2 * POSIX message queues filesystem for Linux.
4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
5 * Michal Wronski (michal.wronski@gmail.com)
7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
9 * Manfred Spraul (manfred@colorfullife.com)
11 * Audit: George Wilson (ltcgcw@us.ibm.com)
13 * This file is released under the GPL.
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
42 #define MQUEUE_MAGIC 0x19800202
43 #define DIRENT_SIZE 20
44 #define FILENT_SIZE 80
50 #define STATE_PENDING 1
53 struct posix_msg_tree_node
{
54 struct rb_node rb_node
;
55 struct list_head msg_list
;
59 struct ext_wait_queue
{ /* queue of sleeping tasks */
60 struct task_struct
*task
;
61 struct list_head list
;
62 struct msg_msg
*msg
; /* ptr of loaded message */
63 int state
; /* one of STATE_* values */
66 struct mqueue_inode_info
{
68 struct inode vfs_inode
;
69 wait_queue_head_t wait_q
;
71 struct rb_root msg_tree
;
72 struct posix_msg_tree_node
*node_cache
;
75 struct sigevent notify
;
76 struct pid
* notify_owner
;
77 struct user_namespace
*notify_user_ns
;
78 struct user_struct
*user
; /* user who created, for accounting */
79 struct sock
*notify_sock
;
80 struct sk_buff
*notify_cookie
;
82 /* for tasks waiting for free space and messages, respectively */
83 struct ext_wait_queue e_wait_q
[2];
85 unsigned long qsize
; /* size of queue in memory (sum of all msgs) */
88 static const struct inode_operations mqueue_dir_inode_operations
;
89 static const struct file_operations mqueue_file_operations
;
90 static const struct super_operations mqueue_super_ops
;
91 static void remove_notification(struct mqueue_inode_info
*info
);
93 static struct kmem_cache
*mqueue_inode_cachep
;
95 static struct ctl_table_header
* mq_sysctl_table
;
97 static inline struct mqueue_inode_info
*MQUEUE_I(struct inode
*inode
)
99 return container_of(inode
, struct mqueue_inode_info
, vfs_inode
);
103 * This routine should be called with the mq_lock held.
105 static inline struct ipc_namespace
*__get_ns_from_inode(struct inode
*inode
)
107 return get_ipc_ns(inode
->i_sb
->s_fs_info
);
110 static struct ipc_namespace
*get_ns_from_inode(struct inode
*inode
)
112 struct ipc_namespace
*ns
;
115 ns
= __get_ns_from_inode(inode
);
116 spin_unlock(&mq_lock
);
120 /* Auxiliary functions to manipulate messages' list */
121 static int msg_insert(struct msg_msg
*msg
, struct mqueue_inode_info
*info
)
123 struct rb_node
**p
, *parent
= NULL
;
124 struct posix_msg_tree_node
*leaf
;
126 p
= &info
->msg_tree
.rb_node
;
129 leaf
= rb_entry(parent
, struct posix_msg_tree_node
, rb_node
);
131 if (likely(leaf
->priority
== msg
->m_type
))
133 else if (msg
->m_type
< leaf
->priority
)
138 if (info
->node_cache
) {
139 leaf
= info
->node_cache
;
140 info
->node_cache
= NULL
;
142 leaf
= kmalloc(sizeof(*leaf
), GFP_ATOMIC
);
145 INIT_LIST_HEAD(&leaf
->msg_list
);
146 info
->qsize
+= sizeof(*leaf
);
148 leaf
->priority
= msg
->m_type
;
149 rb_link_node(&leaf
->rb_node
, parent
, p
);
150 rb_insert_color(&leaf
->rb_node
, &info
->msg_tree
);
152 info
->attr
.mq_curmsgs
++;
153 info
->qsize
+= msg
->m_ts
;
154 list_add_tail(&msg
->m_list
, &leaf
->msg_list
);
158 static inline struct msg_msg
*msg_get(struct mqueue_inode_info
*info
)
160 struct rb_node
**p
, *parent
= NULL
;
161 struct posix_msg_tree_node
*leaf
;
165 p
= &info
->msg_tree
.rb_node
;
169 * During insert, low priorities go to the left and high to the
170 * right. On receive, we want the highest priorities first, so
171 * walk all the way to the right.
