filter with the new protocol (if any).
1274 * Fall back to clearing the filter.
1276 if (dev
->s_filter
&& filter
->mask
) {
1278 rc
= dev
->s_filter(dev
, filter
);
1285 dev
->s_filter(dev
, filter
);
1292 mutex_unlock(&dev
->lock
);
1297 * show_filter() - shows the current scancode filter value or mask
1298 * @device: the device descriptor
1299 * @attr: the device attribute struct
1300 * @buf: a pointer to the output buffer
1302 * This routine is a callback routine to read a scancode filter value or mask.
1303 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1304 * It prints the current scancode filter value or mask of the appropriate filter
1305 * type in hexadecimal into @buf and returns the size of the buffer.
1307 * Bits of the filter value corresponding to set bits in the filter mask are
1308 * compared against input scancodes and non-matching scancodes are discarded.
1310 * dev->lock is taken to guard against races between
1311 * store_filter and show_filter.
1313 static ssize_t
show_filter(struct device
*device
,
1314 struct device_attribute
*attr
,
1317 struct rc_dev
*dev
= to_rc_dev(device
);
1318 struct rc_filter_attribute
*fattr
= to_rc_filter_attr(attr
);
1319 struct rc_scancode_filter
*filter
;
1322 mutex_lock(&dev
->lock
);
1324 if (fattr
->type
== RC_FILTER_NORMAL
)
1325 filter
= &dev
->scancode_filter
;
1327 filter
= &dev
->scancode_wakeup_filter
;
1333 mutex_unlock(&dev
->lock
);
1335 return sprintf(buf
, "%#x\n", val
);
1339 * store_filter() - changes the scancode filter value
1340 * @device: the device descriptor
1341 * @attr: the device attribute struct
1342 * @buf: a pointer to the input buffer
1343 * @len: length of the input buffer
1345 * This routine is for changing a scancode filter value or mask.
1346 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1347 * Returns -EINVAL if an invalid filter value for the current protocol was
1348 * specified or if scancode filtering is not supported by the driver, otherwise
1351 * Bits of the filter value corresponding to set bits in the filter mask are
1352 * compared against input scancodes and non-matching scancodes are discarded.
1354 * dev->lock is taken to guard against races between
1355 * store_filter and show_filter.
1357 static ssize_t
store_filter(struct device
*device
,
1358 struct device_attribute
*attr
,
1359 const char *buf
, size_t len
)
1361 struct rc_dev
*dev
= to_rc_dev(device
);
1362 struct rc_filter_attribute
*fattr
= to_rc_filter_attr(attr
);
1363 struct rc_scancode_filter new_filter
, *filter
;
1366 int (*set_filter
)(struct rc_dev
*dev
, struct rc_scancode_filter
*filter
);
1368 ret
= kstrtoul(buf
, 0, &val
);
1372 if (fattr
->type
== RC_FILTER_NORMAL
) {
1373 set_filter
= dev
->s_filter
;
1374 filter
= &dev
->scancode_filter
;
1376 set_filter
= dev
->s_wakeup_filter
;
1377 filter
= &dev
->scancode_wakeup_filter
;
1383 mutex_lock(&dev
->lock
);
1385 new_filter
= *filter
;
1387 new_filter
.mask
= val
;
1389 new_filter
.data
= val
;
1391 if (fattr
->type
== RC_FILTER_WAKEUP
) {
1393 * Refuse to set a filter unless a protocol is enabled
1394 * and the filter is valid for that protocol
1396 if (dev
->wakeup_protocol
!= RC_PROTO_UNKNOWN
)
1397 ret
= rc_validate_filter(dev
, &new_filter
);
1405 if (fattr
->type
== RC_FILTER_NORMAL
&& !dev
->enabled_protocols
&&
1407 /* refuse to set a filter unless a protocol is enabled */
1412 ret
= set_filter(dev
, &new_filter
);
1416 *filter
= new_filter
;
1419 mutex_unlock(&dev
->lock
);
1420 return (ret
< 0) ? ret
: len
;
1424 * show_wakeup_protocols() - shows the wakeup IR protocol
1425 * @device: the device descriptor
1426 * @mattr: the device attribute struct
1427 * @buf: a pointer to the output buffer
1429 * This routine is a callback routine for input read the IR protocol type(s).
