2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 #include <asm/sections.h>
28 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
29 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions
[INIT_PHYSMEM_REGIONS
] __initdata_memblock
;
34 struct memblock memblock __initdata_memblock
= {
35 .memory
.regions
= memblock_memory_init_regions
,
36 .memory
.cnt
= 1, /* empty dummy entry */
37 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
38 .memory
.name
= "memory",
40 .reserved
.regions
= memblock_reserved_init_regions
,
41 .reserved
.cnt
= 1, /* empty dummy entry */
42 .reserved
.max
= INIT_MEMBLOCK_REGIONS
,
43 .reserved
.name
= "reserved",
45 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
46 .physmem
.regions
= memblock_physmem_init_regions
,
47 .physmem
.cnt
= 1, /* empty dummy entry */
48 .physmem
.max
= INIT_PHYSMEM_REGIONS
,
49 .physmem
.name
= "physmem",
53 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
56 int memblock_debug __initdata_memblock
;
57 static bool system_has_some_mirror __initdata_memblock
= false;
58 static int memblock_can_resize __initdata_memblock
;
59 static int memblock_memory_in_slab __initdata_memblock
= 0;
60 static int memblock_reserved_in_slab __initdata_memblock
= 0;
62 ulong __init_memblock
choose_memblock_flags(void)
64 return system_has_some_mirror
? MEMBLOCK_MIRROR
: MEMBLOCK_NONE
;
67 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
68 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
70 return *size
= min(*size
, (phys_addr_t
)ULLONG_MAX
- base
);
74 * Address comparison utilities
76 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
77 phys_addr_t base2
, phys_addr_t size2
)
79 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
82 bool __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
83 phys_addr_t base
, phys_addr_t size
)
87 for (i
= 0; i
< type
->cnt
; i
++)
88 if (memblock_addrs_overlap(base
, size
, type
->regions
[i
].base
,
89 type
->regions
[i
].size
))
95 * __memblock_find_range_bottom_up - find free area utility in bottom-up
96 * @start: start of candidate range
97 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
98 * @size: size of free area to find
99 * @align: alignment of free area to find
100 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
101 * @flags: pick from blocks based on memory attributes
103 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
106 * Found address on success, 0 on failure.
108 static phys_addr_t __init_memblock
109 __memblock_find_range_bottom_up(phys_addr_t start
, phys_addr_t end
,
110 phys_addr_t size
, phys_addr_t align
, int nid
,
113 phys_addr_t this_start
, this_end
, cand
;
116 for_each_free_mem_range(i
, nid
, flags
, &this_start
, &this_end
, NULL
) {
117 this_start
= clamp(this_start
, start
, end
);
118 this_end
= clamp(this_end
, start
, end
);
120 cand
= round_up(this_start
, align
);
121 if (cand
< this_end
&& this_end
- cand
>= size
)
129 * __memblock_find_range_top_down - find free area utility, in top-down
130 * @start: start of candidate range
131 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
132 * @size: size of free area to find
133 * @align: alignment of free area to find
134 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
135 * @flags: pick from blocks based on memory attributes
137 * Utility called from memblock_find_in_range_node(), find free area top-down.
140 * Found address on success, 0 on failure.
142 static phys_addr_t __init_memblock
143 __memblock_find_range_top_down(phys_addr_t start
, phys_addr_t end
,
144 phys_addr_t size
, phys_addr_t align
, int nid
,
147 phys_addr_t this_start
, this_end
, cand
;
150 for_each_free_mem_range_reverse(i
, nid
, flags
, &this_start
, &this_end
,
152 this_start
= clamp(this_start
, start
, end
);
153 this_end
= clamp(this_end
, start
, end
);
158 cand
= round_down(this_end
- size
, align
);
159 if (cand
>= this_start
)
167 * memblock_find_in_range_node - find free area in given range and node
168 * @size: size of free area to find
169 * @align: alignment of free area to find
170 * @start: start of candidate range
171 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
172 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
173 * @flags: pick from blocks based on memory attributes
175 * Find @size free area aligned to @align in the specified range and node.
177 * When allocation direction is bottom-up, the @start should be greater
178 * than the end of the kernel image. Otherwise, it will be trimmed. The
179 * reason is that we want the bottom-up allocation just near the kernel
180 * image so it is highly likely that the allocated memory and the kernel
181 * will reside in the same node.
183 * If bottom-up allocation failed, will try to allocate memory top-down.
186 * Found address on success, 0 on failure.
188 phys_addr_t __init_memblock
memblock_find_in_range_node(phys_addr_t size
,
189 phys_addr_t align
, phys_addr_t start
,
190 phys_addr_t end
, int nid
, ulong flags
)
192 phys_addr_t kernel_end
, ret
;
195 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
196 end
= memblock
.current_limit
;
198 /* avoid allocating the first page */
199 start
= max_t(phys_addr_t
, start
, PAGE_SIZE
);
200 end
= max(start
, end
);
201 kernel_end
= __pa_symbol(_end
);
204 * try bottom-up allocation only when bottom-up mode
205 * is set and @end is above the kernel image.
207 if (memblock_bottom_up() && end
> kernel_end
) {
208 phys_addr_t bottom_up_start
;
210 /* make sure we will allocate above the kernel */
211 bottom_up_start
= max(start
, kernel_end
);
213 /* ok, try bottom-up allocation first */
214 ret
= __memblock_find_range_bottom_up(bottom_up_start
, end
,
215 size
, align
, nid
, flags
);
220 * we always limit bottom-up allocation above the kernel,
221 * but top-down allocation doesn't have the limit, so
222 * retrying top-down allocation may succeed when bottom-up
225 * bottom-up allocation is expected to be fail very rarely,
226 * so we use WARN_ONCE() here to see the stack trace if
229 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
232 return __memblock_find_range_top_down(start
, end
, size
, align
, nid
,
237 * memblock_find_in_range - find free area in given range
238 * @start: start of candidate range
239 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
240 * @size: size of free area to find
241 * @align: alignment of free area to find
243 * Find @size free area aligned to @align in the specified range.
