2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/pagemap.h>
15 #include <linux/uio.h>
16 #include <linux/blkdev.h>
18 #include <linux/mount.h>
20 #include <linux/gfs2_ondisk.h>
21 #include <linux/falloc.h>
22 #include <linux/swap.h>
23 #include <linux/crc32.h>
24 #include <linux/writeback.h>
25 #include <linux/uaccess.h>
26 #include <linux/dlm.h>
27 #include <linux/dlm_plock.h>
28 #include <linux/delay.h>
29 #include <linux/backing-dev.h>
47 * gfs2_llseek - seek to a location in a file
50 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
52 * SEEK_END requires the glock for the file because it references the
55 * Returns: The new offset, or errno
58 static loff_t
gfs2_llseek(struct file
*file
, loff_t offset
, int whence
)
60 struct gfs2_inode
*ip
= GFS2_I(file
->f_mapping
->host
);
61 struct gfs2_holder i_gh
;
66 error
= gfs2_glock_nq_init(ip
->i_gl
, LM_ST_SHARED
, LM_FLAG_ANY
,
69 error
= generic_file_llseek(file
, offset
, whence
);
70 gfs2_glock_dq_uninit(&i_gh
);
75 error
= gfs2_seek_data(file
, offset
);
79 error
= gfs2_seek_hole(file
, offset
);
85 * These don't reference inode->i_size and don't depend on the
86 * block mapping, so we don't need the glock.
88 error
= generic_file_llseek(file
, offset
, whence
);
98 * gfs2_readdir - Iterator for a directory
99 * @file: The directory to read from
100 * @ctx: What to feed directory entries to
105 static int gfs2_readdir(struct file
*file
, struct dir_context
*ctx
)
107 struct inode
*dir
= file
->f_mapping
->host
;
108 struct gfs2_inode
*dip
= GFS2_I(dir
);
109 struct gfs2_holder d_gh
;
112 error
= gfs2_glock_nq_init(dip
->i_gl
, LM_ST_SHARED
, 0, &d_gh
);
116 error
= gfs2_dir_read(dir
, ctx
, &file
->f_ra
);
118 gfs2_glock_dq_uninit(&d_gh
);
126 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
127 * and to GFS2_DIF_JDATA for non-directories.
132 } fsflag_gfs2flag
[] = {
133 {FS_SYNC_FL
, GFS2_DIF_SYNC
},
134 {FS_IMMUTABLE_FL
, GFS2_DIF_IMMUTABLE
},
135 {FS_APPEND_FL
, GFS2_DIF_APPENDONLY
},
136 {FS_NOATIME_FL
, GFS2_DIF_NOATIME
},
137 {FS_INDEX_FL
, GFS2_DIF_EXHASH
},
138 {FS_TOPDIR_FL
, GFS2_DIF_TOPDIR
},
139 {FS_JOURNAL_DATA_FL
, GFS2_DIF_JDATA
| GFS2_DIF_INHERIT_JDATA
},
142 static int gfs2_get_flags(struct file
*filp
, u32 __user
*ptr
)
144 struct inode
*inode
= file_inode(filp
);
145 struct gfs2_inode
*ip
= GFS2_I(inode
);
146 struct gfs2_holder gh
;
148 u32 gfsflags
, fsflags
= 0;
150 gfs2_holder_init(ip
->i_gl
, LM_ST_SHARED
, 0, &gh
);
151 error
= gfs2_glock_nq(&gh
);
155 gfsflags
= ip
->i_diskflags
;
156 if (S_ISDIR(inode
->i_mode
))
157 gfsflags
&= ~GFS2_DIF_JDATA
;
159 gfsflags
&= ~GFS2_DIF_INHERIT_JDATA
;
160 for (i
= 0; i
< ARRAY_SIZE(fsflag_gfs2flag
); i
++)
161 if (gfsflags
& fsflag_gfs2flag
[i
].gfsflag
)
162 fsflags
|= fsflag_gfs2flag
[i
].fsflag
;
164 if (put_user(fsflags
, ptr
))
169 gfs2_holder_uninit(&gh
);
173 void gfs2_set_inode_flags(struct inode
*inode
)
175 struct gfs2_inode
*ip
= GFS2_I(inode
);
176 unsigned int flags
= inode
->i_flags
;
178 flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
|S_NOSEC
);
179 if ((ip
->i_eattr
== 0) && !is_sxid(inode
->i_mode
))
181 if (ip
->i_diskflags
& GFS2_DIF_IMMUTABLE
)
182 flags
|= S_IMMUTABLE
;
183 if (ip
->i_diskflags
& GFS2_DIF_APPENDONLY
)
185 if (ip
->i_diskflags
& GFS2_DIF_NOATIME
)
187 if (ip
->i_diskflags
& GFS2_DIF_SYNC
)
189 inode
->i_flags