1430 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1431 * It returns the protocol names of supported protocols.
1432 * The enabled protocols are printed in brackets.
1434 * dev->lock is taken to guard against races between
1435 * store_wakeup_protocols and show_wakeup_protocols.
1437 static ssize_t
show_wakeup_protocols(struct device
*device
,
1438 struct device_attribute
*mattr
,
1441 struct rc_dev
*dev
= to_rc_dev(device
);
1443 enum rc_proto enabled
;
1447 mutex_lock(&dev
->lock
);
1449 allowed
= dev
->allowed_wakeup_protocols
;
1450 enabled
= dev
->wakeup_protocol
;
1452 mutex_unlock(&dev
->lock
);
1454 dev_dbg(&dev
->dev
, "%s: allowed - 0x%llx, enabled - %d\n",
1455 __func__
, (long long)allowed
, enabled
);
1457 for (i
= 0; i
< ARRAY_SIZE(protocols
); i
++) {
1458 if (allowed
& (1ULL << i
)) {
1460 tmp
+= sprintf(tmp
, "[%s] ", protocols
[i
].name
);
1462 tmp
+= sprintf(tmp
, "%s ", protocols
[i
].name
);
1470 return tmp
+ 1 - buf
;
1474 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1475 * @device: the device descriptor
1476 * @mattr: the device attribute struct
1477 * @buf: a pointer to the input buffer
1478 * @len: length of the input buffer
1480 * This routine is for changing the IR protocol type.
1481 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1482 * Returns @len on success or a negative error code.
1484 * dev->lock is taken to guard against races between
1485 * store_wakeup_protocols and show_wakeup_protocols.
1487 static ssize_t
store_wakeup_protocols(struct device
*device
,
1488 struct device_attribute
*mattr
,
1489 const char *buf
, size_t len
)
1491 struct rc_dev
*dev
= to_rc_dev(device
);
1492 enum rc_proto protocol
;
1497 mutex_lock(&dev
->lock
);
1499 allowed
= dev
->allowed_wakeup_protocols
;
1501 if (sysfs_streq(buf
, "none")) {
1502 protocol
= RC_PROTO_UNKNOWN
;
1504 for (i
= 0; i
< ARRAY_SIZE(protocols
); i
++) {
1505 if ((allowed
& (1ULL << i
)) &&
1506 sysfs_streq(buf
, protocols
[i
].name
)) {
1512 if (i
== ARRAY_SIZE(protocols
)) {
1517 if (dev
->encode_wakeup
) {
1518 u64 mask
= 1ULL << protocol
;
1520 ir_raw_load_modules(&mask
);
1528 if (dev
->wakeup_protocol
!= protocol
) {
1529 dev
->wakeup_protocol
= protocol
;
1530 dev_dbg(&dev
->dev
, "Wakeup protocol changed to %d\n", protocol
);
1532 if (protocol
== RC_PROTO_RC6_MCE
)
1533 dev
->scancode_wakeup_filter
.data
= 0x800f0000;
1535 dev
->scancode_wakeup_filter
.data
= 0;
1536 dev
->scancode_wakeup_filter
.mask
= 0;
1538 rc
= dev
->s_wakeup_filter(dev
, &dev
->scancode_wakeup_filter
);
1546 mutex_unlock(&dev
->lock
);
1550 static void rc_dev_release(struct device
*device
)
1552 struct rc_dev
*dev
= to_rc_dev(device
);
1557 #define ADD_HOTPLUG_VAR(fmt, val...) \
1559 int err = add_uevent_var(env, fmt, val); \
1564 static int rc_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1566 struct rc_dev
*dev
= to_rc_dev(device
);
1568 if (dev
->rc_map
.name
)
1569 ADD_HOTPLUG_VAR("NAME=%s", dev
->rc_map
.name
);
1570 if (dev
->driver_name
)
1571 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev
->driver_name
);
1572 if (dev
->device_name
)
1573 ADD_HOTPLUG_VAR("DEV_NAME=%s", dev
->device_name
);
