ALSA: hda - detect jacks on VT1708 even when no streams are active
[linux/fpc-iii.git] / fs / f2fs / gc.c
blobb0ec721e984a324e3e239d4cdfe946cb0a5b8df0
1 /*
2 * fs/f2fs/gc.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/proc_fs.h>
15 #include <linux/init.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/kthread.h>
18 #include <linux/delay.h>
19 #include <linux/freezer.h>
20 #include <linux/blkdev.h>
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "gc.h"
27 static struct kmem_cache *winode_slab;
29 static int gc_thread_func(void *data)
31 struct f2fs_sb_info *sbi = data;
32 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
33 long wait_ms;
35 wait_ms = GC_THREAD_MIN_SLEEP_TIME;
37 do {
38 if (try_to_freeze())
39 continue;
40 else
41 wait_event_interruptible_timeout(*wq,
42 kthread_should_stop(),
43 msecs_to_jiffies(wait_ms));
44 if (kthread_should_stop())
45 break;
47 f2fs_balance_fs(sbi);
49 if (!test_opt(sbi, BG_GC))
50 continue;
53 * [GC triggering condition]
54 * 0. GC is not conducted currently.
55 * 1. There are enough dirty segments.
56 * 2. IO subsystem is idle by checking the # of writeback pages.
57 * 3. IO subsystem is idle by checking the # of requests in
58 * bdev's request list.
60 * Note) We have to avoid triggering GCs too much frequently.
61 * Because it is possible that some segments can be
62 * invalidated soon after by user update or deletion.
63 * So, I'd like to wait some time to collect dirty segments.
65 if (!mutex_trylock(&sbi->gc_mutex))
66 continue;
68 if (!is_idle(sbi)) {
69 wait_ms = increase_sleep_time(wait_ms);
70 mutex_unlock(&sbi->gc_mutex);
71 continue;
74 if (has_enough_invalid_blocks(sbi))
75 wait_ms = decrease_sleep_time(wait_ms);
76 else
77 wait_ms = increase_sleep_time(wait_ms);
79 sbi->bg_gc++;
81 if (f2fs_gc(sbi, 1) == GC_NONE)
82 wait_ms = GC_THREAD_NOGC_SLEEP_TIME;
83 else if (wait_ms == GC_THREAD_NOGC_SLEEP_TIME)
84 wait_ms = GC_THREAD_MAX_SLEEP_TIME;
86 } while (!kthread_should_stop());
87 return 0;
90 int start_gc_thread(struct f2fs_sb_info *sbi)
92 struct f2fs_gc_kthread *gc_th;
94 gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
95 if (!gc_th)
96 return -ENOMEM;
98 sbi->gc_thread = gc_th;
99 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
100 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
101 GC_THREAD_NAME);
102 if (IS_ERR(gc_th->f2fs_gc_task)) {
103 kfree(gc_th);
104 return -ENOMEM;
106 return 0;
109 void stop_gc_thread(struct f2fs_sb_info *sbi)
111 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
112 if (!gc_th)
113 return;
114 kthread_stop(gc_th->f2fs_gc_task);
115 kfree(gc_th);
116 sbi->gc_thread = NULL;
119 static int select_gc_type(int gc_type)
121 return (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
124 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
125 int type, struct victim_sel_policy *p)
127 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
129 if (p->alloc_mode) {
130 p->gc_mode = GC_GREEDY;
131 p->dirty_segmap = dirty_i->dirty_segmap[type];
132 p->ofs_unit = 1;
133 } else {
134 p->gc_mode = select_gc_type(gc_type);
135 p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
136 p->ofs_unit = sbi->segs_per_sec;
138 p->offset = sbi->last_victim[p->gc_mode];
141 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
142 struct victim_sel_policy *p)
144 if (p->gc_mode == GC_GREEDY)
145 return (1 << sbi->log_blocks_per_seg) * p->ofs_unit;
146 else if (p->gc_mode == GC_CB)
147 return UINT_MAX;
148 else /* No other gc_mode */
149 return 0;
152 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
154 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
155 unsigned int segno;
158 * If the gc_type is FG_GC, we can select victim segments
159 * selected by background GC before.
160 * Those segments guarantee they have small valid blocks.
