Merge tag 'char-misc-3.11-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[linux/fpc-iii.git] / kernel / sched / sched.h
blobef0a7b2439dde25bdd3d4ee54c4801364e09607d
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/mutex.h>
6 #include <linux/spinlock.h>
7 #include <linux/stop_machine.h>
8 #include <linux/tick.h>
10 #include "cpupri.h"
11 #include "cpuacct.h"
13 struct rq;
15 extern __read_mostly int scheduler_running;
17 extern unsigned long calc_load_update;
18 extern atomic_long_t calc_load_tasks;
20 extern long calc_load_fold_active(struct rq *this_rq);
21 extern void update_cpu_load_active(struct rq *this_rq);
24 * Convert user-nice values [ -20 ... 0 ... 19 ]
25 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
26 * and back.
28 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
29 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
30 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
33 * 'User priority' is the nice value converted to something we
34 * can work with better when scaling various scheduler parameters,
35 * it's a [ 0 ... 39 ] range.
37 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
38 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
39 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
42 * Helpers for converting nanosecond timing to jiffy resolution
44 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
47 * Increase resolution of nice-level calculations for 64-bit architectures.
48 * The extra resolution improves shares distribution and load balancing of
49 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
50 * hierarchies, especially on larger systems. This is not a user-visible change
51 * and does not change the user-interface for setting shares/weights.
53 * We increase resolution only if we have enough bits to allow this increased
54 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
55 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
56 * increased costs.
58 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
59 # define SCHED_LOAD_RESOLUTION 10
60 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
61 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
62 #else
63 # define SCHED_LOAD_RESOLUTION 0
64 # define scale_load(w) (w)
65 # define scale_load_down(w) (w)
66 #endif
68 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
69 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
71 #define NICE_0_LOAD SCHED_LOAD_SCALE
72 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
75 * These are the 'tuning knobs' of the scheduler:
79 * single value that denotes runtime == period, ie unlimited time.
81 #define RUNTIME_INF ((u64)~0ULL)
83 static inline int rt_policy(int policy)
85 if (policy == SCHED_FIFO || policy == SCHED_RR)
86 return 1;
87 return 0;
90 static inline int task_has_rt_policy(struct task_struct *p)
92 return rt_policy(p->policy);
96 * This is the priority-queue data structure of the RT scheduling class:
98 struct rt_prio_array {
99 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
100 struct list_head queue[MAX_RT_PRIO];
103 struct rt_bandwidth {
104 /* nests inside the rq lock: */
105 raw_spinlock_t rt_runtime_lock;
106 ktime_t rt_period;
107 u64 rt_runtime;
108 struct hrtimer rt_period_timer;
111 extern struct mutex sched_domains_mutex;
113 #ifdef CONFIG_CGROUP_SCHED
115 #include <linux/cgroup.h>
117 struct cfs_rq;
118 struct rt_rq;
120 extern struct list_head task_groups;
122 struct cfs_bandwidth {
123 #ifdef CONFIG_CFS_BANDWIDTH
124 raw_spinlock_t lock;
125 ktime_t period;
126 u64 quota, runtime;
127 s64 hierarchal_quota;
128 u64 runtime_expires;
130 int idle, timer_active;
131 struct hrtimer period_timer, slack_timer;
132 struct list_head throttled_cfs_rq;
134 /* statistics */
135 int nr_periods, nr_throttled;
136 u64 throttled_time;
137 #endif
140 /* task group related information */
141 struct task_group {
142 struct cgroup_subsys_state css;
144 #ifdef CONFIG_FAIR_GROUP_SCHED
145 /* schedulable entities of this group on each cpu */
146 struct sched_entity **se;
147 /* runqueue "owned" by this group on each cpu */
148 struct cfs_rq **cfs_rq;
149 unsigned long shares;
151 #ifdef CONFIG_SMP
152 atomic_long_t load_avg;
153 atomic_t runnable_avg;
154 #endif
155 #endif
157 #ifdef CONFIG_RT_GROUP_SCHED
158 struct sched_rt_entity **rt_se;
159 struct rt_rq **rt_rq;
161 struct rt_bandwidth rt_bandwidth;
162 #endif
164 struct rcu_head rcu;
165 struct list_head list;
167 struct task_group *parent;
168 struct list_head siblings;
169 struct list_head children;
171 #ifdef CONFIG_SCHED_AUTOGROUP
172 struct autogroup *autogroup;
173 #endif
175 struct cfs_bandwidth cfs_bandwidth;
178 #ifdef CONFIG_FAIR_GROUP_SCHED
179 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
182 * A weight of 0 or 1 can cause arithmetics problems.