= flags
;
192 /* Flags that can be set by user space */
193 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
194 GFS2_DIF_IMMUTABLE| \
195 GFS2_DIF_APPENDONLY| \
199 GFS2_DIF_INHERIT_JDATA)
202 * do_gfs2_set_flags - set flags on an inode
203 * @filp: file pointer
204 * @reqflags: The flags to set
205 * @mask: Indicates which flags are valid
208 static int do_gfs2_set_flags(struct file
*filp
, u32 reqflags
, u32 mask
)
210 struct inode
*inode
= file_inode(filp
);
211 struct gfs2_inode
*ip
= GFS2_I(inode
);
212 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
213 struct buffer_head
*bh
;
214 struct gfs2_holder gh
;
216 u32 new_flags
, flags
;
218 error
= mnt_want_write_file(filp
);
222 error
= gfs2_glock_nq_init(ip
->i_gl
, LM_ST_EXCLUSIVE
, 0, &gh
);
227 if (!inode_owner_or_capable(inode
))
231 flags
= ip
->i_diskflags
;
232 new_flags
= (flags
& ~mask
) | (reqflags
& mask
);
233 if ((new_flags
^ flags
) == 0)
237 if (IS_IMMUTABLE(inode
) && (new_flags
& GFS2_DIF_IMMUTABLE
))
239 if (IS_APPEND(inode
) && (new_flags
& GFS2_DIF_APPENDONLY
))
241 if (((new_flags
^ flags
) & GFS2_DIF_IMMUTABLE
) &&
242 !capable(CAP_LINUX_IMMUTABLE
))
244 if (!IS_IMMUTABLE(inode
)) {
245 error
= gfs2_permission(inode
, MAY_WRITE
);
249 if ((flags
^ new_flags
) & GFS2_DIF_JDATA
) {
250 if (new_flags
& GFS2_DIF_JDATA
)
251 gfs2_log_flush(sdp
, ip
->i_gl
,
252 GFS2_LOG_HEAD_FLUSH_NORMAL
|
254 error
= filemap_fdatawrite(inode
->i_mapping
);
257 error
= filemap_fdatawait(inode
->i_mapping
);
260 if (new_flags
& GFS2_DIF_JDATA
)
261 gfs2_ordered_del_inode(ip
);
263 error
= gfs2_trans_begin(sdp
, RES_DINODE
, 0);
266 error
= gfs2_meta_inode_buffer(ip
, &bh
);
269 inode
->i_ctime
= current_time(inode
);
270 gfs2_trans_add_meta(ip
->i_gl
, bh
);
271 ip
->i_diskflags
= new_flags
;
272 gfs2_dinode_out(ip
, bh
->b_data
);
274 gfs2_set_inode_flags(inode
);
275 gfs2_set_aops(inode
);
279 gfs2_glock_dq_uninit(&gh
);
281 mnt_drop_write_file(filp
);
285 static int gfs2_set_flags(struct file
*filp
, u32 __user
*ptr
)
287 struct inode
*inode
= file_inode(filp
);
288 u32 fsflags
, gfsflags
= 0;
292 if (get_user(fsflags
, ptr
))
295 for (i
= 0; i
< ARRAY_SIZE(fsflag_gfs2flag
); i
++) {
296 if (fsflags
& fsflag_gfs2flag
[i
].fsflag
) {
297 fsflags
&= ~fsflag_gfs2flag
[i
].fsflag
;
298 gfsflags
|= fsflag_gfs2flag
[i
].gfsflag
;
301 if (fsflags
|| gfsflags
& ~GFS2_FLAGS_USER_SET
)
304 mask
= GFS2_FLAGS_USER_SET
;
305 if (S_ISDIR(inode
->i_mode
)) {
306 mask
&= ~GFS2_DIF_JDATA
;
308 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
309 if (gfsflags
& GFS2_DIF_TOPDIR
)
311 mask
&= ~(GFS2_DIF_TOPDIR
| GFS2_DIF_INHERIT_JDATA
);
314 return do_gfs2_set_flags(filp
, gfsflags
, mask
);
317 static long gfs2_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
320 case FS_IOC_GETFLAGS
:
321 return gfs2_get_flags(filp
, (u32 __user
*)arg
);
322 case FS_IOC_SETFLAGS
:
323 return gfs2_set_flags(filp
, (u32 __user
*)arg
);
325 return gfs2_fitrim(filp
, (void __user
*)arg
);
331 * gfs2_size_hint - Give a hint to the size of a write request
332 * @filep: The struct file
333 * @offset: The file offset of the write
334 * @size: The length of the write
336 * When we are about to do a write, this function records the total
337 * write size in order to provide a suitable hint to the lower layers
338 * about how many blocks will be required.
