4 * (C) Copyright IBM Corporation 2005.
5 * Released under GPL v2.
6 * Author : Ram Pai (linuxram@us.ibm.com)
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
12 #include <linux/nsproxy.h>
16 /* return the next shared peer mount of @p */
17 static inline struct mount
*next_peer(struct mount
*p
)
19 return list_entry(p
->mnt_share
.next
, struct mount
, mnt_share
);
22 static inline struct mount
*first_slave(struct mount
*p
)
24 return list_entry(p
->mnt_slave_list
.next
, struct mount
, mnt_slave
);
27 static inline struct mount
*last_slave(struct mount
*p
)
29 return list_entry(p
->mnt_slave_list
.prev
, struct mount
, mnt_slave
);
32 static inline struct mount
*next_slave(struct mount
*p
)
34 return list_entry(p
->mnt_slave
.next
, struct mount
, mnt_slave
);
37 static struct mount
*get_peer_under_root(struct mount
*mnt
,
38 struct mnt_namespace
*ns
,
39 const struct path
*root
)
41 struct mount
*m
= mnt
;
44 /* Check the namespace first for optimization */
45 if (m
->mnt_ns
== ns
&& is_path_reachable(m
, m
->mnt
.mnt_root
, root
))
55 * Get ID of closest dominating peer group having a representative
56 * under the given root.
58 * Caller must hold namespace_sem
60 int get_dominating_id(struct mount
*mnt
, const struct path
*root
)
64 for (m
= mnt
->mnt_master
; m
!= NULL
; m
= m
->mnt_master
) {
65 struct mount
*d
= get_peer_under_root(m
, mnt
->mnt_ns
, root
);
67 return d
->mnt_group_id
;
73 static int do_make_slave(struct mount
*mnt
)
75 struct mount
*peer_mnt
= mnt
, *master
= mnt
->mnt_master
;
76 struct mount
*slave_mnt
;
79 * slave 'mnt' to a peer mount that has the
80 * same root dentry. If none is available then
81 * slave it to anything that is available.
83 while ((peer_mnt
= next_peer(peer_mnt
)) != mnt
&&
84 peer_mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_root
) ;
86 if (peer_mnt
== mnt
) {
87 peer_mnt
= next_peer(mnt
);
91 if (mnt
->mnt_group_id
&& IS_MNT_SHARED(mnt
) &&
92 list_empty(&mnt
->mnt_share
))
93 mnt_release_group_id(mnt
);
95 list_del_init(&mnt
->mnt_share
);
96 mnt
->mnt_group_id
= 0;
102 list_for_each_entry(slave_mnt
, &mnt
->mnt_slave_list
, mnt_slave
)
103 slave_mnt
->mnt_master
= master
;
104 list_move(&mnt
->mnt_slave
, &master
->mnt_slave_list
);
105 list_splice(&mnt
->mnt_slave_list
, master
->mnt_slave_list
.prev
);
106 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
108 struct list_head
*p
= &mnt
->mnt_slave_list
;
109 while (!list_empty(p
)) {
110 slave_mnt
= list_first_entry(p
,
111 struct mount
, mnt_slave
);
112 list_del_init(&slave_mnt
->mnt_slave
);
113 slave_mnt
->mnt_master
= NULL
;
116 mnt
->mnt_master
= master
;
117 CLEAR_MNT_SHARED(mnt
);
122 * vfsmount lock must be held for write
124 void change_mnt_propagation(struct mount
*mnt
, int type
)
126 if (type
== MS_SHARED
) {
131 if (type
!= MS_SLAVE
) {
132 list_del_init(&mnt
->mnt_slave
);
133 mnt
->mnt_master
= NULL
;
134 if (type
== MS_UNBINDABLE
)
135 mnt
->mnt
.mnt_flags
|= MNT_UNBINDABLE
;
137 mnt
->mnt
.mnt_flags
&= ~MNT_UNBINDABLE
;
142 * get the next mount in the propagation tree.
143 * @m: the mount seen last
144 * @origin: the original mount from where the tree walk initiated
146 * Note that peer groups form contiguous segments of slave lists.
147 * We rely on that in get_source() to be able to find out if
148 * vfsmount found while iterating with propagation_next() is
149 * a peer of one we'd found earlier.