176 if (info
->attr
.mq_curmsgs
) {
177 pr_warn_once("Inconsistency in POSIX message queue, "
178 "no tree element, but supposedly messages "
180 info
->attr
.mq_curmsgs
= 0;
184 leaf
= rb_entry(parent
, struct posix_msg_tree_node
, rb_node
);
185 if (unlikely(list_empty(&leaf
->msg_list
))) {
186 pr_warn_once("Inconsistency in POSIX message queue, "
187 "empty leaf node but we haven't implemented "
188 "lazy leaf delete!\n");
189 rb_erase(&leaf
->rb_node
, &info
->msg_tree
);
190 if (info
->node_cache
) {
191 info
->qsize
-= sizeof(*leaf
);
194 info
->node_cache
= leaf
;
198 msg
= list_first_entry(&leaf
->msg_list
,
199 struct msg_msg
, m_list
);
200 list_del(&msg
->m_list
);
201 if (list_empty(&leaf
->msg_list
)) {
202 rb_erase(&leaf
->rb_node
, &info
->msg_tree
);
203 if (info
->node_cache
) {
204 info
->qsize
-= sizeof(*leaf
);
207 info
->node_cache
= leaf
;
211 info
->attr
.mq_curmsgs
--;
212 info
->qsize
-= msg
->m_ts
;
216 static struct inode
*mqueue_get_inode(struct super_block
*sb
,
217 struct ipc_namespace
*ipc_ns
, umode_t mode
,
218 struct mq_attr
*attr
)
220 struct user_struct
*u
= current_user();
224 inode
= new_inode(sb
);
228 inode
->i_ino
= get_next_ino();
229 inode
->i_mode
= mode
;
230 inode
->i_uid
= current_fsuid();
231 inode
->i_gid
= current_fsgid();
232 inode
->i_mtime
= inode
->i_ctime
= inode
->i_atime
= CURRENT_TIME
;
235 struct mqueue_inode_info
*info
;
236 unsigned long mq_bytes
, mq_treesize
;
238 inode
->i_fop
= &mqueue_file_operations
;
239 inode
->i_size
= FILENT_SIZE
;
240 /* mqueue specific info */
241 info
= MQUEUE_I(inode
);
242 spin_lock_init(&info
->lock
);
243 init_waitqueue_head(&info
->wait_q
);
244 INIT_LIST_HEAD(&info
->e_wait_q
[0].list
);
245 INIT_LIST_HEAD(&info
->e_wait_q
[1].list
);
246 info
->notify_owner
= NULL
;
247 info
->notify_user_ns
= NULL
;
249 info
->user
= NULL
; /* set when all is ok */
250 info
->msg_tree
= RB_ROOT
;
251 info
->node_cache
= NULL
;
252 memset(&info
->attr
, 0, sizeof(info
->attr
));
253 info
->attr
.mq_maxmsg
= min(ipc_ns
->mq_msg_max
,
254 ipc_ns
->mq_msg_default
);
255 info
->attr
.mq_msgsize
= min(ipc_ns
->mq_msgsize_max
,
256 ipc_ns
->mq_msgsize_default
);
258 info
->attr
.mq_maxmsg
= attr
->mq_maxmsg
;
259 info
->attr
.mq_msgsize
= attr
->mq_msgsize
;
262 * We used to allocate a static array of pointers and account
263 * the size of that array as well as one msg_msg struct per
264 * possible message into the queue size. That's no longer
265 * accurate as the queue is now an rbtree and will grow and
266 * shrink depending on usage patterns. We can, however, still
267 * account one msg_msg struct per message, but the nodes are
268 * allocated depending on priority usage, and most programs
269 * only use one, or a handful, of priorities. However, since
270 * this is pinned memory, we need to assume worst case, so
271 * that means the min(mq_maxmsg, max_priorities) * struct
272 * posix_msg_tree_node.
274 mq_treesize
= info
->attr
.mq_maxmsg
* sizeof(struct msg_msg
) +
275 min_t(unsigned int, info
->attr
.mq_maxmsg
, MQ_PRIO_MAX
) *
276 sizeof(struct posix_msg_tree_node
);
278 mq_bytes
= mq_treesize
+ (info
->attr
.mq_maxmsg
*
279 info
->attr
.mq_msgsize
);
282 if (u
->mq_bytes
+ mq_bytes
< u
->mq_bytes
||
283 u
->mq_bytes
+ mq_bytes
> rlimit(RLIMIT_MSGQUEUE
)) {
284 spin_unlock(&mq_lock
);
285 /* mqueue_evict_inode() releases info->messages */
289 u
->mq_bytes
+= mq_bytes
;
290 spin_unlock(&mq_lock
);
293 info
->user
= get_uid(u
);
294 } else if (S_ISDIR(mode
)) {
296 /* Some things misbehave if size == 0 on a directory */
297 inode
->i_size
= 2 * DIRENT_SIZE
;
298 inode
->i_op
= &mqueue_dir_inode_operations
;
299 inode
->i_fop
= &simple_dir_operations
;
309 static int mqueue_fill_super(struct super_block
*sb
, void *data
, int silent
)
312 struct ipc_namespace
*ns
= data
;
314 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
315 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
316 sb
->s_magic
= MQUEUE_MAGIC
;
317 sb
->s_op
= &mqueue_super_ops
;
319 inode
= mqueue_get_inode(sb
, ns
, S_IFDIR
| S_ISVTX
| S_IRWXUGO
, NULL
);
321 return PTR_ERR(inode
);
323 sb
->s_root
= d_make_root(inode
);
329 static struct dentry
*mqueue_mount(struct file_system_type
*fs_type
,
330 int flags
, const char *dev_name
,
333 if (!(flags
& MS_KERNMOUNT
)) {
334 struct ipc_namespace
*ns
= current
->nsproxy
->ipc_ns
;
335 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
336 * over the ipc namespace.
