1 // SPDX-License-Identifier: GPL-2.0
3 * Block multiqueue core code
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
30 #include <trace/events/block.h>
32 #include <linux/blk-mq.h>
33 #include <linux/t10-pi.h>
36 #include "blk-mq-debugfs.h"
37 #include "blk-mq-tag.h"
40 #include "blk-mq-sched.h"
41 #include "blk-rq-qos.h"
43 static void blk_mq_poll_stats_start(struct request_queue
*q
);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
);
46 static int blk_mq_poll_stats_bkt(const struct request
*rq
)
48 int ddir
, sectors
, bucket
;
50 ddir
= rq_data_dir(rq
);
51 sectors
= blk_rq_stats_sectors(rq
);
53 bucket
= ddir
+ 2 * ilog2(sectors
);
57 else if (bucket
>= BLK_MQ_POLL_STATS_BKTS
)
58 return ddir
+ BLK_MQ_POLL_STATS_BKTS
- 2;
64 * Check if any of the ctx, dispatch list or elevator
65 * have pending work in this hardware queue.
67 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
69 return !list_empty_careful(&hctx
->dispatch
) ||
70 sbitmap_any_bit_set(&hctx
->ctx_map
) ||
71 blk_mq_sched_has_work(hctx
);
75 * Mark this ctx as having pending work in this hardware queue
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
78 struct blk_mq_ctx
*ctx
)
80 const int bit
= ctx
->index_hw
[hctx
->type
];
82 if (!sbitmap_test_bit(&hctx
->ctx_map
, bit
))
83 sbitmap_set_bit(&hctx
->ctx_map
, bit
);
86 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
87 struct blk_mq_ctx
*ctx
)
89 const int bit
= ctx
->index_hw
[hctx
->type
];
91 sbitmap_clear_bit(&hctx
->ctx_map
, bit
);
95 struct hd_struct
*part
;
96 unsigned int *inflight
;
99 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx
*hctx
,
100 struct request
*rq
, void *priv
,
103 struct mq_inflight
*mi
= priv
;
106 * index[0] counts the specific partition that was asked for.
108 if (rq
->part
== mi
->part
)
114 unsigned int blk_mq_in_flight(struct request_queue
*q
, struct hd_struct
*part
)
116 unsigned inflight
[2];
117 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
119 inflight
[0] = inflight
[1] = 0;
120 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
125 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx
*hctx
,
126 struct request
*rq
, void *priv
,
129 struct mq_inflight
*mi
= priv
;
131 if (rq
->part
== mi
->part
)
132 mi
->inflight
[rq_data_dir(rq
)]++;
137 void blk_mq_in_flight_rw(struct request_queue
*q
, struct hd_struct
*part
,
138 unsigned int inflight
[2])
140 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
142 inflight
[0] = inflight
[1] = 0;
143 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight_rw
, &mi
);
146 void blk_freeze_queue_start(struct request_queue
*q
)
148 mutex_lock(&q
->mq_freeze_lock
);
149 if (++q
->mq_freeze_depth
== 1) {
150 percpu_ref_kill(&q
->q_usage_counter
);
151 mutex_unlock(&q
->mq_freeze_lock
);
153 blk_mq_run_hw_queues(q
, false);
155 mutex_unlock(&q
->mq_freeze_lock
);
158 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
160 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
162 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
164 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
166 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
167 unsigned long timeout
)
169 return wait_event_timeout(q
->mq_freeze_wq
,
170 percpu_ref_is_zero(&q
->q_usage_counter
),
173 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
176 * Guarantee no request is in use, so we can change any data structure of
177 * the queue afterward.
179 void blk_freeze_queue(struct request_queue
*q
)
182 * In the !blk_mq case we are only calling this to kill the
183 * q_usage_counter, otherwise this increases the freeze depth
184 * and waits for it to return to zero. For this reason there is
185 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
186 * exported to drivers as the only user for unfreeze is blk_mq.
188 blk_freeze_queue_start(q
);
189 blk_mq_freeze_queue_wait(q
);
192 void blk_mq_freeze_queue(struct request_queue
*q
)
195 * ...just an alias to keep freeze and unfreeze actions balanced
196 * in the blk_mq_* namespace
200 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
202 void blk_mq_unfreeze_queue(struct request_queue
*q
)
204 mutex_lock(&q
->mq_freeze_lock
);
205 q
->mq_freeze_depth
--;
206 WARN_ON_ONCE(q
->mq_freeze_depth
< 0);
207 if (!q
->mq_freeze_depth
) {
208 percpu_ref_resurrect(&q
->q_usage_counter
);
209 wake_up_all(&q
->mq_freeze_wq
);
211 mutex_unlock(&q
->mq_freeze_lock
);
213 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
216 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
217 * mpt3sas driver such that this function can be removed.
219 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
221 blk_queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
223 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
229 * Note: this function does not prevent that the struct request end_io()
230 * callback function is invoked. Once this function is returned, we make
231 * sure no dispatch can happen until the queue is unquiesced via
232 * blk_mq_unquiesce_queue().
234 void blk_mq_quiesce_queue(struct request_queue
*q
)
236 struct blk_mq_hw_ctx
*hctx
;
240 blk_mq_quiesce_queue_nowait(q
);
242 queue_for_each_hw_ctx(q
, hctx
, i
) {
243 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
244 synchronize_srcu(hctx
->srcu
);
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
257 * This function recovers queue into the state before quiescing
258 * which is done by blk_mq_quiesce_queue.
260 void blk_mq_unquiesce_queue(struct request_queue
*q
)
262 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
264 /* dispatch requests which are inserted during quiescing */
265 blk_mq_run_hw_queues(q
, true);
267 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
269 void blk_mq_wake_waiters(struct request_queue
*q
)
271 struct blk_mq_hw_ctx
*hctx
;
274 queue_for_each_hw_ctx(q
, hctx
, i
)
275 if (blk_mq_hw_queue_mapped(hctx
))
276 blk_mq_tag_wakeup_all(hctx
->tags
, true);
279 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
281 return blk_mq_has_free_tags(hctx
->tags
);
283 EXPORT_SYMBOL(blk_mq_can_queue
);
286 * Only need start/end time stamping if we have iostat or
287 * blk stats enabled, or using an IO scheduler.
289 static inline bool blk_mq_need_time_stamp(struct request
*rq
)
291 return (rq
->rq_flags
& (RQF_IO_STAT
| RQF_STATS
)) || rq
->q
->elevator
;
294 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
295 unsigned int tag
, unsigned int op
, u64 alloc_time_ns
)
297 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
298 struct request
*rq
= tags
->static_rqs
[tag
];
299 req_flags_t rq_flags
= 0;
301 if (data
->flags
& BLK_MQ_REQ_INTERNAL
) {
303 rq
->internal_tag
= tag
;
305 if (data
->hctx
->flags
& BLK_MQ_F_TAG_SHARED
) {
306 rq_flags
= RQF_MQ_INFLIGHT
;
307 atomic_inc(&data
->hctx
->nr_active
);
310 rq
->internal_tag
= -1;
311 data
->hctx
->tags
->rqs
[rq
->tag
] = rq
;
314 /* csd/requeue_work/fifo_time is initialized before use */
316 rq
->mq_ctx
= data
->ctx
;
317 rq
->mq_hctx
= data
->hctx
;
318 rq
->rq_flags
= rq_flags
;
320 if (data
->flags
& BLK_MQ_REQ_PREEMPT
)
321 rq
->rq_flags
|= RQF_PREEMPT
;
322 if (blk_queue_io_stat(data
->q
))
323 rq
->rq_flags
|= RQF_IO_STAT
;
324 INIT_LIST_HEAD(&rq
->queuelist
);
325 INIT_HLIST_NODE(&rq
->hash
);
326 RB_CLEAR_NODE(&rq
->rb_node
);
329 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
330 rq
->alloc_time_ns
= alloc_time_ns
;
332 if (blk_mq_need_time_stamp(rq
))
333 rq
->start_time_ns
= ktime_get_ns();
335 rq
->start_time_ns
= 0;
336 rq
->io_start_time_ns
= 0;
337 rq
->stats_sectors
= 0;
338 rq
->nr_phys_segments
= 0;
339 #if defined(CONFIG_BLK_DEV_INTEGRITY)
340 rq
->nr_integrity_segments
= 0;
342 /* tag was already set */
344 WRITE_ONCE(rq
->deadline
, 0);
349 rq
->end_io_data
= NULL
;
351 data
->ctx
->rq_dispatched
[op_is_sync(op
)]++;
352 refcount_set(&rq
->ref
, 1);
356 static struct request
*blk_mq_get_request(struct request_queue
*q
,
358 struct blk_mq_alloc_data
*data
)
360 struct elevator_queue
*e
= q
->elevator
;
363 bool clear_ctx_on_error
= false;
364 u64 alloc_time_ns
= 0;
366 blk_queue_enter_live(q
);
368 /* alloc_time includes depth and tag waits */
369 if (blk_queue_rq_alloc_time(q
))
370 alloc_time_ns
= ktime_get_ns();
373 if (likely(!data
->ctx
)) {
374 data
->ctx
= blk_mq_get_ctx(q
);
375 clear_ctx_on_error
= true;
377 if (likely(!data
->hctx
))
378 data
->hctx
= blk_mq_map_queue(q
, data
->cmd_flags
,
380 if (data
->cmd_flags
& REQ_NOWAIT
)
381 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
384 data
->flags
|= BLK_MQ_REQ_INTERNAL
;
387 * Flush requests are special and go directly to the
388 * dispatch list. Don't include reserved tags in the
389 * limiting, as it isn't useful.
391 if (!op_is_flush(data
->cmd_flags
) &&
392 e
->type
->ops
.limit_depth
&&
393 !(data
->flags
& BLK_MQ_REQ_RESERVED
))
394 e
->type
->ops
.limit_depth(data
->cmd_flags
, data
);
396 blk_mq_tag_busy(data
->hctx
);
399 tag
= blk_mq_get_tag(data
);
400 if (tag
== BLK_MQ_TAG_FAIL
) {
401 if (clear_ctx_on_error
)
407 rq
= blk_mq_rq_ctx_init(data
, tag
, data
->cmd_flags
, alloc_time_ns
);
408 if (!op_is_flush(data
->cmd_flags
)) {
410 if (e
&& e
->type
->ops
.prepare_request
) {
411 if (e
->type
->icq_cache
)
412 blk_mq_sched_assign_ioc(rq
);
414 e
->type
->ops
.prepare_request(rq
, bio
);
415 rq
->rq_flags
|= RQF_ELVPRIV
;
418 data
->hctx
->queued
++;
422 struct request
*blk_mq_alloc_request(struct request_queue
*q
, unsigned int op
,
423 blk_mq_req_flags_t flags
)
425 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
, .cmd_flags
= op
};
429 ret
= blk_queue_enter(q
, flags
);
433 rq
= blk_mq_get_request(q
, NULL
, &alloc_data
);
437 return ERR_PTR(-EWOULDBLOCK
);
440 rq
->__sector
= (sector_t
) -1;
441 rq
->bio
= rq
->biotail
= NULL
;
444 EXPORT_SYMBOL(blk_mq_alloc_request
);
446 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
447 unsigned int op
, blk_mq_req_flags_t flags
, unsigned int hctx_idx
)
449 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
, .cmd_flags
= op
};
455 * If the tag allocator sleeps we could get an allocation for a
456 * different hardware context. No need to complicate the low level
457 * allocator for this for the rare use case of a command tied to
460 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
461 return ERR_PTR(-EINVAL
);
463 if (hctx_idx
>= q
->nr_hw_queues
)
464 return ERR_PTR(-EIO
);
466 ret
= blk_queue_enter(q
, flags
);
471 * Check if the hardware context is actually mapped to anything.
