f81232: switch to ->get_serial()
[linux/fpc-iii.git] / drivers / media / rc / rc-main.c
blobca68e1d2b2f989cf366bdecc999db5e388d50e11
1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
3 //
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE 256
22 #define IR_TAB_MAX_SIZE 8192
24 static const struct {
25 const char *name;
26 unsigned int repeat_period;
27 unsigned int scancode_bits;
28 } protocols[] = {
29 [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
30 [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
31 [RC_PROTO_RC5] = { .name = "rc-5",
32 .scancode_bits = 0x1f7f, .repeat_period = 114 },
33 [RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
34 .scancode_bits = 0x1f7f3f, .repeat_period = 114 },
35 [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
36 .scancode_bits = 0x2fff, .repeat_period = 114 },
37 [RC_PROTO_JVC] = { .name = "jvc",
38 .scancode_bits = 0xffff, .repeat_period = 125 },
39 [RC_PROTO_SONY12] = { .name = "sony-12",
40 .scancode_bits = 0x1f007f, .repeat_period = 100 },
41 [RC_PROTO_SONY15] = { .name = "sony-15",
42 .scancode_bits = 0xff007f, .repeat_period = 100 },
43 [RC_PROTO_SONY20] = { .name = "sony-20",
44 .scancode_bits = 0x1fff7f, .repeat_period = 100 },
45 [RC_PROTO_NEC] = { .name = "nec",
46 .scancode_bits = 0xffff, .repeat_period = 110 },
47 [RC_PROTO_NECX] = { .name = "nec-x",
48 .scancode_bits = 0xffffff, .repeat_period = 110 },
49 [RC_PROTO_NEC32] = { .name = "nec-32",
50 .scancode_bits = 0xffffffff, .repeat_period = 110 },
51 [RC_PROTO_SANYO] = { .name = "sanyo",
52 .scancode_bits = 0x1fffff, .repeat_period = 125 },
53 [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
54 .scancode_bits = 0xffffff, .repeat_period = 100 },
55 [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
56 .scancode_bits = 0x1fffff, .repeat_period = 100 },
57 [RC_PROTO_RC6_0] = { .name = "rc-6-0",
58 .scancode_bits = 0xffff, .repeat_period = 114 },
59 [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
60 .scancode_bits = 0xfffff, .repeat_period = 114 },
61 [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
62 .scancode_bits = 0xffffff, .repeat_period = 114 },
63 [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
64 .scancode_bits = 0xffffffff, .repeat_period = 114 },
65 [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
66 .scancode_bits = 0xffff7fff, .repeat_period = 114 },
67 [RC_PROTO_SHARP] = { .name = "sharp",
68 .scancode_bits = 0x1fff, .repeat_period = 125 },
69 [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
70 [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
71 [RC_PROTO_IMON] = { .name = "imon",
72 .scancode_bits = 0x7fffffff, .repeat_period = 114 },
75 /* Used to keep track of known keymaps */
76 static LIST_HEAD(rc_map_list);
77 static DEFINE_SPINLOCK(rc_map_lock);
78 static struct led_trigger *led_feedback;
80 /* Used to keep track of rc devices */
81 static DEFINE_IDA(rc_ida);
83 static struct rc_map_list *seek_rc_map(const char *name)
85 struct rc_map_list *map = NULL;
87 spin_lock(&rc_map_lock);
88 list_for_each_entry(map, &rc_map_list, list) {
89 if (!strcmp(name, map->map.name)) {
90 spin_unlock(&rc_map_lock);
91 return map;
94 spin_unlock(&rc_map_lock);
96 return NULL;
99 struct rc_map *rc_map_get(const char *name)
102 struct rc_map_list *map;
104 map = seek_rc_map(name);
105 #ifdef CONFIG_MODULES
106 if (!map) {
107 int rc = request_module("%s", name);
108 if (rc < 0) {
109 pr_err("Couldn't load IR keymap %s\n", name);
110 return NULL;
112 msleep(20); /* Give some time for IR to register */
114 map = seek_rc_map(name);
116 #endif
117 if (!map) {
118 pr_err("IR keymap %s not found\n", name);
119 return NULL;
122 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
124 return &map->map;
126 EXPORT_SYMBOL_GPL(rc_map_get);
128 int rc_map_register(struct rc_map_list *map)
130 spin_lock(&rc_map_lock);
131 list_add_tail(&map->list, &rc_map_list);
132 spin_unlock(&rc_map_lock);
133 return 0;
135 EXPORT_SYMBOL_GPL(rc_map_register);
137 void rc_map_unregister(struct rc_map_list *map)
139 spin_lock(&rc_map_lock);
140 list_del(&map->list);
141 spin_unlock(&rc_map_lock);
143 EXPORT_SYMBOL_GPL(rc_map_unregister);
146 static struct rc_map_table empty[] = {
147 { 0x2a, KEY_COFFEE },
150 static struct rc_map_list empty_map = {
151 .map = {
152 .scan = empty,
153 .size = ARRAY_SIZE(empty),
154 .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */
155 .name = RC_MAP_EMPTY,
160 * ir_create_table() - initializes a scancode table
161 * @dev: the rc_dev device
162 * @rc_map: the rc_map to initialize
163 * @name: name to assign to the table
164 * @rc_proto: ir type to assign to the new table
165 * @size: initial size of the table
167 * This routine will initialize the rc_map and will allocate
168 * memory to hold at least the specified number of elements.
170 * return: zero on success or a negative error code
172 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
173 const char *name, u64 rc_proto, size_t size)
175 rc_map->name = kstrdup(name, GFP_KERNEL);
176 if (!rc_map->name)
177 return -ENOMEM;
178 rc_map->rc_proto = rc_proto;
179 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
180 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
181 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
182 if (!rc_map->scan) {
183 kfree(rc_map->name);
184 rc_map->name = NULL;
185 return -ENOMEM;
188 dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
189 rc_map->size, rc_map->alloc);
190 return 0;
194 * ir_free_table() - frees memory allocated by a scancode table
195 * @rc_map: the table whose mappings need to be freed
197 * This routine will free memory alloctaed for key mappings used by given
198 * scancode table.
200 static void ir_free_table(struct rc_map *rc_map)
202 rc_map->size = 0;
203 kfree(rc_map->name);
204 rc_map->name = NULL;
205 kfree(rc_map->scan);
206 rc_map->scan = NULL;
210 * ir_resize_table() - resizes a scancode table if necessary
211 * @dev: the rc_dev device
212 * @rc_map: the rc_map to resize
213 * @gfp_flags: gfp flags to use when allocating memory
215 * This routine will shrink the rc_map if it has lots of
216 * unused entries and grow it if it is full.