338 if (!ns_capable(ns
->user_ns
, CAP_SYS_ADMIN
))
339 return ERR_PTR(-EPERM
);
343 return mount_ns(fs_type
, flags
, data
, mqueue_fill_super
);
346 static void init_once(void *foo
)
348 struct mqueue_inode_info
*p
= (struct mqueue_inode_info
*) foo
;
350 inode_init_once(&p
->vfs_inode
);
353 static struct inode
*mqueue_alloc_inode(struct super_block
*sb
)
355 struct mqueue_inode_info
*ei
;
357 ei
= kmem_cache_alloc(mqueue_inode_cachep
, GFP_KERNEL
);
360 return &ei
->vfs_inode
;
363 static void mqueue_i_callback(struct rcu_head
*head
)
365 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
366 kmem_cache_free(mqueue_inode_cachep
, MQUEUE_I(inode
));
369 static void mqueue_destroy_inode(struct inode
*inode
)
371 call_rcu(&inode
->i_rcu
, mqueue_i_callback
);
374 static void mqueue_evict_inode(struct inode
*inode
)
376 struct mqueue_inode_info
*info
;
377 struct user_struct
*user
;
378 unsigned long mq_bytes
, mq_treesize
;
379 struct ipc_namespace
*ipc_ns
;
384 if (S_ISDIR(inode
->i_mode
))
387 ipc_ns
= get_ns_from_inode(inode
);
388 info
= MQUEUE_I(inode
);
389 spin_lock(&info
->lock
);
390 while ((msg
= msg_get(info
)) != NULL
)
392 kfree(info
->node_cache
);
393 spin_unlock(&info
->lock
);
395 /* Total amount of bytes accounted for the mqueue */
396 mq_treesize
= info
->attr
.mq_maxmsg
* sizeof(struct msg_msg
) +
397 min_t(unsigned int, info
->attr
.mq_maxmsg
, MQ_PRIO_MAX
) *
398 sizeof(struct posix_msg_tree_node
);
400 mq_bytes
= mq_treesize
+ (info
->attr
.mq_maxmsg
*
401 info
->attr
.mq_msgsize
);
406 user
->mq_bytes
-= mq_bytes
;
408 * get_ns_from_inode() ensures that the
409 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
410 * to which we now hold a reference, or it is NULL.
411 * We can't put it here under mq_lock, though.
414 ipc_ns
->mq_queues_count
--;
415 spin_unlock(&mq_lock
);
422 static int mqueue_create(struct inode
*dir
, struct dentry
*dentry
,
423 umode_t mode
, bool excl
)
426 struct mq_attr
*attr
= dentry
->d_fsdata
;
428 struct ipc_namespace
*ipc_ns
;
431 ipc_ns
= __get_ns_from_inode(dir
);
437 if (ipc_ns
->mq_queues_count
>= ipc_ns
->mq_queues_max
&&
438 !capable(CAP_SYS_RESOURCE
)) {
442 ipc_ns
->mq_queues_count
++;
443 spin_unlock(&mq_lock
);
445 inode
= mqueue_get_inode(dir
->i_sb
, ipc_ns
, mode
, attr
);
447 error
= PTR_ERR(inode
);
449 ipc_ns
->mq_queues_count
--;
454 dir
->i_size
+= DIRENT_SIZE
;
455 dir
->i_ctime
= dir
->i_mtime
= dir
->i_atime
= CURRENT_TIME
;
457 d_instantiate(dentry
, inode
);
461 spin_unlock(&mq_lock
);
467 static int mqueue_unlink(struct inode
*dir
, struct dentry
*dentry
)
469 struct inode
*inode
= dentry
->d_inode
;
471 dir
->i_ctime
= dir
->i_mtime
= dir
->i_atime
= CURRENT_TIME
;
472 dir
->i_size
-= DIRENT_SIZE
;
479 * This is routine for system read from queue file.
480 * To avoid mess with doing here some sort of mq_receive we allow
481 * to read only queue size & notification info (the only values
482 * that are interesting from user point of view and aren't accessible
483 * through std routines)
485 static ssize_t
mqueue_read_file(struct file
*filp
, char __user
*u_data
,
486 size_t count
, loff_t
*off
)
488 struct mqueue_inode_info
*info
= MQUEUE_I(file_inode(filp
));
489 char buffer
[FILENT_SIZE
];
492 spin_lock(&info
->lock
);
493 snprintf(buffer
, sizeof(buffer
),
494 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
496 info
->notify_owner
? info
->notify
.sigev_notify
: 0,
497 (info
->notify_owner
&&
498 info
->notify
.sigev_notify
== SIGEV_SIGNAL
) ?