151 static struct mount
*propagation_next(struct mount
*m
,
152 struct mount
*origin
)
154 /* are there any slaves of this mount? */
155 if (!IS_MNT_NEW(m
) && !list_empty(&m
->mnt_slave_list
))
156 return first_slave(m
);
159 struct mount
*master
= m
->mnt_master
;
161 if (master
== origin
->mnt_master
) {
162 struct mount
*next
= next_peer(m
);
163 return (next
== origin
) ? NULL
: next
;
164 } else if (m
->mnt_slave
.next
!= &master
->mnt_slave_list
)
165 return next_slave(m
);
172 static struct mount
*skip_propagation_subtree(struct mount
*m
,
173 struct mount
*origin
)
176 * Advance m such that propagation_next will not return
179 if (!IS_MNT_NEW(m
) && !list_empty(&m
->mnt_slave_list
))
185 static struct mount
*next_group(struct mount
*m
, struct mount
*origin
)
190 if (!IS_MNT_NEW(m
) && !list_empty(&m
->mnt_slave_list
))
191 return first_slave(m
);
193 if (m
->mnt_group_id
== origin
->mnt_group_id
) {
196 } else if (m
->mnt_slave
.next
!= &next
->mnt_slave
)
200 /* m is the last peer */
202 struct mount
*master
= m
->mnt_master
;
203 if (m
->mnt_slave
.next
!= &master
->mnt_slave_list
)
204 return next_slave(m
);
205 m
= next_peer(master
);
206 if (master
->mnt_group_id
== origin
->mnt_group_id
)
208 if (master
->mnt_slave
.next
== &m
->mnt_slave
)
217 /* all accesses are serialized by namespace_sem */
218 static struct user_namespace
*user_ns
;
219 static struct mount
*last_dest
, *first_source
, *last_source
, *dest_master
;
220 static struct mountpoint
*mp
;
221 static struct hlist_head
*list
;
223 static inline bool peers(struct mount
*m1
, struct mount
*m2
)
225 return m1
->mnt_group_id
== m2
->mnt_group_id
&& m1
->mnt_group_id
;
228 static int propagate_one(struct mount
*m
)
232 /* skip ones added by this propagate_mnt() */
235 /* skip if mountpoint isn't covered by it */
236 if (!is_subdir(mp
->m_dentry
, m
->mnt
.mnt_root
))
238 if (peers(m
, last_dest
)) {
239 type
= CL_MAKE_SHARED
;
243 for (n
= m
; ; n
= p
) {
245 if (p
== dest_master
|| IS_MNT_MARKED(p
))
249 struct mount
*parent
= last_source
->mnt_parent
;
250 if (last_source
== first_source
)
252 done
= parent
->mnt_master
== p
;
253 if (done
&& peers(n
, parent
))
255 last_source
= last_source
->mnt_master
;
259 /* beginning of peer group among the slaves? */
260 if (IS_MNT_SHARED(m
))
261 type
|= CL_MAKE_SHARED
;
264 /* Notice when we are propagating across user namespaces */
265 if (m
->mnt_ns
->user_ns
!= user_ns
)
266 type
|= CL_UNPRIVILEGED
;
267 child
= copy_tree(last_source
, last_source
->mnt
.mnt_root
, type
);
269 return PTR_ERR(child
);
270 child
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
271 mnt_set_mountpoint(m
, mp
, child
);
274 if (m
->mnt_master
!= dest_master
) {
275 read_seqlock_excl(&mount_lock
);
276 SET_MNT_MARK(m
->mnt_master
);
277 read_sequnlock_excl(&mount_lock
);
279 hlist_add_head(&child
->mnt_hash
, list
);
280 return count_mounts(m
->mnt_ns
, child
);
284 * mount 'source_mnt' under the destination 'dest_mnt' at
285 * dentry 'dest_dentry'. And propagate that mount to
286 * all the peer and slave mounts of 'dest_mnt'.
287 * Link all the new mounts into a propagation tree headed at
288 * source_mnt. Also link all the new mounts using ->mnt_list
289 * headed at source_mnt's ->mnt_list
291 * @dest_mnt: destination mount.
292 * @dest_dentry: destination dentry.
293 * @source_mnt: source mount.
294 * @tree_list : list of heads of trees to be attached.
296 int propagate_mnt(struct mount
*dest_mnt
, struct mountpoint
*dest_mp
,
297 struct mount
*source_mnt
, struct hlist_head
*tree_list
)
303 * we don't want to bother passing tons of arguments to
304 * propagate_one(); everything is serialized by namespace_sem,
305 * so globals will do just fine.