183 * A weight of a cfs_rq is the sum of weights of which entities
184 * are queued on this cfs_rq, so a weight of a entity should not be
185 * too large, so as the shares value of a task group.
186 * (The default weight is 1024 - so there's no practical
187 * limitation from this.)
189 #define MIN_SHARES (1UL << 1)
190 #define MAX_SHARES (1UL << 18)
191 #endif
193 typedef int (*tg_visitor)(struct task_group *, void *);
195 extern int walk_tg_tree_from(struct task_group *from,
196 tg_visitor down, tg_visitor up, void *data);
199 * Iterate the full tree, calling @down when first entering a node and @up when
200 * leaving it for the final time.
202 * Caller must hold rcu_lock or sufficient equivalent.
204 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
206 return walk_tg_tree_from(&root_task_group, down, up, data);
209 extern int tg_nop(struct task_group *tg, void *data);
211 extern void free_fair_sched_group(struct task_group *tg);
212 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
213 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
214 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
215 struct sched_entity *se, int cpu,
216 struct sched_entity *parent);
217 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
218 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
220 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
221 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
222 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
224 extern void free_rt_sched_group(struct task_group *tg);
225 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
226 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
227 struct sched_rt_entity *rt_se, int cpu,
228 struct sched_rt_entity *parent);
230 extern struct task_group *sched_create_group(struct task_group *parent);
231 extern void sched_online_group(struct task_group *tg,
232 struct task_group *parent);
233 extern void sched_destroy_group(struct task_group *tg);
234 extern void sched_offline_group(struct task_group *tg);
236 extern void sched_move_task(struct task_struct *tsk);
238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
240 #endif
242 #else /* CONFIG_CGROUP_SCHED */
244 struct cfs_bandwidth { };
246 #endif /* CONFIG_CGROUP_SCHED */
248 /* CFS-related fields in a runqueue */
249 struct cfs_rq {
250 struct load_weight load;
251 unsigned int nr_running, h_nr_running;
253 u64 exec_clock;
254 u64 min_vruntime;
255 #ifndef CONFIG_64BIT
256 u64 min_vruntime_copy;
257 #endif
259 struct rb_root tasks_timeline;
260 struct rb_node *rb_leftmost;
263 * 'curr' points to currently running entity on this cfs_rq.
264 * It is set to NULL otherwise (i.e when none are currently running).
266 struct sched_entity *curr, *next, *last, *skip;
268 #ifdef CONFIG_SCHED_DEBUG
269 unsigned int nr_spread_over;
270 #endif
272 #ifdef CONFIG_SMP
274 * CFS Load tracking
275 * Under CFS, load is tracked on a per-entity basis and aggregated up.
276 * This allows for the description of both thread and group usage (in
277 * the FAIR_GROUP_SCHED case).
279 unsigned long runnable_load_avg, blocked_load_avg;
280 atomic64_t decay_counter;
281 u64 last_decay;
282 atomic_long_t removed_load;
284 #ifdef CONFIG_FAIR_GROUP_SCHED
285 /* Required to track per-cpu representation of a task_group */
286 u32 tg_runnable_contrib;
287 unsigned long tg_load_contrib;
288 #endif /* CONFIG_FAIR_GROUP_SCHED */
291 * h_load = weight * f(tg)
293 * Where f(tg) is the recursive weight fraction assigned to
294 * this group.
296 unsigned long h_load;
297 #endif /* CONFIG_SMP */
299 #ifdef CONFIG_FAIR_GROUP_SCHED
300 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
303 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
304 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
305 * (like users, containers etc.)
307 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
308 * list is used during load balance.