472 * If not tell the caller that it should skip this queue.
474 alloc_data
.hctx
= q
->queue_hw_ctx
[hctx_idx
];
475 if (!blk_mq_hw_queue_mapped(alloc_data
.hctx
)) {
477 return ERR_PTR(-EXDEV
);
479 cpu
= cpumask_first_and(alloc_data
.hctx
->cpumask
, cpu_online_mask
);
480 alloc_data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
482 rq
= blk_mq_get_request(q
, NULL
, &alloc_data
);
486 return ERR_PTR(-EWOULDBLOCK
);
490 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
492 static void __blk_mq_free_request(struct request
*rq
)
494 struct request_queue
*q
= rq
->q
;
495 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
496 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
497 const int sched_tag
= rq
->internal_tag
;
499 blk_pm_mark_last_busy(rq
);
502 blk_mq_put_tag(hctx
, hctx
->tags
, ctx
, rq
->tag
);
504 blk_mq_put_tag(hctx
, hctx
->sched_tags
, ctx
, sched_tag
);
505 blk_mq_sched_restart(hctx
);
509 void blk_mq_free_request(struct request
*rq
)
511 struct request_queue
*q
= rq
->q
;
512 struct elevator_queue
*e
= q
->elevator
;
513 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
514 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
516 if (rq
->rq_flags
& RQF_ELVPRIV
) {
517 if (e
&& e
->type
->ops
.finish_request
)
518 e
->type
->ops
.finish_request(rq
);
520 put_io_context(rq
->elv
.icq
->ioc
);
525 ctx
->rq_completed
[rq_is_sync(rq
)]++;
526 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
527 atomic_dec(&hctx
->nr_active
);
529 if (unlikely(laptop_mode
&& !blk_rq_is_passthrough(rq
)))
530 laptop_io_completion(q
->backing_dev_info
);
534 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
535 if (refcount_dec_and_test(&rq
->ref
))
536 __blk_mq_free_request(rq
);
538 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
540 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
544 if (blk_mq_need_time_stamp(rq
))
545 now
= ktime_get_ns();
547 if (rq
->rq_flags
& RQF_STATS
) {
548 blk_mq_poll_stats_start(rq
->q
);
549 blk_stat_add(rq
, now
);
552 if (rq
->internal_tag
!= -1)
553 blk_mq_sched_completed_request(rq
, now
);
555 blk_account_io_done(rq
, now
);
558 rq_qos_done(rq
->q
, rq
);
559 rq
->end_io(rq
, error
);
561 blk_mq_free_request(rq
);
564 EXPORT_SYMBOL(__blk_mq_end_request
);
566 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
568 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
570 __blk_mq_end_request(rq
, error
);
572 EXPORT_SYMBOL(blk_mq_end_request
);
574 static void __blk_mq_complete_request_remote(void *data
)
576 struct request
*rq
= data
;
577 struct request_queue
*q
= rq
->q
;
579 q
->mq_ops
->complete(rq
);
582 static void __blk_mq_complete_request(struct request
*rq
)
584 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
585 struct request_queue
*q
= rq
->q
;
589 WRITE_ONCE(rq
->state
, MQ_RQ_COMPLETE
);
591 * Most of single queue controllers, there is only one irq vector
592 * for handling IO completion, and the only irq's affinity is set
593 * as all possible CPUs. On most of ARCHs, this affinity means the
594 * irq is handled on one specific CPU.
596 * So complete IO reqeust in softirq context in case of single queue
597 * for not degrading IO performance by irqsoff latency.
599 if (q
->nr_hw_queues
== 1) {
600 __blk_complete_request(rq
);
605 * For a polled request, always complete locallly, it's pointless
606 * to redirect the completion.
608 if ((rq
->cmd_flags
& REQ_HIPRI
) ||
609 !test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
)) {
610 q
->mq_ops
->complete(rq
);
615 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &q
->queue_flags
))
616 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
618 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
619 rq
->csd
.func
= __blk_mq_complete_request_remote
;
622 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
624 q
->mq_ops
->complete(rq
);
629 static void hctx_unlock(struct blk_mq_hw_ctx
*hctx
, int srcu_idx
)
630 __releases(hctx
->srcu
)
632 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
))
635 srcu_read_unlock(hctx
->srcu
, srcu_idx
);
638 static void hctx_lock(struct blk_mq_hw_ctx
*hctx
, int *srcu_idx
)
639 __acquires(hctx
->srcu
)
641 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
642 /* shut up gcc false positive */
646 *srcu_idx
= srcu_read_lock(hctx
->srcu
);
650 * blk_mq_complete_request - end I/O on a request
651 * @rq: the request being processed
654 * Ends all I/O on a request. It does not handle partial completions.
655 * The actual completion happens out-of-order, through a IPI handler.
657 bool blk_mq_complete_request(struct request
*rq
)
659 if (unlikely(blk_should_fake_timeout(rq
->q
)))
661 __blk_mq_complete_request(rq
);
664 EXPORT_SYMBOL(blk_mq_complete_request
);
666 int blk_mq_request_started(struct request
*rq
)
668 return blk_mq_rq_state(rq
) != MQ_RQ_IDLE
;
670 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
672 int blk_mq_request_completed(struct request
*rq
)
674 return blk_mq_rq_state(rq
) == MQ_RQ_COMPLETE
;
676 EXPORT_SYMBOL_GPL(blk_mq_request_completed
);
678 void blk_mq_start_request(struct request
*rq
)
680 struct request_queue
*q
= rq
->q
;
682 trace_block_rq_issue(q
, rq
);
684 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
685 rq
->io_start_time_ns
= ktime_get_ns();
686 rq
->stats_sectors
= blk_rq_sectors(rq
);
687 rq
->rq_flags
|= RQF_STATS
;
691 WARN_ON_ONCE(blk_mq_rq_state(rq
) != MQ_RQ_IDLE
);
694 WRITE_ONCE(rq
->state
, MQ_RQ_IN_FLIGHT
);
696 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
698 * Make sure space for the drain appears. We know we can do
699 * this because max_hw_segments has been adjusted to be one
700 * fewer than the device can handle.
702 rq
->nr_phys_segments
++;
705 #ifdef CONFIG_BLK_DEV_INTEGRITY
706 if (blk_integrity_rq(rq
) && req_op(rq
) == REQ_OP_WRITE
)
707 q
->integrity
.profile
->prepare_fn(rq
);
710 EXPORT_SYMBOL(blk_mq_start_request
);
712 static void __blk_mq_requeue_request(struct request
*rq
)
714 struct request_queue
*q
= rq
->q
;
716 blk_mq_put_driver_tag(rq
);
718 trace_block_rq_requeue(q
, rq
);
719 rq_qos_requeue(q
, rq
);
721 if (blk_mq_request_started(rq
)) {
722 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
723 rq
->rq_flags
&= ~RQF_TIMED_OUT
;
724 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
725 rq
->nr_phys_segments
--;
729 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
731 __blk_mq_requeue_request(rq
);
733 /* this request will be re-inserted to io scheduler queue */
734 blk_mq_sched_requeue_request(rq
);
736 BUG_ON(!list_empty(&rq
->queuelist
));
737 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
739 EXPORT_SYMBOL(blk_mq_requeue_request
);
741 static void blk_mq_requeue_work(struct work_struct
*work
)
743 struct request_queue
*q
=
744 container_of(work
, struct request_queue
, requeue_work
.work
);
746 struct request
*rq
, *next
;
748 spin_lock_irq(&q
->requeue_lock
);
749 list_splice_init(&q
->requeue_list
, &rq_list
);
750 spin_unlock_irq(&q
->requeue_lock
);
752 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
753 if (!(rq
->rq_flags
& (RQF_SOFTBARRIER
| RQF_DONTPREP
)))
756 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
757 list_del_init(&rq
->queuelist
);
759 * If RQF_DONTPREP, rq has contained some driver specific
760 * data, so insert it to hctx dispatch list to avoid any
763 if (rq
->rq_flags
& RQF_DONTPREP
)
764 blk_mq_request_bypass_insert(rq
, false);
766 blk_mq_sched_insert_request(rq
, true, false, false);
769 while (!list_empty(&rq_list
)) {
770 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
771 list_del_init(&rq
->queuelist
);
772 blk_mq_sched_insert_request(rq
, false, false, false);
775 blk_mq_run_hw_queues(q
, false);
778 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
779 bool kick_requeue_list
)
781 struct request_queue
*q
= rq
->q
;
785 * We abuse this flag that is otherwise used by the I/O scheduler to
786 * request head insertion from the workqueue.
788 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
790 spin_lock_irqsave(&q
->requeue_lock
, flags
);
792 rq
->rq_flags
|= RQF_SOFTBARRIER
;
793 list_add(&rq
->queuelist
, &q
->requeue_list
);
795 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
797 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
799 if (kick_requeue_list
)
800 blk_mq_kick_requeue_list(q
);
803 void blk_mq_kick_requeue_list(struct request_queue
*q
)
805 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
, 0);
807 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
809 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
812 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
,
813 msecs_to_jiffies(msecs
));
815 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
817 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
819 if (tag
< tags
->nr_tags
) {
820 prefetch(tags
->rqs
[tag
]);
821 return tags
->rqs
[tag
];
826 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
828 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
829 void *priv
, bool reserved
)
832 * If we find a request that is inflight and the queue matches,
833 * we know the queue is busy. Return false to stop the iteration.
835 if (rq
->state
== MQ_RQ_IN_FLIGHT
&& rq
->q
== hctx
->queue
) {
845 bool blk_mq_queue_inflight(struct request_queue
*q
)
849 blk_mq_queue_tag_busy_iter(q
, blk_mq_rq_inflight
, &busy
);
852 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight
);
854 static void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
856 req
->rq_flags
|= RQF_TIMED_OUT
;
857 if (req
->q
->mq_ops
->timeout
) {
858 enum blk_eh_timer_return ret
;
860 ret
= req
->q
->mq_ops
->timeout(req
, reserved
);
861 if (ret
== BLK_EH_DONE
)
863 WARN_ON_ONCE(ret
!= BLK_EH_RESET_TIMER
);
869 static bool blk_mq_req_expired(struct request
*rq
, unsigned long *next
)
871 unsigned long deadline
;
873 if (blk_mq_rq_state(rq
) != MQ_RQ_IN_FLIGHT
)
875 if (rq
->rq_flags
& RQF_TIMED_OUT
)
878 deadline
= READ_ONCE(rq
->deadline
);
879 if (time_after_eq(jiffies
, deadline
))
884 else if (time_after(*next
, deadline
))
889 static bool blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
890 struct request
*rq
, void *priv
, bool reserved
)
892 unsigned long *next
= priv
;
895 * Just do a quick check if it is expired before locking the request in
896 * so we're not unnecessarilly synchronizing across CPUs.