307 user_ns
= current
->nsproxy
->mnt_ns
->user_ns
;
308 last_dest
= dest_mnt
;
309 first_source
= source_mnt
;
310 last_source
= source_mnt
;
313 dest_master
= dest_mnt
->mnt_master
;
315 /* all peers of dest_mnt, except dest_mnt itself */
316 for (n
= next_peer(dest_mnt
); n
!= dest_mnt
; n
= next_peer(n
)) {
317 ret
= propagate_one(n
);
322 /* all slave groups */
323 for (m
= next_group(dest_mnt
, dest_mnt
); m
;
324 m
= next_group(m
, dest_mnt
)) {
325 /* everything in that slave group */
328 ret
= propagate_one(n
);
335 read_seqlock_excl(&mount_lock
);
336 hlist_for_each_entry(n
, tree_list
, mnt_hash
) {
338 if (m
->mnt_master
!= dest_mnt
->mnt_master
)
339 CLEAR_MNT_MARK(m
->mnt_master
);
341 read_sequnlock_excl(&mount_lock
);
345 static struct mount
*find_topper(struct mount
*mnt
)
347 /* If there is exactly one mount covering mnt completely return it. */
350 if (!list_is_singular(&mnt
->mnt_mounts
))
353 child
= list_first_entry(&mnt
->mnt_mounts
, struct mount
, mnt_child
);
354 if (child
->mnt_mountpoint
!= mnt
->mnt
.mnt_root
)
361 * return true if the refcount is greater than count
363 static inline int do_refcount_check(struct mount
*mnt
, int count
)
365 return mnt_get_count(mnt
) > count
;
369 * check if the mount 'mnt' can be unmounted successfully.
370 * @mnt: the mount to be checked for unmount
371 * NOTE: unmounting 'mnt' would naturally propagate to all
372 * other mounts its parent propagates to.
373 * Check if any of these mounts that **do not have submounts**
374 * have more references than 'refcnt'. If so return busy.
376 * vfsmount lock must be held for write
378 int propagate_mount_busy(struct mount
*mnt
, int refcnt
)
380 struct mount
*m
, *child
, *topper
;
381 struct mount
*parent
= mnt
->mnt_parent
;
384 return do_refcount_check(mnt
, refcnt
);
387 * quickly check if the current mount can be unmounted.
388 * If not, we don't have to go checking for all other
391 if (!list_empty(&mnt
->mnt_mounts
) || do_refcount_check(mnt
, refcnt
))
394 for (m
= propagation_next(parent
, parent
); m
;
395 m
= propagation_next(m
, parent
)) {
397 child
= __lookup_mnt(&m
->mnt
, mnt
->mnt_mountpoint
);
401 /* Is there exactly one mount on the child that covers
402 * it completely whose reference should be ignored?
404 topper
= find_topper(child
);
407 else if (!list_empty(&child
->mnt_mounts
))
410 if (do_refcount_check(child
, count
))
417 * Clear MNT_LOCKED when it can be shown to be safe.
419 * mount_lock lock must be held for write
421 void propagate_mount_unlock(struct mount
*mnt
)
423 struct mount
*parent
= mnt
->mnt_parent
;
424 struct mount
*m
, *child
;
426 BUG_ON(parent
== mnt
);
428 for (m
= propagation_next(parent
, parent
); m
;
429 m
= propagation_next(m
, parent
)) {
430 child
= __lookup_mnt(&m
->mnt
, mnt
->mnt_mountpoint
);
432 child
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
436 static void umount_one(struct mount
*mnt
, struct list_head
*to_umount
)
439 mnt
->mnt
.mnt_flags
|= MNT_UMOUNT
;
440 list_del_init(&mnt
->mnt_child
);
441 list_del_init(&mnt
->mnt_umounting
);
442 list_move_tail(&mnt
->mnt_list
, to_umount
);
446 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
447 * parent propagates to.
449 static bool __propagate_umount(struct mount
*mnt
,
450 struct list_head
*to_umount
,
451 struct list_head
*to_restore
)
453 bool progress
= false;
457 * The state of the parent won't change if this mount is
458 * already unmounted or marked as without children.