218 * return: zero on success or a negative error code
220 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
221 gfp_t gfp_flags)
223 unsigned int oldalloc = rc_map->alloc;
224 unsigned int newalloc = oldalloc;
225 struct rc_map_table *oldscan = rc_map->scan;
226 struct rc_map_table *newscan;
228 if (rc_map->size == rc_map->len) {
229 /* All entries in use -> grow keytable */
230 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
231 return -ENOMEM;
233 newalloc *= 2;
234 dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
237 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
238 /* Less than 1/3 of entries in use -> shrink keytable */
239 newalloc /= 2;
240 dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
243 if (newalloc == oldalloc)
244 return 0;
246 newscan = kmalloc(newalloc, gfp_flags);
247 if (!newscan)
248 return -ENOMEM;
250 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
251 rc_map->scan = newscan;
252 rc_map->alloc = newalloc;
253 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
254 kfree(oldscan);
255 return 0;
259 * ir_update_mapping() - set a keycode in the scancode->keycode table
260 * @dev: the struct rc_dev device descriptor
261 * @rc_map: scancode table to be adjusted
262 * @index: index of the mapping that needs to be updated
263 * @new_keycode: the desired keycode
265 * This routine is used to update scancode->keycode mapping at given
266 * position.
268 * return: previous keycode assigned to the mapping
271 static unsigned int ir_update_mapping(struct rc_dev *dev,
272 struct rc_map *rc_map,
273 unsigned int index,
274 unsigned int new_keycode)
276 int old_keycode = rc_map->scan[index].keycode;
277 int i;
279 /* Did the user wish to remove the mapping? */
280 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
281 dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n",
282 index, rc_map->scan[index].scancode);
283 rc_map->len--;
284 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
285 (rc_map->len - index) * sizeof(struct rc_map_table));
286 } else {
287 dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n",
288 index,
289 old_keycode == KEY_RESERVED ? "New" : "Replacing",
290 rc_map->scan[index].scancode, new_keycode);
291 rc_map->scan[index].keycode = new_keycode;
292 __set_bit(new_keycode, dev->input_dev->keybit);
295 if (old_keycode != KEY_RESERVED) {
296 /* A previous mapping was updated... */
297 __clear_bit(old_keycode, dev->input_dev->keybit);
298 /* ... but another scancode might use the same keycode */
299 for (i = 0; i < rc_map->len; i++) {
300 if (rc_map->scan[i].keycode == old_keycode) {
301 __set_bit(old_keycode, dev->input_dev->keybit);
302 break;
306 /* Possibly shrink the keytable, failure is not a problem */
307 ir_resize_table(dev, rc_map, GFP_ATOMIC);
310 return old_keycode;
314 * ir_establish_scancode() - set a keycode in the scancode->keycode table
315 * @dev: the struct rc_dev device descriptor
316 * @rc_map: scancode table to be searched
317 * @scancode: the desired scancode
318 * @resize: controls whether we allowed to resize the table to
319 * accommodate not yet present scancodes
321 * This routine is used to locate given scancode in rc_map.
322 * If scancode is not yet present the routine will allocate a new slot
323 * for it.
325 * return: index of the mapping containing scancode in question
326 * or -1U in case of failure.
328 static unsigned int ir_establish_scancode(struct rc_dev *dev,
329 struct rc_map *rc_map,
330 unsigned int scancode,
331 bool resize)
333 unsigned int i;
336 * Unfortunately, some hardware-based IR decoders don't provide
337 * all bits for the complete IR code. In general, they provide only
338 * the command part of the IR code. Yet, as it is possible to replace
339 * the provided IR with another one, it is needed to allow loading
340 * IR tables from other remotes. So, we support specifying a mask to
341 * indicate the valid bits of the scancodes.
343 if (dev->scancode_mask)
344 scancode &= dev->scancode_mask;
346 /* First check if we already have a mapping for this ir command */
347 for (i = 0; i < rc_map->len; i++) {
348 if (rc_map->scan[i].scancode == scancode)
349 return i;
351 /* Keytable is sorted from lowest to highest scancode */
352 if (rc_map->scan[i].scancode >= scancode)
353 break;
356 /* No previous mapping found, we might need to grow the table */
357 if (rc_map->size == rc_map->len) {
358 if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
359 return -1U;
362 /* i is the proper index to insert our new keycode */
363 if (i < rc_map->len)
364 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
365 (rc_map->len - i) * sizeof(struct rc_map_table));
366 rc_map->scan[i].scancode = scancode;
367 rc_map->scan[i].keycode = KEY_RESERVED;
368 rc_map->len++;
370 return i;
374 * ir_setkeycode() - set a keycode in the scancode->keycode table
375 * @idev: the struct input_dev device descriptor
376 * @ke: Input keymap entry
377 * @old_keycode: result
379 * This routine is used to handle evdev EVIOCSKEY ioctl.
381 * return: -EINVAL if the keycode could not be inserted, otherwise zero.
383 static int ir_setkeycode(struct input_dev *idev,
384 const struct input_keymap_entry *ke,
385 unsigned int *old_keycode)
387 struct rc_dev *rdev = input_get_drvdata(idev);
388 struct rc_map *rc_map = &rdev->rc_map;
389 unsigned int index;
390 unsigned int scancode;
391 int retval = 0;
392 unsigned long flags;
394 spin_lock_irqsave(&rc_map->lock, flags);
396 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
397 index = ke->index;
398 if (index >= rc_map->len) {
399 retval = -EINVAL;
400 goto out;
402 } else {
403 retval = input_scancode_to_scalar(ke, &scancode);
404 if (retval)
405 goto out;
407 index = ir_establish_scancode(rdev, rc_map, scancode, true);
408 if (index >= rc_map->len) {
409 retval = -ENOMEM;
410 goto out;
414 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
416 out:
417 spin_unlock_irqrestore(&rc_map->lock, flags);
418 return retval;
422 * ir_setkeytable() - sets several entries in the scancode->keycode table
423 * @dev: the struct rc_dev device descriptor
424 * @from: the struct rc_map to copy entries from
426 * This routine is used to handle table initialization.
428 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
430 static int ir_setkeytable(struct rc_dev *dev,
431 const struct rc_map *from)
433 struct rc_map *rc_map = &dev->rc_map;
434 unsigned int i, index;
435 int rc;
437 rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
438 from->size);
439 if (rc)
440 return rc;
442 for (i = 0; i < from->size; i++) {
443 index = ir_establish_scancode(dev, rc_map,
444 from->scan[i].scancode, false);
445 if (index >= rc_map->len) {
446 rc = -ENOMEM;
447 break;
450 ir_update_mapping(dev, rc_map, index,
451 from->scan[i].keycode);
454 if (rc)
455 ir_free_table(rc_map);
457 return rc;
460 static int rc_map_cmp(const void *key, const void *elt)
462 const unsigned int *scancode = key;
463 const struct rc_map_table *e = elt;
465 if (*scancode < e->scancode)
466 return -1;
467 else if (*scancode > e->scancode)
468 return 1;
469 return 0;
473 * ir_lookup_by_scancode() - locate mapping by scancode
474 * @rc_map: the struct rc_map to search
475 * @scancode: scancode to look for in the table
477 * This routine performs binary search in RC keykeymap table for
478 * given scancode.
