Linux 4.9.112
[linux/fpc-iii.git] / fs / pnode.c
blobd15c63e97ef1e6df711c9e78c1e72c77cd69709e
1 /*
2 * linux/fs/pnode.c
4 * (C) Copyright IBM Corporation 2005.
5 * Released under GPL v2.
6 * Author : Ram Pai (linuxram@us.ibm.com)
8 */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include <linux/nsproxy.h>
13 #include "internal.h"
14 #include "pnode.h"
16 /* return the next shared peer mount of @p */
17 static inline struct mount *next_peer(struct mount *p)
19 return list_entry(p->mnt_share.next, struct mount, mnt_share);
22 static inline struct mount *first_slave(struct mount *p)
24 return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
27 static inline struct mount *last_slave(struct mount *p)
29 return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
32 static inline struct mount *next_slave(struct mount *p)
34 return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
37 static struct mount *get_peer_under_root(struct mount *mnt,
38 struct mnt_namespace *ns,
39 const struct path *root)
41 struct mount *m = mnt;
43 do {
44 /* Check the namespace first for optimization */
45 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
46 return m;
48 m = next_peer(m);
49 } while (m != mnt);
51 return NULL;
55 * Get ID of closest dominating peer group having a representative
56 * under the given root.
58 * Caller must hold namespace_sem
60 int get_dominating_id(struct mount *mnt, const struct path *root)
62 struct mount *m;
64 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
65 struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
66 if (d)
67 return d->mnt_group_id;
70 return 0;
73 static int do_make_slave(struct mount *mnt)
75 struct mount *peer_mnt = mnt, *master = mnt->mnt_master;
76 struct mount *slave_mnt;
79 * slave 'mnt' to a peer mount that has the
80 * same root dentry. If none is available then
81 * slave it to anything that is available.
83 while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
84 peer_mnt->mnt.mnt_root != mnt->mnt.mnt_root) ;
86 if (peer_mnt == mnt) {
87 peer_mnt = next_peer(mnt);
88 if (peer_mnt == mnt)
89 peer_mnt = NULL;
91 if (mnt->mnt_group_id && IS_MNT_SHARED(mnt) &&
92 list_empty(&mnt->mnt_share))
93 mnt_release_group_id(mnt);
95 list_del_init(&mnt->mnt_share);
96 mnt->mnt_group_id = 0;
98 if (peer_mnt)
99 master = peer_mnt;
101 if (master) {
102 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
103 slave_mnt->mnt_master = master;
104 list_move(&mnt->mnt_slave, &master->mnt_slave_list);
105 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
106 INIT_LIST_HEAD(&mnt->mnt_slave_list);
107 } else {
108 struct list_head *p = &mnt->mnt_slave_list;
109 while (!list_empty(p)) {
110 slave_mnt = list_first_entry(p,
111 struct mount, mnt_slave);
112 list_del_init(&slave_mnt->mnt_slave);
113 slave_mnt->mnt_master = NULL;
116 mnt->mnt_master = master;
117 CLEAR_MNT_SHARED(mnt);
118 return 0;
122 * vfsmount lock must be held for write
124 void change_mnt_propagation(struct mount *mnt, int type)
126 if (type == MS_SHARED) {
127 set_mnt_shared(mnt);
128 return;
130 do_make_slave(mnt);
131 if (type != MS_SLAVE) {
132 list_del_init(&mnt->mnt_slave);
133 mnt->mnt_master = NULL;
134 if (type == MS_UNBINDABLE)
135 mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
136 else
137 mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
142 * get the next mount in the propagation tree.
143 * @m: the mount seen last
144 * @origin: the original mount from where the tree walk initiated
146 * Note that peer groups form contiguous segments of slave lists.
147 * We rely on that in get_source() to be able to find out if
148 * vfsmount found while iterating with propagation_next() is
149 * a peer of one we'd found earlier.
151 static struct mount *propagation_next(struct mount *m,
152 struct mount *origin)
154 /* are there any slaves of this mount? */
155 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
156 return first_slave(m);
158 while (1) {
159 struct mount *master = m->mnt_master;
161 if (master == origin->mnt_master) {
162 struct mount *next = next_peer(m);
163 return (next == origin) ? NULL : next;
164 } else if (m->mnt_slave.next != &master->mnt_slave_list)
165 return next_slave(m);
167 /* back at master */
168 m = master;
172 static struct mount *skip_propagation_subtree(struct mount *m,
173 struct mount *origin)
176 * Advance m such that propagation_next will not return
177 * the slaves of m.