460 if (mnt
->mnt
.mnt_flags
& (MNT_UMOUNT
| MNT_MARKED
))
463 /* Verify topper is the only grandchild that has not been
464 * speculatively unmounted.
466 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
467 if (child
->mnt_mountpoint
== mnt
->mnt
.mnt_root
)
469 if (!list_empty(&child
->mnt_umounting
) && IS_MNT_MARKED(child
))
471 /* Found a mounted child */
475 /* Mark mounts that can be unmounted if not locked */
479 /* If a mount is without children and not locked umount it. */
480 if (!IS_MNT_LOCKED(mnt
)) {
481 umount_one(mnt
, to_umount
);
484 list_move_tail(&mnt
->mnt_umounting
, to_restore
);
490 static void umount_list(struct list_head
*to_umount
,
491 struct list_head
*to_restore
)
493 struct mount
*mnt
, *child
, *tmp
;
494 list_for_each_entry(mnt
, to_umount
, mnt_list
) {
495 list_for_each_entry_safe(child
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
497 if (child
->mnt_mountpoint
== mnt
->mnt
.mnt_root
)
498 list_move_tail(&child
->mnt_umounting
, to_restore
);
500 umount_one(child
, to_umount
);
505 static void restore_mounts(struct list_head
*to_restore
)
507 /* Restore mounts to a clean working state */
508 while (!list_empty(to_restore
)) {
509 struct mount
*mnt
, *parent
;
510 struct mountpoint
*mp
;
512 mnt
= list_first_entry(to_restore
, struct mount
, mnt_umounting
);
514 list_del_init(&mnt
->mnt_umounting
);
516 /* Should this mount be reparented? */
518 parent
= mnt
->mnt_parent
;
519 while (parent
->mnt
.mnt_flags
& MNT_UMOUNT
) {
521 parent
= parent
->mnt_parent
;
523 if (parent
!= mnt
->mnt_parent
)
524 mnt_change_mountpoint(parent
, mp
, mnt
);
528 static void cleanup_umount_visitations(struct list_head
*visited
)
530 while (!list_empty(visited
)) {
532 list_first_entry(visited
, struct mount
, mnt_umounting
);
533 list_del_init(&mnt
->mnt_umounting
);
538 * collect all mounts that receive propagation from the mount in @list,
539 * and return these additional mounts in the same list.
540 * @list: the list of mounts to be unmounted.
542 * vfsmount lock must be held for write
544 int propagate_umount(struct list_head
*list
)
547 LIST_HEAD(to_restore
);
548 LIST_HEAD(to_umount
);
551 /* Find candidates for unmounting */
552 list_for_each_entry_reverse(mnt
, list
, mnt_list
) {
553 struct mount
*parent
= mnt
->mnt_parent
;
557 * If this mount has already been visited it is known that it's
558 * entire peer group and all of their slaves in the propagation
559 * tree for the mountpoint has already been visited and there is
560 * no need to visit them again.
562 if (!list_empty(&mnt
->mnt_umounting
))
565 list_add_tail(&mnt
->mnt_umounting
, &visited
);
566 for (m
= propagation_next(parent
, parent
); m
;
567 m
= propagation_next(m
, parent
)) {
568 struct mount
*child
= __lookup_mnt(&m
->mnt
,
569 mnt
->mnt_mountpoint
);
573 if (!list_empty(&child
->mnt_umounting
)) {
575 * If the child has already been visited it is
576 * know that it's entire peer group and all of
577 * their slaves in the propgation tree for the
578 * mountpoint has already been visited and there
579 * is no need to visit this subtree again.
581 m
= skip_propagation_subtree(m
, parent
);
583 } else if (child
->mnt
.mnt_flags
& MNT_UMOUNT
) {
585 * We have come accross an partially unmounted
586 * mount in list that has not been visited yet.
587 * Remember it has been visited and continue
588 * about our merry way.
590 list_add_tail(&child
->mnt_umounting
, &visited
);
594 /* Check the child and parents while progress is made */
595 while (__propagate_umount(child
,
596 &to_umount
, &to_restore
)) {
597 /* Is the parent a umount candidate? */
598 child
= child
->mnt_parent
;
599 if (list_empty(&child
->mnt_umounting
))
605 umount_list(&to_umount
, &to_restore
);
606 restore_mounts(&to_restore
);
607 cleanup_umount_visitations(&visited
);
608 list_splice_tail(&to_umount
, list
);