162 segno = find_next_bit(dirty_i->victim_segmap[BG_GC],
163 TOTAL_SEGS(sbi), 0);
164 if (segno < TOTAL_SEGS(sbi)) {
165 clear_bit(segno, dirty_i->victim_segmap[BG_GC]);
166 return segno;
168 return NULL_SEGNO;
171 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
173 struct sit_info *sit_i = SIT_I(sbi);
174 unsigned int secno = GET_SECNO(sbi, segno);
175 unsigned int start = secno * sbi->segs_per_sec;
176 unsigned long long mtime = 0;
177 unsigned int vblocks;
178 unsigned char age = 0;
179 unsigned char u;
180 unsigned int i;
182 for (i = 0; i < sbi->segs_per_sec; i++)
183 mtime += get_seg_entry(sbi, start + i)->mtime;
184 vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
186 mtime = div_u64(mtime, sbi->segs_per_sec);
187 vblocks = div_u64(vblocks, sbi->segs_per_sec);
189 u = (vblocks * 100) >> sbi->log_blocks_per_seg;
191 /* Handle if the system time is changed by user */
192 if (mtime < sit_i->min_mtime)
193 sit_i->min_mtime = mtime;
194 if (mtime > sit_i->max_mtime)
195 sit_i->max_mtime = mtime;
196 if (sit_i->max_mtime != sit_i->min_mtime)
197 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
198 sit_i->max_mtime - sit_i->min_mtime);
200 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
203 static unsigned int get_gc_cost(struct f2fs_sb_info *sbi, unsigned int segno,
204 struct victim_sel_policy *p)
206 if (p->alloc_mode == SSR)
207 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
209 /* alloc_mode == LFS */
210 if (p->gc_mode == GC_GREEDY)
211 return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
212 else
213 return get_cb_cost(sbi, segno);
217 * This function is called from two pathes.
218 * One is garbage collection and the other is SSR segment selection.
219 * When it is called during GC, it just gets a victim segment
220 * and it does not remove it from dirty seglist.
221 * When it is called from SSR segment selection, it finds a segment
222 * which has minimum valid blocks and removes it from dirty seglist.
224 static int get_victim_by_default(struct f2fs_sb_info *sbi,
225 unsigned int *result, int gc_type, int type, char alloc_mode)
227 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
228 struct victim_sel_policy p;
229 unsigned int segno;
230 int nsearched = 0;
232 p.alloc_mode = alloc_mode;
233 select_policy(sbi, gc_type, type, &p);
235 p.min_segno = NULL_SEGNO;
236 p.min_cost = get_max_cost(sbi, &p);
238 mutex_lock(&dirty_i->seglist_lock);
240 if (p.alloc_mode == LFS && gc_type == FG_GC) {
241 p.min_segno = check_bg_victims(sbi);
242 if (p.min_segno != NULL_SEGNO)
243 goto got_it;
246 while (1) {
247 unsigned long cost;
249 segno = find_next_bit(p.dirty_segmap,
250 TOTAL_SEGS(sbi), p.offset);
251 if (segno >= TOTAL_SEGS(sbi)) {
252 if (sbi->last_victim[p.gc_mode]) {
253 sbi->last_victim[p.gc_mode] = 0;
254 p.offset = 0;
255 continue;
257 break;
259 p.offset = ((segno / p.ofs_unit) * p.ofs_unit) + p.ofs_unit;
261 if (test_bit(segno, dirty_i->victim_segmap[FG_GC]))
262 continue;
263 if (gc_type == BG_GC &&
264 test_bit(segno, dirty_i->victim_segmap[BG_GC]))
265 continue;
266 if (IS_CURSEC(sbi, GET_SECNO(sbi, segno)))
267 continue;
269 cost = get_gc_cost(sbi, segno, &p);
271 if (p.min_cost > cost) {
272 p.min_segno = segno;
273 p.min_cost = cost;
276 if (cost == get_max_cost(sbi, &p))
277 continue;
279 if (nsearched++ >= MAX_VICTIM_SEARCH) {
280 sbi->last_victim[p.gc_mode] = segno;
281 break;
284 got_it:
285 if (p.min_segno != NULL_SEGNO) {
286 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
287 if (p.alloc_mode == LFS) {
288 int i;
289 for (i = 0; i < p.ofs_unit; i++)
290 set_bit(*result + i,
291 dirty_i->victim_segmap[gc_type]);
294 mutex_unlock(&dirty_i->seglist_lock);
296 return (p.min_segno == NULL_SEGNO) ? 0 : 1;
299 static const struct victim_selection default_v_ops = {
300 .get_victim = get_victim_by_default,
303 static struct inode *find_gc_inode(nid_t ino, struct list_head *ilist)
305 struct list_head *this;
306 struct inode_entry *ie;