310 int on_list;
311 struct list_head leaf_cfs_rq_list;
312 struct task_group *tg; /* group that "owns" this runqueue */
314 #ifdef CONFIG_CFS_BANDWIDTH
315 int runtime_enabled;
316 u64 runtime_expires;
317 s64 runtime_remaining;
319 u64 throttled_clock, throttled_clock_task;
320 u64 throttled_clock_task_time;
321 int throttled, throttle_count;
322 struct list_head throttled_list;
323 #endif /* CONFIG_CFS_BANDWIDTH */
324 #endif /* CONFIG_FAIR_GROUP_SCHED */
327 static inline int rt_bandwidth_enabled(void)
329 return sysctl_sched_rt_runtime >= 0;
332 /* Real-Time classes' related field in a runqueue: */
333 struct rt_rq {
334 struct rt_prio_array active;
335 unsigned int rt_nr_running;
336 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
337 struct {
338 int curr; /* highest queued rt task prio */
339 #ifdef CONFIG_SMP
340 int next; /* next highest */
341 #endif
342 } highest_prio;
343 #endif
344 #ifdef CONFIG_SMP
345 unsigned long rt_nr_migratory;
346 unsigned long rt_nr_total;
347 int overloaded;
348 struct plist_head pushable_tasks;
349 #endif
350 int rt_throttled;
351 u64 rt_time;
352 u64 rt_runtime;
353 /* Nests inside the rq lock: */
354 raw_spinlock_t rt_runtime_lock;
356 #ifdef CONFIG_RT_GROUP_SCHED
357 unsigned long rt_nr_boosted;
359 struct rq *rq;
360 struct task_group *tg;
361 #endif
364 #ifdef CONFIG_SMP
367 * We add the notion of a root-domain which will be used to define per-domain
368 * variables. Each exclusive cpuset essentially defines an island domain by
369 * fully partitioning the member cpus from any other cpuset. Whenever a new
370 * exclusive cpuset is created, we also create and attach a new root-domain
371 * object.
374 struct root_domain {
375 atomic_t refcount;
376 atomic_t rto_count;
377 struct rcu_head rcu;
378 cpumask_var_t span;
379 cpumask_var_t online;
382 * The "RT overload" flag: it gets set if a CPU has more than
383 * one runnable RT task.
385 cpumask_var_t rto_mask;
386 struct cpupri cpupri;
389 extern struct root_domain def_root_domain;
391 #endif /* CONFIG_SMP */
394 * This is the main, per-CPU runqueue data structure.
396 * Locking rule: those places that want to lock multiple runqueues
397 * (such as the load balancing or the thread migration code), lock
398 * acquire operations must be ordered by ascending &runqueue.
400 struct rq {
401 /* runqueue lock: */
402 raw_spinlock_t lock;
405 * nr_running and cpu_load should be in the same cacheline because
406 * remote CPUs use both these fields when doing load calculation.
408 unsigned int nr_running;
409 #define CPU_LOAD_IDX_MAX 5
410 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
411 unsigned long last_load_update_tick;
412 #ifdef CONFIG_NO_HZ_COMMON
413 u64 nohz_stamp;
414 unsigned long nohz_flags;
415 #endif
416 #ifdef CONFIG_NO_HZ_FULL
417 unsigned long last_sched_tick;
418 #endif
419 int skip_clock_update;
421 /* capture load from *all* tasks on this cpu: */
422 struct load_weight load;
423 unsigned long nr_load_updates;
424 u64 nr_switches;
426 struct cfs_rq cfs;
427 struct rt_rq rt;
429 #ifdef CONFIG_FAIR_GROUP_SCHED
430 /* list of leaf cfs_rq on this cpu: */
431 struct list_head leaf_cfs_rq_list;
432 #ifdef CONFIG_SMP
433 unsigned long h_load_throttle;
434 #endif /* CONFIG_SMP */
435 #endif /* CONFIG_FAIR_GROUP_SCHED */
437 #ifdef CONFIG_RT_GROUP_SCHED
438 struct list_head leaf_rt_rq_list;
439 #endif
442 * This is part of a global counter where only the total sum
443 * over all CPUs matters. A task can increase this counter on
444 * one CPU and if it got migrated afterwards it may decrease
445 * it on another CPU. Always updated under the runqueue lock:
447 unsigned long nr_uninterruptible;
449 struct task_struct *curr, *idle, *stop;
450 unsigned long next_balance;
451 struct mm_struct *prev_mm;
453 u64 clock;
454 u64 clock_task;
456 atomic_t nr_iowait;
458 #ifdef CONFIG_SMP
459 struct root_domain *rd;
460 struct sched_domain *sd;
462 unsigned long cpu_power;
464 unsigned char idle_balance;
465 /* For active balancing */
466 int post_schedule;
467 int active_balance;
468 int push_cpu;
469 struct cpu_stop_work active_balance_work;
470 /* cpu of this runqueue: */
471 int cpu;
472 int online;
474 struct list_head cfs_tasks;
476 u64 rt_avg;
477 u64 age_stamp;
478 u64 idle_stamp;
479 u64 avg_idle;
480 #endif
482 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
483 u64 prev_irq_time;
484 #endif
485 #ifdef CONFIG_PARAVIRT