898 if (!blk_mq_req_expired(rq
, next
))
902 * We have reason to believe the request may be expired. Take a
903 * reference on the request to lock this request lifetime into its
904 * currently allocated context to prevent it from being reallocated in
905 * the event the completion by-passes this timeout handler.
907 * If the reference was already released, then the driver beat the
908 * timeout handler to posting a natural completion.
910 if (!refcount_inc_not_zero(&rq
->ref
))
914 * The request is now locked and cannot be reallocated underneath the
915 * timeout handler's processing. Re-verify this exact request is truly
916 * expired; if it is not expired, then the request was completed and
917 * reallocated as a new request.
919 if (blk_mq_req_expired(rq
, next
))
920 blk_mq_rq_timed_out(rq
, reserved
);
921 if (refcount_dec_and_test(&rq
->ref
))
922 __blk_mq_free_request(rq
);
927 static void blk_mq_timeout_work(struct work_struct
*work
)
929 struct request_queue
*q
=
930 container_of(work
, struct request_queue
, timeout_work
);
931 unsigned long next
= 0;
932 struct blk_mq_hw_ctx
*hctx
;
935 /* A deadlock might occur if a request is stuck requiring a
936 * timeout at the same time a queue freeze is waiting
937 * completion, since the timeout code would not be able to
938 * acquire the queue reference here.
940 * That's why we don't use blk_queue_enter here; instead, we use
941 * percpu_ref_tryget directly, because we need to be able to
942 * obtain a reference even in the short window between the queue
943 * starting to freeze, by dropping the first reference in
944 * blk_freeze_queue_start, and the moment the last request is
945 * consumed, marked by the instant q_usage_counter reaches
948 if (!percpu_ref_tryget(&q
->q_usage_counter
))
951 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &next
);
954 mod_timer(&q
->timeout
, next
);
957 * Request timeouts are handled as a forward rolling timer. If
958 * we end up here it means that no requests are pending and
959 * also that no request has been pending for a while. Mark
962 queue_for_each_hw_ctx(q
, hctx
, i
) {
963 /* the hctx may be unmapped, so check it here */
964 if (blk_mq_hw_queue_mapped(hctx
))
965 blk_mq_tag_idle(hctx
);
971 struct flush_busy_ctx_data
{
972 struct blk_mq_hw_ctx
*hctx
;
973 struct list_head
*list
;
976 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
978 struct flush_busy_ctx_data
*flush_data
= data
;
979 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
980 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
981 enum hctx_type type
= hctx
->type
;
983 spin_lock(&ctx
->lock
);
984 list_splice_tail_init(&ctx
->rq_lists
[type
], flush_data
->list
);
985 sbitmap_clear_bit(sb
, bitnr
);
986 spin_unlock(&ctx
->lock
);
991 * Process software queues that have been marked busy, splicing them
992 * to the for-dispatch
994 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
996 struct flush_busy_ctx_data data
= {
1001 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
1003 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
1005 struct dispatch_rq_data
{
1006 struct blk_mq_hw_ctx
*hctx
;
1010 static bool dispatch_rq_from_ctx(struct sbitmap
*sb
, unsigned int bitnr
,
1013 struct dispatch_rq_data
*dispatch_data
= data
;
1014 struct blk_mq_hw_ctx
*hctx
= dispatch_data
->hctx
;
1015 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
1016 enum hctx_type type
= hctx
->type
;
1018 spin_lock(&ctx
->lock
);
1019 if (!list_empty(&ctx
->rq_lists
[type
])) {
1020 dispatch_data
->rq
= list_entry_rq(ctx
->rq_lists
[type
].next
);
1021 list_del_init(&dispatch_data
->rq
->queuelist
);
1022 if (list_empty(&ctx
->rq_lists
[type
]))
1023 sbitmap_clear_bit(sb
, bitnr
);
1025 spin_unlock(&ctx
->lock
);
1027 return !dispatch_data
->rq
;
1030 struct request
*blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx
*hctx
,
1031 struct blk_mq_ctx
*start
)
1033 unsigned off
= start
? start
->index_hw
[hctx
->type
] : 0;
1034 struct dispatch_rq_data data
= {
1039 __sbitmap_for_each_set(&hctx
->ctx_map
, off
,
1040 dispatch_rq_from_ctx
, &data
);
1045 static inline unsigned int queued_to_index(unsigned int queued
)
1050 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
1053 bool blk_mq_get_driver_tag(struct request
*rq
)
1055 struct blk_mq_alloc_data data
= {
1057 .hctx
= rq
->mq_hctx
,
1058 .flags
= BLK_MQ_REQ_NOWAIT
,
1059 .cmd_flags
= rq
->cmd_flags
,
1066 if (blk_mq_tag_is_reserved(data
.hctx
->sched_tags
, rq
->internal_tag
))
1067 data
.flags
|= BLK_MQ_REQ_RESERVED
;
1069 shared
= blk_mq_tag_busy(data
.hctx
);
1070 rq
->tag
= blk_mq_get_tag(&data
);
1073 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
1074 atomic_inc(&data
.hctx
->nr_active
);
1076 data
.hctx
->tags
->rqs
[rq
->tag
] = rq
;
1080 return rq
->tag
!= -1;
1083 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
,
1084 int flags
, void *key
)
1086 struct blk_mq_hw_ctx
*hctx
;
1088 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
1090 spin_lock(&hctx
->dispatch_wait_lock
);
1091 if (!list_empty(&wait
->entry
)) {
1092 struct sbitmap_queue
*sbq
;
1094 list_del_init(&wait
->entry
);
1095 sbq
= &hctx
->tags
->bitmap_tags
;
1096 atomic_dec(&sbq
->ws_active
);
1098 spin_unlock(&hctx
->dispatch_wait_lock
);
1100 blk_mq_run_hw_queue(hctx
, true);
1105 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1106 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1107 * restart. For both cases, take care to check the condition again after
1108 * marking us as waiting.
1110 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx
*hctx
,
1113 struct sbitmap_queue
*sbq
= &hctx
->tags
->bitmap_tags
;
1114 struct wait_queue_head
*wq
;
1115 wait_queue_entry_t
*wait
;
1118 if (!(hctx
->flags
& BLK_MQ_F_TAG_SHARED
)) {
1119 blk_mq_sched_mark_restart_hctx(hctx
);
1122 * It's possible that a tag was freed in the window between the
1123 * allocation failure and adding the hardware queue to the wait
1126 * Don't clear RESTART here, someone else could have set it.
1127 * At most this will cost an extra queue run.
1129 return blk_mq_get_driver_tag(rq
);
1132 wait
= &hctx
->dispatch_wait
;
1133 if (!list_empty_careful(&wait
->entry
))
1136 wq
= &bt_wait_ptr(sbq
, hctx
)->wait
;
1138 spin_lock_irq(&wq
->lock
);
1139 spin_lock(&hctx
->dispatch_wait_lock
);
1140 if (!list_empty(&wait
->entry
)) {
1141 spin_unlock(&hctx
->dispatch_wait_lock
);
1142 spin_unlock_irq(&wq
->lock
);
1146 atomic_inc(&sbq
->ws_active
);
1147 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
1148 __add_wait_queue(wq
, wait
);
1151 * It's possible that a tag was freed in the window between the
1152 * allocation failure and adding the hardware queue to the wait
1155 ret
= blk_mq_get_driver_tag(rq
);
1157 spin_unlock(&hctx
->dispatch_wait_lock
);
1158 spin_unlock_irq(&wq
->lock
);
1163 * We got a tag, remove ourselves from the wait queue to ensure
1164 * someone else gets the wakeup.
1166 list_del_init(&wait
->entry
);
1167 atomic_dec(&sbq
->ws_active
);
1168 spin_unlock(&hctx
->dispatch_wait_lock
);
1169 spin_unlock_irq(&wq
->lock
);
1174 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1175 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1177 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1178 * - EWMA is one simple way to compute running average value
1179 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1180 * - take 4 as factor for avoiding to get too small(0) result, and this
1181 * factor doesn't matter because EWMA decreases exponentially
1183 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx
*hctx
, bool busy
)
1187 if (hctx
->queue
->elevator
)
1190 ewma
= hctx
->dispatch_busy
;
1195 ewma
*= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
- 1;
1197 ewma
+= 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR
;
1198 ewma
/= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
;
1200 hctx
->dispatch_busy
= ewma
;
1203 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1206 * Returns true if we did some work AND can potentially do more.
1208 bool blk_mq_dispatch_rq_list(struct request_queue
*q
, struct list_head
*list
,
1211 struct blk_mq_hw_ctx
*hctx
;
1212 struct request
*rq
, *nxt
;
1213 bool no_tag
= false;
1215 blk_status_t ret
= BLK_STS_OK
;
1217 if (list_empty(list
))
1220 WARN_ON(!list_is_singular(list
) && got_budget
);
1223 * Now process all the entries, sending them to the driver.
1225 errors
= queued
= 0;
1227 struct blk_mq_queue_data bd
;
1229 rq
= list_first_entry(list
, struct request
, queuelist
);
1232 if (!got_budget
&& !blk_mq_get_dispatch_budget(hctx
))
1235 if (!blk_mq_get_driver_tag(rq
)) {
1237 * The initial allocation attempt failed, so we need to
1238 * rerun the hardware queue when a tag is freed. The
1239 * waitqueue takes care of that. If the queue is run
1240 * before we add this entry back on the dispatch list,
1241 * we'll re-run it below.
1243 if (!blk_mq_mark_tag_wait(hctx
, rq
)) {
1244 blk_mq_put_dispatch_budget(hctx
);
1246 * For non-shared tags, the RESTART check
1249 if (hctx
->flags
& BLK_MQ_F_TAG_SHARED
)
1255 list_del_init(&rq
->queuelist
);
1260 * Flag last if we have no more requests, or if we have more
1261 * but can't assign a driver tag to it.
1263 if (list_empty(list
))
1266 nxt
= list_first_entry(list
, struct request
, queuelist
);
1267 bd
.last
= !blk_mq_get_driver_tag(nxt
);
1270 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1271 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
) {
1273 * If an I/O scheduler has been configured and we got a
1274 * driver tag for the next request already, free it
1277 if (!list_empty(list
)) {
1278 nxt
= list_first_entry(list
, struct request
, queuelist
);
1279 blk_mq_put_driver_tag(nxt
);
1281 list_add(&rq
->queuelist
, list
);
1282 __blk_mq_requeue_request(rq
);
1286 if (unlikely(ret
!= BLK_STS_OK
)) {
1288 blk_mq_end_request(rq
, BLK_STS_IOERR
);
1293 } while (!list_empty(list
));
1295 hctx
->dispatched
[queued_to_index(queued
)]++;
1298 * Any items that need requeuing? Stuff them into hctx->dispatch,
1299 * that is where we will continue on next queue run.
1301 if (!list_empty(list
)) {
1305 * If we didn't flush the entire list, we could have told
1306 * the driver there was more coming, but that turned out to
1309 if (q
->mq_ops
->commit_rqs
)
1310 q
->mq_ops
->commit_rqs(hctx
);
1312 spin_lock(&hctx
->lock
);
1313 list_splice_init(list
, &hctx
->dispatch
);
1314 spin_unlock(&hctx
->lock
);
1317 * If SCHED_RESTART was set by the caller of this function and
1318 * it is no longer set that means that it was cleared by another
1319 * thread and hence that a queue rerun is needed.