342 static void gfs2_size_hint(struct file
*filep
, loff_t offset
, size_t size
)
344 struct inode
*inode
= file_inode(filep
);
345 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
346 struct gfs2_inode
*ip
= GFS2_I(inode
);
347 size_t blks
= (size
+ sdp
->sd_sb
.sb_bsize
- 1) >> sdp
->sd_sb
.sb_bsize_shift
;
348 int hint
= min_t(size_t, INT_MAX
, blks
);
350 if (hint
> atomic_read(&ip
->i_res
.rs_sizehint
))
351 atomic_set(&ip
->i_res
.rs_sizehint
, hint
);
355 * gfs2_allocate_page_backing - Use bmap to allocate blocks
356 * @page: The (locked) page to allocate backing for
358 * We try to allocate all the blocks required for the page in
359 * one go. This might fail for various reasons, so we keep
360 * trying until all the blocks to back this page are allocated.
361 * If some of the blocks are already allocated, thats ok too.
364 static int gfs2_allocate_page_backing(struct page
*page
)
366 struct inode
*inode
= page
->mapping
->host
;
367 struct buffer_head bh
;
368 unsigned long size
= PAGE_SIZE
;
369 u64 lblock
= page
->index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
374 gfs2_block_map(inode
, lblock
, &bh
, 1);
375 if (!buffer_mapped(&bh
))
378 lblock
+= (bh
.b_size
>> inode
->i_blkbits
);
384 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
385 * @vma: The virtual memory area
386 * @vmf: The virtual memory fault containing the page to become writable
388 * When the page becomes writable, we need to ensure that we have
389 * blocks allocated on disk to back that page.
392 static vm_fault_t
gfs2_page_mkwrite(struct vm_fault
*vmf
)
394 struct page
*page
= vmf
->page
;
395 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
396 struct gfs2_inode
*ip
= GFS2_I(inode
);
397 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
398 struct gfs2_alloc_parms ap
= { .aflags
= 0, };
399 unsigned long last_index
;
400 u64 pos
= page
->index
<< PAGE_SHIFT
;
401 unsigned int data_blocks
, ind_blocks
, rblocks
;
402 struct gfs2_holder gh
;
406 sb_start_pagefault(inode
->i_sb
);
408 ret
= gfs2_rsqa_alloc(ip
);
412 gfs2_size_hint(vmf
->vma
->vm_file
, pos
, PAGE_SIZE
);
414 gfs2_holder_init(ip
->i_gl
, LM_ST_EXCLUSIVE
, 0, &gh
);
415 ret
= gfs2_glock_nq(&gh
);
419 /* Update file times before taking page lock */
420 file_update_time(vmf
->vma
->vm_file
);
422 set_bit(GLF_DIRTY
, &ip
->i_gl
->gl_flags
);
423 set_bit(GIF_SW_PAGED
, &ip
->i_flags
);
425 if (!gfs2_write_alloc_required(ip
, pos
, PAGE_SIZE
)) {
427 if (!PageUptodate(page
) || page
->mapping
!= inode
->i_mapping
) {
434 ret
= gfs2_rindex_update(sdp
);
438 gfs2_write_calc_reserv(ip
, PAGE_SIZE
, &data_blocks
, &ind_blocks
);
439 ap
.target
= data_blocks
+ ind_blocks
;
440 ret
= gfs2_quota_lock_check(ip
, &ap
);
443 ret
= gfs2_inplace_reserve(ip
, &ap
);
445 goto out_quota_unlock
;
447 rblocks
= RES_DINODE
+ ind_blocks
;
448 if (gfs2_is_jdata(ip
))
449 rblocks
+= data_blocks
? data_blocks
: 1;
450 if (ind_blocks
|| data_blocks
) {
451 rblocks
+= RES_STATFS
+ RES_QUOTA
;
452 rblocks
+= gfs2_rg_blocks(ip
, data_blocks
+ ind_blocks
);
454 ret
= gfs2_trans_begin(sdp
, rblocks
, 0);
460 size
= i_size_read(inode
);
461 last_index
= (size
- 1) >> PAGE_SHIFT
;
462 /* Check page index against inode size */
463 if (size
== 0 || (page
->index
> last_index
))
467 /* If truncated, we must retry the operation, we may have raced
468 * with the glock demotion code.
470 if (!PageUptodate(page
) || page
->mapping
!= inode
->i_mapping
)
473 /* Unstuff, if required, and allocate backing blocks for page */
475 if (gfs2_is_stuffed(ip
))
476 ret
= gfs2_unstuff_dinode(ip
, page
);
478 ret
= gfs2_allocate_page_backing(page
);
485 gfs2_inplace_release(ip
);
487 gfs2_quota_unlock(ip
);
491 gfs2_holder_uninit(&gh
);
493 set_page_dirty(page
);
494 wait_for_stable_page(page
);
497 sb_end_pagefault(inode
->i_sb
);
498 return block_page_mkwrite_return(ret
);
501 static const struct vm_operations_struct gfs2_vm_ops
= {
502 .fault
= filemap_fault
,
503 .map_pages
= filemap_map_pages
,
504 .page_mkwrite
= gfs2_page_mkwrite
,
509 * @file: The file to map
510 * @vma: The VMA which described the mapping
512 * There is no need to get a lock here unless we should be updating
513 * atime. We ignore any locking errors since the only consequence is
514 * a missed atime update (which will just be deferred until later).