246 * Found address on success, 0 on failure.
248 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
,
249 phys_addr_t end
, phys_addr_t size
,
253 ulong flags
= choose_memblock_flags();
256 ret
= memblock_find_in_range_node(size
, align
, start
, end
,
257 NUMA_NO_NODE
, flags
);
259 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
260 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
262 flags
&= ~MEMBLOCK_MIRROR
;
269 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
271 type
->total_size
-= type
->regions
[r
].size
;
272 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
273 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
276 /* Special case for empty arrays */
277 if (type
->cnt
== 0) {
278 WARN_ON(type
->total_size
!= 0);
280 type
->regions
[0].base
= 0;
281 type
->regions
[0].size
= 0;
282 type
->regions
[0].flags
= 0;
283 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
287 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
289 * Discard memory and reserved arrays if they were allocated
291 void __init
memblock_discard(void)
293 phys_addr_t addr
, size
;
295 if (memblock
.reserved
.regions
!= memblock_reserved_init_regions
) {
296 addr
= __pa(memblock
.reserved
.regions
);
297 size
= PAGE_ALIGN(sizeof(struct memblock_region
) *
298 memblock
.reserved
.max
);
299 __memblock_free_late(addr
, size
);
302 if (memblock
.memory
.regions
!= memblock_memory_init_regions
) {
303 addr
= __pa(memblock
.memory
.regions
);
304 size
= PAGE_ALIGN(sizeof(struct memblock_region
) *
305 memblock
.memory
.max
);
306 __memblock_free_late(addr
, size
);
312 * memblock_double_array - double the size of the memblock regions array
313 * @type: memblock type of the regions array being doubled
314 * @new_area_start: starting address of memory range to avoid overlap with
315 * @new_area_size: size of memory range to avoid overlap with
317 * Double the size of the @type regions array. If memblock is being used to
318 * allocate memory for a new reserved regions array and there is a previously
319 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
320 * waiting to be reserved, ensure the memory used by the new array does
324 * 0 on success, -1 on failure.
326 static int __init_memblock
memblock_double_array(struct memblock_type
*type
,
327 phys_addr_t new_area_start
,
328 phys_addr_t new_area_size
)
330 struct memblock_region
*new_array
, *old_array
;
331 phys_addr_t old_alloc_size
, new_alloc_size
;
332 phys_addr_t old_size
, new_size
, addr
;
333 int use_slab
= slab_is_available();
336 /* We don't allow resizing until we know about the reserved regions
337 * of memory that aren't suitable for allocation
339 if (!memblock_can_resize
)
342 /* Calculate new doubled size */
343 old_size
= type
->max
* sizeof(struct memblock_region
);
344 new_size
= old_size
<< 1;
346 * We need to allocated new one align to PAGE_SIZE,
347 * so we can free them completely later.
349 old_alloc_size
= PAGE_ALIGN(old_size
);
350 new_alloc_size
= PAGE_ALIGN(new_size
);
352 /* Retrieve the slab flag */
353 if (type
== &memblock
.memory
)
354 in_slab
= &memblock_memory_in_slab
;
356 in_slab
= &memblock_reserved_in_slab
;
358 /* Try to find some space for it.
360 * WARNING: We assume that either slab_is_available() and we use it or
361 * we use MEMBLOCK for allocations. That means that this is unsafe to
362 * use when bootmem is currently active (unless bootmem itself is
363 * implemented on top of MEMBLOCK which isn't the case yet)
365 * This should however not be an issue for now, as we currently only
366 * call into MEMBLOCK while it's still active, or much later when slab
367 * is active for memory hotplug operations
370 new_array
= kmalloc(new_size
, GFP_KERNEL
);
371 addr
= new_array
? __pa(new_array
) : 0;
373 /* only exclude range when trying to double reserved.regions */
374 if (type
!= &memblock
.reserved
)
375 new_area_start
= new_area_size
= 0;
377 addr
= memblock_find_in_range(new_area_start
+ new_area_size
,
378 memblock
.current_limit
,
379 new_alloc_size
, PAGE_SIZE
);
380 if (!addr
&& new_area_size
)
381 addr
= memblock_find_in_range(0,
382 min(new_area_start
, memblock
.current_limit
),
383 new_alloc_size
, PAGE_SIZE
);
385 new_array
= addr
? __va(addr
) : NULL
;
388 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
389 type
->name
, type
->max
, type
->max
* 2);
393 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
394 type
->name
, type
->max
* 2, (u64
)addr
,
395 (u64
)addr
+ new_size
- 1);
398 * Found space, we now need to move the array over before we add the
399 * reserved region since it may be our reserved array itself that is
402 memcpy(new_array
, type
->regions
, old_size
);
403 memset(new_array
+ type
->max
, 0, old_size
);
404 old_array
= type
->regions
;
405 type
->regions
= new_array
;
408 /* Free old array. We needn't free it if the array is the static one */
411 else if (old_array
!= memblock_memory_init_regions
&&
412 old_array
!= memblock_reserved_init_regions
)
413 memblock_free(__pa(old_array
), old_alloc_size
);
416 * Reserve the new array if that comes from the memblock. Otherwise, we
420 BUG_ON(memblock_reserve(addr
, new_alloc_size
));
422 /* Update slab flag */
429 * memblock_merge_regions - merge neighboring compatible regions
430 * @type: memblock type to scan
432 * Scan @type and merge neighboring compatible regions.