486 u64 prev_steal_time;
487 #endif
488 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
489 u64 prev_steal_time_rq;
490 #endif
492 /* calc_load related fields */
493 unsigned long calc_load_update;
494 long calc_load_active;
496 #ifdef CONFIG_SCHED_HRTICK
497 #ifdef CONFIG_SMP
498 int hrtick_csd_pending;
499 struct call_single_data hrtick_csd;
500 #endif
501 struct hrtimer hrtick_timer;
502 #endif
504 #ifdef CONFIG_SCHEDSTATS
505 /* latency stats */
506 struct sched_info rq_sched_info;
507 unsigned long long rq_cpu_time;
508 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
510 /* sys_sched_yield() stats */
511 unsigned int yld_count;
513 /* schedule() stats */
514 unsigned int sched_count;
515 unsigned int sched_goidle;
517 /* try_to_wake_up() stats */
518 unsigned int ttwu_count;
519 unsigned int ttwu_local;
520 #endif
522 #ifdef CONFIG_SMP
523 struct llist_head wake_list;
524 #endif
526 struct sched_avg avg;
529 static inline int cpu_of(struct rq *rq)
531 #ifdef CONFIG_SMP
532 return rq->cpu;
533 #else
534 return 0;
535 #endif
538 DECLARE_PER_CPU(struct rq, runqueues);
540 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
541 #define this_rq() (&__get_cpu_var(runqueues))
542 #define task_rq(p) cpu_rq(task_cpu(p))
543 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
544 #define raw_rq() (&__raw_get_cpu_var(runqueues))
546 static inline u64 rq_clock(struct rq *rq)
548 return rq->clock;
551 static inline u64 rq_clock_task(struct rq *rq)
553 return rq->clock_task;
556 #ifdef CONFIG_SMP
558 #define rcu_dereference_check_sched_domain(p) \
559 rcu_dereference_check((p), \
560 lockdep_is_held(&sched_domains_mutex))
563 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
564 * See detach_destroy_domains: synchronize_sched for details.
566 * The domain tree of any CPU may only be accessed from within
567 * preempt-disabled sections.
569 #define for_each_domain(cpu, __sd) \
570 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
571 __sd; __sd = __sd->parent)
573 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
576 * highest_flag_domain - Return highest sched_domain containing flag.
577 * @cpu: The cpu whose highest level of sched domain is to
578 * be returned.
579 * @flag: The flag to check for the highest sched_domain
580 * for the given cpu.
582 * Returns the highest sched_domain of a cpu which contains the given flag.
584 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
586 struct sched_domain *sd, *hsd = NULL;
588 for_each_domain(cpu, sd) {
589 if (!(sd->flags & flag))
590 break;
591 hsd = sd;
594 return hsd;
597 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
598 DECLARE_PER_CPU(int, sd_llc_id);
600 struct sched_group_power {
601 atomic_t ref;
603 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
604 * single CPU.
606 unsigned int power, power_orig;
607 unsigned long next_update;
609 * Number of busy cpus in this group.
611 atomic_t nr_busy_cpus;
613 unsigned long cpumask[0]; /* iteration mask */
616 struct sched_group {
617 struct sched_group *next; /* Must be a circular list */
618 atomic_t ref;
620 unsigned int group_weight;
621 struct sched_group_power *sgp;
624 * The CPUs this group covers.
626 * NOTE: this field is variable length. (Allocated dynamically
627 * by attaching extra space to the end of the structure,
628 * depending on how many CPUs the kernel has booted up with)
630 unsigned long cpumask[0];
633 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
635 return to_cpumask(sg->cpumask);
639 * cpumask masking which cpus in the group are allowed to iterate up the domain
640 * tree.
642 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
644 return to_cpumask(sg->sgp->cpumask);
648 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
649 * @group: The group whose first cpu is to be returned.
651 static inline unsigned int group_first_cpu(struct sched_group *group)
653 return cpumask_first(sched_group_cpus(group));
656 extern int group_balance_cpu(struct sched_group *sg);
658 #endif /* CONFIG_SMP */
660 #include "stats.h"
661 #include "auto_group.h"
663 #ifdef CONFIG_CGROUP_SCHED
666 * Return the group to which this tasks belongs.
668 * We cannot use task_subsys_state() and friends because the cgroup
669 * subsystem changes that value before the cgroup_subsys::attach() method
670 * is called, therefore we cannot pin it and might observe the wrong value.