519 static int gfs2_mmap(struct file
*file
, struct vm_area_struct
*vma
)
521 struct gfs2_inode
*ip
= GFS2_I(file
->f_mapping
->host
);
523 if (!(file
->f_flags
& O_NOATIME
) &&
524 !IS_NOATIME(&ip
->i_inode
)) {
525 struct gfs2_holder i_gh
;
528 error
= gfs2_glock_nq_init(ip
->i_gl
, LM_ST_SHARED
, LM_FLAG_ANY
,
532 /* grab lock to update inode */
533 gfs2_glock_dq_uninit(&i_gh
);
536 vma
->vm_ops
= &gfs2_vm_ops
;
542 * gfs2_open_common - This is common to open and atomic_open
543 * @inode: The inode being opened
544 * @file: The file being opened
546 * This maybe called under a glock or not depending upon how it has
547 * been called. We must always be called under a glock for regular
548 * files, however. For other file types, it does not matter whether
549 * we hold the glock or not.
551 * Returns: Error code or 0 for success
554 int gfs2_open_common(struct inode
*inode
, struct file
*file
)
556 struct gfs2_file
*fp
;
559 if (S_ISREG(inode
->i_mode
)) {
560 ret
= generic_file_open(inode
, file
);
565 fp
= kzalloc(sizeof(struct gfs2_file
), GFP_NOFS
);
569 mutex_init(&fp
->f_fl_mutex
);
571 gfs2_assert_warn(GFS2_SB(inode
), !file
->private_data
);
572 file
->private_data
= fp
;
577 * gfs2_open - open a file
578 * @inode: the inode to open
579 * @file: the struct file for this opening
581 * After atomic_open, this function is only used for opening files
582 * which are already cached. We must still get the glock for regular
583 * files to ensure that we have the file size uptodate for the large
584 * file check which is in the common code. That is only an issue for
585 * regular files though.
590 static int gfs2_open(struct inode
*inode
, struct file
*file
)
592 struct gfs2_inode
*ip
= GFS2_I(inode
);
593 struct gfs2_holder i_gh
;
595 bool need_unlock
= false;
597 if (S_ISREG(ip
->i_inode
.i_mode
)) {
598 error
= gfs2_glock_nq_init(ip
->i_gl
, LM_ST_SHARED
, LM_FLAG_ANY
,
605 error
= gfs2_open_common(inode
, file
);
608 gfs2_glock_dq_uninit(&i_gh
);
614 * gfs2_release - called to close a struct file
615 * @inode: the inode the struct file belongs to
616 * @file: the struct file being closed
621 static int gfs2_release(struct inode
*inode
, struct file
*file
)
623 struct gfs2_inode
*ip
= GFS2_I(inode
);
625 kfree(file
->private_data
);
626 file
->private_data
= NULL
;
628 if (!(file
->f_mode
& FMODE_WRITE
))
631 gfs2_rsqa_delete(ip
, &inode
->i_writecount
);
636 * gfs2_fsync - sync the dirty data for a file (across the cluster)
637 * @file: the file that points to the dentry
638 * @start: the start position in the file to sync
639 * @end: the end position in the file to sync
640 * @datasync: set if we can ignore timestamp changes
642 * We split the data flushing here so that we don't wait for the data
643 * until after we've also sent the metadata to disk. Note that for
644 * data=ordered, we will write & wait for the data at the log flush
645 * stage anyway, so this is unlikely to make much of a difference
646 * except in the data=writeback case.
648 * If the fdatawrite fails due to any reason except -EIO, we will
649 * continue the remainder of the fsync, although we'll still report
650 * the error at the end. This is to match filemap_write_and_wait_range()
656 static int gfs2_fsync(struct file
*file
, loff_t start
, loff_t end
,
659 struct address_space
*mapping
= file
->f_mapping
;
660 struct inode
*inode
= mapping
->host
;
661 int sync_state
= inode
->i_state
& I_DIRTY_ALL
;
662 struct gfs2_inode
*ip
= GFS2_I(inode
);
663 int ret
= 0, ret1
= 0;
665 if (mapping
->nrpages
) {
666 ret1
= filemap_fdatawrite_range(mapping
, start
, end
);
671 if (!gfs2_is_jdata(ip
))
672 sync_state
&= ~I_DIRTY_PAGES
;
674 sync_state
&= ~(I_DIRTY_SYNC
| I_DIRTY_TIME
);
677 ret
= sync_inode_metadata(inode
, 1);
680 if (gfs2_is_jdata(ip
))
681 ret
= file_write_and_wait(file
);
684 gfs2_ail_flush(ip
->i_gl
, 1);
687 if (mapping
->nrpages
)
688 ret
= file_fdatawait_range(file
, start
, end
);
690 return ret
? ret
: ret1
;
693 static ssize_t
gfs2_file_direct_read(struct kiocb
*iocb
, struct iov_iter
*to
)
695 struct file
*file
= iocb
->ki_filp
;
696 struct gfs2_inode
*ip
= GFS2_I(file
->f_mapping
->host
);
697 size_t count
= iov_iter_count(to
);
698 struct gfs2_holder gh
;
702 return 0; /* skip atime */
704 gfs2_holder_init(ip
->i_gl
, LM_ST_DEFERRED
, 0, &gh
);
705 ret
= gfs2_glock_nq(&gh
);