434 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
438 /* cnt never goes below 1 */
439 while (i
< type
->cnt
- 1) {
440 struct memblock_region
*this = &type
->regions
[i
];
441 struct memblock_region
*next
= &type
->regions
[i
+ 1];
443 if (this->base
+ this->size
!= next
->base
||
444 memblock_get_region_node(this) !=
445 memblock_get_region_node(next
) ||
446 this->flags
!= next
->flags
) {
447 BUG_ON(this->base
+ this->size
> next
->base
);
452 this->size
+= next
->size
;
453 /* move forward from next + 1, index of which is i + 2 */
454 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 2)) * sizeof(*next
));
460 * memblock_insert_region - insert new memblock region
461 * @type: memblock type to insert into
462 * @idx: index for the insertion point
463 * @base: base address of the new region
464 * @size: size of the new region
465 * @nid: node id of the new region
466 * @flags: flags of the new region
468 * Insert new memblock region [@base,@base+@size) into @type at @idx.
469 * @type must already have extra room to accommodate the new region.
471 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
472 int idx
, phys_addr_t base
,
474 int nid
, unsigned long flags
)
476 struct memblock_region
*rgn
= &type
->regions
[idx
];
478 BUG_ON(type
->cnt
>= type
->max
);
479 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
483 memblock_set_region_node(rgn
, nid
);
485 type
->total_size
+= size
;
489 * memblock_add_range - add new memblock region
490 * @type: memblock type to add new region into
491 * @base: base address of the new region
492 * @size: size of the new region
493 * @nid: nid of the new region
494 * @flags: flags of the new region
496 * Add new memblock region [@base,@base+@size) into @type. The new region
497 * is allowed to overlap with existing ones - overlaps don't affect already
498 * existing regions. @type is guaranteed to be minimal (all neighbouring
499 * compatible regions are merged) after the addition.
502 * 0 on success, -errno on failure.
504 int __init_memblock
memblock_add_range(struct memblock_type
*type
,
505 phys_addr_t base
, phys_addr_t size
,
506 int nid
, unsigned long flags
)
509 phys_addr_t obase
= base
;
510 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
512 struct memblock_region
*rgn
;
517 /* special case for empty array */
518 if (type
->regions
[0].size
== 0) {
519 WARN_ON(type
->cnt
!= 1 || type
->total_size
);
520 type
->regions
[0].base
= base
;
521 type
->regions
[0].size
= size
;
522 type
->regions
[0].flags
= flags
;
523 memblock_set_region_node(&type
->regions
[0], nid
);
524 type
->total_size
= size
;
529 * The following is executed twice. Once with %false @insert and
530 * then with %true. The first counts the number of regions needed
531 * to accommodate the new area. The second actually inserts them.
536 for_each_memblock_type(idx
, type
, rgn
) {
537 phys_addr_t rbase
= rgn
->base
;
538 phys_addr_t rend
= rbase
+ rgn
->size
;
545 * @rgn overlaps. If it separates the lower part of new
546 * area, insert that portion.
549 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
550 WARN_ON(nid
!= memblock_get_region_node(rgn
));
552 WARN_ON(flags
!= rgn
->flags
);
555 memblock_insert_region(type
, idx
++, base
,
559 /* area below @rend is dealt with, forget about it */
560 base
= min(rend
, end
);
563 /* insert the remaining portion */
567 memblock_insert_region(type
, idx
, base
, end
- base
,
575 * If this was the first round, resize array and repeat for actual
576 * insertions; otherwise, merge and return.
579 while (type
->cnt
+ nr_new
> type
->max
)
580 if (memblock_double_array(type
, obase
, size
) < 0)
585 memblock_merge_regions(type
);
590 int __init_memblock
memblock_add_node(phys_addr_t base
, phys_addr_t size
,
593 return memblock_add_range(&memblock
.memory
, base
, size
, nid
, 0);
596 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
598 phys_addr_t end
= base
+ size
- 1;
600 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
601 &base
, &end
, (void *)_RET_IP_
);
603 return memblock_add_range(&memblock
.memory
, base
, size
, MAX_NUMNODES
, 0);
607 * memblock_isolate_range - isolate given range into disjoint memblocks
608 * @type: memblock type to isolate range for
609 * @base: base of range to isolate
610 * @size: size of range to isolate
611 * @start_rgn: out parameter for the start of isolated region
612 * @end_rgn: out parameter for the end of isolated region
614 * Walk @type and ensure that regions don't cross the boundaries defined by
615 * [@base,@base+@size). Crossing regions are split at the boundaries,
616 * which may create at most two more regions. The index of the first
617 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
620 * 0 on success, -errno on failure.
622 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
623 phys_addr_t base
, phys_addr_t size
,
624 int *start_rgn
, int *end_rgn
)
626 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
628 struct memblock_region
*rgn
;
630 *start_rgn
= *end_rgn
= 0;
635 /* we'll create at most two more regions */
636 while (type
->cnt
+ 2 > type
->max
)
637 if (memblock_double_array(type
, base
, size
) < 0)
640 for_each_memblock_type(idx
, type
, rgn
) {
641 phys_addr_t rbase
= rgn
->base
;
642 phys_addr_t rend
= rbase
+ rgn
->size
;
651 * @rgn intersects from below. Split and continue
652 * to process the next region - the new top half.
655 rgn
->size
-= base
- rbase
;
656 type
->total_size
-= base
- rbase
;
657 memblock_insert_region(type
, idx
, rbase
, base
- rbase
,
658 memblock_get_region_node(rgn
),
660 } else if (rend
> end
) {
662 * @rgn intersects from above. Split and redo the
663 * current region - the new bottom half.