1321 * If 'no_tag' is set, that means that we failed getting
1322 * a driver tag with an I/O scheduler attached. If our dispatch
1323 * waitqueue is no longer active, ensure that we run the queue
1324 * AFTER adding our entries back to the list.
1326 * If no I/O scheduler has been configured it is possible that
1327 * the hardware queue got stopped and restarted before requests
1328 * were pushed back onto the dispatch list. Rerun the queue to
1329 * avoid starvation. Notes:
1330 * - blk_mq_run_hw_queue() checks whether or not a queue has
1331 * been stopped before rerunning a queue.
1332 * - Some but not all block drivers stop a queue before
1333 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1336 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1337 * bit is set, run queue after a delay to avoid IO stalls
1338 * that could otherwise occur if the queue is idle.
1340 needs_restart
= blk_mq_sched_needs_restart(hctx
);
1341 if (!needs_restart
||
1342 (no_tag
&& list_empty_careful(&hctx
->dispatch_wait
.entry
)))
1343 blk_mq_run_hw_queue(hctx
, true);
1344 else if (needs_restart
&& (ret
== BLK_STS_RESOURCE
))
1345 blk_mq_delay_run_hw_queue(hctx
, BLK_MQ_RESOURCE_DELAY
);
1347 blk_mq_update_dispatch_busy(hctx
, true);
1350 blk_mq_update_dispatch_busy(hctx
, false);
1353 * If the host/device is unable to accept more work, inform the
1356 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
1359 return (queued
+ errors
) != 0;
1362 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1367 * We should be running this queue from one of the CPUs that
1370 * There are at least two related races now between setting
1371 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1372 * __blk_mq_run_hw_queue():
1374 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1375 * but later it becomes online, then this warning is harmless
1378 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1379 * but later it becomes offline, then the warning can't be
1380 * triggered, and we depend on blk-mq timeout handler to
1381 * handle dispatched requests to this hctx
1383 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
1384 cpu_online(hctx
->next_cpu
)) {
1385 printk(KERN_WARNING
"run queue from wrong CPU %d, hctx %s\n",
1386 raw_smp_processor_id(),
1387 cpumask_empty(hctx
->cpumask
) ? "inactive": "active");
1392 * We can't run the queue inline with ints disabled. Ensure that
1393 * we catch bad users of this early.
1395 WARN_ON_ONCE(in_interrupt());
1397 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1399 hctx_lock(hctx
, &srcu_idx
);
1400 blk_mq_sched_dispatch_requests(hctx
);
1401 hctx_unlock(hctx
, srcu_idx
);
1404 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx
*hctx
)
1406 int cpu
= cpumask_first_and(hctx
->cpumask
, cpu_online_mask
);
1408 if (cpu
>= nr_cpu_ids
)
1409 cpu
= cpumask_first(hctx
->cpumask
);
1414 * It'd be great if the workqueue API had a way to pass
1415 * in a mask and had some smarts for more clever placement.
1416 * For now we just round-robin here, switching for every
1417 * BLK_MQ_CPU_WORK_BATCH queued items.
1419 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1422 int next_cpu
= hctx
->next_cpu
;
1424 if (hctx
->queue
->nr_hw_queues
== 1)
1425 return WORK_CPU_UNBOUND
;
1427 if (--hctx
->next_cpu_batch
<= 0) {
1429 next_cpu
= cpumask_next_and(next_cpu
, hctx
->cpumask
,
1431 if (next_cpu
>= nr_cpu_ids
)
1432 next_cpu
= blk_mq_first_mapped_cpu(hctx
);
1433 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1437 * Do unbound schedule if we can't find a online CPU for this hctx,
1438 * and it should only happen in the path of handling CPU DEAD.
1440 if (!cpu_online(next_cpu
)) {
1447 * Make sure to re-select CPU next time once after CPUs
1448 * in hctx->cpumask become online again.
1450 hctx
->next_cpu
= next_cpu
;
1451 hctx
->next_cpu_batch
= 1;
1452 return WORK_CPU_UNBOUND
;
1455 hctx
->next_cpu
= next_cpu
;
1459 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
,
1460 unsigned long msecs
)
1462 if (unlikely(blk_mq_hctx_stopped(hctx
)))
1465 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1466 int cpu
= get_cpu();
1467 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1468 __blk_mq_run_hw_queue(hctx
);
1476 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
), &hctx
->run_work
,
1477 msecs_to_jiffies(msecs
));
1480 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1482 __blk_mq_delay_run_hw_queue(hctx
, true, msecs
);
1484 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
1486 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1492 * When queue is quiesced, we may be switching io scheduler, or
1493 * updating nr_hw_queues, or other things, and we can't run queue
1494 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1496 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1499 hctx_lock(hctx
, &srcu_idx
);
1500 need_run
= !blk_queue_quiesced(hctx
->queue
) &&
1501 blk_mq_hctx_has_pending(hctx
);
1502 hctx_unlock(hctx
, srcu_idx
);
1505 __blk_mq_delay_run_hw_queue(hctx
, async
, 0);
1511 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
1513 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1515 struct blk_mq_hw_ctx
*hctx
;
1518 queue_for_each_hw_ctx(q
, hctx
, i
) {
1519 if (blk_mq_hctx_stopped(hctx
))
1522 blk_mq_run_hw_queue(hctx
, async
);
1525 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1528 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1529 * @q: request queue.
1531 * The caller is responsible for serializing this function against
1532 * blk_mq_{start,stop}_hw_queue().
1534 bool blk_mq_queue_stopped(struct request_queue
*q
)
1536 struct blk_mq_hw_ctx
*hctx
;
1539 queue_for_each_hw_ctx(q
, hctx
, i
)
1540 if (blk_mq_hctx_stopped(hctx
))
1545 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1548 * This function is often used for pausing .queue_rq() by driver when
1549 * there isn't enough resource or some conditions aren't satisfied, and
1550 * BLK_STS_RESOURCE is usually returned.
1552 * We do not guarantee that dispatch can be drained or blocked
1553 * after blk_mq_stop_hw_queue() returns. Please use
1554 * blk_mq_quiesce_queue() for that requirement.
1556 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1558 cancel_delayed_work(&hctx
->run_work
);
1560 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1562 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1565 * This function is often used for pausing .queue_rq() by driver when
1566 * there isn't enough resource or some conditions aren't satisfied, and
1567 * BLK_STS_RESOURCE is usually returned.
1569 * We do not guarantee that dispatch can be drained or blocked
1570 * after blk_mq_stop_hw_queues() returns. Please use
1571 * blk_mq_quiesce_queue() for that requirement.
1573 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1575 struct blk_mq_hw_ctx
*hctx
;
1578 queue_for_each_hw_ctx(q
, hctx
, i
)
1579 blk_mq_stop_hw_queue(hctx
);
1581 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1583 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1585 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1587 blk_mq_run_hw_queue(hctx
, false);
1589 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1591 void blk_mq_start_hw_queues(struct request_queue
*q
)
1593 struct blk_mq_hw_ctx
*hctx
;
1596 queue_for_each_hw_ctx(q
, hctx
, i
)
1597 blk_mq_start_hw_queue(hctx
);
1599 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1601 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1603 if (!blk_mq_hctx_stopped(hctx
))
1606 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1607 blk_mq_run_hw_queue(hctx
, async
);
1609 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1611 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1613 struct blk_mq_hw_ctx
*hctx
;
1616 queue_for_each_hw_ctx(q
, hctx
, i
)
1617 blk_mq_start_stopped_hw_queue(hctx
, async
);
1619 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1621 static void blk_mq_run_work_fn(struct work_struct
*work
)
1623 struct blk_mq_hw_ctx
*hctx
;
1625 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
1628 * If we are stopped, don't run the queue.
1630 if (test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
1633 __blk_mq_run_hw_queue(hctx
);
1636 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1640 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1641 enum hctx_type type
= hctx
->type
;
1643 lockdep_assert_held(&ctx
->lock
);
1645 trace_block_rq_insert(hctx
->queue
, rq
);
1648 list_add(&rq
->queuelist
, &ctx
->rq_lists
[type
]);
1650 list_add_tail(&rq
->queuelist
, &ctx
->rq_lists
[type
]);
1653 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1656 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1658 lockdep_assert_held(&ctx
->lock
);
1660 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1661 blk_mq_hctx_mark_pending(hctx
, ctx
);
1665 * Should only be used carefully, when the caller knows we want to
1666 * bypass a potential IO scheduler on the target device.
1668 void blk_mq_request_bypass_insert(struct request
*rq
, bool run_queue
)
1670 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
1672 spin_lock(&hctx
->lock
);
1673 list_add_tail(&rq
->queuelist
, &hctx
->dispatch
);
1674 spin_unlock(&hctx
->lock
);
1677 blk_mq_run_hw_queue(hctx
, false);
1680 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1681 struct list_head
*list
)
1685 enum hctx_type type
= hctx
->type
;
1688 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1691 list_for_each_entry(rq
, list
, queuelist
) {
1692 BUG_ON(rq
->mq_ctx
!= ctx
);
1693 trace_block_rq_insert(hctx
->queue
, rq
);
1696 spin_lock(&ctx
->lock
);
1697 list_splice_tail_init(list
, &ctx
->rq_lists
[type
]);
1698 blk_mq_hctx_mark_pending(hctx
, ctx
);
1699 spin_unlock(&ctx
->lock
);
1702 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1704 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1705 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1707 if (rqa
->mq_ctx
< rqb
->mq_ctx
)
1709 else if (rqa
->mq_ctx
> rqb
->mq_ctx
)
1711 else if (rqa
->mq_hctx
< rqb
->mq_hctx
)
1713 else if (rqa
->mq_hctx
> rqb
->mq_hctx
)
1716 return blk_rq_pos(rqa
) > blk_rq_pos(rqb
);
1719 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1721 struct blk_mq_hw_ctx
*this_hctx
;
1722 struct blk_mq_ctx
*this_ctx
;
1723 struct request_queue
*this_q
;
1729 list_splice_init(&plug
->mq_list
, &list
);
1731 if (plug
->rq_count
> 2 && plug
->multiple_queues
)
1732 list_sort(NULL
, &list
, plug_rq_cmp
);
1741 while (!list_empty(&list
)) {
1742 rq
= list_entry_rq(list
.next
);
1743 list_del_init(&rq
->queuelist
);
1745 if (rq
->mq_hctx
!= this_hctx
|| rq
->mq_ctx
!= this_ctx
) {
1747 trace_block_unplug(this_q
, depth
, !from_schedule
);
1748 blk_mq_sched_insert_requests(this_hctx
, this_ctx
,
1754 this_ctx
= rq
->mq_ctx
;
1755 this_hctx
= rq
->mq_hctx
;
1760 list_add_tail(&rq
->queuelist
, &rq_list
);
1764 * If 'this_hctx' is set, we know we have entries to complete
1765 * on 'rq_list'. Do those.
1768 trace_block_unplug(this_q
, depth
, !from_schedule
);
1769 blk_mq_sched_insert_requests(this_hctx
, this_ctx
, &rq_list
,
1774 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
,
1775 unsigned int nr_segs
)
1777 if (bio
->bi_opf
& REQ_RAHEAD
)
1778 rq
->cmd_flags
|= REQ_FAILFAST_MASK
;
1780 rq
->__sector
= bio
->bi_iter
.bi_sector
;
1781 rq
->write_hint
= bio
->bi_write_hint
;
1782 blk_rq_bio_prep(rq
, bio
, nr_segs
);
1784 blk_account_io_start(rq
, true);
1787 static blk_status_t
__blk_mq_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1789 blk_qc_t
*cookie
, bool last
)
1791 struct request_queue
*q
= rq
->q
;
1792 struct blk_mq_queue_data bd
= {
1796 blk_qc_t new_cookie
;
1799 new_cookie
= request_to_qc_t(hctx
, rq
);
1802 * For OK queue, we are done. For error, caller may kill it.