709 ret
= iomap_dio_rw(iocb
, to
, &gfs2_iomap_ops
, NULL
);
713 gfs2_holder_uninit(&gh
);
717 static ssize_t
gfs2_file_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
)
719 struct file
*file
= iocb
->ki_filp
;
720 struct inode
*inode
= file
->f_mapping
->host
;
721 struct gfs2_inode
*ip
= GFS2_I(inode
);
722 size_t len
= iov_iter_count(from
);
723 loff_t offset
= iocb
->ki_pos
;
724 struct gfs2_holder gh
;
728 * Deferred lock, even if its a write, since we do no allocation on
729 * this path. All we need to change is the atime, and this lock mode
730 * ensures that other nodes have flushed their buffered read caches
731 * (i.e. their page cache entries for this inode). We do not,
732 * unfortunately, have the option of only flushing a range like the
735 gfs2_holder_init(ip
->i_gl
, LM_ST_DEFERRED
, 0, &gh
);
736 ret
= gfs2_glock_nq(&gh
);
740 /* Silently fall back to buffered I/O when writing beyond EOF */
741 if (offset
+ len
> i_size_read(&ip
->i_inode
))
744 ret
= iomap_dio_rw(iocb
, from
, &gfs2_iomap_ops
, NULL
);
749 gfs2_holder_uninit(&gh
);
753 static ssize_t
gfs2_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
757 if (iocb
->ki_flags
& IOCB_DIRECT
) {
758 ret
= gfs2_file_direct_read(iocb
, to
);
759 if (likely(ret
!= -ENOTBLK
))
761 iocb
->ki_flags
&= ~IOCB_DIRECT
;
763 return generic_file_read_iter(iocb
, to
);
767 * gfs2_file_write_iter - Perform a write to a file
768 * @iocb: The io context
769 * @from: The data to write
771 * We have to do a lock/unlock here to refresh the inode size for
772 * O_APPEND writes, otherwise we can land up writing at the wrong
773 * offset. There is still a race, but provided the app is using its
774 * own file locking, this will make O_APPEND work as expected.
778 static ssize_t
gfs2_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
780 struct file
*file
= iocb
->ki_filp
;
781 struct inode
*inode
= file_inode(file
);
782 struct gfs2_inode
*ip
= GFS2_I(inode
);
783 ssize_t written
= 0, ret
;
785 ret
= gfs2_rsqa_alloc(ip
);
789 gfs2_size_hint(file
, iocb
->ki_pos
, iov_iter_count(from
));
791 if (iocb
->ki_flags
& IOCB_APPEND
) {
792 struct gfs2_holder gh
;
794 ret
= gfs2_glock_nq_init(ip
->i_gl
, LM_ST_SHARED
, 0, &gh
);
797 gfs2_glock_dq_uninit(&gh
);
801 ret
= generic_write_checks(iocb
, from
);
805 /* We can write back this queue in page reclaim */
806 current
->backing_dev_info
= inode_to_bdi(inode
);
808 ret
= file_remove_privs(file
);
812 ret
= file_update_time(file
);
816 if (iocb
->ki_flags
& IOCB_DIRECT
) {
817 struct address_space
*mapping
= file
->f_mapping
;
821 written
= gfs2_file_direct_write(iocb
, from
);
822 if (written
< 0 || !iov_iter_count(from
))
825 ret
= iomap_file_buffered_write(iocb
, from
, &gfs2_iomap_ops
);
826 if (unlikely(ret
< 0))
831 * We need to ensure that the page cache pages are written to
832 * disk and invalidated to preserve the expected O_DIRECT
836 endbyte
= pos
+ buffered
- 1;
837 ret
= filemap_write_and_wait_range(mapping
, pos
, endbyte
);
839 iocb
->ki_pos
+= buffered
;
841 invalidate_mapping_pages(mapping
,
843 endbyte
>> PAGE_SHIFT
);
846 * We don't know how much we wrote, so just return
847 * the number of bytes which were direct-written
851 ret
= iomap_file_buffered_write(iocb
, from
, &gfs2_iomap_ops
);
857 current
->backing_dev_info
= NULL
;
860 if (likely(ret
> 0)) {
861 /* Handle various SYNC-type writes */
862 ret
= generic_write_sync(iocb
, ret
);
864 return written
? written
: ret
;
867 static int fallocate_chunk(struct inode
*inode
, loff_t offset
, loff_t len
,
870 struct super_block
*sb
= inode
->i_sb
;
871 struct gfs2_inode
*ip
= GFS2_I(inode
);
872 loff_t end
= offset
+ len
;
873 struct buffer_head
*dibh
;
876 error
= gfs2_meta_inode_buffer(ip
, &dibh
);
880 gfs2_trans_add_meta(ip
->i_gl
, dibh
);
882 if (gfs2_is_stuffed(ip
)) {
883 error
= gfs2_unstuff_dinode(ip
, NULL
);
888 while (offset
< end
) {
889 struct iomap iomap
= { };
891 error
= gfs2_iomap_get_alloc(inode
, offset
, end
- offset
,
895 offset
= iomap
.offset
+ iomap
.length
;
896 if (!(iomap
.flags
& IOMAP_F_NEW
))
898 error
= sb_issue_zeroout(sb
, iomap
.addr
>> inode
->i_blkbits
,
899 iomap
.length
>> inode
->i_blkbits
,
902 fs_err(GFS2_SB(inode
), "Failed to zero data buffers\n");
911 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
912 * blocks, determine how many bytes can be written.