480 * return: index in the table, -1U if not found
482 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
483 unsigned int scancode)
485 struct rc_map_table *res;
487 res = bsearch(&scancode, rc_map->scan, rc_map->len,
488 sizeof(struct rc_map_table), rc_map_cmp);
489 if (!res)
490 return -1U;
491 else
492 return res - rc_map->scan;
496 * ir_getkeycode() - get a keycode from the scancode->keycode table
497 * @idev: the struct input_dev device descriptor
498 * @ke: Input keymap entry
500 * This routine is used to handle evdev EVIOCGKEY ioctl.
502 * return: always returns zero.
504 static int ir_getkeycode(struct input_dev *idev,
505 struct input_keymap_entry *ke)
507 struct rc_dev *rdev = input_get_drvdata(idev);
508 struct rc_map *rc_map = &rdev->rc_map;
509 struct rc_map_table *entry;
510 unsigned long flags;
511 unsigned int index;
512 unsigned int scancode;
513 int retval;
515 spin_lock_irqsave(&rc_map->lock, flags);
517 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
518 index = ke->index;
519 } else {
520 retval = input_scancode_to_scalar(ke, &scancode);
521 if (retval)
522 goto out;
524 index = ir_lookup_by_scancode(rc_map, scancode);
527 if (index < rc_map->len) {
528 entry = &rc_map->scan[index];
530 ke->index = index;
531 ke->keycode = entry->keycode;
532 ke->len = sizeof(entry->scancode);
533 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
535 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
537 * We do not really know the valid range of scancodes
538 * so let's respond with KEY_RESERVED to anything we
539 * do not have mapping for [yet].
541 ke->index = index;
542 ke->keycode = KEY_RESERVED;
543 } else {
544 retval = -EINVAL;
545 goto out;
548 retval = 0;
550 out:
551 spin_unlock_irqrestore(&rc_map->lock, flags);
552 return retval;
556 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
557 * @dev: the struct rc_dev descriptor of the device
558 * @scancode: the scancode to look for
560 * This routine is used by drivers which need to convert a scancode to a
561 * keycode. Normally it should not be used since drivers should have no
562 * interest in keycodes.
564 * return: the corresponding keycode, or KEY_RESERVED
566 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
568 struct rc_map *rc_map = &dev->rc_map;
569 unsigned int keycode;
570 unsigned int index;
571 unsigned long flags;
573 spin_lock_irqsave(&rc_map->lock, flags);
575 index = ir_lookup_by_scancode(rc_map, scancode);
576 keycode = index < rc_map->len ?
577 rc_map->scan[index].keycode : KEY_RESERVED;
579 spin_unlock_irqrestore(&rc_map->lock, flags);
581 if (keycode != KEY_RESERVED)
582 dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n",
583 dev->device_name, scancode, keycode);
585 return keycode;
587 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
590 * ir_do_keyup() - internal function to signal the release of a keypress
591 * @dev: the struct rc_dev descriptor of the device
592 * @sync: whether or not to call input_sync
594 * This function is used internally to release a keypress, it must be
595 * called with keylock held.
597 static void ir_do_keyup(struct rc_dev *dev, bool sync)
599 if (!dev->keypressed)
600 return;
602 dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
603 del_timer(&dev->timer_repeat);
604 input_report_key(dev->input_dev, dev->last_keycode, 0);
605 led_trigger_event(led_feedback, LED_OFF);
606 if (sync)
607 input_sync(dev->input_dev);
608 dev->keypressed = false;
612 * rc_keyup() - signals the release of a keypress
613 * @dev: the struct rc_dev descriptor of the device
615 * This routine is used to signal that a key has been released on the
616 * remote control.
618 void rc_keyup(struct rc_dev *dev)
620 unsigned long flags;
622 spin_lock_irqsave(&dev->keylock, flags);
623 ir_do_keyup(dev, true);
624 spin_unlock_irqrestore(&dev->keylock, flags);
626 EXPORT_SYMBOL_GPL(rc_keyup);
629 * ir_timer_keyup() - generates a keyup event after a timeout
631 * @t: a pointer to the struct timer_list
633 * This routine will generate a keyup event some time after a keydown event
634 * is generated when no further activity has been detected.
636 static void ir_timer_keyup(struct timer_list *t)
638 struct rc_dev *dev = from_timer(dev, t, timer_keyup);
639 unsigned long flags;
642 * ir->keyup_jiffies is used to prevent a race condition if a
643 * hardware interrupt occurs at this point and the keyup timer
644 * event is moved further into the future as a result.
646 * The timer will then be reactivated and this function called
647 * again in the future. We need to exit gracefully in that case
648 * to allow the input subsystem to do its auto-repeat magic or
649 * a keyup event might follow immediately after the keydown.
651 spin_lock_irqsave(&dev->keylock, flags);
652 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
653 ir_do_keyup(dev, true);
654 spin_unlock_irqrestore(&dev->keylock, flags);
658 * ir_timer_repeat() - generates a repeat event after a timeout
660 * @t: a pointer to the struct timer_list
662 * This routine will generate a soft repeat event every REP_PERIOD
663 * milliseconds.
665 static void ir_timer_repeat(struct timer_list *t)
667 struct rc_dev *dev = from_timer(dev, t, timer_repeat);
668 struct input_dev *input = dev->input_dev;
669 unsigned long flags;
671 spin_lock_irqsave(&dev->keylock, flags);
672 if (dev->keypressed) {
673 input_event(input, EV_KEY, dev->last_keycode, 2);
674 input_sync(input);
675 if (input->rep[REP_PERIOD])
676 mod_timer(&dev->timer_repeat, jiffies +
677 msecs_to_jiffies(input->rep[REP_PERIOD]));
679 spin_unlock_irqrestore(&dev->keylock, flags);
682 static unsigned int repeat_period(int protocol)
684 if (protocol >= ARRAY_SIZE(protocols))
685 return 100;
687 return protocols[protocol].repeat_period;
691 * rc_repeat() - signals that a key is still pressed
692 * @dev: the struct rc_dev descriptor of the device
694 * This routine is used by IR decoders when a repeat message which does
695 * not include the necessary bits to reproduce the scancode has been
696 * received.
698 void rc_repeat(struct rc_dev *dev)
700 unsigned long flags;
701 unsigned int timeout = nsecs_to_jiffies(dev->timeout) +
702 msecs_to_jiffies(repeat_period(dev->last_protocol));
703 struct lirc_scancode sc = {
704 .scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
705 .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
706 .flags = LIRC_SCANCODE_FLAG_REPEAT |
707 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
710 ir_lirc_scancode_event(dev, &sc);
712 spin_lock_irqsave(&dev->keylock, flags);
714 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
715 input_sync(dev->input_dev);
717 if (dev->keypressed) {
718 dev->keyup_jiffies = jiffies + timeout;
719 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
722 spin_unlock_irqrestore(&dev->keylock, flags);
724 EXPORT_SYMBOL_GPL(rc_repeat);
727 * ir_do_keydown() - internal function to process a keypress
728 * @dev: the struct rc_dev descriptor of the device
729 * @protocol: the protocol of the keypress
730 * @scancode: the scancode of the keypress
731 * @keycode: the keycode of the keypress
732 * @toggle: the toggle value of the keypress
734 * This function is used internally to register a keypress, it must be
735 * called with keylock held.