499 info
->notify
.sigev_signo
: 0,
500 pid_vnr(info
->notify_owner
));
501 spin_unlock(&info
->lock
);
502 buffer
[sizeof(buffer
)-1] = '\0';
504 ret
= simple_read_from_buffer(u_data
, count
, off
, buffer
,
509 file_inode(filp
)->i_atime
= file_inode(filp
)->i_ctime
= CURRENT_TIME
;
513 static int mqueue_flush_file(struct file
*filp
, fl_owner_t id
)
515 struct mqueue_inode_info
*info
= MQUEUE_I(file_inode(filp
));
517 spin_lock(&info
->lock
);
518 if (task_tgid(current
) == info
->notify_owner
)
519 remove_notification(info
);
521 spin_unlock(&info
->lock
);
525 static unsigned int mqueue_poll_file(struct file
*filp
, struct poll_table_struct
*poll_tab
)
527 struct mqueue_inode_info
*info
= MQUEUE_I(file_inode(filp
));
530 poll_wait(filp
, &info
->wait_q
, poll_tab
);
532 spin_lock(&info
->lock
);
533 if (info
->attr
.mq_curmsgs
)
534 retval
= POLLIN
| POLLRDNORM
;
536 if (info
->attr
.mq_curmsgs
< info
->attr
.mq_maxmsg
)
537 retval
|= POLLOUT
| POLLWRNORM
;
538 spin_unlock(&info
->lock
);
543 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
544 static void wq_add(struct mqueue_inode_info
*info
, int sr
,
545 struct ext_wait_queue
*ewp
)
547 struct ext_wait_queue
*walk
;
551 list_for_each_entry(walk
, &info
->e_wait_q
[sr
].list
, list
) {
552 if (walk
->task
->static_prio
<= current
->static_prio
) {
553 list_add_tail(&ewp
->list
, &walk
->list
);
557 list_add_tail(&ewp
->list
, &info
->e_wait_q
[sr
].list
);
561 * Puts current task to sleep. Caller must hold queue lock. After return
565 static int wq_sleep(struct mqueue_inode_info
*info
, int sr
,
566 ktime_t
*timeout
, struct ext_wait_queue
*ewp
)
571 wq_add(info
, sr
, ewp
);
574 set_current_state(TASK_INTERRUPTIBLE
);
576 spin_unlock(&info
->lock
);
577 time
= schedule_hrtimeout_range_clock(timeout
, 0,
578 HRTIMER_MODE_ABS
, CLOCK_REALTIME
);
580 while (ewp
->state
== STATE_PENDING
)
583 if (ewp
->state
== STATE_READY
) {
587 spin_lock(&info
->lock
);
588 if (ewp
->state
== STATE_READY
) {
592 if (signal_pending(current
)) {
593 retval
= -ERESTARTSYS
;
601 list_del(&ewp
->list
);
603 spin_unlock(&info
->lock
);
609 * Returns waiting task that should be serviced first or NULL if none exists
611 static struct ext_wait_queue
*wq_get_first_waiter(
612 struct mqueue_inode_info
*info
, int sr
)
614 struct list_head
*ptr
;
616 ptr
= info
->e_wait_q
[sr
].list
.prev
;
617 if (ptr
== &info
->e_wait_q
[sr
].list
)
619 return list_entry(ptr
, struct ext_wait_queue
, list
);
623 static inline void set_cookie(struct sk_buff
*skb
, char code
)
625 ((char*)skb
->data
)[NOTIFY_COOKIE_LEN
-1] = code
;
629 * The next function is only to split too long sys_mq_timedsend
631 static void __do_notify(struct mqueue_inode_info
*info
)
634 * invoked when there is registered process and there isn't process
635 * waiting synchronously for message AND state of queue changed from
636 * empty to not empty. Here we are sure that no one is waiting
638 if (info
->notify_owner
&&
639 info
->attr
.mq_curmsgs
== 1) {
640 struct siginfo sig_i
;
641 switch (info
->notify
.sigev_notify
) {
647 sig_i
.si_signo
= info
->notify
.sigev_signo
;
649 sig_i
.si_code
= SI_MESGQ
;
650 sig_i
.si_value
= info
->notify
.sigev_value
;
651 /* map current pid/uid into info->owner's namespaces */
653 sig_i
.si_pid
= task_tgid_nr_ns(current
,
654 ns_of_pid(info
->notify_owner
));
655 sig_i
.si_uid
= from_kuid_munged(info
->notify_user_ns
, current_uid());
658 kill_pid_info(info
->notify
.sigev_signo
,
659 &sig_i
, info
->notify_owner
);
662 set_cookie(info
->notify_cookie
, NOTIFY_WOKENUP
);
663 netlink_sendskb(info
->notify_sock
, info
->notify_cookie
);
666 /* after notification unregisters process */
667 put_pid(info
->notify_owner
);
668 put_user_ns(info
->notify_user_ns
);
669 info
->notify_owner
= NULL
;
670 info
->notify_user_ns
= NULL
;
672 wake_up(&info
->wait_q
);
675 static int prepare_timeout(const struct timespec __user
*u_abs_timeout
,
676 ktime_t
*expires
, struct timespec
*ts
)
678 if (copy_from_user(ts
, u_abs_timeout
, sizeof(struct timespec
)))
680 if (!timespec_valid(ts
))
683 *expires
= timespec_to_ktime(*ts
);
687 static void remove_notification(struct mqueue_inode_info
*info
)
689 if (info
->notify_owner
!= NULL
&&
690 info
->notify
.sigev_notify
== SIGEV_THREAD
) {
691 set_cookie(info
->notify_cookie
, NOTIFY_REMOVED
);
692 netlink_sendskb(info