666 rgn
->size
-= end
- rbase
;
667 type
->total_size
-= end
- rbase
;
668 memblock_insert_region(type
, idx
--, rbase
, end
- rbase
,
669 memblock_get_region_node(rgn
),
672 /* @rgn is fully contained, record it */
682 static int __init_memblock
memblock_remove_range(struct memblock_type
*type
,
683 phys_addr_t base
, phys_addr_t size
)
685 int start_rgn
, end_rgn
;
688 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
692 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
693 memblock_remove_region(type
, i
);
697 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
699 return memblock_remove_range(&memblock
.memory
, base
, size
);
703 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
705 phys_addr_t end
= base
+ size
- 1;
707 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
708 &base
, &end
, (void *)_RET_IP_
);
710 kmemleak_free_part_phys(base
, size
);
711 return memblock_remove_range(&memblock
.reserved
, base
, size
);
714 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
716 phys_addr_t end
= base
+ size
- 1;
718 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
719 &base
, &end
, (void *)_RET_IP_
);
721 return memblock_add_range(&memblock
.reserved
, base
, size
, MAX_NUMNODES
, 0);
726 * This function isolates region [@base, @base + @size), and sets/clears flag
728 * Return 0 on success, -errno on failure.
730 static int __init_memblock
memblock_setclr_flag(phys_addr_t base
,
731 phys_addr_t size
, int set
, int flag
)
733 struct memblock_type
*type
= &memblock
.memory
;
734 int i
, ret
, start_rgn
, end_rgn
;
736 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
740 for (i
= start_rgn
; i
< end_rgn
; i
++)
742 memblock_set_region_flags(&type
->regions
[i
], flag
);
744 memblock_clear_region_flags(&type
->regions
[i
], flag
);
746 memblock_merge_regions(type
);
751 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
752 * @base: the base phys addr of the region
753 * @size: the size of the region
755 * Return 0 on success, -errno on failure.
757 int __init_memblock
memblock_mark_hotplug(phys_addr_t base
, phys_addr_t size
)
759 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_HOTPLUG
);
763 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
764 * @base: the base phys addr of the region
765 * @size: the size of the region
767 * Return 0 on success, -errno on failure.
769 int __init_memblock
memblock_clear_hotplug(phys_addr_t base
, phys_addr_t size
)
771 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_HOTPLUG
);
775 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
776 * @base: the base phys addr of the region
777 * @size: the size of the region
779 * Return 0 on success, -errno on failure.
781 int __init_memblock
memblock_mark_mirror(phys_addr_t base
, phys_addr_t size
)
783 system_has_some_mirror
= true;
785 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_MIRROR
);
789 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
790 * @base: the base phys addr of the region
791 * @size: the size of the region
793 * Return 0 on success, -errno on failure.
795 int __init_memblock
memblock_mark_nomap(phys_addr_t base
, phys_addr_t size
)
797 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_NOMAP
);
801 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
802 * @base: the base phys addr of the region
803 * @size: the size of the region
805 * Return 0 on success, -errno on failure.
807 int __init_memblock
memblock_clear_nomap(phys_addr_t base
, phys_addr_t size
)
809 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_NOMAP
);
813 * __next_reserved_mem_region - next function for for_each_reserved_region()
814 * @idx: pointer to u64 loop variable
815 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
816 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
818 * Iterate over all reserved memory regions.
820 void __init_memblock
__next_reserved_mem_region(u64
*idx
,
821 phys_addr_t
*out_start
,
822 phys_addr_t
*out_end
)
824 struct memblock_type
*type
= &memblock
.reserved
;
826 if (*idx
< type
->cnt
) {
827 struct memblock_region
*r
= &type
->regions
[*idx
];
828 phys_addr_t base
= r
->base
;
829 phys_addr_t size
= r
->size
;
834 *out_end
= base
+ size
- 1;
840 /* signal end of iteration */
845 * __next__mem_range - next function for for_each_free_mem_range() etc.
846 * @idx: pointer to u64 loop variable
847 * @nid: node selector, %NUMA_NO_NODE for all nodes
848 * @flags: pick from blocks based on memory attributes
849 * @type_a: pointer to memblock_type from where the range is taken
850 * @type_b: pointer to memblock_type which excludes memory from being taken
851 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
852 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
853 * @out_nid: ptr to int for nid of the range, can be %NULL
855 * Find the first area from *@idx which matches @nid, fill the out
856 * parameters, and update *@idx for the next iteration. The lower 32bit of
857 * *@idx contains index into type_a and the upper 32bit indexes the
858 * areas before each region in type_b. For example, if type_b regions
859 * look like the following,
861 * 0:[0-16), 1:[32-48), 2:[128-130)
863 * The upper 32bit indexes the following regions.
865 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
867 * As both region arrays are sorted, the function advances the two indices
868 * in lockstep and returns each intersection.
870 void __init_memblock
__next_mem_range(u64
*idx
, int nid
, ulong flags
,
871 struct memblock_type
*type_a
,
872 struct memblock_type
*type_b
,
873 phys_addr_t
*out_start
,
874 phys_addr_t
*out_end
, int *out_nid
)
876 int idx_a
= *idx
& 0xffffffff;
877 int idx_b
= *idx
>> 32;
879 if (WARN_ONCE(nid
== MAX_NUMNODES
,
880 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
883 for (; idx_a
< type_a
->cnt
; idx_a
++) {
884 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
886 phys_addr_t m_start
= m
->base
;
887 phys_addr_t m_end
= m
->base
+ m
->size
;
888 int m_nid
= memblock_get_region_node(m
);
890 /* only memory regions are associated with nodes, check it */
891 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
894 /* skip hotpluggable memory regions if needed */
895 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
898 /* if we want mirror memory skip non-mirror memory regions */
899 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
902 /* skip nomap memory unless we were asked for it explicitly */
903 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
908 *out_start
= m_start
;
914 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
918 /* scan areas before each reservation */
919 for (; idx_b
< type_b
->cnt
+ 1; idx_b
++) {
920 struct memblock_region
*r
;
924 r
= &type_b
->regions
[idx_b
];
925 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
926 r_end
= idx_b
< type_b
->cnt
?
927 r
->base
: ULLONG_MAX
;
930 * if idx_b advanced past idx_a,
931 * break out to advance idx_a
933 if (r_start
>= m_end
)
935 /* if the two regions intersect, we're done */
936 if (m_start
< r_end
) {
939 max(m_start
, r_start
);
941 *out_end
= min(m_end
, r_end
);
945 * The region which ends first is
946 * advanced for the next iteration.