1803 * Any other error (busy), just add it to our list as we
1804 * previously would have done.
1806 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1809 blk_mq_update_dispatch_busy(hctx
, false);
1810 *cookie
= new_cookie
;
1812 case BLK_STS_RESOURCE
:
1813 case BLK_STS_DEV_RESOURCE
:
1814 blk_mq_update_dispatch_busy(hctx
, true);
1815 __blk_mq_requeue_request(rq
);
1818 blk_mq_update_dispatch_busy(hctx
, false);
1819 *cookie
= BLK_QC_T_NONE
;
1826 static blk_status_t
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1829 bool bypass_insert
, bool last
)
1831 struct request_queue
*q
= rq
->q
;
1832 bool run_queue
= true;
1835 * RCU or SRCU read lock is needed before checking quiesced flag.
1837 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1838 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1839 * and avoid driver to try to dispatch again.
1841 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)) {
1843 bypass_insert
= false;
1847 if (q
->elevator
&& !bypass_insert
)
1850 if (!blk_mq_get_dispatch_budget(hctx
))
1853 if (!blk_mq_get_driver_tag(rq
)) {
1854 blk_mq_put_dispatch_budget(hctx
);
1858 return __blk_mq_issue_directly(hctx
, rq
, cookie
, last
);
1861 return BLK_STS_RESOURCE
;
1863 blk_mq_request_bypass_insert(rq
, run_queue
);
1867 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1868 struct request
*rq
, blk_qc_t
*cookie
)
1873 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1875 hctx_lock(hctx
, &srcu_idx
);
1877 ret
= __blk_mq_try_issue_directly(hctx
, rq
, cookie
, false, true);
1878 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
1879 blk_mq_request_bypass_insert(rq
, true);
1880 else if (ret
!= BLK_STS_OK
)
1881 blk_mq_end_request(rq
, ret
);
1883 hctx_unlock(hctx
, srcu_idx
);
1886 blk_status_t
blk_mq_request_issue_directly(struct request
*rq
, bool last
)
1890 blk_qc_t unused_cookie
;
1891 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
1893 hctx_lock(hctx
, &srcu_idx
);
1894 ret
= __blk_mq_try_issue_directly(hctx
, rq
, &unused_cookie
, true, last
);
1895 hctx_unlock(hctx
, srcu_idx
);
1900 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx
*hctx
,
1901 struct list_head
*list
)
1903 while (!list_empty(list
)) {
1905 struct request
*rq
= list_first_entry(list
, struct request
,
1908 list_del_init(&rq
->queuelist
);
1909 ret
= blk_mq_request_issue_directly(rq
, list_empty(list
));
1910 if (ret
!= BLK_STS_OK
) {
1911 if (ret
== BLK_STS_RESOURCE
||
1912 ret
== BLK_STS_DEV_RESOURCE
) {
1913 blk_mq_request_bypass_insert(rq
,
1917 blk_mq_end_request(rq
, ret
);
1922 * If we didn't flush the entire list, we could have told
1923 * the driver there was more coming, but that turned out to
1926 if (!list_empty(list
) && hctx
->queue
->mq_ops
->commit_rqs
)
1927 hctx
->queue
->mq_ops
->commit_rqs(hctx
);
1930 static void blk_add_rq_to_plug(struct blk_plug
*plug
, struct request
*rq
)
1932 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1934 if (!plug
->multiple_queues
&& !list_is_singular(&plug
->mq_list
)) {
1935 struct request
*tmp
;
1937 tmp
= list_first_entry(&plug
->mq_list
, struct request
,
1939 if (tmp
->q
!= rq
->q
)
1940 plug
->multiple_queues
= true;
1944 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1946 const int is_sync
= op_is_sync(bio
->bi_opf
);
1947 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1948 struct blk_mq_alloc_data data
= { .flags
= 0};
1950 struct blk_plug
*plug
;
1951 struct request
*same_queue_rq
= NULL
;
1952 unsigned int nr_segs
;
1955 blk_queue_bounce(q
, &bio
);
1956 __blk_queue_split(q
, &bio
, &nr_segs
);
1958 if (!bio_integrity_prep(bio
))
1959 return BLK_QC_T_NONE
;
1961 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1962 blk_attempt_plug_merge(q
, bio
, nr_segs
, &same_queue_rq
))
1963 return BLK_QC_T_NONE
;
1965 if (blk_mq_sched_bio_merge(q
, bio
, nr_segs
))
1966 return BLK_QC_T_NONE
;
1968 rq_qos_throttle(q
, bio
);
1970 data
.cmd_flags
= bio
->bi_opf
;
1971 rq
= blk_mq_get_request(q
, bio
, &data
);
1972 if (unlikely(!rq
)) {
1973 rq_qos_cleanup(q
, bio
);
1974 if (bio
->bi_opf
& REQ_NOWAIT
)
1975 bio_wouldblock_error(bio
);
1976 return BLK_QC_T_NONE
;
1979 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1981 rq_qos_track(q
, rq
, bio
);
1983 cookie
= request_to_qc_t(data
.hctx
, rq
);
1985 blk_mq_bio_to_request(rq
, bio
, nr_segs
);
1987 plug
= blk_mq_plug(q
, bio
);
1988 if (unlikely(is_flush_fua
)) {
1989 /* bypass scheduler for flush rq */
1990 blk_insert_flush(rq
);
1991 blk_mq_run_hw_queue(data
.hctx
, true);
1992 } else if (plug
&& (q
->nr_hw_queues
== 1 || q
->mq_ops
->commit_rqs
)) {
1994 * Use plugging if we have a ->commit_rqs() hook as well, as
1995 * we know the driver uses bd->last in a smart fashion.
1997 unsigned int request_count
= plug
->rq_count
;
1998 struct request
*last
= NULL
;
2001 trace_block_plug(q
);
2003 last
= list_entry_rq(plug
->mq_list
.prev
);
2005 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
2006 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
2007 blk_flush_plug_list(plug
, false);
2008 trace_block_plug(q
);
2011 blk_add_rq_to_plug(plug
, rq
);
2012 } else if (plug
&& !blk_queue_nomerges(q
)) {
2014 * We do limited plugging. If the bio can be merged, do that.
2015 * Otherwise the existing request in the plug list will be
2016 * issued. So the plug list will have one request at most
2017 * The plug list might get flushed before this. If that happens,
2018 * the plug list is empty, and same_queue_rq is invalid.
2020 if (list_empty(&plug
->mq_list
))
2021 same_queue_rq
= NULL
;
2022 if (same_queue_rq
) {
2023 list_del_init(&same_queue_rq
->queuelist
);
2026 blk_add_rq_to_plug(plug
, rq
);
2027 trace_block_plug(q
);
2029 if (same_queue_rq
) {
2030 data
.hctx
= same_queue_rq
->mq_hctx
;
2031 trace_block_unplug(q
, 1, true);
2032 blk_mq_try_issue_directly(data
.hctx
, same_queue_rq
,
2035 } else if ((q
->nr_hw_queues
> 1 && is_sync
) || (!q
->elevator
&&
2036 !data
.hctx
->dispatch_busy
)) {
2037 blk_mq_try_issue_directly(data
.hctx
, rq
, &cookie
);
2039 blk_mq_sched_insert_request(rq
, false, true, true);
2045 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
2046 unsigned int hctx_idx
)
2050 if (tags
->rqs
&& set
->ops
->exit_request
) {
2053 for (i
= 0; i
< tags
->nr_tags
; i
++) {
2054 struct request
*rq
= tags
->static_rqs
[i
];
2058 set
->ops
->exit_request(set
, rq
, hctx_idx
);
2059 tags
->static_rqs
[i
] = NULL
;
2063 while (!list_empty(&tags
->page_list
)) {
2064 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
2065 list_del_init(&page
->lru
);
2067 * Remove kmemleak object previously allocated in
2068 * blk_mq_alloc_rqs().
2070 kmemleak_free(page_address(page
));
2071 __free_pages(page
, page
->private);
2075 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
2079 kfree(tags
->static_rqs
);
2080 tags
->static_rqs
= NULL
;
2082 blk_mq_free_tags(tags
);
2085 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
2086 unsigned int hctx_idx
,
2087 unsigned int nr_tags
,
2088 unsigned int reserved_tags
)
2090 struct blk_mq_tags
*tags
;
2093 node
= blk_mq_hw_queue_to_node(&set
->map
[HCTX_TYPE_DEFAULT
], hctx_idx
);
2094 if (node
== NUMA_NO_NODE
)
2095 node
= set
->numa_node
;
2097 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
2098 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
2102 tags
->rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
2103 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2106 blk_mq_free_tags(tags
);
2110 tags
->static_rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
2111 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2113 if (!tags
->static_rqs
) {
2115 blk_mq_free_tags(tags
);
2122 static size_t order_to_size(unsigned int order
)
2124 return (size_t)PAGE_SIZE
<< order
;
2127 static int blk_mq_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
2128 unsigned int hctx_idx
, int node
)
2132 if (set
->ops
->init_request
) {
2133 ret
= set
->ops
->init_request(set
, rq
, hctx_idx
, node
);
2138 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
2142 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
2143 unsigned int hctx_idx
, unsigned int depth
)
2145 unsigned int i
, j
, entries_per_page
, max_order
= 4;
2146 size_t rq_size
, left
;
2149 node
= blk_mq_hw_queue_to_node(&set
->map
[HCTX_TYPE_DEFAULT
], hctx_idx
);
2150 if (node
== NUMA_NO_NODE
)
2151 node
= set
->numa_node
;
2153 INIT_LIST_HEAD(&tags
->page_list
);
2156 * rq_size is the size of the request plus driver payload, rounded
2157 * to the cacheline size
2159 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
2161 left
= rq_size
* depth
;
2163 for (i
= 0; i
< depth
; ) {
2164 int this_order
= max_order
;
2169 while (this_order
&& left
< order_to_size(this_order
- 1))
2173 page
= alloc_pages_node(node
,
2174 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
2180 if (order_to_size(this_order
) < rq_size
)
2187 page
->private = this_order
;
2188 list_add_tail(&page
->lru
, &tags
->page_list
);
2190 p
= page_address(page
);
2192 * Allow kmemleak to scan these pages as they contain pointers
2193 * to additional allocations like via ops->init_request().