->notify_sock
, info
->notify_cookie
);
694 put_pid(info
->notify_owner
);
695 put_user_ns(info
->notify_user_ns
);
696 info
->notify_owner
= NULL
;
697 info
->notify_user_ns
= NULL
;
700 static int mq_attr_ok(struct ipc_namespace
*ipc_ns
, struct mq_attr
*attr
)
703 unsigned long total_size
;
705 if (attr
->mq_maxmsg
<= 0 || attr
->mq_msgsize
<= 0)
707 if (capable(CAP_SYS_RESOURCE
)) {
708 if (attr
->mq_maxmsg
> HARD_MSGMAX
||
709 attr
->mq_msgsize
> HARD_MSGSIZEMAX
)
712 if (attr
->mq_maxmsg
> ipc_ns
->mq_msg_max
||
713 attr
->mq_msgsize
> ipc_ns
->mq_msgsize_max
)
716 /* check for overflow */
717 if (attr
->mq_msgsize
> ULONG_MAX
/attr
->mq_maxmsg
)
719 mq_treesize
= attr
->mq_maxmsg
* sizeof(struct msg_msg
) +
720 min_t(unsigned int, attr
->mq_maxmsg
, MQ_PRIO_MAX
) *
721 sizeof(struct posix_msg_tree_node
);
722 total_size
= attr
->mq_maxmsg
* attr
->mq_msgsize
;
723 if (total_size
+ mq_treesize
< total_size
)
729 * Invoked when creating a new queue via sys_mq_open
731 static struct file
*do_create(struct ipc_namespace
*ipc_ns
, struct inode
*dir
,
732 struct path
*path
, int oflag
, umode_t mode
,
733 struct mq_attr
*attr
)
735 const struct cred
*cred
= current_cred();
739 ret
= mq_attr_ok(ipc_ns
, attr
);
742 /* store for use during create */
743 path
->dentry
->d_fsdata
= attr
;
745 struct mq_attr def_attr
;
747 def_attr
.mq_maxmsg
= min(ipc_ns
->mq_msg_max
,
748 ipc_ns
->mq_msg_default
);
749 def_attr
.mq_msgsize
= min(ipc_ns
->mq_msgsize_max
,
750 ipc_ns
->mq_msgsize_default
);
751 ret
= mq_attr_ok(ipc_ns
, &def_attr
);
756 mode
&= ~current_umask();
757 ret
= vfs_create(dir
, path
->dentry
, mode
, true);
758 path
->dentry
->d_fsdata
= NULL
;
761 return dentry_open(path
, oflag
, cred
);
764 /* Opens existing queue */
765 static struct file
*do_open(struct path
*path
, int oflag
)
767 static const int oflag2acc
[O_ACCMODE
] = { MAY_READ
, MAY_WRITE
,
768 MAY_READ
| MAY_WRITE
};
770 if ((oflag
& O_ACCMODE
) == (O_RDWR
| O_WRONLY
))
771 return ERR_PTR(-EINVAL
);
772 acc
= oflag2acc
[oflag
& O_ACCMODE
];
773 if (inode_permission(path
->dentry
->d_inode
, acc
))
774 return ERR_PTR(-EACCES
);
775 return dentry_open(path
, oflag
, current_cred());
778 SYSCALL_DEFINE4(mq_open
, const char __user
*, u_name
, int, oflag
, umode_t
, mode
,
779 struct mq_attr __user
*, u_attr
)
783 struct filename
*name
;
786 struct ipc_namespace
*ipc_ns
= current
->nsproxy
->ipc_ns
;
787 struct vfsmount
*mnt
= ipc_ns
->mq_mnt
;
788 struct dentry
*root
= mnt
->mnt_root
;
791 if (u_attr
&& copy_from_user(&attr
, u_attr
, sizeof(struct mq_attr
)))
794 audit_mq_open(oflag
, mode
, u_attr
? &attr
: NULL
);
796 if (IS_ERR(name
= getname(u_name
)))
797 return PTR_ERR(name
);
799 fd
= get_unused_fd_flags(O_CLOEXEC
);
803 ro
= mnt_want_write(mnt
); /* we'll drop it in any case */
805 mutex_lock(&root
->d_inode
->i_mutex
);
806 path
.dentry
= lookup_one_len(name
->name
, root
, strlen(name
->name
));
807 if (IS_ERR(path
.dentry
)) {
808 error
= PTR_ERR(path
.dentry
);
811 path
.mnt
= mntget(mnt
);
813 if (oflag
& O_CREAT
) {
814 if (path
.dentry
->d_inode
) { /* entry already exists */
815 audit_inode(name
, path
.dentry
, 0);
816 if (oflag
& O_EXCL
) {
820 filp
= do_open(&path
, oflag
);
826 audit_inode_parent_hidden(name
, root
);
827 filp
= do_create(ipc_ns
, root
->d_inode
,
829 u_attr
? &attr
: NULL
);
832 if (!path
.dentry
->d_inode
) {
836 audit_inode(name
, path
.dentry
, 0);
837 filp
= do_open(&path
, oflag
);
841 fd_install(fd
, filp
);
843 error
= PTR_ERR(filp
);
851 mutex_unlock(&root
->d_inode
->i_mutex
);
859 SYSCALL_DEFINE1(mq_unlink
, const char __user
*, u_name
)
862 struct filename
*name
;
863 struct dentry
*dentry
;
864 struct inode
*inode
= NULL
;
865 struct ipc_namespace
*ipc_ns
= current
->nsproxy
->ipc_ns
;
866 struct vfsmount
*mnt
= ipc_ns
->mq_mnt
;
868 name
= getname(u_name
);
870 return PTR_ERR(name
);
872 audit_inode_parent_hidden(name
, mnt
->mnt_root
);
873 err
= mnt_want_write(mnt
);
876 mutex_lock_nested(&mnt
->mnt_root
->d_inode
->i_mutex
, I_MUTEX_PARENT
);
877 dentry
= lookup_one_len(name
->name
, mnt
->mnt_root
,
879 if (IS_ERR(dentry
)) {
880 err
= PTR_ERR(dentry
);
884 inode
= dentry
->d_inode
;
889 err
= vfs_unlink(dentry
->d_parent
->d_inode
, dentry
);
894 mutex_unlock(&mnt
->mnt_root
->d_inode
->i_mutex
);
904 /* Pipelined send and receive functions.