913 * @ip: The inode in question.
914 * @len: Max cap of bytes. What we return in *len must be <= this.
915 * @data_blocks: Compute and return the number of data blocks needed
916 * @ind_blocks: Compute and return the number of indirect blocks needed
917 * @max_blocks: The total blocks available to work with.
919 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
921 static void calc_max_reserv(struct gfs2_inode
*ip
, loff_t
*len
,
922 unsigned int *data_blocks
, unsigned int *ind_blocks
,
923 unsigned int max_blocks
)
926 const struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
927 unsigned int tmp
, max_data
= max_blocks
- 3 * (sdp
->sd_max_height
- 1);
929 for (tmp
= max_data
; tmp
> sdp
->sd_diptrs
;) {
930 tmp
= DIV_ROUND_UP(tmp
, sdp
->sd_inptrs
);
934 *data_blocks
= max_data
;
935 *ind_blocks
= max_blocks
- max_data
;
936 *len
= ((loff_t
)max_data
- 3) << sdp
->sd_sb
.sb_bsize_shift
;
939 gfs2_write_calc_reserv(ip
, max
, data_blocks
, ind_blocks
);
943 static long __gfs2_fallocate(struct file
*file
, int mode
, loff_t offset
, loff_t len
)
945 struct inode
*inode
= file_inode(file
);
946 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
947 struct gfs2_inode
*ip
= GFS2_I(inode
);
948 struct gfs2_alloc_parms ap
= { .aflags
= 0, };
949 unsigned int data_blocks
= 0, ind_blocks
= 0, rblocks
;
950 loff_t bytes
, max_bytes
, max_blks
;
952 const loff_t pos
= offset
;
953 const loff_t count
= len
;
954 loff_t bsize_mask
= ~((loff_t
)sdp
->sd_sb
.sb_bsize
- 1);
955 loff_t next
= (offset
+ len
- 1) >> sdp
->sd_sb
.sb_bsize_shift
;
956 loff_t max_chunk_size
= UINT_MAX
& bsize_mask
;
958 next
= (next
+ 1) << sdp
->sd_sb
.sb_bsize_shift
;
960 offset
&= bsize_mask
;
963 bytes
= sdp
->sd_max_rg_data
* sdp
->sd_sb
.sb_bsize
/ 2;
968 bytes
= sdp
->sd_sb
.sb_bsize
;
970 gfs2_size_hint(file
, offset
, len
);
972 gfs2_write_calc_reserv(ip
, PAGE_SIZE
, &data_blocks
, &ind_blocks
);
973 ap
.min_target
= data_blocks
+ ind_blocks
;
978 if (!gfs2_write_alloc_required(ip
, offset
, bytes
)) {
984 /* We need to determine how many bytes we can actually
985 * fallocate without exceeding quota or going over the
986 * end of the fs. We start off optimistically by assuming
987 * we can write max_bytes */
988 max_bytes
= (len
> max_chunk_size
) ? max_chunk_size
: len
;
990 /* Since max_bytes is most likely a theoretical max, we
991 * calculate a more realistic 'bytes' to serve as a good
992 * starting point for the number of bytes we may be able
994 gfs2_write_calc_reserv(ip
, bytes
, &data_blocks
, &ind_blocks
);
995 ap
.target
= data_blocks
+ ind_blocks
;
997 error
= gfs2_quota_lock_check(ip
, &ap
);
1000 /* ap.allowed tells us how many blocks quota will allow
1001 * us to write. Check if this reduces max_blks */
1002 max_blks
= UINT_MAX
;
1004 max_blks
= ap
.allowed
;
1006 error
= gfs2_inplace_reserve(ip
, &ap
);
1010 /* check if the selected rgrp limits our max_blks further */
1011 if (ap
.allowed
&& ap
.allowed
< max_blks
)
1012 max_blks
= ap
.allowed
;
1014 /* Almost done. Calculate bytes that can be written using
1015 * max_blks. We also recompute max_bytes, data_blocks and
1017 calc_max_reserv(ip
, &max_bytes
, &data_blocks
,
1018 &ind_blocks
, max_blks
);
1020 rblocks
= RES_DINODE
+ ind_blocks
+ RES_STATFS
+ RES_QUOTA
+
1021 RES_RG_HDR
+ gfs2_rg_blocks(ip
, data_blocks
+ ind_blocks
);
1022 if (gfs2_is_jdata(ip
))
1023 rblocks
+= data_blocks