952 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
958 /* signal end of iteration */
963 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
965 * Finds the next range from type_a which is not marked as unsuitable
968 * @idx: pointer to u64 loop variable
969 * @nid: node selector, %NUMA_NO_NODE for all nodes
970 * @flags: pick from blocks based on memory attributes
971 * @type_a: pointer to memblock_type from where the range is taken
972 * @type_b: pointer to memblock_type which excludes memory from being taken
973 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
974 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
975 * @out_nid: ptr to int for nid of the range, can be %NULL
977 * Reverse of __next_mem_range().
979 void __init_memblock
__next_mem_range_rev(u64
*idx
, int nid
, ulong flags
,
980 struct memblock_type
*type_a
,
981 struct memblock_type
*type_b
,
982 phys_addr_t
*out_start
,
983 phys_addr_t
*out_end
, int *out_nid
)
985 int idx_a
= *idx
& 0xffffffff;
986 int idx_b
= *idx
>> 32;
988 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
991 if (*idx
== (u64
)ULLONG_MAX
) {
992 idx_a
= type_a
->cnt
- 1;
999 for (; idx_a
>= 0; idx_a
--) {
1000 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
1002 phys_addr_t m_start
= m
->base
;
1003 phys_addr_t m_end
= m
->base
+ m
->size
;
1004 int m_nid
= memblock_get_region_node(m
);
1006 /* only memory regions are associated with nodes, check it */
1007 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
1010 /* skip hotpluggable memory regions if needed */
1011 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
1014 /* if we want mirror memory skip non-mirror memory regions */
1015 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
1018 /* skip nomap memory unless we were asked for it explicitly */
1019 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
1024 *out_start
= m_start
;
1030 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1034 /* scan areas before each reservation */
1035 for (; idx_b
>= 0; idx_b
--) {
1036 struct memblock_region
*r
;
1037 phys_addr_t r_start
;
1040 r
= &type_b
->regions
[idx_b
];
1041 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
1042 r_end
= idx_b
< type_b
->cnt
?
1043 r
->base
: ULLONG_MAX
;
1045 * if idx_b advanced past idx_a,
1046 * break out to advance idx_a
1049 if (r_end
<= m_start
)
1051 /* if the two regions intersect, we're done */
1052 if (m_end
> r_start
) {
1054 *out_start
= max(m_start
, r_start
);
1056 *out_end
= min(m_end
, r_end
);
1059 if (m_start
>= r_start
)
1063 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1068 /* signal end of iteration */
1072 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1074 * Common iterator interface used to define for_each_mem_range().
1076 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
1077 unsigned long *out_start_pfn
,
1078 unsigned long *out_end_pfn
, int *out_nid
)
1080 struct memblock_type
*type
= &memblock
.memory
;
1081 struct memblock_region
*r
;
1083 while (++*idx
< type
->cnt
) {
1084 r
= &type
->regions
[*idx
];
1086 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
1088 if (nid
== MAX_NUMNODES
|| nid
== r
->nid
)
1091 if (*idx
>= type
->cnt
) {
1097 *out_start_pfn
= PFN_UP(r
->base
);
1099 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
1104 unsigned long __init_memblock
memblock_next_valid_pfn(unsigned long pfn
,
1105 unsigned long max_pfn
)
1107 struct memblock_type
*type
= &memblock
.memory
;
1108 unsigned int right
= type
->cnt
;
1109 unsigned int mid
, left
= 0;
1110 phys_addr_t addr
= PFN_PHYS(pfn
+ 1);
1113 mid
= (right
+ left
) / 2;
1115 if (addr
< type
->regions
[mid
].base
)
1117 else if (addr
>= (type
->regions
[mid
].base
+
1118 type
->regions
[mid
].size
))
1121 /* addr is within the region, so pfn + 1 is valid */
1122 return min(pfn
+ 1, max_pfn
);
1124 } while (left
< right
);
1126 if (right
== type
->cnt
)
1129 return min(PHYS_PFN(type
->regions
[right
].base
), max_pfn
);
1133 * memblock_set_node - set node ID on memblock regions
1134 * @base: base of area to set node ID for
1135 * @size: size of area to set node ID for
1136 * @type: memblock type to set node ID for
1137 * @nid: node ID to set
1139 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1140 * Regions which cross the area boundaries are split as necessary.
1143 * 0 on success, -errno on failure.
1145 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
1146 struct memblock_type
*type
, int nid
)
1148 int start_rgn
, end_rgn
;
1151 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
1155 for (i
= start_rgn
; i
< end_rgn
; i
++)
1156 memblock_set_region_node(&type
->regions
[i
], nid
);
1158 memblock_merge_regions(type
);
1161 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1163 static phys_addr_t __init
memblock_alloc_range_nid(phys_addr_t size
,
1164 phys_addr_t align
, phys_addr_t start
,
1165 phys_addr_t end
, int nid
, ulong flags
)
1170 align
= SMP_CACHE_BYTES
;
1172 found
= memblock_find_in_range_node(size
, align
, start
, end
, nid
,
1174 if (found
&& !memblock_reserve(found
, size
)) {
1176 * The min_count is set to 0 so that memblock allocations are
1177 * never reported as leaks.