906 * If a receiver finds no waiting message, then it registers itself in the
907 * list of waiting receivers. A sender checks that list before adding the new
908 * message into the message array. If there is a waiting receiver, then it
909 * bypasses the message array and directly hands the message over to the
911 * The receiver accepts the message and returns without grabbing the queue
912 * spinlock. Therefore an intermediate STATE_PENDING state and memory barriers
913 * are necessary. The same algorithm is used for sysv semaphores, see
914 * ipc/sem.c for more details.
916 * The same algorithm is used for senders.
919 /* pipelined_send() - send a message directly to the task waiting in
920 * sys_mq_timedreceive() (without inserting message into a queue).
922 static inline void pipelined_send(struct mqueue_inode_info
*info
,
923 struct msg_msg
*message
,
924 struct ext_wait_queue
*receiver
)
926 receiver
->msg
= message
;
927 list_del(&receiver
->list
);
928 receiver
->state
= STATE_PENDING
;
929 wake_up_process(receiver
->task
);
931 receiver
->state
= STATE_READY
;
934 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
935 * gets its message and put to the queue (we have one free place for sure). */
936 static inline void pipelined_receive(struct mqueue_inode_info
*info
)
938 struct ext_wait_queue
*sender
= wq_get_first_waiter(info
, SEND
);
942 wake_up_interruptible(&info
->wait_q
);
945 if (msg_insert(sender
->msg
, info
))
947 list_del(&sender
->list
);
948 sender
->state
= STATE_PENDING
;
949 wake_up_process(sender
->task
);
951 sender
->state
= STATE_READY
;
954 SYSCALL_DEFINE5(mq_timedsend
, mqd_t
, mqdes
, const char __user
*, u_msg_ptr
,
955 size_t, msg_len
, unsigned int, msg_prio
,
956 const struct timespec __user
*, u_abs_timeout
)
960 struct ext_wait_queue wait
;
961 struct ext_wait_queue
*receiver
;
962 struct msg_msg
*msg_ptr
;
963 struct mqueue_inode_info
*info
;
964 ktime_t expires
, *timeout
= NULL
;
966 struct posix_msg_tree_node
*new_leaf
= NULL
;
970 int res
= prepare_timeout(u_abs_timeout
, &expires
, &ts
);
976 if (unlikely(msg_prio
>= (unsigned long) MQ_PRIO_MAX
))
979 audit_mq_sendrecv(mqdes
, msg_len
, msg_prio
, timeout
? &ts
: NULL
);
982 if (unlikely(!f
.file
)) {
987 inode
= file_inode(f
.file
);
988 if (unlikely(f
.file
->f_op
!= &mqueue_file_operations
)) {
992 info
= MQUEUE_I(inode
);
993 audit_inode(NULL
, f
.file
->f_path
.dentry
, 0);
995 if (unlikely(!(f
.file
->f_mode
& FMODE_WRITE
))) {
1000 if (unlikely(msg_len
> info
->attr
.mq_msgsize
)) {
1005 /* First try to allocate memory, before doing anything with
1006 * existing queues. */
1007 msg_ptr
= load_msg(u_msg_ptr
, msg_len
);
1008 if (IS_ERR(msg_ptr
)) {
1009 ret
= PTR_ERR(msg_ptr
);
1012 msg_ptr
->m_ts
= msg_len
;
1013 msg_ptr
->m_type
= msg_prio
;
1016 * msg_insert really wants us to have a valid, spare node struct so
1017 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1018 * fall back to that if necessary.
1020 if (!info
->node_cache
)
1021 new_leaf
= kmalloc(sizeof(*new_leaf
), GFP_KERNEL
);
1023 spin_lock(&info
->lock
);
1025 if (!info
->node_cache
&& new_leaf
) {
1026 /* Save our speculative allocation into the cache */
1027 INIT_LIST_HEAD(&new_leaf
->msg_list
);
1028 info
->node_cache
= new_leaf
;
1029 info
->qsize
+= sizeof(*new_leaf
);
1035 if (info
->attr
.mq_curmsgs
== info
->attr
.mq_maxmsg
) {
1036 if (f
.file
->f_flags
& O_NONBLOCK
) {
1039 wait
.task
= current
;
1040 wait
.msg
= (void *) msg_ptr
;
1041 wait
.state
= STATE_NONE
;
1042 ret
= wq_sleep(info
, SEND
, timeout
, &wait
);
1044 * wq_sleep must be called with info->lock held, and
1045 * returns with the lock released
1050 receiver
= wq_get_first_waiter(info
, RECV
);
1052 pipelined_send(info
, msg_ptr
, receiver
);
1054 /* adds message to the queue */
1055 ret
= msg_insert(msg_ptr
, info
);
1060 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
=
1064 spin_unlock(&info
->lock
);
1074 SYSCALL_DEFINE5(mq_timedreceive
, mqd_t
, mqdes
, char __user
*, u_msg_ptr
,
1075 size_t, msg_len
, unsigned int __user
*, u_msg_prio
,
1076 const struct timespec __user
*, u_abs_timeout
)
1079 struct msg_msg
*msg_ptr
;
1081 struct inode
*inode
;
1082 struct mqueue_inode_info
*info
;
1083 struct ext_wait_queue wait
;
1084 ktime_t expires
, *timeout
= NULL
;
1086 struct posix_msg_tree_node
*new_leaf
= NULL
;
1088 if (u_abs_timeout
) {
1089 int res
= prepare_timeout(u_abs_timeout
, &expires
, &ts
);
1095 audit_mq_sendrecv(mqdes
, msg_len
, 0, timeout
? &ts
: NULL
);
1098 if (unlikely(!f
.file
)) {
1103 inode
= file_inode(f
.file
);
1104 if (unlikely(f
.file
->f_op
!= &mqueue_file_operations
)) {
1108 info
= MQUEUE_I(inode
);
1109 audit_inode(NULL
, f
.file
->f_path
.dentry
, 0);
1111 if (unlikely(!(f
.file
->f_mode
& FMODE_READ
))) {
1116 /* checks if buffer is big enough */
1117 if (unlikely(msg_len
< info
->attr
.mq_msgsize
)) {
1123 * msg_insert really wants us to have a valid, spare node struct so
1124 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1125 * fall back to that if necessary.