2195 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
2196 entries_per_page
= order_to_size(this_order
) / rq_size
;
2197 to_do
= min(entries_per_page
, depth
- i
);
2198 left
-= to_do
* rq_size
;
2199 for (j
= 0; j
< to_do
; j
++) {
2200 struct request
*rq
= p
;
2202 tags
->static_rqs
[i
] = rq
;
2203 if (blk_mq_init_request(set
, rq
, hctx_idx
, node
)) {
2204 tags
->static_rqs
[i
] = NULL
;
2215 blk_mq_free_rqs(set
, tags
, hctx_idx
);
2220 * 'cpu' is going away. splice any existing rq_list entries from this
2221 * software queue to the hw queue dispatch list, and ensure that it
2224 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
2226 struct blk_mq_hw_ctx
*hctx
;
2227 struct blk_mq_ctx
*ctx
;
2229 enum hctx_type type
;
2231 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
2232 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
2235 spin_lock(&ctx
->lock
);
2236 if (!list_empty(&ctx
->rq_lists
[type
])) {
2237 list_splice_init(&ctx
->rq_lists
[type
], &tmp
);
2238 blk_mq_hctx_clear_pending(hctx
, ctx
);
2240 spin_unlock(&ctx
->lock
);
2242 if (list_empty(&tmp
))
2245 spin_lock(&hctx
->lock
);
2246 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
2247 spin_unlock(&hctx
->lock
);
2249 blk_mq_run_hw_queue(hctx
, true);
2253 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
2255 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
2259 /* hctx->ctxs will be freed in queue's release handler */
2260 static void blk_mq_exit_hctx(struct request_queue
*q
,
2261 struct blk_mq_tag_set
*set
,
2262 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
2264 if (blk_mq_hw_queue_mapped(hctx
))
2265 blk_mq_tag_idle(hctx
);
2267 if (set
->ops
->exit_request
)
2268 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
2270 if (set
->ops
->exit_hctx
)
2271 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2273 blk_mq_remove_cpuhp(hctx
);
2275 spin_lock(&q
->unused_hctx_lock
);
2276 list_add(&hctx
->hctx_list
, &q
->unused_hctx_list
);
2277 spin_unlock(&q
->unused_hctx_lock
);
2280 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
2281 struct blk_mq_tag_set
*set
, int nr_queue
)
2283 struct blk_mq_hw_ctx
*hctx
;
2286 queue_for_each_hw_ctx(q
, hctx
, i
) {
2289 blk_mq_debugfs_unregister_hctx(hctx
);
2290 blk_mq_exit_hctx(q
, set
, hctx
, i
);
2294 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set
*tag_set
)
2296 int hw_ctx_size
= sizeof(struct blk_mq_hw_ctx
);
2298 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx
, srcu
),
2299 __alignof__(struct blk_mq_hw_ctx
)) !=
2300 sizeof(struct blk_mq_hw_ctx
));
2302 if (tag_set
->flags
& BLK_MQ_F_BLOCKING
)
2303 hw_ctx_size
+= sizeof(struct srcu_struct
);
2308 static int blk_mq_init_hctx(struct request_queue
*q
,
2309 struct blk_mq_tag_set
*set
,
2310 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
2312 hctx
->queue_num
= hctx_idx
;
2314 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
2316 hctx
->tags
= set
->tags
[hctx_idx
];
2318 if (set
->ops
->init_hctx
&&
2319 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
2320 goto unregister_cpu_notifier
;
2322 if (blk_mq_init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
,
2328 if (set
->ops
->exit_hctx
)
2329 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2330 unregister_cpu_notifier
:
2331 blk_mq_remove_cpuhp(hctx
);
2335 static struct blk_mq_hw_ctx
*
2336 blk_mq_alloc_hctx(struct request_queue
*q
, struct blk_mq_tag_set
*set
,
2339 struct blk_mq_hw_ctx
*hctx
;
2340 gfp_t gfp
= GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
;
2342 hctx
= kzalloc_node(blk_mq_hw_ctx_size(set
), gfp
, node
);
2344 goto fail_alloc_hctx
;
2346 if (!zalloc_cpumask_var_node(&hctx
->cpumask
, gfp
, node
))
2349 atomic_set(&hctx
->nr_active
, 0);
2350 if (node
== NUMA_NO_NODE
)
2351 node
= set
->numa_node
;
2352 hctx
->numa_node
= node
;
2354 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
2355 spin_lock_init(&hctx
->lock
);
2356 INIT_LIST_HEAD(&hctx
->dispatch
);
2358 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
2360 INIT_LIST_HEAD(&hctx
->hctx_list
);
2363 * Allocate space for all possible cpus to avoid allocation at
2366 hctx
->ctxs
= kmalloc_array_node(nr_cpu_ids
, sizeof(void *),
2371 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8),
2376 spin_lock_init(&hctx
->dispatch_wait_lock
);
2377 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
2378 INIT_LIST_HEAD(&hctx
->dispatch_wait
.entry
);
2380 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
,
2385 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2386 init_srcu_struct(hctx
->srcu
);
2387 blk_mq_hctx_kobj_init(hctx
);
2392 sbitmap_free(&hctx
->ctx_map
);
2396 free_cpumask_var(hctx
->cpumask
);
2403 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
2404 unsigned int nr_hw_queues
)
2406 struct blk_mq_tag_set
*set
= q
->tag_set
;
2409 for_each_possible_cpu(i
) {
2410 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2411 struct blk_mq_hw_ctx
*hctx
;
2415 spin_lock_init(&__ctx
->lock
);
2416 for (k
= HCTX_TYPE_DEFAULT
; k
< HCTX_MAX_TYPES
; k
++)
2417 INIT_LIST_HEAD(&__ctx
->rq_lists
[k
]);
2422 * Set local node, IFF we have more than one hw queue. If
2423 * not, we remain on the home node of the device
2425 for (j
= 0; j
< set
->nr_maps
; j
++) {
2426 hctx
= blk_mq_map_queue_type(q
, j
, i
);
2427 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
2428 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
2433 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
, int hctx_idx
)
2437 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
2438 set
->queue_depth
, set
->reserved_tags
);
2439 if (!set
->tags
[hctx_idx
])
2442 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
2447 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2448 set
->tags
[hctx_idx
] = NULL
;
2452 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
2453 unsigned int hctx_idx
)
2455 if (set
->tags
&& set
->tags
[hctx_idx
]) {
2456 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
2457 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2458 set
->tags
[hctx_idx
] = NULL
;
2462 static void blk_mq_map_swqueue(struct request_queue
*q
)
2464 unsigned int i
, j
, hctx_idx
;
2465 struct blk_mq_hw_ctx
*hctx
;
2466 struct blk_mq_ctx
*ctx
;
2467 struct blk_mq_tag_set
*set
= q
->tag_set
;
2469 queue_for_each_hw_ctx(q
, hctx
, i
) {
2470 cpumask_clear(hctx
->cpumask
);
2472 hctx
->dispatch_from
= NULL
;
2476 * Map software to hardware queues.
2478 * If the cpu isn't present, the cpu is mapped to first hctx.
2480 for_each_possible_cpu(i
) {
2481 hctx_idx
= set
->map
[HCTX_TYPE_DEFAULT
].mq_map
[i
];
2482 /* unmapped hw queue can be remapped after CPU topo changed */
2483 if (!set
->tags
[hctx_idx
] &&
2484 !__blk_mq_alloc_rq_map(set
, hctx_idx
)) {
2486 * If tags initialization fail for some hctx,
2487 * that hctx won't be brought online. In this
2488 * case, remap the current ctx to hctx[0] which
2489 * is guaranteed to always have tags allocated
2491 set
->map
[HCTX_TYPE_DEFAULT
].mq_map
[i
] = 0;
2494 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2495 for (j
= 0; j
< set
->nr_maps
; j
++) {
2496 if (!set
->map
[j
].nr_queues
) {
2497 ctx
->hctxs
[j
] = blk_mq_map_queue_type(q
,
2498 HCTX_TYPE_DEFAULT
, i
);
2502 hctx
= blk_mq_map_queue_type(q
, j
, i
);
2503 ctx
->hctxs
[j
] = hctx
;
2505 * If the CPU is already set in the mask, then we've
2506 * mapped this one already. This can happen if
2507 * devices share queues across queue maps.
2509 if (cpumask_test_cpu(i
, hctx
->cpumask
))
2512 cpumask_set_cpu(i
, hctx
->cpumask
);
2514 ctx
->index_hw
[hctx
->type
] = hctx
->nr_ctx
;
2515 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2518 * If the nr_ctx type overflows, we have exceeded the
2519 * amount of sw queues we can support.
2521 BUG_ON(!hctx
->nr_ctx
);
2524 for (; j
< HCTX_MAX_TYPES
; j
++)
2525 ctx
->hctxs
[j
] = blk_mq_map_queue_type(q
,
2526 HCTX_TYPE_DEFAULT
, i
);
2529 queue_for_each_hw_ctx(q
, hctx
, i
) {
2531 * If no software queues are mapped to this hardware queue,
2532 * disable it and free the request entries.
2534 if (!hctx
->nr_ctx
) {
2535 /* Never unmap queue 0. We need it as a
2536 * fallback in case of a new remap fails
2539 if (i
&& set
->tags
[i
])
2540 blk_mq_free_map_and_requests(set
, i
);
2546 hctx
->tags
= set
->tags
[i
];
2547 WARN_ON(!hctx
->tags
);
2550 * Set the map size to the number of mapped software queues.
2551 * This is more accurate and more efficient than looping
2552 * over all possibly mapped software queues.
2554 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2557 * Initialize batch roundrobin counts
2559 hctx
->next_cpu
= blk_mq_first_mapped_cpu(hctx
);
2560 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2565 * Caller needs to ensure that we're either frozen/quiesced, or that
2566 * the queue isn't live yet.
2568 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2570 struct blk_mq_hw_ctx
*hctx
;
2573 queue_for_each_hw_ctx(q
, hctx
, i
) {
2575 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
2577 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2581 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
,
2584 struct request_queue
*q
;
2586 lockdep_assert_held(&set
->tag_list_lock
);
2588 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2589 blk_mq_freeze_queue(q
);
2590 queue_set_hctx_shared(q
, shared
);
2591 blk_mq_unfreeze_queue(q
);
2595 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2597 struct blk_mq_tag_set
*set
= q
->tag_set
;
2599 mutex_lock(&set
->tag_list_lock
);
2600 list_del_rcu(&q
->tag_set_list
);
2601 if (list_is_singular(&set
->tag_list
)) {
2602 /* just transitioned to unshared */
2603 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2604 /* update existing queue */
2605 blk_mq_update_tag_set_depth(set
, false);
2607 mutex_unlock(&set
->tag_list_lock
);
2608 INIT_LIST_HEAD(&q
->tag_set_list
);
2611 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2612 struct request_queue
*q
)
2614 mutex_lock(&set
->tag_list_lock
);
2617 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2619 if (!list_empty(&set
->tag_list
) &&
2620 !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2621 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2622 /* update existing queue */
2623 blk_mq_update_tag_set_depth(set
, true);
2625 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2626 queue_set_hctx_shared(q
, true);
2627 list_add_tail_rcu(&q
->tag_set_list
, &set
->tag_list
);
2629 mutex_unlock(&set
->tag_list_lock
);
2632 /* All allocations will be freed in release handler of q->mq_kobj */
2633 static int blk_mq_alloc_ctxs(struct request_queue
*q
)
2635 struct blk_mq_ctxs
*ctxs
;
2638 ctxs
= kzalloc(sizeof(*ctxs
), GFP_KERNEL
);
2642 ctxs
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2643 if (!ctxs
->queue_ctx
)
2646 for_each_possible_cpu(cpu
) {
2647 struct blk_mq_ctx
*ctx
= per_cpu_ptr(ctxs
->queue_ctx
, cpu
);
2651 q
->mq_kobj
= &ctxs
->kobj
;
2652 q
->queue_ctx
= ctxs
->queue_ctx
;
2661 * It is the actual release handler for mq, but we do it from
2662 * request queue's release handler for avoiding use-after-free
2663 * and headache because q->mq_kobj shouldn't have been introduced,
2664 * but we can't group ctx/kctx kobj without it.