737 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
738 u32 scancode, u32 keycode, u8 toggle)
740 bool new_event = (!dev->keypressed ||
741 dev->last_protocol != protocol ||
742 dev->last_scancode != scancode ||
743 dev->last_toggle != toggle);
744 struct lirc_scancode sc = {
745 .scancode = scancode, .rc_proto = protocol,
746 .flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
747 .keycode = keycode
750 ir_lirc_scancode_event(dev, &sc);
752 if (new_event && dev->keypressed)
753 ir_do_keyup(dev, false);
755 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
757 dev->last_protocol = protocol;
758 dev->last_scancode = scancode;
759 dev->last_toggle = toggle;
760 dev->last_keycode = keycode;
762 if (new_event && keycode != KEY_RESERVED) {
763 /* Register a keypress */
764 dev->keypressed = true;
766 dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
767 dev->device_name, keycode, protocol, scancode);
768 input_report_key(dev->input_dev, keycode, 1);
770 led_trigger_event(led_feedback, LED_FULL);
774 * For CEC, start sending repeat messages as soon as the first
775 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
776 * is non-zero. Otherwise, the input layer will generate repeat
777 * messages.
779 if (!new_event && keycode != KEY_RESERVED &&
780 dev->allowed_protocols == RC_PROTO_BIT_CEC &&
781 !timer_pending(&dev->timer_repeat) &&
782 dev->input_dev->rep[REP_PERIOD] &&
783 !dev->input_dev->rep[REP_DELAY]) {
784 input_event(dev->input_dev, EV_KEY, keycode, 2);
785 mod_timer(&dev->timer_repeat, jiffies +
786 msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
789 input_sync(dev->input_dev);
793 * rc_keydown() - generates input event for a key press
794 * @dev: the struct rc_dev descriptor of the device
795 * @protocol: the protocol for the keypress
796 * @scancode: the scancode for the keypress
797 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
798 * support toggle values, this should be set to zero)
800 * This routine is used to signal that a key has been pressed on the
801 * remote control.
803 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
804 u8 toggle)
806 unsigned long flags;
807 u32 keycode = rc_g_keycode_from_table(dev, scancode);
809 spin_lock_irqsave(&dev->keylock, flags);
810 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
812 if (dev->keypressed) {
813 dev->keyup_jiffies = jiffies + nsecs_to_jiffies(dev->timeout) +
814 msecs_to_jiffies(repeat_period(protocol));
815 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
817 spin_unlock_irqrestore(&dev->keylock, flags);
819 EXPORT_SYMBOL_GPL(rc_keydown);
822 * rc_keydown_notimeout() - generates input event for a key press without
823 * an automatic keyup event at a later time
824 * @dev: the struct rc_dev descriptor of the device
825 * @protocol: the protocol for the keypress
826 * @scancode: the scancode for the keypress
827 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
828 * support toggle values, this should be set to zero)
830 * This routine is used to signal that a key has been pressed on the
831 * remote control. The driver must manually call rc_keyup() at a later stage.
833 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
834 u32 scancode, u8 toggle)
836 unsigned long flags;
837 u32 keycode = rc_g_keycode_from_table(dev, scancode);
839 spin_lock_irqsave(&dev->keylock, flags);
840 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
841 spin_unlock_irqrestore(&dev->keylock, flags);
843 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
846 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
847 * For nec, it should do the opposite of ir_nec_bytes_to_scancode()
848 * @proto: protocol
849 * @scancode: scancode
851 bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
853 switch (proto) {
855 * NECX has a 16-bit address; if the lower 8 bits match the upper
856 * 8 bits inverted, then the address would match regular nec.
858 case RC_PROTO_NECX:
859 if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
860 return false;
861 break;
863 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
864 * of the command match the upper 8 bits inverted, then it would
865 * be either NEC or NECX.
867 case RC_PROTO_NEC32:
868 if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
869 return false;
870 break;
872 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
873 * is regular mode-6a 32 bit
875 case RC_PROTO_RC6_MCE:
876 if ((scancode & 0xffff0000) != 0x800f0000)
877 return false;
878 break;
879 case RC_PROTO_RC6_6A_32:
880 if ((scancode & 0xffff0000) == 0x800f0000)
881 return false;
882 break;
883 default:
884 break;
887 return true;
891 * rc_validate_filter() - checks that the scancode and mask are valid and
892 * provides sensible defaults
893 * @dev: the struct rc_dev descriptor of the device
894 * @filter: the scancode and mask
896 * return: 0 or -EINVAL if the filter is not valid
898 static int rc_validate_filter(struct rc_dev *dev,
899 struct rc_scancode_filter *filter)
901 u32 mask, s = filter->data;
902 enum rc_proto protocol = dev->wakeup_protocol;
904 if (protocol >= ARRAY_SIZE(protocols))
905 return -EINVAL;
907 mask = protocols[protocol].scancode_bits;
909 if (!rc_validate_scancode(protocol, s))
910 return -EINVAL;
912 filter->data &= mask;
913 filter->mask &= mask;
916 * If we have to raw encode the IR for wakeup, we cannot have a mask
918 if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
919 return -EINVAL;
921 return 0;
924 int rc_open(struct rc_dev *rdev)
926 int rval = 0;
928 if (!rdev)
929 return -EINVAL;
931 mutex_lock(&rdev->lock);
933 if (!rdev->registered) {
934 rval = -ENODEV;
935 } else {
936 if (!rdev->users++ && rdev->open)
937 rval = rdev->open(rdev);
939 if (rval)
940 rdev->users--;
943 mutex_unlock(&rdev->lock);
945 return rval;
948 static int ir_open(struct input_dev *idev)
950 struct rc_dev *rdev = input_get_drvdata(idev);
952 return rc_open(rdev);
955 void rc_close(struct rc_dev *rdev)
957 if (rdev) {
958 mutex_lock(&rdev->lock);
960 if (!--rdev->users && rdev->close && rdev->registered)
961 rdev->close(rdev);
963 mutex_unlock(&rdev->lock);
967 static void ir_close(struct input_dev *idev)
969 struct rc_dev *rdev = input_get_drvdata(idev);
970 rc_close(rdev);
973 /* class for /sys/class/rc */
974 static char *rc_devnode(struct device *dev, umode_t *mode)
976 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
979 static struct class rc_class = {
980 .name = "rc",
981 .devnode = rc_devnode,
985 * These are the protocol textual descriptions that are
986 * used by the sysfs protocols file. Note that the order
987 * of the entries is relevant.
989 static const struct {
990 u64 type;
991 const char *name;
992 const char *module_name;
993 } proto_names[] = {
994 { RC_PROTO_BIT_NONE, "none", NULL },
995 { RC_PROTO_BIT_OTHER, "other", NULL },
996 { RC_PROTO_BIT_UNKNOWN, "unknown", NULL },
997 { RC_PROTO_BIT_RC5 |
998 RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" },
999 { RC_PROTO_BIT_NEC |
1000 RC_PROTO_BIT_NECX |
1001 RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" },
1002 { RC_PROTO_BIT_RC6_0 |
1003 RC_PROTO_BIT_RC6_6A_20 |
1004 RC_PROTO_BIT_RC6_6A_24 |
1005 RC_PROTO_BIT_RC6_6A_32 |
1006 RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
1007 { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" },
1008 { RC_PROTO_BIT_SONY12 |
1009 RC_PROTO_BIT_SONY15 |
1010 RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" },
1011 { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
1012 { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
1013 { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" },
1014 { RC_PROTO_BIT_MCIR2_KBD |
1015 RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" },
1016 { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" },
1017 { RC_PROTO_BIT_CEC, "cec", NULL },
1018 { RC_PROTO_BIT_IMON, "imon", "ir-imon-decoder" },
1022 * struct rc_filter_attribute - Device attribute relating to a filter type.
1023 * @attr: Device attribute.
1024 * @type: Filter type.
1025 * @mask: false for filter value, true for filter mask.
1027 struct rc_filter_attribute {
1028 struct device_attribute attr;
1029 enum rc_filter_type type;
1030 bool mask;
1032 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1034 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
1035 struct rc_filter_attribute dev_attr_##_name = { \
1036 .attr = __ATTR(_name, _mode, _show, _store), \
1037 .type = (_type), \
1038 .mask = (_mask), \
1042 * show_protocols() - shows the current IR protocol(s)
1043 * @device: the device descriptor
1044 * @mattr: the device attribute struct
1045 * @buf: a pointer to the output buffer
1047 * This routine is a callback routine for input read the IR protocol type(s).
1048 * it is trigged by reading /sys/class/rc/rc?/protocols.
1049 * It returns the protocol names of supported protocols.
1050 * Enabled protocols are printed in brackets.
1052 * dev->lock is taken to guard against races between
1053 * store_protocols and show_protocols.
1055 static ssize_t show_protocols(struct device *device,
1056 struct device_attribute *mattr, char *buf)
1058 struct rc_dev *dev = to_rc_dev(device);
1059 u64 allowed, enabled;
1060 char *tmp = buf;
1061 int i;
1063 mutex_lock(&dev->lock);
1065 enabled = dev->enabled_protocols;
1066 allowed = dev->allowed_protocols;
1067 if (dev->raw && !allowed)
1068 allowed = ir_raw_get_allowed_protocols();
1070 mutex_unlock(&dev->lock);
1072 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1073 __func__, (long long)allowed, (long long)enabled);
1075 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1076 if (allowed & enabled & proto_names[i].type)
1077 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1078 else if (allowed & proto_names[i].type)
1079 tmp += sprintf(tmp, "%s ", proto_names[i].name);
1081 if (allowed & proto_names[i].type)
1082 allowed &= ~proto_names[i].type;
1085 #ifdef CONFIG_LIRC
1086 if (dev->driver_type == RC_DRIVER_IR_RAW)
1087 tmp += sprintf(tmp, "[lirc] ");
1088 #endif
1090 if (tmp != buf)
1091 tmp--;
1092 *tmp = '\n';
1094 return tmp + 1 - buf;
1098 * parse_protocol_change() - parses a protocol change request
1099 * @dev: rc_dev device
1100 * @protocols: pointer to the bitmask of current protocols
1101 * @buf: pointer to the buffer with a list of changes
1103 * Writing "+proto" will add a protocol to the protocol mask.
1104 * Writing "-proto" will remove a protocol from protocol mask.
1105 * Writing "proto" will enable only "proto".
1106 * Writing "none" will disable all protocols.
1107 * Returns the number of changes performed or a negative error code.
1109 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1110 const char *buf)
1112 const char *tmp;
1113 unsigned count = 0;
1114 bool enable, disable;
1115 u64 mask;
1116 int i;
1118 while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1119 if (!*tmp)
1120 break;
1122 if (*tmp == '+') {
1123 enable = true;
1124 disable = false;
1125 tmp++;
1126 } else if (*tmp == '-') {
1127 enable = false;
1128 disable = true;
1129 tmp++;
1130 } else {
1131 enable = false;
1132 disable = false;
1135 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1136 if (!strcasecmp(tmp, proto_names[i].name)) {
1137 mask = proto_names[i].type;
1138 break;
1142 if (i == ARRAY_SIZE(proto_names)) {
1143 if (!strcasecmp(tmp, "lirc"))
1144 mask = 0;
1145 else {
1146 dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1147 tmp);
1148 return -EINVAL;
1152 count++;
1154 if (enable)
1155 *protocols |= mask;
1156 else if (disable)
1157 *protocols &= ~mask;
1158 else
1159 *protocols = mask;
1162 if (!count) {
1163 dev_dbg(&dev->dev, "Protocol not specified\n");
1164 return -EINVAL;
1167 return count;
1170 void ir_raw_load_modules(u64 *protocols)
1172 u64 available;
1173 int i, ret;
1175 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1176 if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1177 proto_names[i].type & (RC_PROTO_BIT_OTHER |
1178 RC_PROTO_BIT_UNKNOWN))
1179 continue;
1181 available = ir_raw_get_allowed_protocols();
1182 if (!(*protocols & proto_names[i].type & ~available))
1183 continue;
1185 if (!proto_names[i].module_name) {
1186 pr_err("Can't enable IR protocol %s\n",
1187 proto_names[i].name);
1188 *protocols &= ~proto_names[i].type;
1189 continue;
1192 ret = request_module("%s", proto_names[i].module_name);
1193 if (ret < 0) {
1194 pr_err("Couldn't load IR protocol module %s\n",
1195 proto_names[i].module_name);
1196 *protocols &= ~proto_names[i].type;
1197 continue;
1199 msleep(20);
1200 available = ir_raw_get_allowed_protocols();
1201 if (!(*protocols & proto_names[i].type & ~available))
1202 continue;
1204 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1205 proto_names[i].module_name,
1206 proto_names[i].name);
1207 *protocols &= ~proto_names[i].type;
1212 * store_protocols() - changes the current/wakeup IR protocol(s)
1213 * @device: the device descriptor
1214 * @mattr: the device attribute struct
1215 * @buf: a pointer to the input buffer
1216 * @len: length of the input buffer
1218 * This routine is for changing the IR protocol type.
1219 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1220 * See parse_protocol_change() for the valid commands.
1221 * Returns @len on success or a negative error code.
1223 * dev->lock is taken to guard against races between
1224 * store_protocols and show_protocols.
1226 static ssize_t store_protocols(struct device *device,
1227 struct device_attribute *mattr,
1228 const char *buf, size_t len)
1230 struct rc_dev *dev = to_rc_dev(device);
1231 u64 *current_protocols;
1232 struct rc_scancode_filter *filter;
1233 u64 old_protocols, new_protocols;
1234 ssize_t rc;
1236 dev_dbg(&dev->dev, "Normal protocol change requested\n");
1237 current_protocols = &dev->enabled_protocols;
1238 filter = &dev->scancode_filter;
1240 if (!dev->change_protocol) {
1241 dev_dbg(&dev->dev, "Protocol switching not supported\n");
1242 return -EINVAL;
1245 mutex_lock(&dev->lock);
1247 old_protocols = *current_protocols;
1248 new_protocols = old_protocols;
1249 rc = parse_protocol_change(dev, &new_protocols, buf);
1250 if (rc < 0)
1251 goto out;
1253 if (dev->driver_type == RC_DRIVER_IR_RAW)
1254 ir_raw_load_modules(&new_protocols);
1256 rc = dev->change_protocol(dev, &new_protocols);
1257 if (rc < 0) {
1258 dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1259 (long long)new_protocols);
1260 goto out;
1263 if (new_protocols != old_protocols) {
1264 *current_protocols = new_protocols;
1265 dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1266 (long long)new_protocols);
1270 * If a protocol change was attempted the filter may need updating, even
1271 * if the actual protocol mask hasn't changed (since the driver may have
1272 * cleared the filter).
1273 * Try setting the same filter with the new protocol (if any).
1274 * Fall back to clearing the filter.
1276 if (dev->s_filter && filter->mask) {
1277 if (new_protocols)
1278 rc = dev->s_filter(dev, filter);
1279 else
1280 rc = -1;
1282 if (rc < 0) {
1283 filter->data = 0;
1284 filter->mask = 0;
1285 dev->s_filter(dev, filter);
1289 rc = len;
1291 out:
1292 mutex_unlock(&dev->lock);
1293 return rc;
1297 * show_filter() - shows the current scancode filter value or mask
1298 * @device: the device descriptor
1299 * @attr: the device attribute struct
1300 * @buf: a pointer to the output buffer
1302 * This routine is a callback routine to read a scancode filter value or mask.
1303 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1304 * It prints the current scancode filter value or mask of the appropriate filter
1305 * type in hexadecimal into @buf and returns the size of the buffer.
1307 * Bits of the filter value corresponding to set bits in the filter mask are
1308 * compared against input scancodes and non-matching scancodes are discarded.
1310 * dev->lock is taken to guard against races between
1311 * store_filter and show_filter.
1313 static ssize_t show_filter(struct device *device,
1314 struct device_attribute *attr,
1315 char *buf)
1317 struct rc_dev *dev = to_rc_dev(device);
1318 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1319 struct rc_scancode_filter *filter;
1320 u32 val;
1322 mutex_lock(&dev->lock);
1324 if (fattr->type == RC_FILTER_NORMAL)
1325 filter = &dev->scancode_filter;
1326 else
1327 filter = &dev->scancode_wakeup_filter;
1329 if (fattr->mask)
1330 val = filter->mask;
1331 else
1332 val = filter->data;
1333 mutex_unlock(&dev->lock);
1335 return sprintf(buf, "%#x\n", val);
1339 * store_filter() - changes the scancode filter value
1340 * @device: the device descriptor
1341 * @attr: the device attribute struct
1342 * @buf: a pointer to the input buffer
1343 * @len: length of the input buffer
1345 * This routine is for changing a scancode filter value or mask.
1346 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1347 * Returns -EINVAL if an invalid filter value for the current protocol was
1348 * specified or if scancode filtering is not supported by the driver, otherwise
1349 * returns @len.
1351 * Bits of the filter value corresponding to set bits in the filter mask are
1352 * compared against input scancodes and non-matching scancodes are discarded.
1354 * dev->lock is taken to guard against races between
1355 * store_filter and show_filter.
1357 static ssize_t store_filter(struct device *device,
1358 struct device_attribute *attr,
1359 const char *buf, size_t len)
1361 struct rc_dev *dev = to_rc_dev(device);
1362 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1363 struct rc_scancode_filter new_filter, *filter;
1364 int ret;
1365 unsigned long val;
1366 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1368 ret = kstrtoul(buf, 0, &val);
1369 if (ret < 0)
1370 return ret;
1372 if (fattr->type == RC_FILTER_NORMAL) {
1373 set_filter = dev->s_filter;
1374 filter = &dev->scancode_filter;
1375 } else {
1376 set_filter = dev->s_wakeup_filter;
1377 filter = &dev->scancode_wakeup_filter;
1380 if (!set_filter)
1381 return -EINVAL;
1383 mutex_lock(&dev->lock);
1385 new_filter = *filter;
1386 if (fattr->mask)
1387 new_filter.mask = val;
1388 else
1389 new_filter.data = val;
1391 if (fattr->type == RC_FILTER_WAKEUP) {
1393 * Refuse to set a filter unless a protocol is enabled
1394 * and the filter is valid for that protocol
1396 if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1397 ret = rc_validate_filter(dev, &new_filter);
1398 else
1399 ret = -EINVAL;
1401 if (ret != 0)
1402 goto unlock;
1405 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1406 val) {
1407 /* refuse to set a filter unless a protocol is enabled */
1408 ret = -EINVAL;
1409 goto unlock;
1412 ret = set_filter(dev, &new_filter);
1413 if (ret < 0)
1414 goto unlock;
1416 *filter = new_filter;
1418 unlock:
1419 mutex_unlock(&dev->lock);
1420 return (ret < 0) ? ret : len;
1424 * show_wakeup_protocols() - shows the wakeup IR protocol
1425 * @device: the device descriptor
1426 * @mattr: the device attribute struct
1427 * @buf: a pointer to the output buffer
1429 * This routine is a callback routine for input read the IR protocol type(s).
1430 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1431 * It returns the protocol names of supported protocols.
1432 * The enabled protocols are printed in brackets.
1434 * dev->lock is taken to guard against races between
1435 * store_wakeup_protocols and show_wakeup_protocols.
1437 static ssize_t show_wakeup_protocols(struct device *device,
1438 struct device_attribute *mattr,
1439 char *buf)
1441 struct rc_dev *dev = to_rc_dev(device);
1442 u64 allowed;
1443 enum rc_proto enabled;
1444 char *tmp = buf;
1445 int i;
1447 mutex_lock(&dev->lock);
1449 allowed = dev->allowed_wakeup_protocols;
1450 enabled = dev->wakeup_protocol;
1452 mutex_unlock(&dev->lock);
1454 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1455 __func__, (long long)allowed, enabled);
1457 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1458 if (allowed & (1ULL << i)) {
1459 if (i == enabled)
1460 tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1461 else
1462 tmp += sprintf(tmp, "%s ", protocols[i].name);
1466 if (tmp != buf)
1467 tmp--;
1468 *tmp = '\n';
1470 return tmp + 1 - buf;
1474 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1475 * @device: the device descriptor
1476 * @mattr: the device attribute struct
1477 * @buf: a pointer to the input buffer
1478 * @len: length of the input buffer
1480 * This routine is for changing the IR protocol type.
1481 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1482 * Returns @len on success or a negative error code.
1484 * dev->lock is taken to guard against races between
1485 * store_wakeup_protocols and show_wakeup_protocols.
1487 static ssize_t store_wakeup_protocols(struct device *device,
1488 struct device_attribute *mattr,
1489 const char *buf, size_t len)
1491 struct rc_dev *dev = to_rc_dev(device);
1492 enum rc_proto protocol;
1493 ssize_t rc;
1494 u64 allowed;
1495 int i;
1497 mutex_lock(&dev->lock);
1499 allowed = dev->allowed_wakeup_protocols;
1501 if (sysfs_streq(buf, "none")) {
1502 protocol = RC_PROTO_UNKNOWN;
1503 } else {
1504 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1505 if ((allowed & (1ULL << i)) &&
1506 sysfs_streq(buf, protocols[i].name)) {
1507 protocol = i;
1508 break;
1512 if (i == ARRAY_SIZE(protocols)) {
1513 rc = -EINVAL;
1514 goto out;
1517 if (dev->encode_wakeup) {
1518 u64 mask = 1ULL << protocol;
1520 ir_raw_load_modules(&mask);
1521 if (!mask) {
1522 rc = -EINVAL;
1523 goto out;
1528 if (dev->wakeup_protocol != protocol) {
1529 dev->wakeup_protocol = protocol;
1530 dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1532 if (protocol == RC_PROTO_RC6_MCE)
1533 dev->scancode_wakeup_filter.data = 0x800f0000;
1534 else
1535 dev->scancode_wakeup_filter.data = 0;
1536 dev->scancode_wakeup_filter.mask = 0;
1538 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1539 if (rc == 0)
1540 rc = len;
1541 } else {
1542 rc = len;
1545 out:
1546 mutex_unlock(&dev->lock);
1547 return rc;
1550 static void rc_dev_release(struct device *device)
1552 struct rc_dev *dev = to_rc_dev(device);
1554 kfree(dev);
1557 #define ADD_HOTPLUG_VAR(fmt, val...) \
1558 do { \
1559 int err = add_uevent_var(env, fmt, val); \
1560 if (err) \
1561 return err; \
1562 } while (0)
1564 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1566 struct rc_dev *dev = to_rc_dev(device);
1568 if (dev->rc_map.name)
1569 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1570 if (dev->driver_name)
1571 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1572 if (dev->device_name)
1573 ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
1575 return 0;
1579 * Static device attribute struct with the sysfs attributes for IR's
1581 static struct device_attribute dev_attr_ro_protocols =
1582 __ATTR(protocols, 0444, show_protocols, NULL);
1583 static struct device_attribute dev_attr_rw_protocols =
1584 __ATTR(protocols, 0644, show_protocols, store_protocols);
1585 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1586 store_wakeup_protocols);
1587 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1588 show_filter, store_filter, RC_FILTER_NORMAL, false);
1589 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1590 show_filter, store_filter, RC_FILTER_NORMAL, true);
1591 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1592 show_filter, store_filter, RC_FILTER_WAKEUP, false);
1593 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1594 show_filter, store_filter, RC_FILTER_WAKEUP, true);
1596 static struct attribute *rc_dev_rw_protocol_attrs[] = {
1597 &dev_attr_rw_protocols.attr,
1598 NULL,
1601 static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1602 .attrs = rc_dev_rw_protocol_attrs,
1605 static struct attribute *rc_dev_ro_protocol_attrs[] = {
1606 &dev_attr_ro_protocols.attr,
1607 NULL,
1610 static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1611 .attrs = rc_dev_ro_protocol_attrs,
1614 static struct attribute *rc_dev_filter_attrs[] = {
1615 &dev_attr_filter.attr.attr,
1616 &dev_attr_filter_mask.attr.attr,
1617 NULL,
1620 static const struct attribute_group rc_dev_filter_attr_grp = {
1621 .attrs = rc_dev_filter_attrs,
1624 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1625 &dev_attr_wakeup_filter.attr.attr,
1626 &dev_attr_wakeup_filter_mask.attr.attr,
1627 &dev_attr_wakeup_protocols.attr,
1628 NULL,
1631 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1632 .attrs = rc_dev_wakeup_filter_attrs,
1635 static const struct device_type rc_dev_type = {
1636 .release = rc_dev_release,
1637 .uevent = rc_dev_uevent,
1640 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1642 struct rc_dev *dev;
1644 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1645 if (!dev)
1646 return NULL;
1648 if (type != RC_DRIVER_IR_RAW_TX) {
1649 dev->input_dev = input_allocate_device();
1650 if (!dev->input_dev) {
1651 kfree(dev);
1652 return NULL;
1655 dev->input_dev->getkeycode = ir_getkeycode;
1656 dev->input_dev->setkeycode = ir_setkeycode;
1657 input_set_drvdata(dev->input_dev, dev);
1659 dev->timeout = IR_DEFAULT_TIMEOUT;
1660 timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1661 timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1663 spin_lock_init(&dev->rc_map.lock);
1664 spin_lock_init(&dev->keylock);
1666 mutex_init(&dev->lock);
1668 dev->dev.type = &rc_dev_type;
1669 dev->dev.class = &rc_class;
1670 device_initialize(&dev->dev);
1672 dev->driver_type = type;
1674 __module_get(THIS_MODULE);
1675 return dev;
1677 EXPORT_SYMBOL_GPL(rc_allocate_device);
1679 void rc_free_device(struct rc_dev *dev)
1681 if (!dev)
1682 return;
1684 input_free_device(dev->input_dev);
1686 put_device(&dev->dev);
1688 /* kfree(dev) will be called by the callback function
1689 rc_dev_release() */
1691 module_put(THIS_MODULE);
1693 EXPORT_SYMBOL_GPL(rc_free_device);
1695 static void devm_rc_alloc_release(struct device *dev, void *res)
1697 rc_free_device(*(struct rc_dev **)res);
1700 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1701 enum rc_driver_type type)
1703 struct rc_dev **dr, *rc;
1705 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1706 if (!dr)
1707 return NULL;
1709 rc = rc_allocate_device(type);
1710 if (!rc) {
1711 devres_free(dr);
1712 return NULL;
1715 rc->dev.parent = dev;
1716 rc->managed_alloc = true;
1717 *dr = rc;
1718 devres_add(dev, dr);
1720 return rc;
1722 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1724 static int rc_prepare_rx_device(struct rc_dev *dev)
1726 int rc;
1727 struct rc_map *rc_map;
1728 u64 rc_proto;
1730 if (!dev->map_name)
1731 return -EINVAL;
1733 rc_map = rc_map_get(dev->map_name);
1734 if (!rc_map)
1735 rc_map = rc_map_get(RC_MAP_EMPTY);
1736 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1737 return -EINVAL;
1739 rc = ir_setkeytable(dev, rc_map);
1740 if (rc)
1741 return rc;
1743 rc_proto = BIT_ULL(rc_map->rc_proto);
1745 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1746 dev->enabled_protocols = dev->allowed_protocols;
1748 if (dev->driver_type == RC_DRIVER_IR_RAW)
1749 ir_raw_load_modules(&rc_proto);
1751 if (dev->change_protocol) {
1752 rc = dev->change_protocol(dev, &rc_proto);
1753 if (rc < 0)
1754 goto out_table;
1755 dev->enabled_protocols = rc_proto;
1758 set_bit(EV_KEY, dev->input_dev->evbit);
1759 set_bit(EV_REP, dev->input_dev->evbit);
1760 set_bit(EV_MSC, dev->input_dev->evbit);
1761 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1762 if (dev->open)
1763 dev->input_dev->open = ir_open;
1764 if (dev->close)
1765 dev->input_dev->close = ir_close;
1767 dev->input_dev->dev.parent = &dev->dev;
1768 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1769 dev->input_dev->phys = dev->input_phys;
1770 dev->input_dev->name = dev->device_name;
1772 return 0;
1774 out_table:
1775 ir_free_table(&dev->rc_map);
1777 return rc;
1780 static int rc_setup_rx_device(struct rc_dev *dev)
1782 int rc;
1784 /* rc_open will be called here */
1785 rc = input_register_device(dev->input_dev);
1786 if (rc)
1787 return rc;
1790 * Default delay of 250ms is too short for some protocols, especially
1791 * since the timeout is currently set to 250ms. Increase it to 500ms,
1792 * to avoid wrong repetition of the keycodes. Note that this must be
1793 * set after the call to input_register_device().
1795 if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1796 dev->input_dev->rep[REP_DELAY] = 0;
1797 else
1798 dev->input_dev->rep[REP_DELAY] = 500;
1801 * As a repeat event on protocols like RC-5 and NEC take as long as
1802 * 110/114ms, using 33ms as a repeat period is not the right thing
1803 * to do.
1805 dev->input_dev->rep[REP_PERIOD] = 125;
1807 return 0;
1810 static void rc_free_rx_device(struct rc_dev *dev)
1812 if (!dev)
1813 return;
1815 if (dev->input_dev) {
1816 input_unregister_device(dev->input_dev);
1817 dev->input_dev = NULL;
1820 ir_free_table(&dev->rc_map);
1823 int rc_register_device(struct rc_dev *dev)
1825 const char *path;
1826 int attr = 0;
1827 int minor;
1828 int rc;
1830 if (!dev)
1831 return -EINVAL;
1833 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1834 if (minor < 0)
1835 return minor;
1837 dev->minor = minor;
1838 dev_set_name(&dev->dev, "rc%u", dev->minor);
1839 dev_set_drvdata(&dev->dev, dev);
1841 dev->dev.groups = dev->sysfs_groups;
1842 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1843 dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1844 else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1845 dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1846 if (dev->s_filter)
1847 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1848 if (dev->s_wakeup_filter)
1849 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1850 dev->sysfs_groups[attr++] = NULL;
1852 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1853 rc = ir_raw_event_prepare(dev);
1854 if (rc < 0)
1855 goto out_minor;
1858 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1859 rc = rc_prepare_rx_device(dev);
1860 if (rc)
1861 goto out_raw;
1864 rc = device_add(&dev->dev);
1865 if (rc)
1866 goto out_rx_free;
1868 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1869 dev_info(&dev->dev, "%s as %s\n",
1870 dev->device_name ?: "Unspecified device", path ?: "N/A");
1871 kfree(path);
1873 dev->registered = true;
1875 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1876 rc = rc_setup_rx_device(dev);
1877 if (rc)
1878 goto out_dev;
1881 /* Ensure that the lirc kfifo is setup before we start the thread */
1882 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1883 rc = ir_lirc_register(dev);
1884 if (rc < 0)
1885 goto out_rx;
1888 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1889 rc = ir_raw_event_register(dev);
1890 if (rc < 0)
1891 goto out_lirc;
1894 dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1895 dev->driver_name ? dev->driver_name : "unknown");
1897 return 0;
1899 out_lirc:
1900 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1901 ir_lirc_unregister(dev);
1902 out_rx:
1903 rc_free_rx_device(dev);
1904 out_dev:
1905 device_del(&dev->dev);
1906 out_rx_free:
1907 ir_free_table(&dev->rc_map);
1908 out_raw:
1909 ir_raw_event_free(dev);
1910 out_minor:
1911 ida_simple_remove(&rc_ida, minor);
1912 return rc;
1914 EXPORT_SYMBOL_GPL(rc_register_device);
1916 static void devm_rc_release(struct device *dev, void *res)
1918 rc_unregister_device(*(struct rc_dev **)res);
1921 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1923 struct rc_dev **dr;
1924 int ret;
1926 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1927 if (!dr)
1928 return -ENOMEM;
1930 ret = rc_register_device(dev);
1931 if (ret) {
1932 devres_free(dr);
1933 return ret;
1936 *dr = dev;
1937 devres_add(parent, dr);
1939 return 0;
1941 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1943 void rc_unregister_device(struct rc_dev *dev)
1945 if (!dev)
1946 return;
1948 if (dev->driver_type == RC_DRIVER_IR_RAW)
1949 ir_raw_event_unregister(dev);
1951 del_timer_sync(&dev->timer_keyup);
1952 del_timer_sync(&dev->timer_repeat);
1954 rc_free_rx_device(dev);
1956 mutex_lock(&dev->lock);
1957 dev->registered = false;
1958 mutex_unlock(&dev->lock);
1961 * lirc device should be freed with dev->registered = false, so
1962 * that userspace polling will get notified.
1964 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1965 ir_lirc_unregister(dev);
1967 device_del(&dev->dev);
1969 ida_simple_remove(&rc_ida, dev->minor);
1971 if (!dev->managed_alloc)
1972 rc_free_device(dev);
1975 EXPORT_SYMBOL_GPL(rc_unregister_device);
1978 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1981 static int __init rc_core_init(void)
1983 int rc = class_register(&rc_class);
1984 if (rc) {
1985 pr_err("rc_core: unable to register rc class\n");
1986 return rc;
1989 rc = lirc_dev_init();
1990 if (rc) {
1991 pr_err("rc_core: unable to init lirc\n");
1992 class_unregister(&rc_class);
1993 return 0;
1996 led_trigger_register_simple("rc-feedback", &led_feedback);
1997 rc_map_register(&empty_map);
1999 return 0;
2002 static void __exit rc_core_exit(void)
2004 lirc_dev_exit();
2005 class_unregister(&rc_class);
2006 led_trigger_unregister_simple(led_feedback);
2007 rc_map_unregister(&empty_map);
2010 subsys_initcall(rc_core_init);
2011 module_exit(rc_core_exit);
2013 MODULE_AUTHOR("Mauro Carvalho Chehab");
2014 MODULE_LICENSE("GPL v2");