1127 if (!info
->node_cache
)
1128 new_leaf
= kmalloc(sizeof(*new_leaf
), GFP_KERNEL
);
1130 spin_lock(&info
->lock
);
1132 if (!info
->node_cache
&& new_leaf
) {
1133 /* Save our speculative allocation into the cache */
1134 INIT_LIST_HEAD(&new_leaf
->msg_list
);
1135 info
->node_cache
= new_leaf
;
1136 info
->qsize
+= sizeof(*new_leaf
);
1141 if (info
->attr
.mq_curmsgs
== 0) {
1142 if (f
.file
->f_flags
& O_NONBLOCK
) {
1143 spin_unlock(&info
->lock
);
1146 wait
.task
= current
;
1147 wait
.state
= STATE_NONE
;
1148 ret
= wq_sleep(info
, RECV
, timeout
, &wait
);
1152 msg_ptr
= msg_get(info
);
1154 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
=
1157 /* There is now free space in queue. */
1158 pipelined_receive(info
);
1159 spin_unlock(&info
->lock
);
1163 ret
= msg_ptr
->m_ts
;
1165 if ((u_msg_prio
&& put_user(msg_ptr
->m_type
, u_msg_prio
)) ||
1166 store_msg(u_msg_ptr
, msg_ptr
, msg_ptr
->m_ts
)) {
1178 * Notes: the case when user wants us to deregister (with NULL as pointer)
1179 * and he isn't currently owner of notification, will be silently discarded.
1180 * It isn't explicitly defined in the POSIX.
1182 SYSCALL_DEFINE2(mq_notify
, mqd_t
, mqdes
,
1183 const struct sigevent __user
*, u_notification
)
1188 struct inode
*inode
;
1189 struct sigevent notification
;
1190 struct mqueue_inode_info
*info
;
1193 if (u_notification
) {
1194 if (copy_from_user(¬ification
, u_notification
,
1195 sizeof(struct sigevent
)))
1199 audit_mq_notify(mqdes
, u_notification
? ¬ification
: NULL
);
1203 if (u_notification
!= NULL
) {
1204 if (unlikely(notification
.sigev_notify
!= SIGEV_NONE
&&
1205 notification
.sigev_notify
!= SIGEV_SIGNAL
&&
1206 notification
.sigev_notify
!= SIGEV_THREAD
))
1208 if (notification
.sigev_notify
== SIGEV_SIGNAL
&&
1209 !valid_signal(notification
.sigev_signo
)) {
1212 if (notification
.sigev_notify
== SIGEV_THREAD
) {
1215 /* create the notify skb */
1216 nc
= alloc_skb(NOTIFY_COOKIE_LEN
, GFP_KERNEL
);
1221 if (copy_from_user(nc
->data
,
1222 notification
.sigev_value
.sival_ptr
,
1223 NOTIFY_COOKIE_LEN
)) {
1228 /* TODO: add a header? */
1229 skb_put(nc
, NOTIFY_COOKIE_LEN
);
1230 /* and attach it to the socket */
1232 f
= fdget(notification
.sigev_signo
);
1237 sock
= netlink_getsockbyfilp(f
.file
);
1240 ret
= PTR_ERR(sock
);
1245 timeo
= MAX_SCHEDULE_TIMEOUT
;
1246 ret
= netlink_attachskb(sock
, nc
, &timeo
, NULL
);
1263 inode
= file_inode(f
.file
);
1264 if (unlikely(f
.file
->f_op
!= &mqueue_file_operations
)) {
1268 info
= MQUEUE_I(inode
);
1271 spin_lock(&info
->lock
);
1272 if (u_notification
== NULL
) {
1273 if (info
->notify_owner
== task_tgid(current
)) {
1274 remove_notification(info
);
1275 inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
1277 } else if (info
->notify_owner
!= NULL
) {
1280 switch (notification
.sigev_notify
) {
1282 info
->notify
.sigev_notify
= SIGEV_NONE
;
1285 info
->notify_sock
= sock
;
1286 info
->notify_cookie
= nc
;
1289 info
->notify
.sigev_notify
= SIGEV_THREAD
;
1292 info
->notify
.sigev_signo
= notification
.sigev_signo
;
1293 info
->notify
.sigev_value
= notification
.sigev_value
;
1294 info
->notify
.sigev_notify
= SIGEV_SIGNAL
;
1298 info
->notify_owner
= get_pid(task_tgid(current
));
1299 info
->notify_user_ns