2666 void blk_mq_release(struct request_queue
*q
)
2668 struct blk_mq_hw_ctx
*hctx
, *next
;
2671 queue_for_each_hw_ctx(q
, hctx
, i
)
2672 WARN_ON_ONCE(hctx
&& list_empty(&hctx
->hctx_list
));
2674 /* all hctx are in .unused_hctx_list now */
2675 list_for_each_entry_safe(hctx
, next
, &q
->unused_hctx_list
, hctx_list
) {
2676 list_del_init(&hctx
->hctx_list
);
2677 kobject_put(&hctx
->kobj
);
2680 kfree(q
->queue_hw_ctx
);
2683 * release .mq_kobj and sw queue's kobject now because
2684 * both share lifetime with request queue.
2686 blk_mq_sysfs_deinit(q
);
2689 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2691 struct request_queue
*uninit_q
, *q
;
2693 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
2695 return ERR_PTR(-ENOMEM
);
2698 * Initialize the queue without an elevator. device_add_disk() will do
2699 * the initialization.
2701 q
= blk_mq_init_allocated_queue(set
, uninit_q
, false);
2703 blk_cleanup_queue(uninit_q
);
2707 EXPORT_SYMBOL(blk_mq_init_queue
);
2710 * Helper for setting up a queue with mq ops, given queue depth, and
2711 * the passed in mq ops flags.
2713 struct request_queue
*blk_mq_init_sq_queue(struct blk_mq_tag_set
*set
,
2714 const struct blk_mq_ops
*ops
,
2715 unsigned int queue_depth
,
2716 unsigned int set_flags
)
2718 struct request_queue
*q
;
2721 memset(set
, 0, sizeof(*set
));
2723 set
->nr_hw_queues
= 1;
2725 set
->queue_depth
= queue_depth
;
2726 set
->numa_node
= NUMA_NO_NODE
;
2727 set
->flags
= set_flags
;
2729 ret
= blk_mq_alloc_tag_set(set
);
2731 return ERR_PTR(ret
);
2733 q
= blk_mq_init_queue(set
);
2735 blk_mq_free_tag_set(set
);
2741 EXPORT_SYMBOL(blk_mq_init_sq_queue
);
2743 static struct blk_mq_hw_ctx
*blk_mq_alloc_and_init_hctx(
2744 struct blk_mq_tag_set
*set
, struct request_queue
*q
,
2745 int hctx_idx
, int node
)
2747 struct blk_mq_hw_ctx
*hctx
= NULL
, *tmp
;
2749 /* reuse dead hctx first */
2750 spin_lock(&q
->unused_hctx_lock
);
2751 list_for_each_entry(tmp
, &q
->unused_hctx_list
, hctx_list
) {
2752 if (tmp
->numa_node
== node
) {
2758 list_del_init(&hctx
->hctx_list
);
2759 spin_unlock(&q
->unused_hctx_lock
);
2762 hctx
= blk_mq_alloc_hctx(q
, set
, node
);
2766 if (blk_mq_init_hctx(q
, set
, hctx
, hctx_idx
))
2772 kobject_put(&hctx
->kobj
);
2777 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2778 struct request_queue
*q
)
2781 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2783 /* protect against switching io scheduler */
2784 mutex_lock(&q
->sysfs_lock
);
2785 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2787 struct blk_mq_hw_ctx
*hctx
;
2789 node
= blk_mq_hw_queue_to_node(&set
->map
[HCTX_TYPE_DEFAULT
], i
);
2791 * If the hw queue has been mapped to another numa node,
2792 * we need to realloc the hctx. If allocation fails, fallback
2793 * to use the previous one.
2795 if (hctxs
[i
] && (hctxs
[i
]->numa_node
== node
))
2798 hctx
= blk_mq_alloc_and_init_hctx(set
, q
, i
, node
);
2801 blk_mq_exit_hctx(q
, set
, hctxs
[i
], i
);
2805 pr_warn("Allocate new hctx on node %d fails,\
2806 fallback to previous one on node %d\n",
2807 node
, hctxs
[i
]->numa_node
);
2813 * Increasing nr_hw_queues fails. Free the newly allocated
2814 * hctxs and keep the previous q->nr_hw_queues.
2816 if (i
!= set
->nr_hw_queues
) {
2817 j
= q
->nr_hw_queues
;
2821 end
= q
->nr_hw_queues
;
2822 q
->nr_hw_queues
= set
->nr_hw_queues
;
2825 for (; j
< end
; j
++) {
2826 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2830 blk_mq_free_map_and_requests(set
, j
);
2831 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2835 mutex_unlock(&q
->sysfs_lock
);
2839 * Maximum number of hardware queues we support. For single sets, we'll never
2840 * have more than the CPUs (software queues). For multiple sets, the tag_set
2841 * user may have set ->nr_hw_queues larger.
2843 static unsigned int nr_hw_queues(struct blk_mq_tag_set
*set
)
2845 if (set
->nr_maps
== 1)
2848 return max(set
->nr_hw_queues
, nr_cpu_ids
);
2851 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2852 struct request_queue
*q
,
2855 /* mark the queue as mq asap */
2856 q
->mq_ops
= set
->ops
;
2858 q
->poll_cb
= blk_stat_alloc_callback(blk_mq_poll_stats_fn
,
2859 blk_mq_poll_stats_bkt
,
2860 BLK_MQ_POLL_STATS_BKTS
, q
);
2864 if (blk_mq_alloc_ctxs(q
))
2867 /* init q->mq_kobj and sw queues' kobjects */
2868 blk_mq_sysfs_init(q
);
2870 q
->nr_queues
= nr_hw_queues(set
);
2871 q
->queue_hw_ctx
= kcalloc_node(q
->nr_queues
, sizeof(*(q
->queue_hw_ctx
)),
2872 GFP_KERNEL
, set
->numa_node
);
2873 if (!q
->queue_hw_ctx
)
2876 INIT_LIST_HEAD(&q
->unused_hctx_list
);
2877 spin_lock_init(&q
->unused_hctx_lock
);
2879 blk_mq_realloc_hw_ctxs(set
, q
);
2880 if (!q
->nr_hw_queues
)
2883 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2884 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2888 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2889 if (set
->nr_maps
> HCTX_TYPE_POLL
&&
2890 set
->map
[HCTX_TYPE_POLL
].nr_queues
)
2891 blk_queue_flag_set(QUEUE_FLAG_POLL
, q
);
2893 q
->sg_reserved_size
= INT_MAX
;
2895 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2896 INIT_LIST_HEAD(&q
->requeue_list
);
2897 spin_lock_init(&q
->requeue_lock
);
2899 blk_queue_make_request(q
, blk_mq_make_request
);
2902 * Do this after blk_queue_make_request() overrides it...
2904 q
->nr_requests
= set
->queue_depth
;
2907 * Default to classic polling
2909 q
->poll_nsec
= BLK_MQ_POLL_CLASSIC
;
2911 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2912 blk_mq_add_queue_tag_set(set
, q
);
2913 blk_mq_map_swqueue(q
);
2916 elevator_init_mq(q
);
2921 kfree(q
->queue_hw_ctx
);
2922 q
->nr_hw_queues
= 0;
2924 blk_mq_sysfs_deinit(q
);
2926 blk_stat_free_callback(q
->poll_cb
);
2930 return ERR_PTR(-ENOMEM
);
2932 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2934 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2935 void blk_mq_exit_queue(struct request_queue
*q
)
2937 struct blk_mq_tag_set
*set
= q
->tag_set
;
2939 blk_mq_del_queue_tag_set(q
);
2940 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2943 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2947 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
2948 if (!__blk_mq_alloc_rq_map(set
, i
))
2955 blk_mq_free_rq_map(set
->tags
[i
]);
2961 * Allocate the request maps associated with this tag_set. Note that this
2962 * may reduce the depth asked for, if memory is tight. set->queue_depth
2963 * will be updated to reflect the allocated depth.
2965 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2970 depth
= set
->queue_depth
;
2972 err
= __blk_mq_alloc_rq_maps(set
);
2976 set
->queue_depth
>>= 1;
2977 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2981 } while (set
->queue_depth
);
2983 if (!set
->queue_depth
|| err
) {
2984 pr_err("blk-mq: failed to allocate request map\n");
2988 if (depth
!= set
->queue_depth
)
2989 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2990 depth
, set
->queue_depth
);
2995 static int blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
2997 if (set
->ops
->map_queues
&& !is_kdump_kernel()) {
3001 * transport .map_queues is usually done in the following
3004 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3005 * mask = get_cpu_mask(queue)
3006 * for_each_cpu(cpu, mask)
3007 * set->map[x].mq_map[cpu] = queue;
3010 * When we need to remap, the table has to be cleared for
3011 * killing stale mapping since one CPU may not be mapped
3014 for (i
= 0; i
< set
->nr_maps
; i
++)
3015 blk_mq_clear_mq_map(&set
->map
[i
]);
3017 return set
->ops
->map_queues(set
);
3019 BUG_ON(set
->nr_maps
> 1);
3020 return blk_mq_map_queues(&set
->map
[HCTX_TYPE_DEFAULT
]);
3025 * Alloc a tag set to be associated with one or more request queues.
3026 * May fail with EINVAL for various error conditions. May adjust the
3027 * requested depth down, if it's too large. In that case, the set
3028 * value will be stored in set->queue_depth.
3030 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
3034 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
3036 if (!set
->nr_hw_queues
)
3038 if (!set
->queue_depth
)
3040 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
3043 if (!set
->ops
->queue_rq
)
3046 if (!set
->ops
->get_budget
^ !set
->ops
->put_budget
)
3049 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
3050 pr_info("blk-mq: reduced tag depth to %u\n",
3052 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
3057 else if (set
->nr_maps
> HCTX_MAX_TYPES
)
3061 * If a crashdump is active, then we are potentially in a very
3062 * memory constrained environment. Limit us to 1 queue and
3063 * 64 tags to prevent using too much memory.