308 list_for_each(this, ilist) {
309 ie = list_entry(this, struct inode_entry, list);
310 if (ie->inode->i_ino == ino)
311 return ie->inode;
313 return NULL;
316 static void add_gc_inode(struct inode *inode, struct list_head *ilist)
318 struct list_head *this;
319 struct inode_entry *new_ie, *ie;
321 list_for_each(this, ilist) {
322 ie = list_entry(this, struct inode_entry, list);
323 if (ie->inode == inode) {
324 iput(inode);
325 return;
328 repeat:
329 new_ie = kmem_cache_alloc(winode_slab, GFP_NOFS);
330 if (!new_ie) {
331 cond_resched();
332 goto repeat;
334 new_ie->inode = inode;
335 list_add_tail(&new_ie->list, ilist);
338 static void put_gc_inode(struct list_head *ilist)
340 struct inode_entry *ie, *next_ie;
341 list_for_each_entry_safe(ie, next_ie, ilist, list) {
342 iput(ie->inode);
343 list_del(&ie->list);
344 kmem_cache_free(winode_slab, ie);
348 static int check_valid_map(struct f2fs_sb_info *sbi,
349 unsigned int segno, int offset)
351 struct sit_info *sit_i = SIT_I(sbi);
352 struct seg_entry *sentry;
353 int ret;
355 mutex_lock(&sit_i->sentry_lock);
356 sentry = get_seg_entry(sbi, segno);
357 ret = f2fs_test_bit(offset, sentry->cur_valid_map);
358 mutex_unlock(&sit_i->sentry_lock);
359 return ret ? GC_OK : GC_NEXT;
363 * This function compares node address got in summary with that in NAT.
364 * On validity, copy that node with cold status, otherwise (invalid node)
365 * ignore that.
367 static int gc_node_segment(struct f2fs_sb_info *sbi,
368 struct f2fs_summary *sum, unsigned int segno, int gc_type)
370 bool initial = true;
371 struct f2fs_summary *entry;
372 int off;
374 next_step:
375 entry = sum;
376 for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
377 nid_t nid = le32_to_cpu(entry->nid);
378 struct page *node_page;
379 int err;
382 * It makes sure that free segments are able to write
383 * all the dirty node pages before CP after this CP.
384 * So let's check the space of dirty node pages.
386 if (should_do_checkpoint(sbi)) {
387 mutex_lock(&sbi->cp_mutex);
388 block_operations(sbi);
389 return GC_BLOCKED;
392 err = check_valid_map(sbi, segno, off);
393 if (err == GC_NEXT)
394 continue;
396 if (initial) {
397 ra_node_page(sbi, nid);
398 continue;
400 node_page = get_node_page(sbi, nid);
401 if (IS_ERR(node_page))
402 continue;
404 /* set page dirty and write it */
405 if (!PageWriteback(node_page))
406 set_page_dirty(node_page);
407 f2fs_put_page(node_page, 1);
408 stat_inc_node_blk_count(sbi, 1);
410 if (initial) {
411 initial = false;
412 goto next_step;
415 if (gc_type == FG_GC) {
416 struct writeback_control wbc = {
417 .sync_mode = WB_SYNC_ALL,
418 .nr_to_write = LONG_MAX,
419 .for_reclaim = 0,
421 sync_node_pages(sbi, 0, &wbc);
423 return GC_DONE;
427 * Calculate start block index that this node page contains
429 block_t start_bidx_of_node(unsigned int node_ofs)
431 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
432 unsigned int bidx;
434 if (node_ofs == 0)
435 return 0;
437 if (node_ofs <= 2) {
438 bidx = node_ofs - 1;
439 } else if (node_ofs <= indirect_blks) {
440 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
441 bidx = node_ofs - 2 - dec;
442 } else {
443 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
444 bidx = node_ofs - 5 - dec;
446 return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE;
449 static int check_dnode(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
450 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
452 struct page *node_page;
453 nid_t nid;
454 unsigned int ofs_in_node;
455 block_t source_blkaddr;
457 nid = le32_to_cpu(sum->nid);
458 ofs_in_node = le16_to_cpu(sum->ofs_in_node);
460 node_page = get_node_page(sbi, nid);
461 if (IS_ERR(node_page))
462 return GC_NEXT;
464 get_node_info(sbi, nid, dni);
466 if (sum->version != dni->version) {
467 f2fs_put_page(node_page, 1);
468 return GC_NEXT;
471 *nofs = ofs_of_node(node_page);
472 source_blkaddr = datablock_addr(node_page, ofs_in_node);
473 f2fs_put_page(node_page, 1);