672 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
673 * core changes this before calling sched_move_task().
675 * Instead we use a 'copy' which is updated from sched_move_task() while
676 * holding both task_struct::pi_lock and rq::lock.
678 static inline struct task_group *task_group(struct task_struct *p)
680 return p->sched_task_group;
683 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
684 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
686 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
687 struct task_group *tg = task_group(p);
688 #endif
690 #ifdef CONFIG_FAIR_GROUP_SCHED
691 p->se.cfs_rq = tg->cfs_rq[cpu];
692 p->se.parent = tg->se[cpu];
693 #endif
695 #ifdef CONFIG_RT_GROUP_SCHED
696 p->rt.rt_rq = tg->rt_rq[cpu];
697 p->rt.parent = tg->rt_se[cpu];
698 #endif
701 #else /* CONFIG_CGROUP_SCHED */
703 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
704 static inline struct task_group *task_group(struct task_struct *p)
706 return NULL;
709 #endif /* CONFIG_CGROUP_SCHED */
711 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
713 set_task_rq(p, cpu);
714 #ifdef CONFIG_SMP
716 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
717 * successfuly executed on another CPU. We must ensure that updates of
718 * per-task data have been completed by this moment.
720 smp_wmb();
721 task_thread_info(p)->cpu = cpu;
722 #endif
726 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
728 #ifdef CONFIG_SCHED_DEBUG
729 # include <linux/static_key.h>
730 # define const_debug __read_mostly
731 #else
732 # define const_debug const
733 #endif
735 extern const_debug unsigned int sysctl_sched_features;
737 #define SCHED_FEAT(name, enabled) \
738 __SCHED_FEAT_##name ,
740 enum {
741 #include "features.h"
742 __SCHED_FEAT_NR,
745 #undef SCHED_FEAT
747 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
748 static __always_inline bool static_branch__true(struct static_key *key)
750 return static_key_true(key); /* Not out of line branch. */
753 static __always_inline bool static_branch__false(struct static_key *key)
755 return static_key_false(key); /* Out of line branch. */
758 #define SCHED_FEAT(name, enabled) \
759 static __always_inline bool static_branch_##name(struct static_key *key) \
761 return static_branch__##enabled(key); \
764 #include "features.h"
766 #undef SCHED_FEAT
768 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
769 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
770 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
771 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
772 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
774 #ifdef CONFIG_NUMA_BALANCING
775 #define sched_feat_numa(x) sched_feat(x)
776 #ifdef CONFIG_SCHED_DEBUG
777 #define numabalancing_enabled sched_feat_numa(NUMA)
778 #else
779 extern bool numabalancing_enabled;
780 #endif /* CONFIG_SCHED_DEBUG */
781 #else
782 #define sched_feat_numa(x) (0)
783 #define numabalancing_enabled (0)
784 #endif /* CONFIG_NUMA_BALANCING */
786 static inline u64 global_rt_period(void)
788 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
791 static inline u64 global_rt_runtime(void)
793 if (sysctl_sched_rt_runtime < 0)
794 return RUNTIME_INF;
796 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
801 static inline int task_current(struct rq *rq, struct task_struct *p)
803 return rq->curr == p;
806 static inline int task_running(struct rq *rq, struct task_struct *p)
808 #ifdef CONFIG_SMP
809 return p->on_cpu;
810 #else
811 return task_current(rq, p);
812 #endif
816 #ifndef prepare_arch_switch
817 # define prepare_arch_switch(next) do { } while (0)
818 #endif
819 #ifndef finish_arch_switch
820 # define finish_arch_switch(prev) do { } while (0)
821 #endif
822 #ifndef finish_arch_post_lock_switch
823 # define finish_arch_post_lock_switch() do { } while (0)
824 #endif
826 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
827 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
829 #ifdef CONFIG_SMP
831 * We can optimise this out completely for !SMP, because the
832 * SMP rebalancing from interrupt is the only thing that cares
833 * here.
835 next->on_cpu = 1;
836 #endif
839 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
841 #ifdef CONFIG_SMP
843 * After ->on_cpu is cleared, the task can be moved to a different CPU.
844 * We must ensure this doesn't happen until the switch is completely
845 * finished.