1179 kmemleak_alloc_phys(found
, size
, 0, 0);
1185 phys_addr_t __init
memblock_alloc_range(phys_addr_t size
, phys_addr_t align
,
1186 phys_addr_t start
, phys_addr_t end
,
1189 return memblock_alloc_range_nid(size
, align
, start
, end
, NUMA_NO_NODE
,
1193 static phys_addr_t __init
memblock_alloc_base_nid(phys_addr_t size
,
1194 phys_addr_t align
, phys_addr_t max_addr
,
1195 int nid
, ulong flags
)
1197 return memblock_alloc_range_nid(size
, align
, 0, max_addr
, nid
, flags
);
1200 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1202 ulong flags
= choose_memblock_flags();
1206 ret
= memblock_alloc_base_nid(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
,
1209 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
1210 flags
&= ~MEMBLOCK_MIRROR
;
1216 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1218 return memblock_alloc_base_nid(size
, align
, max_addr
, NUMA_NO_NODE
,
1222 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1226 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
1229 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1235 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
1237 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1240 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1242 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
1246 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1250 * memblock_virt_alloc_internal - allocate boot memory block
1251 * @size: size of memory block to be allocated in bytes
1252 * @align: alignment of the region and block's size
1253 * @min_addr: the lower bound of the memory region to allocate (phys address)
1254 * @max_addr: the upper bound of the memory region to allocate (phys address)
1255 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1257 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1258 * will fall back to memory below @min_addr. Also, allocation may fall back
1259 * to any node in the system if the specified node can not
1260 * hold the requested memory.
1262 * The allocation is performed from memory region limited by
1263 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1265 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1267 * The phys address of allocated boot memory block is converted to virtual and
1268 * allocated memory is reset to 0.
1270 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1271 * allocated boot memory block, so that it is never reported as leaks.
1274 * Virtual address of allocated memory block on success, NULL on failure.
1276 static void * __init
memblock_virt_alloc_internal(
1277 phys_addr_t size
, phys_addr_t align
,
1278 phys_addr_t min_addr
, phys_addr_t max_addr
,
1283 ulong flags
= choose_memblock_flags();
1285 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1289 * Detect any accidental use of these APIs after slab is ready, as at
1290 * this moment memblock may be deinitialized already and its
1291 * internal data may be destroyed (after execution of free_all_bootmem)
1293 if (WARN_ON_ONCE(slab_is_available()))
1294 return kzalloc_node(size
, GFP_NOWAIT
, nid
);
1297 align
= SMP_CACHE_BYTES
;
1299 if (max_addr
> memblock
.current_limit
)
1300 max_addr
= memblock
.current_limit
;
1302 alloc
= memblock_find_in_range_node(size
, align
, min_addr
, max_addr
,
1304 if (alloc
&& !memblock_reserve(alloc
, size
))
1307 if (nid
!= NUMA_NO_NODE
) {
1308 alloc
= memblock_find_in_range_node(size
, align
, min_addr
,
1309 max_addr
, NUMA_NO_NODE
,
1311 if (alloc
&& !memblock_reserve(alloc
, size
))
1320 if (flags
& MEMBLOCK_MIRROR
) {
1321 flags
&= ~MEMBLOCK_MIRROR
;
1322 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1329 ptr
= phys_to_virt(alloc
);
1332 * The min_count is set to 0 so that bootmem allocated blocks
1333 * are never reported as leaks. This is because many of these blocks
1334 * are only referred via the physical address which is not
1335 * looked up by kmemleak.
1337 kmemleak_alloc(ptr
, size
, 0, 0);
1343 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1344 * memory and without panicking
1345 * @size: size of memory block to be allocated in bytes
1346 * @align: alignment of the region and block's size
1347 * @min_addr: the lower bound of the memory region from where the allocation
1348 * is preferred (phys address)
1349 * @max_addr: the upper bound of the memory region from where the allocation
1350 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1351 * allocate only from memory limited by memblock.current_limit value
1352 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1354 * Public function, provides additional debug information (including caller
1355 * info), if enabled. Does not zero allocated memory, does not panic if request
1356 * cannot be satisfied.
1359 * Virtual address of allocated memory block on success, NULL on failure.
1361 void * __init
memblock_virt_alloc_try_nid_raw(
1362 phys_addr_t size
, phys_addr_t align
,
1363 phys_addr_t min_addr
, phys_addr_t max_addr
,
1368 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1369 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1370 (u64
)max_addr
, (void *)_RET_IP_
);
1372 ptr
= memblock_virt_alloc_internal(size
, align
,
1373 min_addr
, max_addr
, nid
);
1374 #ifdef CONFIG_DEBUG_VM
1375 if (ptr
&& size
> 0)
1376 memset(ptr
, 0xff, size
);
1382 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1383 * @size: size of memory block to be allocated in bytes
1384 * @align: alignment of the region and block's size
1385 * @min_addr: the lower bound of the memory region from where the allocation
1386 * is preferred (phys address)
1387 * @max_addr: the upper bound of the memory region from where the allocation
1388 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1389 * allocate only from memory limited by memblock.current_limit value
1390 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1392 * Public function, provides additional debug information (including caller
1393 * info), if enabled. This function zeroes the allocated memory.
1396 * Virtual address of allocated memory block on success, NULL on failure.
1398 void * __init
memblock_virt_alloc_try_nid_nopanic(
1399 phys_addr_t size
, phys_addr_t align
,
1400 phys_addr_t min_addr
, phys_addr_t max_addr
,
1405 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1406 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1407 (u64
)max_addr
, (void *)_RET_IP_
);
1409 ptr
= memblock_virt_alloc_internal(size
, align
,
1410 min_addr
, max_addr
, nid
);
1412 memset(ptr
, 0, size
);
1417 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1418 * @size: size of memory block to be allocated in bytes
1419 * @align: alignment of the region and block's size
1420 * @min_addr: the lower bound of the memory region from where the allocation
1421 * is preferred (phys address)
1422 * @max_addr: the upper bound of the memory region from where the allocation
1423 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1424 * allocate only from memory limited by memblock.current_limit value
1425 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1427 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1428 * which provides debug information (including caller info), if enabled,
1429 * and panics if the request can not be satisfied.
1432 * Virtual address of allocated memory block on success, NULL on failure.
1434 void * __init
memblock_virt_alloc_try_nid(
1435 phys_addr_t size
, phys_addr_t align
,
1436 phys_addr_t min_addr
, phys_addr_t max_addr
,
1441 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1442 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1443 (u64
)max_addr
, (void *)_RET_IP_
);
1444 ptr
= memblock_virt_alloc_internal(size
, align
,
1445 min_addr
, max_addr
, nid
);
1447 memset(ptr
, 0, size
);
1451 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1452 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1458 * __memblock_free_early - free boot memory block
1459 * @base: phys starting address of the boot memory block
1460 * @size: size of the boot memory block in bytes
1462 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1463 * The freeing memory will not be released to the buddy allocator.
1465 void __init
__memblock_free_early(phys_addr_t base
, phys_addr_t size
)
1467 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1468 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1470 kmemleak_free_part_phys(base
, size
);
1471 memblock_remove_range(&memblock
.reserved
, base
, size
);
1475 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1476 * @addr: phys starting address of the boot memory block
1477 * @size: size of the boot memory block in bytes
1479 * This is only useful when the bootmem allocator has already been torn
1480 * down, but we are still initializing the system. Pages are released directly
1481 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1483 void __init
__memblock_free_late(phys_addr_t base
, phys_addr_t size
)
1487 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1488 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1490 kmemleak_free_part_phys(base
, size
);
1491 cursor
= PFN_UP(base
);
1492 end
= PFN_DOWN(base
+ size
);
1494 for (; cursor
< end
; cursor
++) {
1495 __free_pages_bootmem(pfn_to_page(cursor
), cursor
, 0);
1501 * Remaining API functions
1504 phys_addr_t __init_memblock
memblock_phys_mem_size(void)
1506 return memblock
.memory
.total_size
;
1509 phys_addr_t __init_memblock
memblock_reserved_size(void)
1511 return memblock
.reserved
.total_size
;
1514 phys_addr_t __init
memblock_mem_size(unsigned long limit_pfn
)
1516 unsigned long pages
= 0;
1517 struct memblock_region
*r
;
1518 unsigned long start_pfn
, end_pfn
;
1520 for_each_memblock(memory
, r
) {
1521 start_pfn
= memblock_region_memory_base_pfn(r
);
1522 end_pfn
= memblock_region_memory_end_pfn(r
);
1523 start_pfn
= min_t(unsigned long, start_pfn
, limit_pfn
);
1524 end_pfn
= min_t(unsigned long, end_pfn
, limit_pfn
);
1525 pages
+= end_pfn
- start_pfn
;
1528 return PFN_PHYS(pages
);
1531 /* lowest address */
1532 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
1534 return memblock
.memory
.regions
[0].base
;
1537 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
1539 int idx
= memblock
.memory
.cnt
- 1;
1541 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
1544 static phys_addr_t __init_memblock
__find_max_addr(phys_addr_t limit
)
1546 phys_addr_t max_addr
= (phys_addr_t
)ULLONG_MAX
;
1547 struct memblock_region
*r
;
1550 * translate the memory @limit size into the max address within one of
1551 * the memory memblock regions, if the @limit exceeds the total size
1552 * of those regions, max_addr will keep original value ULLONG_MAX
1554 for_each_memblock(memory
, r
) {
1555 if (limit
<= r
->size
) {
1556 max_addr
= r
->base
+ limit
;
1565 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
1567 phys_addr_t max_addr
= (phys_addr_t
)ULLONG_MAX
;
1572 max_addr
= __find_max_addr(limit
);
1574 /* @limit exceeds the total size of the memory, do nothing */
1575 if (max_addr
== (phys_addr_t
)ULLONG_MAX
)
1578 /* truncate both memory and reserved regions */
1579 memblock_remove_range(&memblock
.memory
, max_addr
,
1580 (phys_addr_t
)ULLONG_MAX
);
1581 memblock_remove_range(&memblock
.reserved
, max_addr
,
1582 (phys_addr_t
)ULLONG_MAX
);
1585 void __init
memblock_cap_memory_range(phys_addr_t base
, phys_addr_t size
)
1587 int start_rgn
, end_rgn
;
1593 ret
= memblock_isolate_range(&memblock
.memory
, base
, size
,
1594 &start_rgn
, &end_rgn
);
1598 /* remove all the MAP regions */
1599 for (i
= memblock
.memory
.cnt
- 1; i
>= end_rgn
; i
--)
1600 if (!memblock_is_nomap(&memblock
.memory
.regions
[i
]))
1601 memblock_remove_region(&memblock
.memory
, i
);
1603 for (i
= start_rgn
- 1; i
>= 0; i
--)
1604 if (!memblock_is_nomap(&memblock
.memory
.regions
[i
]))
1605 memblock_remove_region(&memblock
.memory
, i
);
1607 /* truncate the reserved regions */
1608 memblock_remove_range(&memblock
.reserved
, 0, base
);
1609 memblock_remove_range(&memblock
.reserved
,
1610 base
+ size
, (phys_addr_t
)ULLONG_MAX
);
1613 void __init
memblock_mem_limit_remove_map(phys_addr_t limit
)
1615 phys_addr_t max_addr
;
1620 max_addr
= __find_max_addr(limit
);
1622 /* @limit exceeds the total size of the memory, do nothing */
1623 if (max_addr
== (phys_addr_t
)ULLONG_MAX
)
1626 memblock_cap_memory_range(0, max_addr
);
1629 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
1631 unsigned int left
= 0, right
= type
->cnt
;
1634 unsigned int mid
= (right
+ left
) / 2;
1636 if (addr
< type
->regions
[mid
].base
)
1638 else if (addr
>= (type
->regions
[mid
].base
+
1639 type
->regions
[mid
].size
))
1643 } while (left
< right
);
1647 bool __init
memblock_is_reserved(phys_addr_t addr
)
1649 return memblock_search(&memblock
.reserved
, addr
) != -1;
1652 bool __init_memblock
memblock_is_memory(phys_addr_t addr
)
1654 return memblock_search(&memblock
.memory
, addr
) != -1;
1657 int __init_memblock
memblock_is_map_memory(phys_addr_t addr
)
1659 int i
= memblock_search(&memblock
.memory
, addr
);
1663 return !memblock_is_nomap(&memblock
.memory
.regions
[i
]);
1666 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1667 int __init_memblock
memblock_search_pfn_nid(unsigned long pfn
,
1668 unsigned long *start_pfn
, unsigned long *end_pfn
)
1670 struct memblock_type
*type
= &memblock
.memory
;
1671 int mid
= memblock_search(type
, PFN_PHYS(pfn
));
1676 *start_pfn
= PFN_DOWN(type
->regions
[mid
].base
);
1677 *end_pfn
= PFN_DOWN(type
->regions
[mid
].base
+ type
->regions
[mid
].size
);
1679 return type
->regions
[mid
].nid
;
1684 * memblock_is_region_memory - check if a region is a subset of memory
1685 * @base: base of region to check
1686 * @size: size of region to check
1688 * Check if the region [@base, @base+@size) is a subset of a memory block.