475 if (source_blkaddr != blkaddr)
476 return GC_NEXT;
477 return GC_OK;
480 static void move_data_page(struct inode *inode, struct page *page, int gc_type)
482 if (page->mapping != inode->i_mapping)
483 goto out;
485 if (inode != page->mapping->host)
486 goto out;
488 if (PageWriteback(page))
489 goto out;
491 if (gc_type == BG_GC) {
492 set_page_dirty(page);
493 set_cold_data(page);
494 } else {
495 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
496 mutex_lock_op(sbi, DATA_WRITE);
497 if (clear_page_dirty_for_io(page) &&
498 S_ISDIR(inode->i_mode)) {
499 dec_page_count(sbi, F2FS_DIRTY_DENTS);
500 inode_dec_dirty_dents(inode);
502 set_cold_data(page);
503 do_write_data_page(page);
504 mutex_unlock_op(sbi, DATA_WRITE);
505 clear_cold_data(page);
507 out:
508 f2fs_put_page(page, 1);
512 * This function tries to get parent node of victim data block, and identifies
513 * data block validity. If the block is valid, copy that with cold status and
514 * modify parent node.
515 * If the parent node is not valid or the data block address is different,
516 * the victim data block is ignored.
518 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
519 struct list_head *ilist, unsigned int segno, int gc_type)
521 struct super_block *sb = sbi->sb;
522 struct f2fs_summary *entry;
523 block_t start_addr;
524 int err, off;
525 int phase = 0;
527 start_addr = START_BLOCK(sbi, segno);
529 next_step:
530 entry = sum;
531 for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
532 struct page *data_page;
533 struct inode *inode;
534 struct node_info dni; /* dnode info for the data */
535 unsigned int ofs_in_node, nofs;
536 block_t start_bidx;
539 * It makes sure that free segments are able to write
540 * all the dirty node pages before CP after this CP.
541 * So let's check the space of dirty node pages.
543 if (should_do_checkpoint(sbi)) {
544 mutex_lock(&sbi->cp_mutex);
545 block_operations(sbi);
546 err = GC_BLOCKED;
547 goto stop;
550 err = check_valid_map(sbi, segno, off);
551 if (err == GC_NEXT)
552 continue;
554 if (phase == 0) {
555 ra_node_page(sbi, le32_to_cpu(entry->nid));
556 continue;
559 /* Get an inode by ino with checking validity */
560 err = check_dnode(sbi, entry, &dni, start_addr + off, &nofs);
561 if (err == GC_NEXT)
562 continue;
564 if (phase == 1) {
565 ra_node_page(sbi, dni.ino);
566 continue;
569 start_bidx = start_bidx_of_node(nofs);
570 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
572 if (phase == 2) {
573 inode = f2fs_iget_nowait(sb, dni.ino);
574 if (IS_ERR(inode))
575 continue;
577 data_page = find_data_page(inode,
578 start_bidx + ofs_in_node);
579 if (IS_ERR(data_page))
580 goto next_iput;
582 f2fs_put_page(data_page, 0);
583 add_gc_inode(inode, ilist);
584 } else {
585 inode = find_gc_inode(dni.ino, ilist);
586 if (inode) {
587 data_page = get_lock_data_page(inode,
588 start_bidx + ofs_in_node);
589 if (IS_ERR(data_page))
590 continue;
591 move_data_page(inode, data_page, gc_type);
592 stat_inc_data_blk_count(sbi, 1);
595 continue;
596 next_iput:
597 iput(inode);
599 if (++phase < 4)
600 goto next_step;
601 err = GC_DONE;
602 stop:
603 if (gc_type == FG_GC)
604 f2fs_submit_bio(sbi, DATA, true);
605 return err;
608 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
609 int gc_type, int type)
611 struct sit_info *sit_i = SIT_I(sbi);
612 int ret;
613 mutex_lock(&sit_i->sentry_lock);
614 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, type, LFS);
615 mutex_unlock(&sit_i->sentry_lock);
616 return ret;
619 static int do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno,
620 struct list_head *ilist, int gc_type)
622 struct page *sum_page;
623 struct f2fs_summary_block *sum;
624 int ret = GC_DONE;
626 /* read segment summary of victim */
627 sum_page = get_sum_page(sbi, segno);
628 if (IS_ERR(sum_page))
629 return GC_ERROR;
632 * CP needs to lock sum_page. In this time, we don't need
633 * to lock this page, because this summary page is not gone anywhere.