847 smp_wmb();
848 prev->on_cpu = 0;
849 #endif
850 #ifdef CONFIG_DEBUG_SPINLOCK
851 /* this is a valid case when another task releases the spinlock */
852 rq->lock.owner = current;
853 #endif
855 * If we are tracking spinlock dependencies then we have to
856 * fix up the runqueue lock - which gets 'carried over' from
857 * prev into current:
859 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
861 raw_spin_unlock_irq(&rq->lock);
864 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
865 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
867 #ifdef CONFIG_SMP
869 * We can optimise this out completely for !SMP, because the
870 * SMP rebalancing from interrupt is the only thing that cares
871 * here.
873 next->on_cpu = 1;
874 #endif
875 raw_spin_unlock(&rq->lock);
878 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
880 #ifdef CONFIG_SMP
882 * After ->on_cpu is cleared, the task can be moved to a different CPU.
883 * We must ensure this doesn't happen until the switch is completely
884 * finished.
886 smp_wmb();
887 prev->on_cpu = 0;
888 #endif
889 local_irq_enable();
891 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
894 * wake flags
896 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
897 #define WF_FORK 0x02 /* child wakeup after fork */
898 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
901 * To aid in avoiding the subversion of "niceness" due to uneven distribution
902 * of tasks with abnormal "nice" values across CPUs the contribution that
903 * each task makes to its run queue's load is weighted according to its
904 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
905 * scaled version of the new time slice allocation that they receive on time
906 * slice expiry etc.
909 #define WEIGHT_IDLEPRIO 3
910 #define WMULT_IDLEPRIO 1431655765
913 * Nice levels are multiplicative, with a gentle 10% change for every
914 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
915 * nice 1, it will get ~10% less CPU time than another CPU-bound task
916 * that remained on nice 0.
918 * The "10% effect" is relative and cumulative: from _any_ nice level,
919 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
920 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
921 * If a task goes up by ~10% and another task goes down by ~10% then
922 * the relative distance between them is ~25%.)
924 static const int prio_to_weight[40] = {
925 /* -20 */ 88761, 71755, 56483, 46273, 36291,
926 /* -15 */ 29154, 23254, 18705, 14949, 11916,
927 /* -10 */ 9548, 7620, 6100, 4904, 3906,
928 /* -5 */ 3121, 2501, 1991, 1586, 1277,
929 /* 0 */ 1024, 820, 655, 526, 423,
930 /* 5 */ 335, 272, 215, 172, 137,
931 /* 10 */ 110, 87, 70, 56, 45,
932 /* 15 */ 36, 29, 23, 18, 15,
936 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
938 * In cases where the weight does not change often, we can use the
939 * precalculated inverse to speed up arithmetics by turning divisions
940 * into multiplications:
942 static const u32 prio_to_wmult[40] = {
943 /* -20 */ 48388, 59856, 76040, 92818, 118348,
944 /* -15 */ 147320, 184698, 229616, 287308, 360437,
945 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
946 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
947 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
948 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
949 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
950 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
953 #define ENQUEUE_WAKEUP 1
954 #define ENQUEUE_HEAD 2
955 #ifdef CONFIG_SMP
956 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
957 #else
958 #define ENQUEUE_WAKING 0
959 #endif
961 #define DEQUEUE_SLEEP 1
963 struct sched_class {
964 const struct sched_class *next;
966 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
967 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
968 void (*yield_task) (struct rq *rq);
969 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
971 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
973 struct task_struct * (*pick_next_task) (struct rq *rq);
974 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
976 #ifdef CONFIG_SMP
977 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
978 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
980 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
981 void (*post_schedule) (struct rq *this_rq);
982 void (*task_waking) (struct task_struct *task);
983 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
985 void (*set_cpus_allowed)(struct task_struct *p,
986 const struct cpumask *newmask);
988 void (*rq_online)(struct rq *rq);
989 void (*rq_offline)(struct rq *rq);
990 #endif
992 void (*set_curr_task) (struct rq *rq);
993 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
994 void (*task_fork) (struct task_struct *p);
996 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
997 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