1579 * Static device attribute struct with the sysfs attributes for IR's
1581 static struct device_attribute dev_attr_ro_protocols
=
1582 __ATTR(protocols
, 0444, show_protocols
, NULL
);
1583 static struct device_attribute dev_attr_rw_protocols
=
1584 __ATTR(protocols
, 0644, show_protocols
, store_protocols
);
1585 static DEVICE_ATTR(wakeup_protocols
, 0644, show_wakeup_protocols
,
1586 store_wakeup_protocols
);
1587 static RC_FILTER_ATTR(filter
, S_IRUGO
|S_IWUSR
,
1588 show_filter
, store_filter
, RC_FILTER_NORMAL
, false);
1589 static RC_FILTER_ATTR(filter_mask
, S_IRUGO
|S_IWUSR
,
1590 show_filter
, store_filter
, RC_FILTER_NORMAL
, true);
1591 static RC_FILTER_ATTR(wakeup_filter
, S_IRUGO
|S_IWUSR
,
1592 show_filter
, store_filter
, RC_FILTER_WAKEUP
, false);
1593 static RC_FILTER_ATTR(wakeup_filter_mask
, S_IRUGO
|S_IWUSR
,
1594 show_filter
, store_filter
, RC_FILTER_WAKEUP
, true);
1596 static struct attribute
*rc_dev_rw_protocol_attrs
[] = {
1597 &dev_attr_rw_protocols
.attr
,
1601 static const struct attribute_group rc_dev_rw_protocol_attr_grp
= {
1602 .attrs
= rc_dev_rw_protocol_attrs
,
1605 static struct attribute
*rc_dev_ro_protocol_attrs
[] = {
1606 &dev_attr_ro_protocols
.attr
,
1610 static const struct attribute_group rc_dev_ro_protocol_attr_grp
= {
1611 .attrs
= rc_dev_ro_protocol_attrs
,
1614 static struct attribute
*rc_dev_filter_attrs
[] = {
1615 &dev_attr_filter
.attr
.attr
,
1616 &dev_attr_filter_mask
.attr
.attr
,
1620 static const struct attribute_group rc_dev_filter_attr_grp
= {
1621 .attrs
= rc_dev_filter_attrs
,
1624 static struct attribute
*rc_dev_wakeup_filter_attrs
[] = {
1625 &dev_attr_wakeup_filter
.attr
.attr
,
1626 &dev_attr_wakeup_filter_mask
.attr
.attr
,
1627 &dev_attr_wakeup_protocols
.attr
,
1631 static const struct attribute_group rc_dev_wakeup_filter_attr_grp
= {
1632 .attrs
= rc_dev_wakeup_filter_attrs
,
1635 static const struct device_type rc_dev_type
= {
1636 .release
= rc_dev_release
,
1637 .uevent
= rc_dev_uevent
,
1640 struct rc_dev
*rc_allocate_device(enum rc_driver_type type
)
1644 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
1648 if (type
!= RC_DRIVER_IR_RAW_TX
) {
1649 dev
->input_dev
= input_allocate_device();
1650 if (!dev
->input_dev
) {
1655 dev
->input_dev
->getkeycode
= ir_getkeycode
;
1656 dev
->input_dev
->setkeycode
= ir_setkeycode
;
1657 input_set_drvdata(dev
->input_dev
, dev
);
1659 dev
->timeout
= IR_DEFAULT_TIMEOUT
;
1660 timer_setup(&dev
->timer_keyup
, ir_timer_keyup
, 0);
1661 timer_setup(&dev
->timer_repeat
, ir_timer_repeat
, 0);
1663 spin_lock_init(&dev
->rc_map
.lock
);
1664 spin_lock_init(&dev
->keylock
);
1666 mutex_init(&dev
->lock
);
1668 dev
->dev
.type
= &rc_dev_type
;
1669 dev
->dev
.class = &rc_class
;
1670 device_initialize(&dev
->dev
);
1672 dev
->driver_type
= type
;
1674 __module_get(THIS_MODULE
);
1677 EXPORT_SYMBOL_GPL(rc_allocate_device
);
1679 void rc_free_device(struct rc_dev
*dev
)
1684 input_free_device(dev
->input_dev
);
1686 put_device(&dev
->dev
);
1688 /* kfree(dev) will be called by the callback function
1691 module_put(THIS_MODULE
);
1693 EXPORT_SYMBOL_GPL(rc_free_device
);
1695 static void devm_rc_alloc_release(struct device
*dev
, void *res
)