? data_blocks
: 1;
1025 error
= gfs2_trans_begin(sdp
, rblocks
,
1026 PAGE_SIZE
/sdp
->sd_sb
.sb_bsize
);
1028 goto out_trans_fail
;
1030 error
= fallocate_chunk(inode
, offset
, max_bytes
, mode
);
1031 gfs2_trans_end(sdp
);
1034 goto out_trans_fail
;
1037 offset
+= max_bytes
;
1038 gfs2_inplace_release(ip
);
1039 gfs2_quota_unlock(ip
);
1042 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && (pos
+ count
) > inode
->i_size
) {
1043 i_size_write(inode
, pos
+ count
);
1044 file_update_time(file
);
1045 mark_inode_dirty(inode
);
1048 if ((file
->f_flags
& O_DSYNC
) || IS_SYNC(file
->f_mapping
->host
))
1049 return vfs_fsync_range(file
, pos
, pos
+ count
- 1,
1050 (file
->f_flags
& __O_SYNC
) ? 0 : 1);
1054 gfs2_inplace_release(ip
);
1056 gfs2_quota_unlock(ip
);
1060 static long gfs2_fallocate(struct file
*file
, int mode
, loff_t offset
, loff_t len
)
1062 struct inode
*inode
= file_inode(file
);
1063 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
1064 struct gfs2_inode
*ip
= GFS2_I(inode
);
1065 struct gfs2_holder gh
;
1068 if (mode
& ~(FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
))
1070 /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1071 if (gfs2_is_jdata(ip
) && inode
!= sdp
->sd_rindex
)
1076 gfs2_holder_init(ip
->i_gl
, LM_ST_EXCLUSIVE
, 0, &gh
);
1077 ret
= gfs2_glock_nq(&gh
);
1081 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
1082 (offset
+ len
) > inode
->i_size
) {
1083 ret
= inode_newsize_ok(inode
, offset
+ len
);
1088 ret
= get_write_access(inode
);
1092 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
1093 ret
= __gfs2_punch_hole(file
, offset
, len
);
1095 ret
= gfs2_rsqa_alloc(ip
);
1099 ret
= __gfs2_fallocate(file
, mode
, offset
, len
);
1102 gfs2_rs_deltree(&ip
->i_res
);
1106 put_write_access(inode
);
1110 gfs2_holder_uninit(&gh
);
1111 inode_unlock(inode
);
1115 static ssize_t
gfs2_file_splice_write(struct pipe_inode_info
*pipe
,
1116 struct file
*out
, loff_t
*ppos
,
1117 size_t len
, unsigned int flags
)
1120 struct gfs2_inode
*ip
= GFS2_I(out
->f_mapping
->host
);
1122 error
= gfs2_rsqa_alloc(ip
);
1124 return (ssize_t
)error
;
1126 gfs2_size_hint(out
, *ppos
, len
);
1128 return iter_file_splice_write(pipe
, out
, ppos
, len
, flags
);
1131 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1134 * gfs2_lock - acquire/release a posix lock on a file
1135 * @file: the file pointer
1136 * @cmd: either modify or retrieve lock state, possibly wait
1137 * @fl: type and range of lock
1142 static int gfs2_lock(struct file
*file
, int cmd
, struct file_lock
*fl
)
1144 struct gfs2_inode
*ip
= GFS2_I(file
->f_mapping
->host
);
1145 struct gfs2_sbd
*sdp
= GFS2_SB(file
->f_mapping
->host
);
1146 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1148 if (!(fl
->fl_flags
& FL_POSIX
))
1150 if (__mandatory_lock(&ip
->i_inode
) && fl
->fl_type
!= F_UNLCK
)
1153 if (cmd
== F_CANCELLK
) {
1156 fl
->fl_type
= F_UNLCK
;
1158 if (unlikely(test_bit(SDF_SHUTDOWN
, &sdp
->sd_flags
))) {
1159 if (fl
->fl_type
== F_UNLCK
)
1160 locks_lock_file_wait(file
, fl
);
1164 return dlm_posix_get(ls
->ls_dlm
, ip
->i_no_addr
, file
, fl
);
1165 else if (fl
->fl_type
== F_UNLCK
)
1166 return dlm_posix_unlock(ls
->ls_dlm
, ip
->i_no_addr
, file
, fl
);
1168 return dlm_posix_lock(ls
->ls_dlm
, ip
->i_no_addr
, file
, cmd
, fl
);
1171 static int do_flock(struct file
*file
, int cmd
, struct file_lock
*fl
)
1173 struct gfs2_file