3065 if (is_kdump_kernel()) {
3066 set
->nr_hw_queues
= 1;
3068 set
->queue_depth
= min(64U, set
->queue_depth
);
3071 * There is no use for more h/w queues than cpus if we just have
3074 if (set
->nr_maps
== 1 && set
->nr_hw_queues
> nr_cpu_ids
)
3075 set
->nr_hw_queues
= nr_cpu_ids
;
3077 set
->tags
= kcalloc_node(nr_hw_queues(set
), sizeof(struct blk_mq_tags
*),
3078 GFP_KERNEL
, set
->numa_node
);
3083 for (i
= 0; i
< set
->nr_maps
; i
++) {
3084 set
->map
[i
].mq_map
= kcalloc_node(nr_cpu_ids
,
3085 sizeof(set
->map
[i
].mq_map
[0]),
3086 GFP_KERNEL
, set
->numa_node
);
3087 if (!set
->map
[i
].mq_map
)
3088 goto out_free_mq_map
;
3089 set
->map
[i
].nr_queues
= is_kdump_kernel() ? 1 : set
->nr_hw_queues
;
3092 ret
= blk_mq_update_queue_map(set
);
3094 goto out_free_mq_map
;
3096 ret
= blk_mq_alloc_rq_maps(set
);
3098 goto out_free_mq_map
;
3100 mutex_init(&set
->tag_list_lock
);
3101 INIT_LIST_HEAD(&set
->tag_list
);
3106 for (i
= 0; i
< set
->nr_maps
; i
++) {
3107 kfree(set
->map
[i
].mq_map
);
3108 set
->map
[i
].mq_map
= NULL
;
3114 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
3116 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
3120 for (i
= 0; i
< nr_hw_queues(set
); i
++)
3121 blk_mq_free_map_and_requests(set
, i
);
3123 for (j
= 0; j
< set
->nr_maps
; j
++) {
3124 kfree(set
->map
[j
].mq_map
);
3125 set
->map
[j
].mq_map
= NULL
;
3131 EXPORT_SYMBOL(blk_mq_free_tag_set
);
3133 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
3135 struct blk_mq_tag_set
*set
= q
->tag_set
;
3136 struct blk_mq_hw_ctx
*hctx
;
3142 if (q
->nr_requests
== nr
)
3145 blk_mq_freeze_queue(q
);
3146 blk_mq_quiesce_queue(q
);
3149 queue_for_each_hw_ctx(q
, hctx
, i
) {
3153 * If we're using an MQ scheduler, just update the scheduler
3154 * queue depth. This is similar to what the old code would do.
3156 if (!hctx
->sched_tags
) {
3157 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
, nr
,
3160 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
3165 if (q
->elevator
&& q
->elevator
->type
->ops
.depth_updated
)
3166 q
->elevator
->type
->ops
.depth_updated(hctx
);
3170 q
->nr_requests
= nr
;
3172 blk_mq_unquiesce_queue(q
);
3173 blk_mq_unfreeze_queue(q
);
3179 * request_queue and elevator_type pair.
3180 * It is just used by __blk_mq_update_nr_hw_queues to cache
3181 * the elevator_type associated with a request_queue.
3183 struct blk_mq_qe_pair
{
3184 struct list_head node
;
3185 struct request_queue
*q
;
3186 struct elevator_type
*type
;
3190 * Cache the elevator_type in qe pair list and switch the
3191 * io scheduler to 'none'
3193 static bool blk_mq_elv_switch_none(struct list_head
*head
,
3194 struct request_queue
*q
)
3196 struct blk_mq_qe_pair
*qe
;
3201 qe
= kmalloc(sizeof(*qe
), GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
);
3205 INIT_LIST_HEAD(&qe
->node
);
3207 qe
->type
= q
->elevator
->type
;
3208 list_add(&qe
->node
, head
);
3210 mutex_lock(&q
->sysfs_lock
);
3212 * After elevator_switch_mq, the previous elevator_queue will be
3213 * released by elevator_release. The reference of the io scheduler
3214 * module get by elevator_get will also be put. So we need to get
3215 * a reference of the io scheduler module here to prevent it to be
3218 __module_get(qe
->type
->elevator_owner
);
3219 elevator_switch_mq(q
, NULL
);
3220 mutex_unlock(&q
->sysfs_lock
);
3225 static void blk_mq_elv_switch_back(struct list_head
*head
,
3226 struct request_queue
*q
)
3228 struct blk_mq_qe_pair
*qe
;
3229 struct elevator_type
*t
= NULL
;
3231 list_for_each_entry(qe
, head
, node
)
3240 list_del(&qe
->node
);
3243 mutex_lock(&q
->sysfs_lock
);
3244 elevator_switch_mq(q
, t
);
3245 mutex_unlock(&q
->sysfs_lock
);
3248 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
3251 struct request_queue
*q
;
3253 int prev_nr_hw_queues
;
3255 lockdep_assert_held(&set
->tag_list_lock
);
3257 if (set
->nr_maps
== 1 && nr_hw_queues
> nr_cpu_ids
)
3258 nr_hw_queues
= nr_cpu_ids
;
3259 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
3262 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3263 blk_mq_freeze_queue(q
);
3265 * Sync with blk_mq_queue_tag_busy_iter.
3269 * Switch IO scheduler to 'none', cleaning up the data associated
3270 * with the previous scheduler. We will switch back once we are done
3271 * updating the new sw to hw queue mappings.
3273 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3274 if (!blk_mq_elv_switch_none(&head
, q
))
3277 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3278 blk_mq_debugfs_unregister_hctxs(q
);
3279 blk_mq_sysfs_unregister(q
);
3282 prev_nr_hw_queues
= set
->nr_hw_queues
;
3283 set
->nr_hw_queues
= nr_hw_queues
;
3284 blk_mq_update_queue_map(set
);
3286 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3287 blk_mq_realloc_hw_ctxs(set
, q
);
3288 if (q
->nr_hw_queues
!= set
->nr_hw_queues
) {
3289 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3290 nr_hw_queues
, prev_nr_hw_queues
);
3291 set
->nr_hw_queues
= prev_nr_hw_queues
;
3292 blk_mq_map_queues(&set
->map
[HCTX_TYPE_DEFAULT
]);
3295 blk_mq_map_swqueue(q
);
3298 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3299 blk_mq_sysfs_register(q
);
3300 blk_mq_debugfs_register_hctxs(q
);
3304 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3305 blk_mq_elv_switch_back(&head
, q
);
3307 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3308 blk_mq_unfreeze_queue(q
);
3311 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
3313 mutex_lock(&set
->tag_list_lock
);
3314 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
3315 mutex_unlock(&set
->tag_list_lock
);
3317 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
3319 /* Enable polling stats and return whether they were already enabled. */
3320 static bool blk_poll_stats_enable(struct request_queue
*q
)
3322 if (test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3323 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS
, q
))
3325 blk_stat_add_callback(q
, q
->poll_cb
);
3329 static void blk_mq_poll_stats_start(struct request_queue
*q
)
3332 * We don't arm the callback if polling stats are not enabled or the
3333 * callback is already active.
3335 if (!test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3336 blk_stat_is_active(q
->poll_cb
))
3339 blk_stat_activate_msecs(q
->poll_cb
, 100);
3342 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
)
3344 struct request_queue
*q
= cb
->data
;
3347 for (bucket
= 0; bucket
< BLK_MQ_POLL_STATS_BKTS
; bucket
++) {
3348 if (cb
->stat
[bucket
].nr_samples
)
3349 q
->poll_stat
[bucket
] = cb
->stat
[bucket
];
3353 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
3354 struct blk_mq_hw_ctx
*hctx
,
3357 unsigned long ret
= 0;
3361 * If stats collection isn't on, don't sleep but turn it on for
3364 if (!blk_poll_stats_enable(q
))
3368 * As an optimistic guess, use half of the mean service time
3369 * for this type of request. We can (and should) make this smarter.
3370 * For instance, if the completion latencies are tight, we can
3371 * get closer than just half the mean. This is especially
3372 * important on devices where the completion latencies are longer
3373 * than ~10 usec. We do use the stats for the relevant IO size
3374 * if available which does lead to better estimates.
3376 bucket
= blk_mq_poll_stats_bkt(rq
);
3380 if (q
->poll_stat
[bucket
].nr_samples
)
3381 ret
= (q
->poll_stat
[bucket
].mean
+ 1) / 2;
3386 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
3387 struct blk_mq_hw_ctx
*hctx
,
3390 struct hrtimer_sleeper hs
;
3391 enum hrtimer_mode mode
;
3395 if (rq
->rq_flags
& RQF_MQ_POLL_SLEPT
)
3399 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3401 * 0: use half of prev avg
3402 * >0: use this specific value
3404 if (q
->poll_nsec
> 0)
3405 nsecs
= q
->poll_nsec
;
3407 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
3412 rq
->rq_flags
|= RQF_MQ_POLL_SLEPT
;
3415 * This will be replaced with the stats tracking code, using
3416 * 'avg_completion_time / 2' as the pre-sleep target.
3420 mode
= HRTIMER_MODE_REL
;
3421 hrtimer_init_sleeper_on_stack(&hs
, CLOCK_MONOTONIC
, mode
);
3422 hrtimer_set_expires(&hs
.timer
, kt
);
3425 if (blk_mq_rq_state(rq
) == MQ_RQ_COMPLETE
)
3427 set_current_state(TASK_UNINTERRUPTIBLE
);
3428 hrtimer_sleeper_start_expires(&hs
, mode
);
3431 hrtimer_cancel(&hs
.timer
);
3432 mode
= HRTIMER_MODE_ABS
;
3433 } while (hs
.task
&& !signal_pending(current
));
3435 __set_current_state(TASK_RUNNING
);
3436 destroy_hrtimer_on_stack(&hs
.timer
);
3440 static bool blk_mq_poll_hybrid(struct request_queue
*q
,
3441 struct blk_mq_hw_ctx
*hctx
, blk_qc_t cookie
)
3445 if (q
->poll_nsec
== BLK_MQ_POLL_CLASSIC
)
3448 if (!blk_qc_t_is_internal(cookie
))
3449 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
3451 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
3453 * With scheduling, if the request has completed, we'll
3454 * get a NULL return here, as we clear the sched tag when
3455 * that happens. The request still remains valid, like always,
3456 * so we should be safe with just the NULL check.
3462 return blk_mq_poll_hybrid_sleep(q
, hctx
, rq
);
3466 * blk_poll - poll for IO completions
3468 * @cookie: cookie passed back at IO submission time
3469 * @spin: whether to spin for completions
3472 * Poll for completions on the passed in queue. Returns number of
3473 * completed entries found. If @spin is true, then blk_poll will continue
3474 * looping until at least one completion is found, unless the task is
3475 * otherwise marked running (or we need to reschedule).
3477 int blk_poll(struct request_queue
*q
, blk_qc_t cookie
, bool spin
)
3479 struct blk_mq_hw_ctx
*hctx
;
3482 if (!blk_qc_t_valid(cookie
) ||
3483 !test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
3487 blk_flush_plug_list(current
->plug
, false);
3489 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
3492 * If we sleep, have the caller restart the poll loop to reset
3493 * the state. Like for the other success return cases, the
3494 * caller is responsible for checking if the IO completed. If
3495 * the IO isn't complete, we'll get called again and will go
3496 * straight to the busy poll loop.
3498 if (blk_mq_poll_hybrid(q
, hctx
, cookie
))
3501 hctx
->poll_considered
++;
3503 state
= current
->state
;
3507 hctx
->poll_invoked
++;
3509 ret
= q
->mq_ops
->poll(hctx
);
3511 hctx
->poll_success
++;
3512 __set_current_state(TASK_RUNNING
);
3516 if (signal_pending_state(state
, current
))
3517 __set_current_state(TASK_RUNNING
);
3519 if (current
->state
== TASK_RUNNING
)
3521 if (ret
< 0 || !spin
)
3524 } while (!need_resched());
3526 __set_current_state(TASK_RUNNING
);
3529 EXPORT_SYMBOL_GPL(blk_poll
);
3531 unsigned int blk_mq_rq_cpu(struct request
*rq
)
3533 return rq
->mq_ctx
->cpu
;
3535 EXPORT_SYMBOL(blk_mq_rq_cpu
);
3537 static int __init
blk_mq_init(void)
3539 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
3540 blk_mq_hctx_notify_dead
);
3543 subsys_initcall(blk_mq_init
);