634 * Also, this page is not gonna be updated before GC is done.
636 unlock_page(sum_page);
637 sum = page_address(sum_page);
639 switch (GET_SUM_TYPE((&sum->footer))) {
640 case SUM_TYPE_NODE:
641 ret = gc_node_segment(sbi, sum->entries, segno, gc_type);
642 break;
643 case SUM_TYPE_DATA:
644 ret = gc_data_segment(sbi, sum->entries, ilist, segno, gc_type);
645 break;
647 stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer)));
648 stat_inc_call_count(sbi->stat_info);
650 f2fs_put_page(sum_page, 0);
651 return ret;
654 int f2fs_gc(struct f2fs_sb_info *sbi, int nGC)
656 unsigned int segno;
657 int old_free_secs, cur_free_secs;
658 int gc_status, nfree;
659 struct list_head ilist;
660 int gc_type = BG_GC;
662 INIT_LIST_HEAD(&ilist);
663 gc_more:
664 nfree = 0;
665 gc_status = GC_NONE;
667 if (has_not_enough_free_secs(sbi))
668 old_free_secs = reserved_sections(sbi);
669 else
670 old_free_secs = free_sections(sbi);
672 while (sbi->sb->s_flags & MS_ACTIVE) {
673 int i;
674 if (has_not_enough_free_secs(sbi))
675 gc_type = FG_GC;
677 cur_free_secs = free_sections(sbi) + nfree;
679 /* We got free space successfully. */
680 if (nGC < cur_free_secs - old_free_secs)
681 break;
683 if (!__get_victim(sbi, &segno, gc_type, NO_CHECK_TYPE))
684 break;
686 for (i = 0; i < sbi->segs_per_sec; i++) {
688 * do_garbage_collect will give us three gc_status:
689 * GC_ERROR, GC_DONE, and GC_BLOCKED.
690 * If GC is finished uncleanly, we have to return
691 * the victim to dirty segment list.
693 gc_status = do_garbage_collect(sbi, segno + i,
694 &ilist, gc_type);
695 if (gc_status != GC_DONE)
696 goto stop;
697 nfree++;
700 stop:
701 if (has_not_enough_free_secs(sbi) || gc_status == GC_BLOCKED) {
702 write_checkpoint(sbi, (gc_status == GC_BLOCKED), false);
703 if (nfree)
704 goto gc_more;
706 mutex_unlock(&sbi->gc_mutex);
708 put_gc_inode(&ilist);
709 BUG_ON(!list_empty(&ilist));
710 return gc_status;
713 void build_gc_manager(struct f2fs_sb_info *sbi)
715 DIRTY_I(sbi)->v_ops = &default_v_ops;
718 int create_gc_caches(void)
720 winode_slab = f2fs_kmem_cache_create("f2fs_gc_inodes",
721 sizeof(struct inode_entry), NULL);
722 if (!winode_slab)
723 return -ENOMEM;
724 return 0;
727 void destroy_gc_caches(void)
729 kmem_cache_destroy(winode_slab);