1691 * 0 if false, non-zero if true
1693 int __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
1695 int idx
= memblock_search(&memblock
.memory
, base
);
1696 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
1700 return (memblock
.memory
.regions
[idx
].base
+
1701 memblock
.memory
.regions
[idx
].size
) >= end
;
1705 * memblock_is_region_reserved - check if a region intersects reserved memory
1706 * @base: base of region to check
1707 * @size: size of region to check
1709 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1712 * True if they intersect, false if not.
1714 bool __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
1716 memblock_cap_size(base
, &size
);
1717 return memblock_overlaps_region(&memblock
.reserved
, base
, size
);
1720 void __init_memblock
memblock_trim_memory(phys_addr_t align
)
1722 phys_addr_t start
, end
, orig_start
, orig_end
;
1723 struct memblock_region
*r
;
1725 for_each_memblock(memory
, r
) {
1726 orig_start
= r
->base
;
1727 orig_end
= r
->base
+ r
->size
;
1728 start
= round_up(orig_start
, align
);
1729 end
= round_down(orig_end
, align
);
1731 if (start
== orig_start
&& end
== orig_end
)
1736 r
->size
= end
- start
;
1738 memblock_remove_region(&memblock
.memory
,
1739 r
- memblock
.memory
.regions
);
1745 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
1747 memblock
.current_limit
= limit
;
1750 phys_addr_t __init_memblock
memblock_get_current_limit(void)
1752 return memblock
.current_limit
;
1755 static void __init_memblock
memblock_dump(struct memblock_type
*type
)
1757 phys_addr_t base
, end
, size
;
1758 unsigned long flags
;
1760 struct memblock_region
*rgn
;
1762 pr_info(" %s.cnt = 0x%lx\n", type
->name
, type
->cnt
);
1764 for_each_memblock_type(idx
, type
, rgn
) {
1765 char nid_buf
[32] = "";
1769 end
= base
+ size
- 1;
1771 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1772 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
1773 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
1774 memblock_get_region_node(rgn
));
1776 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1777 type
->name
, idx
, &base
, &end
, &size
, nid_buf
, flags
);
1781 extern unsigned long __init_memblock
1782 memblock_reserved_memory_within(phys_addr_t start_addr
, phys_addr_t end_addr
)
1784 struct memblock_region
*rgn
;
1785 unsigned long size
= 0;
1788 for_each_memblock_type(idx
, (&memblock
.reserved
), rgn
) {
1789 phys_addr_t start
, end
;
1791 if (rgn
->base
+ rgn
->size
< start_addr
)
1793 if (rgn
->base
> end_addr
)
1797 end
= start
+ rgn
->size
;
1798 size
+= end
- start
;
1804 void __init_memblock
__memblock_dump_all(void)
1806 pr_info("MEMBLOCK configuration:\n");
1807 pr_info(" memory size = %pa reserved size = %pa\n",
1808 &memblock
.memory
.total_size
,
1809 &memblock
.reserved
.total_size
);
1811 memblock_dump(&memblock
.memory
);
1812 memblock_dump(&memblock
.reserved
);
1813 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1814 memblock_dump(&memblock
.physmem
);
1818 void __init
memblock_allow_resize(void)
1820 memblock_can_resize
= 1;
1823 static int __init
early_memblock(char *p
)
1825 if (p
&& strstr(p
, "debug"))
1829 early_param("memblock", early_memblock
);
1831 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1833 static int memblock_debug_show(struct seq_file
*m
, void *private)
1835 struct memblock_type
*type
= m
->private;
1836 struct memblock_region
*reg
;
1840 for (i
= 0; i
< type
->cnt
; i
++) {
1841 reg
= &type
->regions
[i
];
1842 end
= reg
->base
+ reg
->size
- 1;
1844 seq_printf(m
, "%4d: ", i
);
1845 seq_printf(m
, "%pa..%pa\n", ®
->base
, &end
);
1850 static int memblock_debug_open(struct inode
*inode
, struct file
*file
)
1852 return single_open(file
, memblock_debug_show
, inode
->i_private
);
1855 static const struct file_operations memblock_debug_fops
= {
1856 .open
= memblock_debug_open
,
1858 .llseek
= seq_lseek
,
1859 .release
= single_release
,
1862 static int __init
memblock_init_debugfs(void)
1864 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
1867 debugfs_create_file("memory", S_IRUGO
, root
, &memblock
.memory
, &memblock_debug_fops
);
1868 debugfs_create_file("reserved", S_IRUGO
, root
, &memblock
.reserved
, &memblock_debug_fops
);
1869 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1870 debugfs_create_file("physmem", S_IRUGO
, root
, &memblock
.physmem
, &memblock_debug_fops
);
1875 __initcall(memblock_init_debugfs
);
1877 #endif /* CONFIG_DEBUG_FS */