*fp
= file
->private_data
;
1174 struct gfs2_holder
*fl_gh
= &fp
->f_fl_gh
;
1175 struct gfs2_inode
*ip
= GFS2_I(file_inode(file
));
1176 struct gfs2_glock
*gl
;
1182 state
= (fl
->fl_type
== F_WRLCK
) ? LM_ST_EXCLUSIVE
: LM_ST_SHARED
;
1183 flags
= (IS_SETLKW(cmd
) ? 0 : LM_FLAG_TRY_1CB
) | GL_EXACT
;
1185 mutex_lock(&fp
->f_fl_mutex
);
1187 if (gfs2_holder_initialized(fl_gh
)) {
1188 if (fl_gh
->gh_state
== state
)
1190 locks_lock_file_wait(file
,
1191 &(struct file_lock
) {
1193 .fl_flags
= FL_FLOCK
1195 gfs2_glock_dq(fl_gh
);
1196 gfs2_holder_reinit(state
, flags
, fl_gh
);
1198 error
= gfs2_glock_get(GFS2_SB(&ip
->i_inode
), ip
->i_no_addr
,
1199 &gfs2_flock_glops
, CREATE
, &gl
);
1202 gfs2_holder_init(gl
, state
, flags
, fl_gh
);
1205 for (sleeptime
= 1; sleeptime
<= 4; sleeptime
<<= 1) {
1206 error
= gfs2_glock_nq(fl_gh
);
1207 if (error
!= GLR_TRYFAILED
)
1209 fl_gh
->gh_flags
= LM_FLAG_TRY
| GL_EXACT
;
1210 fl_gh
->gh_error
= 0;
1214 gfs2_holder_uninit(fl_gh
);
1215 if (error
== GLR_TRYFAILED
)
1218 error
= locks_lock_file_wait(file
, fl
);
1219 gfs2_assert_warn(GFS2_SB(&ip
->i_inode
), !error
);
1223 mutex_unlock(&fp
->f_fl_mutex
);
1227 static void do_unflock(struct file
*file
, struct file_lock
*fl
)
1229 struct gfs2_file
*fp
= file
->private_data
;
1230 struct gfs2_holder
*fl_gh
= &fp
->f_fl_gh
;
1232 mutex_lock(&fp
->f_fl_mutex
);
1233 locks_lock_file_wait(file
, fl
);
1234 if (gfs2_holder_initialized(fl_gh
)) {
1235 gfs2_glock_dq(fl_gh
);
1236 gfs2_holder_uninit(fl_gh
);
1238 mutex_unlock(&fp
->f_fl_mutex
);
1242 * gfs2_flock - acquire/release a flock lock on a file
1243 * @file: the file pointer
1244 * @cmd: either modify or retrieve lock state, possibly wait
1245 * @fl: type and range of lock
1250 static int gfs2_flock(struct file
*file
, int cmd
, struct file_lock
*fl
)
1252 if (!(fl
->fl_flags
& FL_FLOCK
))
1254 if (fl
->fl_type
& LOCK_MAND
)
1257 if (fl
->fl_type
== F_UNLCK
) {
1258 do_unflock(file
, fl
);
1261 return do_flock(file
, cmd
, fl
);
1265 const struct file_operations gfs2_file_fops
= {
1266 .llseek
= gfs2_llseek
,
1267 .read_iter
= gfs2_file_read_iter
,
1268 .write_iter
= gfs2_file_write_iter
,
1269 .unlocked_ioctl
= gfs2_ioctl
,
1272 .release
= gfs2_release
,
1273 .fsync
= gfs2_fsync
,
1275 .flock
= gfs2_flock
,
1276 .splice_read
= generic_file_splice_read
,
1277 .splice_write
= gfs2_file_splice_write
,
1278 .setlease
= simple_nosetlease
,
1279 .fallocate
= gfs2_fallocate
,
1282 const struct file_operations gfs2_dir_fops
= {
1283 .iterate_shared
= gfs2_readdir
,
1284 .unlocked_ioctl
= gfs2_ioctl
,
1286 .release
= gfs2_release
,
1287 .fsync
= gfs2_fsync
,
1289 .flock
= gfs2_flock
,
1290 .llseek
= default_llseek
,
1293 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1295 const struct file_operations gfs2_file_fops_nolock
= {
1296 .llseek
= gfs2_llseek
,
1297 .read_iter
= gfs2_file_read_iter
,
1298 .write_iter
= gfs2_file_write_iter
,
1299 .unlocked_ioctl
= gfs2_ioctl
,
1302 .release
= gfs2_release
,
1303 .fsync
= gfs2_fsync
,
1304 .splice_read
= generic_file_splice_read
,
1305 .splice_write
= gfs2_file_splice_write
,
1306 .setlease
= generic_setlease
,
1307 .fallocate
= gfs2_fallocate
,
1310 const struct file_operations gfs2_dir_fops_nolock
= {
1311 .iterate_shared
= gfs2_readdir
,
1312 .unlocked_ioctl
= gfs2_ioctl
,
1314 .release
= gfs2_release
,
1315 .fsync
= gfs2_fsync
,
1316 .llseek
= default_llseek
,