179 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
180 m = last_slave(m);
182 return m;
185 static struct mount *next_group(struct mount *m, struct mount *origin)
187 while (1) {
188 while (1) {
189 struct mount *next;
190 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
191 return first_slave(m);
192 next = next_peer(m);
193 if (m->mnt_group_id == origin->mnt_group_id) {
194 if (next == origin)
195 return NULL;
196 } else if (m->mnt_slave.next != &next->mnt_slave)
197 break;
198 m = next;
200 /* m is the last peer */
201 while (1) {
202 struct mount *master = m->mnt_master;
203 if (m->mnt_slave.next != &master->mnt_slave_list)
204 return next_slave(m);
205 m = next_peer(master);
206 if (master->mnt_group_id == origin->mnt_group_id)
207 break;
208 if (master->mnt_slave.next == &m->mnt_slave)
209 break;
210 m = master;
212 if (m == origin)
213 return NULL;
217 /* all accesses are serialized by namespace_sem */
218 static struct user_namespace *user_ns;
219 static struct mount *last_dest, *first_source, *last_source, *dest_master;
220 static struct mountpoint *mp;
221 static struct hlist_head *list;
223 static inline bool peers(struct mount *m1, struct mount *m2)
225 return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
228 static int propagate_one(struct mount *m)
230 struct mount *child;
231 int type;
232 /* skip ones added by this propagate_mnt() */
233 if (IS_MNT_NEW(m))
234 return 0;
235 /* skip if mountpoint isn't covered by it */
236 if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
237 return 0;
238 if (peers(m, last_dest)) {
239 type = CL_MAKE_SHARED;
240 } else {
241 struct mount *n, *p;
242 bool done;
243 for (n = m; ; n = p) {
244 p = n->mnt_master;
245 if (p == dest_master || IS_MNT_MARKED(p))
246 break;
248 do {
249 struct mount *parent = last_source->mnt_parent;
250 if (last_source == first_source)
251 break;
252 done = parent->mnt_master == p;
253 if (done && peers(n, parent))
254 break;
255 last_source = last_source->mnt_master;
256 } while (!done);
258 type = CL_SLAVE;
259 /* beginning of peer group among the slaves? */
260 if (IS_MNT_SHARED(m))
261 type |= CL_MAKE_SHARED;
264 /* Notice when we are propagating across user namespaces */
265 if (m->mnt_ns->user_ns != user_ns)
266 type |= CL_UNPRIVILEGED;
267 child = copy_tree(last_source, last_source->mnt.mnt_root, type);
268 if (IS_ERR(child))
269 return PTR_ERR(child);
270 child->mnt.mnt_flags &= ~MNT_LOCKED;
271 mnt_set_mountpoint(m, mp, child);
272 last_dest = m;
273 last_source = child;
274 if (m->mnt_master != dest_master) {
275 read_seqlock_excl(&mount_lock);
276 SET_MNT_MARK(m->mnt_master);
277 read_sequnlock_excl(&mount_lock);
279 hlist_add_head(&child->mnt_hash, list);
280 return count_mounts(m->mnt_ns, child);
284 * mount 'source_mnt' under the destination 'dest_mnt' at
285 * dentry 'dest_dentry'. And propagate that mount to
286 * all the peer and slave mounts of 'dest_mnt'.
287 * Link all the new mounts into a propagation tree headed at
288 * source_mnt. Also link all the new mounts using ->mnt_list
289 * headed at source_mnt's ->mnt_list
291 * @dest_mnt: destination mount.
292 * @dest_dentry: destination dentry.
293 * @source_mnt: source mount.
294 * @tree_list : list of heads of trees to be attached.
296 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
297 struct mount *source_mnt, struct hlist_head *tree_list)
299 struct mount *m, *n;
300 int ret = 0;
303 * we don't want to bother passing tons of arguments to
304 * propagate_one(); everything is serialized by namespace_sem,
305 * so globals will do just fine.
307 user_ns = current->nsproxy->mnt_ns->user_ns;
308 last_dest = dest_mnt;
309 first_source = source_mnt;
310 last_source = source_mnt;
311 mp = dest_mp;
312 list = tree_list;
313 dest_master = dest_mnt->mnt_master;
315 /* all peers of dest_mnt, except dest_mnt itself */
316 for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
317 ret = propagate_one(n);
318 if (ret)
319 goto out;
322 /* all slave groups */
323 for (m = next_group(dest_mnt, dest_mnt); m;
324 m = next_group(m, dest_mnt)) {
325 /* everything in that slave group */
326 n = m;
327 do {
328 ret = propagate_one(n);
329 if (ret)
330 goto out;
331 n = next_peer(n);
332 } while (n != m);
334 out:
335 read_seqlock_excl(&mount_lock);
336 hlist_for_each_entry(n, tree_list, mnt_hash) {
337 m = n->mnt_parent;
338 if (m->mnt_master != dest_mnt->mnt_master)
339 CLEAR_MNT_MARK(m->mnt_master);
341 read_sequnlock_excl(&mount_lock);
342 return ret;
345 static struct mount *find_topper(struct mount *mnt)
347 /* If there is exactly one mount covering mnt completely return it. */
348 struct mount *child;
350 if (!list_is_singular(&mnt->mnt_mounts))
351 return NULL;
353 child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
354 if (child->mnt_mountpoint != mnt->mnt.mnt_root)
355 return NULL;
357 return child;
361 * return true if the refcount is greater than count
363 static inline int do_refcount_check(struct mount *mnt, int count)
365 return mnt_get_count(mnt) > count;
369 * check if the mount 'mnt' can be unmounted successfully.
370 * @mnt: the mount to be checked for unmount
371 * NOTE: unmounting 'mnt' would naturally propagate to all
372 * other mounts its parent propagates to.
373 * Check if any of these mounts that **do not have submounts**
374 * have more references than 'refcnt'. If so return busy.
376 * vfsmount lock must be held for write
378 int propagate_mount_busy(struct mount *mnt, int refcnt)
380 struct mount *m, *child, *topper;
381 struct mount *parent = mnt->mnt_parent;
383 if (mnt == parent)
384 return do_refcount_check(mnt, refcnt);
387 * quickly check if the current mount can be unmounted.
388 * If not, we don't have to go checking for all other
389 * mounts
391 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
392 return 1;
394 for (m = propagation_next(parent, parent); m;
395 m = propagation_next(m, parent)) {
396 int count = 1;
397 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
398 if (!child)
399 continue;
401 /* Is there exactly one mount on the child that covers
402 * it completely whose reference should be ignored?
404 topper = find_topper(child);
405 if (topper)
406 count += 1;
407 else if (!list_empty(&child->mnt_mounts))
408 continue;
410 if (do_refcount_check(child, count))
411 return 1;
413 return 0;
417 * Clear MNT_LOCKED when it can be shown to be safe.
419 * mount_lock lock must be held for write
421 void propagate_mount_unlock(struct mount *mnt)
423 struct mount *parent = mnt->mnt_parent;
424 struct mount *m, *child;
426 BUG_ON(parent == mnt);
428 for (m = propagation_next(parent, parent); m;
429 m = propagation_next(m, parent)) {
430 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
431 if (child)
432 child->mnt.mnt_flags &= ~MNT_LOCKED;
436 static void umount_one(struct mount *mnt, struct list_head *to_umount)
438 CLEAR_MNT_MARK(mnt);
439 mnt->mnt.mnt_flags |= MNT_UMOUNT;
440 list_del_init(&mnt->mnt_child);
441 list_del_init(&mnt->mnt_umounting);
442 list_move_tail(&mnt->mnt_list, to_umount);
446 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
447 * parent propagates to.
449 static bool __propagate_umount(struct mount *mnt,
450 struct list_head *to_umount,
451 struct list_head *to_restore)
453 bool progress = false;
454 struct mount *child;
457 * The state of the parent won't change if this mount is
458 * already unmounted or marked as without children.
460 if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
461 goto out;
463 /* Verify topper is the only grandchild that has not been
464 * speculatively unmounted.
466 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
467 if (child->mnt_mountpoint == mnt->mnt.mnt_root)
468 continue;
469 if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
470 continue;
471 /* Found a mounted child */
472 goto children;
475 /* Mark mounts that can be unmounted if not locked */
476 SET_MNT_MARK(mnt);
477 progress = true;
479 /* If a mount is without children and not locked umount it. */
480 if (!IS_MNT_LOCKED(mnt)) {
481 umount_one(mnt, to_umount);
482 } else {
483 children:
484 list_move_tail(&mnt->mnt_umounting, to_restore);
486 out:
487 return progress;
490 static void umount_list(struct list_head *to_umount,
491 struct list_head *to_restore)
493 struct mount *mnt, *child, *tmp;
494 list_for_each_entry(mnt, to_umount, mnt_list) {
495 list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
496 /* topper? */
497 if (child->mnt_mountpoint == mnt->mnt.mnt_root)
498 list_move_tail(&child->mnt_umounting, to_restore);
499 else
500 umount_one(child, to_umount);
505 static void restore_mounts(struct list_head *to_restore)
507 /* Restore mounts to a clean working state */
508 while (!list_empty(to_restore)) {
509 struct mount *mnt, *parent;
510 struct mountpoint *mp;
512 mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
513 CLEAR_MNT_MARK(mnt);
514 list_del_init(&mnt->mnt_umounting);
516 /* Should this mount be reparented? */
517 mp = mnt->mnt_mp;
518 parent = mnt->mnt_parent;
519 while (parent->mnt.mnt_flags & MNT_UMOUNT) {
520 mp = parent->mnt_mp;
521 parent = parent->mnt_parent;
523 if (parent != mnt->mnt_parent)
524 mnt_change_mountpoint(parent, mp, mnt);
528 static void cleanup_umount_visitations(struct list_head *visited)
530 while (!list_empty(visited)) {
531 struct mount *mnt =
532 list_first_entry(visited, struct mount, mnt_umounting);
533 list_del_init(&mnt->mnt_umounting);
538 * collect all mounts that receive propagation from the mount in @list,
539 * and return these additional mounts in the same list.
540 * @list: the list of mounts to be unmounted.
542 * vfsmount lock must be held for write
544 int propagate_umount(struct list_head *list)
546 struct mount *mnt;
547 LIST_HEAD(to_restore);
548 LIST_HEAD(to_umount);
549 LIST_HEAD(visited);
551 /* Find candidates for unmounting */
552 list_for_each_entry_reverse(mnt, list, mnt_list) {
553 struct mount *parent = mnt->mnt_parent;
554 struct mount *m;
557 * If this mount has already been visited it is known that it's
558 * entire peer group and all of their slaves in the propagation
559 * tree for the mountpoint has already been visited and there is
560 * no need to visit them again.
562 if (!list_empty(&mnt->mnt_umounting))
563 continue;
565 list_add_tail(&mnt->mnt_umounting, &visited);
566 for (m = propagation_next(parent, parent); m;
567 m = propagation_next(m, parent)) {
568 struct mount *child = __lookup_mnt(&m->mnt,
569 mnt->mnt_mountpoint);
570 if (!child)
571 continue;
573 if (!list_empty(&child->mnt_umounting)) {
575 * If the child has already been visited it is
576 * know that it's entire peer group and all of
577 * their slaves in the propgation tree for the
578 * mountpoint has already been visited and there
579 * is no need to visit this subtree again.
581 m = skip_propagation_subtree(m, parent);
582 continue;
583 } else if (child->mnt.mnt_flags & MNT_UMOUNT) {
585 * We have come accross an partially unmounted
586 * mount in list that has not been visited yet.
587 * Remember it has been visited and continue
588 * about our merry way.
590 list_add_tail(&child->mnt_umounting, &visited);
591 continue;
594 /* Check the child and parents while progress is made */
595 while (__propagate_umount(child,
596 &to_umount, &to_restore)) {
597 /* Is the parent a umount candidate? */
598 child = child->mnt_parent;
599 if (list_empty(&child->mnt_umounting))
600 break;
605 umount_list(&to_umount, &to_restore);
606 restore_mounts(&to_restore);
607 cleanup_umount_visitations(&visited);
608 list_splice_tail(&to_umount, list);
610 return 0;