998 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
999 int oldprio);
1001 unsigned int (*get_rr_interval) (struct rq *rq,
1002 struct task_struct *task);
1004 #ifdef CONFIG_FAIR_GROUP_SCHED
1005 void (*task_move_group) (struct task_struct *p, int on_rq);
1006 #endif
1009 #define sched_class_highest (&stop_sched_class)
1010 #define for_each_class(class) \
1011 for (class = sched_class_highest; class; class = class->next)
1013 extern const struct sched_class stop_sched_class;
1014 extern const struct sched_class rt_sched_class;
1015 extern const struct sched_class fair_sched_class;
1016 extern const struct sched_class idle_sched_class;
1019 #ifdef CONFIG_SMP
1021 extern void update_group_power(struct sched_domain *sd, int cpu);
1023 extern void trigger_load_balance(struct rq *rq, int cpu);
1024 extern void idle_balance(int this_cpu, struct rq *this_rq);
1026 extern void idle_enter_fair(struct rq *this_rq);
1027 extern void idle_exit_fair(struct rq *this_rq);
1029 #else /* CONFIG_SMP */
1031 static inline void idle_balance(int cpu, struct rq *rq)
1035 #endif
1037 extern void sysrq_sched_debug_show(void);
1038 extern void sched_init_granularity(void);
1039 extern void update_max_interval(void);
1040 extern void init_sched_rt_class(void);
1041 extern void init_sched_fair_class(void);
1043 extern void resched_task(struct task_struct *p);
1044 extern void resched_cpu(int cpu);
1046 extern struct rt_bandwidth def_rt_bandwidth;
1047 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1049 extern void update_idle_cpu_load(struct rq *this_rq);
1051 extern void init_task_runnable_average(struct task_struct *p);
1053 #ifdef CONFIG_PARAVIRT
1054 static inline u64 steal_ticks(u64 steal)
1056 if (unlikely(steal > NSEC_PER_SEC))
1057 return div_u64(steal, TICK_NSEC);
1059 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1061 #endif
1063 static inline void inc_nr_running(struct rq *rq)
1065 rq->nr_running++;
1067 #ifdef CONFIG_NO_HZ_FULL
1068 if (rq->nr_running == 2) {
1069 if (tick_nohz_full_cpu(rq->cpu)) {
1070 /* Order rq->nr_running write against the IPI */
1071 smp_wmb();
1072 smp_send_reschedule(rq->cpu);
1075 #endif
1078 static inline void dec_nr_running(struct rq *rq)
1080 rq->nr_running--;
1083 static inline void rq_last_tick_reset(struct rq *rq)
1085 #ifdef CONFIG_NO_HZ_FULL
1086 rq->last_sched_tick = jiffies;
1087 #endif
1090 extern void update_rq_clock(struct rq *rq);
1092 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1093 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1095 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1097 extern const_debug unsigned int sysctl_sched_time_avg;
1098 extern const_debug unsigned int sysctl_sched_nr_migrate;
1099 extern const_debug unsigned int sysctl_sched_migration_cost;
1101 static inline u64 sched_avg_period(void)
1103 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1106 #ifdef CONFIG_SCHED_HRTICK
1109 * Use hrtick when:
1110 * - enabled by features
1111 * - hrtimer is actually high res
1113 static inline int hrtick_enabled(struct rq *rq)
1115 if (!sched_feat(HRTICK))
1116 return 0;
1117 if (!cpu_active(cpu_of(rq)))
1118 return 0;
1119 return hrtimer_is_hres_active(&rq->hrtick_timer);
1122 void hrtick_start(struct rq *rq, u64 delay);
1124 #else
1126 static inline int hrtick_enabled(struct rq *rq)
1128 return 0;
1131 #endif /* CONFIG_SCHED_HRTICK */
1133 #ifdef CONFIG_SMP
1134 extern void sched_avg_update(struct rq *rq);
1135 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1137 rq->rt_avg += rt_delta;
1138 sched_avg_update(rq);
1140 #else
1141 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1142 static inline void sched_avg_update(struct rq *rq) { }
1143 #endif
1145 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1147 #ifdef CONFIG_SMP
1148 #ifdef CONFIG_PREEMPT
1150 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1153 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1154 * way at the expense of forcing extra atomic operations in all
1155 * invocations. This assures that the double_lock is acquired using the
1156 * same underlying policy as the spinlock_t on this architecture, which
1157 * reduces latency compared to the unfair variant below. However, it
1158 * also adds more overhead and therefore may reduce throughput.
1160 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1161 __releases(this_rq->lock)
1162 __acquires(busiest->lock)
1163 __acquires(this_rq->lock)
1165 raw_spin_unlock(&this_rq->lock);
1166 double_rq_lock(this_rq, busiest);
1168 return 1;
1171 #else
1173 * Unfair double_lock_balance: Optimizes throughput at the expense of
1174 * latency by eliminating extra atomic operations when the locks are
1175 * already in proper order on entry. This favors lower cpu-ids and will
1176 * grant the double lock to lower cpus over higher ids under contention,
1177 * regardless of entry order into the function.