1697 rc_free_device(*(struct rc_dev
**)res
);
1700 struct rc_dev
*devm_rc_allocate_device(struct device
*dev
,
1701 enum rc_driver_type type
)
1703 struct rc_dev
**dr
, *rc
;
1705 dr
= devres_alloc(devm_rc_alloc_release
, sizeof(*dr
), GFP_KERNEL
);
1709 rc
= rc_allocate_device(type
);
1715 rc
->dev
.parent
= dev
;
1716 rc
->managed_alloc
= true;
1718 devres_add(dev
, dr
);
1722 EXPORT_SYMBOL_GPL(devm_rc_allocate_device
);
1724 static int rc_prepare_rx_device(struct rc_dev
*dev
)
1727 struct rc_map
*rc_map
;
1733 rc_map
= rc_map_get(dev
->map_name
);
1735 rc_map
= rc_map_get(RC_MAP_EMPTY
);
1736 if (!rc_map
|| !rc_map
->scan
|| rc_map
->size
== 0)
1739 rc
= ir_setkeytable(dev
, rc_map
);
1743 rc_proto
= BIT_ULL(rc_map
->rc_proto
);
1745 if (dev
->driver_type
== RC_DRIVER_SCANCODE
&& !dev
->change_protocol
)
1746 dev
->enabled_protocols
= dev
->allowed_protocols
;
1748 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1749 ir_raw_load_modules(&rc_proto
);
1751 if (dev
->change_protocol
) {
1752 rc
= dev
->change_protocol(dev
, &rc_proto
);
1755 dev
->enabled_protocols
= rc_proto
;
1758 set_bit(EV_KEY
, dev
->input_dev
->evbit
);
1759 set_bit(EV_REP
, dev
->input_dev
->evbit
);
1760 set_bit(EV_MSC
, dev
->input_dev
->evbit
);
1761 set_bit(MSC_SCAN
, dev
->input_dev
->mscbit
);
1763 dev
->input_dev
->open
= ir_open
;
1765 dev
->input_dev
->close
= ir_close
;
1767 dev
->input_dev
->dev
.parent
= &dev
->dev
;
1768 memcpy(&dev
->input_dev
->id
, &dev
->input_id
, sizeof(dev
->input_id
));
1769 dev
->input_dev
->phys
= dev
->input_phys
;
1770 dev
->input_dev
->name
= dev
->device_name
;
1775 ir_free_table(&dev
->rc_map
);
1780 static int rc_setup_rx_device(struct rc_dev
*dev
)
1784 /* rc_open will be called here */
1785 rc
= input_register_device(dev
->input_dev
);
1790 * Default delay of 250ms is too short for some protocols, especially
1791 * since the timeout is currently set to 250ms. Increase it to 500ms,
1792 * to avoid wrong repetition of the keycodes. Note that this must be
1793 * set after the call to input_register_device().
1795 if (dev
->allowed_protocols
== RC_PROTO_BIT_CEC
)
1796 dev
->input_dev
->rep
[REP_DELAY
] = 0;
1798 dev
->input_dev
->rep
[REP_DELAY
] = 500;
1801 * As a repeat event on protocols like RC-5 and NEC take as long as
1802 * 110/114ms, using 33ms as a repeat period is not the right thing
1805 dev
->input_dev
->rep
[REP_PERIOD
] = 125;
1810 static void rc_free_rx_device(struct rc_dev
*dev
)
1815 if (dev
->input_dev
) {
1816 input_unregister_device(dev
->input_dev
);
1817 dev
->input_dev
= NULL
;
1820 ir_free_table(&dev
->rc_map
);
1823 int rc_register_device(struct rc_dev
*dev
)
1833 minor
= ida_simple_get(&rc_ida
, 0, RC_DEV_MAX
, GFP_KERNEL
);
1838 dev_set_name(&dev
->dev
, "rc%u", dev
->minor
);
1839 dev_set_drvdata(&dev
->dev
, dev
);
1841 dev
->dev
.groups
= dev
->sysfs_groups
;
1842 if (dev
->driver_type
== RC_DRIVER_SCANCODE
&& !dev
->change_protocol
)
1843 dev
->sysfs_groups
[attr
++] = &rc_dev_ro_protocol_attr_grp
;
1844 else if (dev
->driver_type
!= RC_DRIVER_IR_RAW_TX
)
1845 dev
->sysfs_groups
[attr
++] = &rc_dev_rw_protocol_attr_grp
;
1847 dev
->sysfs_groups
[attr
++] = &rc_dev_filter_attr_grp
;
1848 if (dev
->s_wakeup_filter
)
1849 dev
->sysfs_groups
[attr
++] = &rc_dev_wakeup_filter_attr_grp
;
1850 dev
->sysfs_groups
[attr
++] = NULL
;
1852 if (dev
->driver_type
== RC_DRIVER_IR_RAW
) {
1853 rc
= ir_raw_event_prepare(dev
);
1858 if (dev
->driver_type
!= RC_DRIVER_IR_RAW_TX
) {
1859 rc
= rc_prepare_rx_device(dev
);
1864 rc
= device_add(&dev
->dev
);
1868 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1869 dev_info(&dev
->dev
, "%s as %s\n",
1870 dev
->device_name
?: "Unspecified device", path
?: "N/A");
1873 dev
->registered
= true;
1875 if (dev
->driver_type
!= RC_DRIVER_IR_RAW_TX
) {
1876 rc
= rc_setup_rx_device(dev
);
1881 /* Ensure that the lirc kfifo is setup before we start the thread */
1882 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
) {
1883 rc
= ir_lirc_register(dev
);
1888 if (dev
->driver_type
== RC_DRIVER_IR_RAW
) {
1889 rc
= ir_raw_event_register(dev
);
1894 dev_dbg(&dev
->dev
, "Registered rc%u (driver: %s)\n", dev
->minor
,
1895 dev
->driver_name
? dev
->driver_name
: "unknown");
1900 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
)
1901 ir_lirc_unregister(dev
);
1903 rc_free_rx_device(dev
);
1905 device_del(&dev
->dev
);
1907 ir_free_table(&dev
->rc_map
);
1909 ir_raw_event_free(dev
);
1911 ida_simple_remove(&rc_ida
, minor
);
1914 EXPORT_SYMBOL_GPL(rc_register_device
);
1916 static void devm_rc_release(struct device
*dev
, void *res
)
1918 rc_unregister_device(*(struct rc_dev
**)res
);
1921 int devm_rc_register_device(struct device
*parent
, struct rc_dev
*dev
)
1926 dr
= devres_alloc(devm_rc_release
, sizeof(*dr
), GFP_KERNEL
);
1930 ret
= rc_register_device(dev
);
1937 devres_add(parent
, dr
);
1941 EXPORT_SYMBOL_GPL(devm_rc_register_device
);
1943 void rc_unregister_device(struct rc_dev
*dev
)
1948 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1949 ir_raw_event_unregister(dev
);
1951 del_timer_sync(&dev
->timer_keyup
);
1952 del_timer_sync(&dev
->timer_repeat
);
1954 rc_free_rx_device(dev
);
1956 mutex_lock(&dev
->lock
);
1957 dev
->registered
= false;
1958 mutex_unlock(&dev
->lock
);
1961 * lirc device should be freed with dev->registered = false, so
1962 * that userspace polling will get notified.
1964 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
)
1965 ir_lirc_unregister(dev
);
1967 device_del(&dev
->dev
);
1969 ida_simple_remove(&rc_ida
, dev
->minor
);
1971 if (!dev
->managed_alloc
)
1972 rc_free_device(dev
);
1975 EXPORT_SYMBOL_GPL(rc_unregister_device
);
1978 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1981 static int __init
rc_core_init(void)
1983 int rc
= class_register(&rc_class
);
1985 pr_err("rc_core: unable to register rc class\n");
1989 rc
= lirc_dev_init();
1991 pr_err("rc_core: unable to init lirc\n");
1992 class_unregister(&rc_class
);
1996 led_trigger_register_simple("rc-feedback", &led_feedback
);
1997 rc_map_register(&empty_map
);
2002 static void __exit
rc_core_exit(void)
2005 class_unregister(&rc_class
);
2006 led_trigger_unregister_simple(led_feedback
);
2007 rc_map_unregister(&empty_map
);
2010 subsys_initcall(rc_core_init
);
2011 module_exit(rc_core_exit
);
2013 MODULE_AUTHOR("Mauro Carvalho Chehab");
2014 MODULE_LICENSE("GPL v2");