= get_user_ns(current_user_ns());
1300 inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
1302 spin_unlock(&info
->lock
);
1307 netlink_detachskb(sock
, nc
);
1314 SYSCALL_DEFINE3(mq_getsetattr
, mqd_t
, mqdes
,
1315 const struct mq_attr __user
*, u_mqstat
,
1316 struct mq_attr __user
*, u_omqstat
)
1319 struct mq_attr mqstat
, omqstat
;
1321 struct inode
*inode
;
1322 struct mqueue_inode_info
*info
;
1324 if (u_mqstat
!= NULL
) {
1325 if (copy_from_user(&mqstat
, u_mqstat
, sizeof(struct mq_attr
)))
1327 if (mqstat
.mq_flags
& (~O_NONBLOCK
))
1337 inode
= file_inode(f
.file
);
1338 if (unlikely(f
.file
->f_op
!= &mqueue_file_operations
)) {
1342 info
= MQUEUE_I(inode
);
1344 spin_lock(&info
->lock
);
1346 omqstat
= info
->attr
;
1347 omqstat
.mq_flags
= f
.file
->f_flags
& O_NONBLOCK
;
1349 audit_mq_getsetattr(mqdes
, &mqstat
);
1350 spin_lock(&f
.file
->f_lock
);
1351 if (mqstat
.mq_flags
& O_NONBLOCK
)
1352 f
.file
->f_flags
|= O_NONBLOCK
;
1354 f
.file
->f_flags
&= ~O_NONBLOCK
;
1355 spin_unlock(&f
.file
->f_lock
);
1357 inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
1360 spin_unlock(&info
->lock
);
1363 if (u_omqstat
!= NULL
&& copy_to_user(u_omqstat
, &omqstat
,
1364 sizeof(struct mq_attr
)))
1373 static const struct inode_operations mqueue_dir_inode_operations
= {
1374 .lookup
= simple_lookup
,
1375 .create
= mqueue_create
,
1376 .unlink
= mqueue_unlink
,
1379 static const struct file_operations mqueue_file_operations
= {
1380 .flush
= mqueue_flush_file
,
1381 .poll
= mqueue_poll_file
,
1382 .read
= mqueue_read_file
,
1383 .llseek
= default_llseek
,
1386 static const struct super_operations mqueue_super_ops
= {
1387 .alloc_inode
= mqueue_alloc_inode
,
1388 .destroy_inode
= mqueue_destroy_inode
,
1389 .evict_inode
= mqueue_evict_inode
,
1390 .statfs
= simple_statfs
,
1393 static struct file_system_type mqueue_fs_type
= {
1395 .mount
= mqueue_mount
,
1396 .kill_sb
= kill_litter_super
,
1397 .fs_flags
= FS_USERNS_MOUNT
,
1400 int mq_init_ns(struct ipc_namespace
*ns
)
1402 ns
->mq_queues_count
= 0;
1403 ns
->mq_queues_max
= DFLT_QUEUESMAX
;
1404 ns
->mq_msg_max
= DFLT_MSGMAX
;
1405 ns
->mq_msgsize_max
= DFLT_MSGSIZEMAX
;
1406 ns
->mq_msg_default
= DFLT_MSG
;
1407 ns
->mq_msgsize_default
= DFLT_MSGSIZE
;
1409 ns
->mq_mnt
= kern_mount_data(&mqueue_fs_type
, ns
);
1410 if (IS_ERR(ns
->mq_mnt
)) {
1411 int err
= PTR_ERR(ns
->mq_mnt
);
1418 void mq_clear_sbinfo(struct ipc_namespace
*ns
)
1420 ns
->mq_mnt
->mnt_sb
->s_fs_info
= NULL
;
1423 void mq_put_mnt(struct ipc_namespace
*ns
)
1425 kern_unmount(ns
->mq_mnt
);
1428 static int __init
init_mqueue_fs(void)
1432 mqueue_inode_cachep
= kmem_cache_create("mqueue_inode_cache",
1433 sizeof(struct mqueue_inode_info
), 0,
1434 SLAB_HWCACHE_ALIGN
, init_once
);
1435 if (mqueue_inode_cachep
== NULL
)
1438 /* ignore failures - they are not fatal */
1439 mq_sysctl_table
= mq_register_sysctl_table();
1441 error
= register_filesystem(&mqueue_fs_type
);
1445 spin_lock_init(&mq_lock
);
1447 error
= mq_init_ns(&init_ipc_ns
);
1449 goto out_filesystem
;
1454 unregister_filesystem(&mqueue_fs_type
);
1456 if (mq_sysctl_table
)
1457 unregister_sysctl_table(mq_sysctl_table
);
1458 kmem_cache_destroy(mqueue_inode_cachep
);
1462 __initcall(init_mqueue_fs
);