1179 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1180 __releases(this_rq->lock)
1181 __acquires(busiest->lock)
1182 __acquires(this_rq->lock)
1184 int ret = 0;
1186 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1187 if (busiest < this_rq) {
1188 raw_spin_unlock(&this_rq->lock);
1189 raw_spin_lock(&busiest->lock);
1190 raw_spin_lock_nested(&this_rq->lock,
1191 SINGLE_DEPTH_NESTING);
1192 ret = 1;
1193 } else
1194 raw_spin_lock_nested(&busiest->lock,
1195 SINGLE_DEPTH_NESTING);
1197 return ret;
1200 #endif /* CONFIG_PREEMPT */
1203 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1205 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1207 if (unlikely(!irqs_disabled())) {
1208 /* printk() doesn't work good under rq->lock */
1209 raw_spin_unlock(&this_rq->lock);
1210 BUG_ON(1);
1213 return _double_lock_balance(this_rq, busiest);
1216 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1217 __releases(busiest->lock)
1219 raw_spin_unlock(&busiest->lock);
1220 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1224 * double_rq_lock - safely lock two runqueues
1226 * Note this does not disable interrupts like task_rq_lock,
1227 * you need to do so manually before calling.
1229 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1230 __acquires(rq1->lock)
1231 __acquires(rq2->lock)
1233 BUG_ON(!irqs_disabled());
1234 if (rq1 == rq2) {
1235 raw_spin_lock(&rq1->lock);
1236 __acquire(rq2->lock); /* Fake it out ;) */
1237 } else {
1238 if (rq1 < rq2) {
1239 raw_spin_lock(&rq1->lock);
1240 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1241 } else {
1242 raw_spin_lock(&rq2->lock);
1243 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1249 * double_rq_unlock - safely unlock two runqueues
1251 * Note this does not restore interrupts like task_rq_unlock,
1252 * you need to do so manually after calling.
1254 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1255 __releases(rq1->lock)
1256 __releases(rq2->lock)
1258 raw_spin_unlock(&rq1->lock);
1259 if (rq1 != rq2)
1260 raw_spin_unlock(&rq2->lock);
1261 else
1262 __release(rq2->lock);
1265 #else /* CONFIG_SMP */
1268 * double_rq_lock - safely lock two runqueues
1270 * Note this does not disable interrupts like task_rq_lock,
1271 * you need to do so manually before calling.
1273 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1274 __acquires(rq1->lock)
1275 __acquires(rq2->lock)
1277 BUG_ON(!irqs_disabled());
1278 BUG_ON(rq1 != rq2);
1279 raw_spin_lock(&rq1->lock);
1280 __acquire(rq2->lock); /* Fake it out ;) */
1284 * double_rq_unlock - safely unlock two runqueues
1286 * Note this does not restore interrupts like task_rq_unlock,
1287 * you need to do so manually after calling.
1289 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1290 __releases(rq1->lock)
1291 __releases(rq2->lock)
1293 BUG_ON(rq1 != rq2);
1294 raw_spin_unlock(&rq1->lock);
1295 __release(rq2->lock);
1298 #endif
1300 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1301 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1302 extern void print_cfs_stats(struct seq_file *m, int cpu);
1303 extern void print_rt_stats(struct seq_file *m, int cpu);
1305 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1306 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1308 extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1310 #ifdef CONFIG_NO_HZ_COMMON
1311 enum rq_nohz_flag_bits {
1312 NOHZ_TICK_STOPPED,
1313 NOHZ_BALANCE_KICK,
1316 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1317 #endif
1319 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1321 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1322 DECLARE_PER_CPU(u64, cpu_softirq_time);
1324 #ifndef CONFIG_64BIT
1325 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1327 static inline void irq_time_write_begin(void)
1329 __this_cpu_inc(irq_time_seq.sequence);
1330 smp_wmb();
1333 static inline void irq_time_write_end(void)
1335 smp_wmb();
1336 __this_cpu_inc(irq_time_seq.sequence);
1339 static inline u64 irq_time_read(int cpu)
1341 u64 irq_time;
1342 unsigned seq;
1344 do {
1345 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1346 irq_time = per_cpu(cpu_softirq_time, cpu) +
1347 per_cpu(cpu_hardirq_time, cpu);
1348 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1350 return irq_time;
1352 #else /* CONFIG_64BIT */
1353 static inline void irq_time_write_begin(void)
1357 static inline void irq_time_write_end(void)
1361 static inline u64 irq_time_read(int cpu)
1363 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1365 #endif /* CONFIG_64BIT */
1366 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */