2 * Kernel support for the ptrace() and syscall tracing interfaces.
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2006 Intel Co
7 * 2006-08-12 - IA64 Native Utrace implementation support added by
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10 * Derived from the x86 and Alpha versions.
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/ptrace.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/audit.h>
20 #include <linux/signal.h>
21 #include <linux/regset.h>
22 #include <linux/elf.h>
23 #include <linux/tracehook.h>
25 #include <asm/pgtable.h>
26 #include <asm/processor.h>
27 #include <asm/ptrace_offsets.h>
29 #include <asm/uaccess.h>
30 #include <asm/unwind.h>
32 #include <asm/perfmon.h>
38 * Bits in the PSR that we allow ptrace() to change:
39 * be, up, ac, mfl, mfh (the user mask; five bits total)
40 * db (debug breakpoint fault; one bit)
41 * id (instruction debug fault disable; one bit)
42 * dd (data debug fault disable; one bit)
43 * ri (restart instruction; two bits)
44 * is (instruction set; one bit)
46 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
47 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
49 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
50 #define PFM_MASK MASK(38)
52 #define PTRACE_DEBUG 0
55 # define dprintk(format...) printk(format)
58 # define dprintk(format...)
61 /* Return TRUE if PT was created due to kernel-entry via a system-call. */
64 in_syscall (struct pt_regs
*pt
)
66 return (long) pt
->cr_ifs
>= 0;
70 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
71 * bitset where bit i is set iff the NaT bit of register i is set.
74 ia64_get_scratch_nat_bits (struct pt_regs
*pt
, unsigned long scratch_unat
)
76 # define GET_BITS(first, last, unat) \
78 unsigned long bit = ia64_unat_pos(&pt->r##first); \
79 unsigned long nbits = (last - first + 1); \
80 unsigned long mask = MASK(nbits) << first; \
83 dist = 64 + bit - first; \
86 ia64_rotr(unat, dist) & mask; \
91 * Registers that are stored consecutively in struct pt_regs
92 * can be handled in parallel. If the register order in
93 * struct_pt_regs changes, this code MUST be updated.
95 val
= GET_BITS( 1, 1, scratch_unat
);
96 val
|= GET_BITS( 2, 3, scratch_unat
);
97 val
|= GET_BITS(12, 13, scratch_unat
);
98 val
|= GET_BITS(14, 14, scratch_unat
);
99 val
|= GET_BITS(15, 15, scratch_unat
);
100 val
|= GET_BITS( 8, 11, scratch_unat
);
101 val
|= GET_BITS(16, 31, scratch_unat
);
108 * Set the NaT bits for the scratch registers according to NAT and
109 * return the resulting unat (assuming the scratch registers are
113 ia64_put_scratch_nat_bits (struct pt_regs
*pt
, unsigned long nat
)
115 # define PUT_BITS(first, last, nat) \
117 unsigned long bit = ia64_unat_pos(&pt->r##first); \
118 unsigned long nbits = (last - first + 1); \
119 unsigned long mask = MASK(nbits) << first; \
122 dist = 64 + bit - first; \
124 dist = bit - first; \
125 ia64_rotl(nat & mask, dist); \
127 unsigned long scratch_unat
;
130 * Registers that are stored consecutively in struct pt_regs
131 * can be handled in parallel. If the register order in
132 * struct_pt_regs changes, this code MUST be updated.
134 scratch_unat
= PUT_BITS( 1, 1, nat
);
135 scratch_unat
|= PUT_BITS( 2, 3, nat
);
136 scratch_unat
|= PUT_BITS(12, 13, nat
);
137 scratch_unat
|= PUT_BITS(14, 14, nat
);
138 scratch_unat
|= PUT_BITS(15, 15, nat
);
139 scratch_unat
|= PUT_BITS( 8, 11, nat
);
140 scratch_unat
|= PUT_BITS(16, 31, nat
);
147 #define IA64_MLX_TEMPLATE 0x2
148 #define IA64_MOVL_OPCODE 6
151 ia64_increment_ip (struct pt_regs
*regs
)
153 unsigned long w0
, ri
= ia64_psr(regs
)->ri
+ 1;
158 } else if (ri
== 2) {
159 get_user(w0
, (char __user
*) regs
->cr_iip
+ 0);
160 if (((w0
>> 1) & 0xf) == IA64_MLX_TEMPLATE
) {
162 * rfi'ing to slot 2 of an MLX bundle causes
163 * an illegal operation fault. We don't want
170 ia64_psr(regs
)->ri
= ri
;
174 ia64_decrement_ip (struct pt_regs
*regs
)
176 unsigned long w0
, ri
= ia64_psr(regs
)->ri
- 1;
178 if (ia64_psr(regs
)->ri
== 0) {
181 get_user(w0
, (char __user
*) regs
->cr_iip
+ 0);
182 if (((w0
>> 1) & 0xf) == IA64_MLX_TEMPLATE
) {
184 * rfi'ing to slot 2 of an MLX bundle causes
185 * an illegal operation fault. We don't want
191 ia64_psr(regs
)->ri
= ri
;
195 * This routine is used to read an rnat bits that are stored on the
196 * kernel backing store. Since, in general, the alignment of the user
197 * and kernel are different, this is not completely trivial. In
198 * essence, we need to construct the user RNAT based on up to two
199 * kernel RNAT values and/or the RNAT value saved in the child's
204 * +--------+ <-- lowest address
211 * | slot01 | > child_regs->ar_rnat
213 * | slot02 | / kernel rbs
214 * +--------+ +--------+
215 * <- child_regs->ar_bspstore | slot61 | <-- krbs
216 * +- - - - + +--------+
218 * +- - - - + +--------+
220 * +- - - - + +--------+
222 * +- - - - + +--------+
227 * | slot01 | > child_stack->ar_rnat
231 * <--- child_stack->ar_bspstore
233 * The way to think of this code is as follows: bit 0 in the user rnat
234 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
235 * value. The kernel rnat value holding this bit is stored in
236 * variable rnat0. rnat1 is loaded with the kernel rnat value that
237 * form the upper bits of the user rnat value.
241 * o when reading the rnat "below" the first rnat slot on the kernel
242 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
243 * merged in from pt->ar_rnat.
245 * o when reading the rnat "above" the last rnat slot on the kernel
246 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
249 get_rnat (struct task_struct
*task
, struct switch_stack
*sw
,
250 unsigned long *krbs
, unsigned long *urnat_addr
,
251 unsigned long *urbs_end
)
253 unsigned long rnat0
= 0, rnat1
= 0, urnat
= 0, *slot0_kaddr
;
254 unsigned long umask
= 0, mask
, m
;
255 unsigned long *kbsp
, *ubspstore
, *rnat0_kaddr
, *rnat1_kaddr
, shift
;
256 long num_regs
, nbits
;
259 pt
= task_pt_regs(task
);
260 kbsp
= (unsigned long *) sw
->ar_bspstore
;
261 ubspstore
= (unsigned long *) pt
->ar_bspstore
;
263 if (urbs_end
< urnat_addr
)
264 nbits
= ia64_rse_num_regs(urnat_addr
- 63, urbs_end
);
269 * First, figure out which bit number slot 0 in user-land maps
270 * to in the kernel rnat. Do this by figuring out how many
271 * register slots we're beyond the user's backingstore and
272 * then computing the equivalent address in kernel space.
274 num_regs
= ia64_rse_num_regs(ubspstore
, urnat_addr
+ 1);
275 slot0_kaddr
= ia64_rse_skip_regs(krbs
, num_regs
);
276 shift
= ia64_rse_slot_num(slot0_kaddr
);
277 rnat1_kaddr
= ia64_rse_rnat_addr(slot0_kaddr
);
278 rnat0_kaddr
= rnat1_kaddr
- 64;
280 if (ubspstore
+ 63 > urnat_addr
) {
281 /* some bits need to be merged in from pt->ar_rnat */
282 umask
= MASK(ia64_rse_slot_num(ubspstore
)) & mask
;
283 urnat
= (pt
->ar_rnat
& umask
);
290 if (rnat0_kaddr
>= kbsp
)
292 else if (rnat0_kaddr
> krbs
)
293 rnat0
= *rnat0_kaddr
;
294 urnat
|= (rnat0
& m
) >> shift
;
296 m
= mask
>> (63 - shift
);
297 if (rnat1_kaddr
>= kbsp
)
299 else if (rnat1_kaddr
> krbs
)
300 rnat1
= *rnat1_kaddr
;
301 urnat
|= (rnat1
& m
) << (63 - shift
);
306 * The reverse of get_rnat.
309 put_rnat (struct task_struct
*task
, struct switch_stack
*sw
,
310 unsigned long *krbs
, unsigned long *urnat_addr
, unsigned long urnat
,
311 unsigned long *urbs_end
)
313 unsigned long rnat0
= 0, rnat1
= 0, *slot0_kaddr
, umask
= 0, mask
, m
;
314 unsigned long *kbsp
, *ubspstore
, *rnat0_kaddr
, *rnat1_kaddr
, shift
;
315 long num_regs
, nbits
;
317 unsigned long cfm
, *urbs_kargs
;
319 pt
= task_pt_regs(task
);
320 kbsp
= (unsigned long *) sw
->ar_bspstore
;
321 ubspstore
= (unsigned long *) pt
->ar_bspstore
;
323 urbs_kargs
= urbs_end
;
324 if (in_syscall(pt
)) {
326 * If entered via syscall, don't allow user to set rnat bits
330 urbs_kargs
= ia64_rse_skip_regs(urbs_end
, -(cfm
& 0x7f));
333 if (urbs_kargs
>= urnat_addr
)
336 if ((urnat_addr
- 63) >= urbs_kargs
)
338 nbits
= ia64_rse_num_regs(urnat_addr
- 63, urbs_kargs
);
343 * First, figure out which bit number slot 0 in user-land maps
344 * to in the kernel rnat. Do this by figuring out how many
345 * register slots we're beyond the user's backingstore and
346 * then computing the equivalent address in kernel space.
348 num_regs
= ia64_rse_num_regs(ubspstore
, urnat_addr
+ 1);
349 slot0_kaddr
= ia64_rse_skip_regs(krbs
, num_regs
);
350 shift
= ia64_rse_slot_num(slot0_kaddr
);
351 rnat1_kaddr
= ia64_rse_rnat_addr(slot0_kaddr
);
352 rnat0_kaddr
= rnat1_kaddr
- 64;
354 if (ubspstore
+ 63 > urnat_addr
) {
355 /* some bits need to be place in pt->ar_rnat: */
356 umask
= MASK(ia64_rse_slot_num(ubspstore
)) & mask
;
357 pt
->ar_rnat
= (pt
->ar_rnat
& ~umask
) | (urnat
& umask
);
363 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
364 * rnat slot is ignored. so we don't have to clear it here.
366 rnat0
= (urnat
<< shift
);
368 if (rnat0_kaddr
>= kbsp
)
369 sw
->ar_rnat
= (sw
->ar_rnat
& ~m
) | (rnat0
& m
);
370 else if (rnat0_kaddr
> krbs
)
371 *rnat0_kaddr
= ((*rnat0_kaddr
& ~m
) | (rnat0
& m
));
373 rnat1
= (urnat
>> (63 - shift
));
374 m
= mask
>> (63 - shift
);
375 if (rnat1_kaddr
>= kbsp
)
376 sw
->ar_rnat
= (sw
->ar_rnat
& ~m
) | (rnat1
& m
);
377 else if (rnat1_kaddr
> krbs
)
378 *rnat1_kaddr
= ((*rnat1_kaddr
& ~m
) | (rnat1
& m
));
382 on_kernel_rbs (unsigned long addr
, unsigned long bspstore
,
383 unsigned long urbs_end
)
385 unsigned long *rnat_addr
= ia64_rse_rnat_addr((unsigned long *)
387 return (addr
>= bspstore
&& addr
<= (unsigned long) rnat_addr
);
391 * Read a word from the user-level backing store of task CHILD. ADDR
392 * is the user-level address to read the word from, VAL a pointer to
393 * the return value, and USER_BSP gives the end of the user-level
394 * backing store (i.e., it's the address that would be in ar.bsp after
395 * the user executed a "cover" instruction).
397 * This routine takes care of accessing the kernel register backing
398 * store for those registers that got spilled there. It also takes
399 * care of calculating the appropriate RNaT collection words.
402 ia64_peek (struct task_struct
*child
, struct switch_stack
*child_stack
,
403 unsigned long user_rbs_end
, unsigned long addr
, long *val
)
405 unsigned long *bspstore
, *krbs
, regnum
, *laddr
, *urbs_end
, *rnat_addr
;
406 struct pt_regs
*child_regs
;
410 urbs_end
= (long *) user_rbs_end
;
411 laddr
= (unsigned long *) addr
;
412 child_regs
= task_pt_regs(child
);
413 bspstore
= (unsigned long *) child_regs
->ar_bspstore
;
414 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
415 if (on_kernel_rbs(addr
, (unsigned long) bspstore
,
416 (unsigned long) urbs_end
))
419 * Attempt to read the RBS in an area that's actually
420 * on the kernel RBS => read the corresponding bits in
423 rnat_addr
= ia64_rse_rnat_addr(laddr
);
424 ret
= get_rnat(child
, child_stack
, krbs
, rnat_addr
, urbs_end
);
426 if (laddr
== rnat_addr
) {
427 /* return NaT collection word itself */
432 if (((1UL << ia64_rse_slot_num(laddr
)) & ret
) != 0) {
434 * It is implementation dependent whether the
435 * data portion of a NaT value gets saved on a
436 * st8.spill or RSE spill (e.g., see EAS 2.6,
437 * 4.4.4.6 Register Spill and Fill). To get
438 * consistent behavior across all possible
439 * IA-64 implementations, we return zero in
446 if (laddr
< urbs_end
) {
448 * The desired word is on the kernel RBS and
451 regnum
= ia64_rse_num_regs(bspstore
, laddr
);
452 *val
= *ia64_rse_skip_regs(krbs
, regnum
);
456 copied
= access_process_vm(child
, addr
, &ret
, sizeof(ret
), 0);
457 if (copied
!= sizeof(ret
))
464 ia64_poke (struct task_struct
*child
, struct switch_stack
*child_stack
,
465 unsigned long user_rbs_end
, unsigned long addr
, long val
)
467 unsigned long *bspstore
, *krbs
, regnum
, *laddr
;
468 unsigned long *urbs_end
= (long *) user_rbs_end
;
469 struct pt_regs
*child_regs
;
471 laddr
= (unsigned long *) addr
;
472 child_regs
= task_pt_regs(child
);
473 bspstore
= (unsigned long *) child_regs
->ar_bspstore
;
474 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
475 if (on_kernel_rbs(addr
, (unsigned long) bspstore
,
476 (unsigned long) urbs_end
))
479 * Attempt to write the RBS in an area that's actually
480 * on the kernel RBS => write the corresponding bits
483 if (ia64_rse_is_rnat_slot(laddr
))
484 put_rnat(child
, child_stack
, krbs
, laddr
, val
,
487 if (laddr
< urbs_end
) {
488 regnum
= ia64_rse_num_regs(bspstore
, laddr
);
489 *ia64_rse_skip_regs(krbs
, regnum
) = val
;
492 } else if (access_process_vm(child
, addr
, &val
, sizeof(val
), 1)
499 * Calculate the address of the end of the user-level register backing
500 * store. This is the address that would have been stored in ar.bsp
501 * if the user had executed a "cover" instruction right before
502 * entering the kernel. If CFMP is not NULL, it is used to return the
503 * "current frame mask" that was active at the time the kernel was
507 ia64_get_user_rbs_end (struct task_struct
*child
, struct pt_regs
*pt
,
510 unsigned long *krbs
, *bspstore
, cfm
= pt
->cr_ifs
;
513 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
514 bspstore
= (unsigned long *) pt
->ar_bspstore
;
515 ndirty
= ia64_rse_num_regs(krbs
, krbs
+ (pt
->loadrs
>> 19));
518 ndirty
+= (cfm
& 0x7f);
520 cfm
&= ~(1UL << 63); /* clear valid bit */
524 return (unsigned long) ia64_rse_skip_regs(bspstore
, ndirty
);
528 * Synchronize (i.e, write) the RSE backing store living in kernel
529 * space to the VM of the CHILD task. SW and PT are the pointers to
530 * the switch_stack and pt_regs structures, respectively.
531 * USER_RBS_END is the user-level address at which the backing store
535 ia64_sync_user_rbs (struct task_struct
*child
, struct switch_stack
*sw
,
536 unsigned long user_rbs_start
, unsigned long user_rbs_end
)
538 unsigned long addr
, val
;
541 /* now copy word for word from kernel rbs to user rbs: */
542 for (addr
= user_rbs_start
; addr
< user_rbs_end
; addr
+= 8) {
543 ret
= ia64_peek(child
, sw
, user_rbs_end
, addr
, &val
);
546 if (access_process_vm(child
, addr
, &val
, sizeof(val
), 1)
554 ia64_sync_kernel_rbs (struct task_struct
*child
, struct switch_stack
*sw
,
555 unsigned long user_rbs_start
, unsigned long user_rbs_end
)
557 unsigned long addr
, val
;
560 /* now copy word for word from user rbs to kernel rbs: */
561 for (addr
= user_rbs_start
; addr
< user_rbs_end
; addr
+= 8) {
562 if (access_process_vm(child
, addr
, &val
, sizeof(val
), 0)
566 ret
= ia64_poke(child
, sw
, user_rbs_end
, addr
, val
);
573 typedef long (*syncfunc_t
)(struct task_struct
*, struct switch_stack
*,
574 unsigned long, unsigned long);
576 static void do_sync_rbs(struct unw_frame_info
*info
, void *arg
)
579 unsigned long urbs_end
;
582 if (unw_unwind_to_user(info
) < 0)
584 pt
= task_pt_regs(info
->task
);
585 urbs_end
= ia64_get_user_rbs_end(info
->task
, pt
, NULL
);
587 fn(info
->task
, info
->sw
, pt
->ar_bspstore
, urbs_end
);
591 * when a thread is stopped (ptraced), debugger might change thread's user
592 * stack (change memory directly), and we must avoid the RSE stored in kernel
593 * to override user stack (user space's RSE is newer than kernel's in the
594 * case). To workaround the issue, we copy kernel RSE to user RSE before the
595 * task is stopped, so user RSE has updated data. we then copy user RSE to
596 * kernel after the task is resummed from traced stop and kernel will use the
597 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
598 * synchronize user RSE to kernel.
600 void ia64_ptrace_stop(void)
602 if (test_and_set_tsk_thread_flag(current
, TIF_RESTORE_RSE
))
604 set_notify_resume(current
);
605 unw_init_running(do_sync_rbs
, ia64_sync_user_rbs
);
609 * This is called to read back the register backing store.
611 void ia64_sync_krbs(void)
613 clear_tsk_thread_flag(current
, TIF_RESTORE_RSE
);
615 unw_init_running(do_sync_rbs
, ia64_sync_kernel_rbs
);
619 * After PTRACE_ATTACH, a thread's register backing store area in user
620 * space is assumed to contain correct data whenever the thread is
621 * stopped. arch_ptrace_stop takes care of this on tracing stops.
622 * But if the child was already stopped for job control when we attach
623 * to it, then it might not ever get into ptrace_stop by the time we
624 * want to examine the user memory containing the RBS.
627 ptrace_attach_sync_user_rbs (struct task_struct
*child
)
630 struct unw_frame_info info
;
633 * If the child is in TASK_STOPPED, we need to change that to
634 * TASK_TRACED momentarily while we operate on it. This ensures
635 * that the child won't be woken up and return to user mode while
636 * we are doing the sync. (It can only be woken up for SIGKILL.)
639 read_lock(&tasklist_lock
);
640 if (child
->sighand
) {
641 spin_lock_irq(&child
->sighand
->siglock
);
642 if (child
->state
== TASK_STOPPED
&&
643 !test_and_set_tsk_thread_flag(child
, TIF_RESTORE_RSE
)) {
644 set_notify_resume(child
);
646 child
->state
= TASK_TRACED
;
649 spin_unlock_irq(&child
->sighand
->siglock
);
651 read_unlock(&tasklist_lock
);
656 unw_init_from_blocked_task(&info
, child
);
657 do_sync_rbs(&info
, ia64_sync_user_rbs
);
660 * Now move the child back into TASK_STOPPED if it should be in a
661 * job control stop, so that SIGCONT can be used to wake it up.
663 read_lock(&tasklist_lock
);
664 if (child
->sighand
) {
665 spin_lock_irq(&child
->sighand
->siglock
);
666 if (child
->state
== TASK_TRACED
&&
667 (child
->signal
->flags
& SIGNAL_STOP_STOPPED
)) {
668 child
->state
= TASK_STOPPED
;
670 spin_unlock_irq(&child
->sighand
->siglock
);
672 read_unlock(&tasklist_lock
);
676 * Write f32-f127 back to task->thread.fph if it has been modified.
679 ia64_flush_fph (struct task_struct
*task
)
681 struct ia64_psr
*psr
= ia64_psr(task_pt_regs(task
));
684 * Prevent migrating this task while
685 * we're fiddling with the FPU state
688 if (ia64_is_local_fpu_owner(task
) && psr
->mfh
) {
690 task
->thread
.flags
|= IA64_THREAD_FPH_VALID
;
691 ia64_save_fpu(&task
->thread
.fph
[0]);
697 * Sync the fph state of the task so that it can be manipulated
698 * through thread.fph. If necessary, f32-f127 are written back to
699 * thread.fph or, if the fph state hasn't been used before, thread.fph
700 * is cleared to zeroes. Also, access to f32-f127 is disabled to
701 * ensure that the task picks up the state from thread.fph when it
705 ia64_sync_fph (struct task_struct
*task
)
707 struct ia64_psr
*psr
= ia64_psr(task_pt_regs(task
));
709 ia64_flush_fph(task
);
710 if (!(task
->thread
.flags
& IA64_THREAD_FPH_VALID
)) {
711 task
->thread
.flags
|= IA64_THREAD_FPH_VALID
;
712 memset(&task
->thread
.fph
, 0, sizeof(task
->thread
.fph
));
719 * Change the machine-state of CHILD such that it will return via the normal
720 * kernel exit-path, rather than the syscall-exit path.
723 convert_to_non_syscall (struct task_struct
*child
, struct pt_regs
*pt
,
726 struct unw_frame_info info
, prev_info
;
727 unsigned long ip
, sp
, pr
;
729 unw_init_from_blocked_task(&info
, child
);
732 if (unw_unwind(&info
) < 0)
735 unw_get_sp(&info
, &sp
);
736 if ((long)((unsigned long)child
+ IA64_STK_OFFSET
- sp
)
737 < IA64_PT_REGS_SIZE
) {
738 dprintk("ptrace.%s: ran off the top of the kernel "
739 "stack\n", __func__
);
742 if (unw_get_pr (&prev_info
, &pr
) < 0) {
743 unw_get_rp(&prev_info
, &ip
);
744 dprintk("ptrace.%s: failed to read "
745 "predicate register (ip=0x%lx)\n",
749 if (unw_is_intr_frame(&info
)
750 && (pr
& (1UL << PRED_USER_STACK
)))
755 * Note: at the time of this call, the target task is blocked
756 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
757 * (aka, "pLvSys") we redirect execution from
758 * .work_pending_syscall_end to .work_processed_kernel.
760 unw_get_pr(&prev_info
, &pr
);
761 pr
&= ~((1UL << PRED_SYSCALL
) | (1UL << PRED_LEAVE_SYSCALL
));
762 pr
|= (1UL << PRED_NON_SYSCALL
);
763 unw_set_pr(&prev_info
, pr
);
765 pt
->cr_ifs
= (1UL << 63) | cfm
;
767 * Clear the memory that is NOT written on syscall-entry to
768 * ensure we do not leak kernel-state to user when execution
774 memset(&pt
->r16
, 0, 16*8); /* clear r16-r31 */
775 memset(&pt
->f6
, 0, 6*16); /* clear f6-f11 */
783 access_nat_bits (struct task_struct
*child
, struct pt_regs
*pt
,
784 struct unw_frame_info
*info
,
785 unsigned long *data
, int write_access
)
787 unsigned long regnum
, nat_bits
, scratch_unat
, dummy
= 0;
792 scratch_unat
= ia64_put_scratch_nat_bits(pt
, nat_bits
);
793 if (unw_set_ar(info
, UNW_AR_UNAT
, scratch_unat
) < 0) {
794 dprintk("ptrace: failed to set ar.unat\n");
797 for (regnum
= 4; regnum
<= 7; ++regnum
) {
798 unw_get_gr(info
, regnum
, &dummy
, &nat
);
799 unw_set_gr(info
, regnum
, dummy
,
800 (nat_bits
>> regnum
) & 1);
803 if (unw_get_ar(info
, UNW_AR_UNAT
, &scratch_unat
) < 0) {
804 dprintk("ptrace: failed to read ar.unat\n");
807 nat_bits
= ia64_get_scratch_nat_bits(pt
, scratch_unat
);
808 for (regnum
= 4; regnum
<= 7; ++regnum
) {
809 unw_get_gr(info
, regnum
, &dummy
, &nat
);
810 nat_bits
|= (nat
!= 0) << regnum
;
818 access_uarea (struct task_struct
*child
, unsigned long addr
,
819 unsigned long *data
, int write_access
);
822 ptrace_getregs (struct task_struct
*child
, struct pt_all_user_regs __user
*ppr
)
824 unsigned long psr
, ec
, lc
, rnat
, bsp
, cfm
, nat_bits
, val
;
825 struct unw_frame_info info
;
826 struct ia64_fpreg fpval
;
827 struct switch_stack
*sw
;
829 long ret
, retval
= 0;
833 if (!access_ok(VERIFY_WRITE
, ppr
, sizeof(struct pt_all_user_regs
)))
836 pt
= task_pt_regs(child
);
837 sw
= (struct switch_stack
*) (child
->thread
.ksp
+ 16);
838 unw_init_from_blocked_task(&info
, child
);
839 if (unw_unwind_to_user(&info
) < 0) {
843 if (((unsigned long) ppr
& 0x7) != 0) {
844 dprintk("ptrace:unaligned register address %p\n", ppr
);
848 if (access_uarea(child
, PT_CR_IPSR
, &psr
, 0) < 0
849 || access_uarea(child
, PT_AR_EC
, &ec
, 0) < 0
850 || access_uarea(child
, PT_AR_LC
, &lc
, 0) < 0
851 || access_uarea(child
, PT_AR_RNAT
, &rnat
, 0) < 0
852 || access_uarea(child
, PT_AR_BSP
, &bsp
, 0) < 0
853 || access_uarea(child
, PT_CFM
, &cfm
, 0)
854 || access_uarea(child
, PT_NAT_BITS
, &nat_bits
, 0))
859 retval
|= __put_user(pt
->cr_iip
, &ppr
->cr_iip
);
860 retval
|= __put_user(psr
, &ppr
->cr_ipsr
);
864 retval
|= __put_user(pt
->ar_pfs
, &ppr
->ar
[PT_AUR_PFS
]);
865 retval
|= __put_user(pt
->ar_rsc
, &ppr
->ar
[PT_AUR_RSC
]);
866 retval
|= __put_user(pt
->ar_bspstore
, &ppr
->ar
[PT_AUR_BSPSTORE
]);
867 retval
|= __put_user(pt
->ar_unat
, &ppr
->ar
[PT_AUR_UNAT
]);
868 retval
|= __put_user(pt
->ar_ccv
, &ppr
->ar
[PT_AUR_CCV
]);
869 retval
|= __put_user(pt
->ar_fpsr
, &ppr
->ar
[PT_AUR_FPSR
]);
871 retval
|= __put_user(ec
, &ppr
->ar
[PT_AUR_EC
]);
872 retval
|= __put_user(lc
, &ppr
->ar
[PT_AUR_LC
]);
873 retval
|= __put_user(rnat
, &ppr
->ar
[PT_AUR_RNAT
]);
874 retval
|= __put_user(bsp
, &ppr
->ar
[PT_AUR_BSP
]);
875 retval
|= __put_user(cfm
, &ppr
->cfm
);
879 retval
|= __copy_to_user(&ppr
->gr
[1], &pt
->r1
, sizeof(long));
880 retval
|= __copy_to_user(&ppr
->gr
[2], &pt
->r2
, sizeof(long) *2);
884 for (i
= 4; i
< 8; i
++) {
885 if (unw_access_gr(&info
, i
, &val
, &nat
, 0) < 0)
887 retval
|= __put_user(val
, &ppr
->gr
[i
]);
892 retval
|= __copy_to_user(&ppr
->gr
[8], &pt
->r8
, sizeof(long) * 4);
896 retval
|= __copy_to_user(&ppr
->gr
[12], &pt
->r12
, sizeof(long) * 2);
897 retval
|= __copy_to_user(&ppr
->gr
[14], &pt
->r14
, sizeof(long));
898 retval
|= __copy_to_user(&ppr
->gr
[15], &pt
->r15
, sizeof(long));
902 retval
|= __copy_to_user(&ppr
->gr
[16], &pt
->r16
, sizeof(long) * 16);
906 retval
|= __put_user(pt
->b0
, &ppr
->br
[0]);
910 for (i
= 1; i
< 6; i
++) {
911 if (unw_access_br(&info
, i
, &val
, 0) < 0)
913 __put_user(val
, &ppr
->br
[i
]);
918 retval
|= __put_user(pt
->b6
, &ppr
->br
[6]);
919 retval
|= __put_user(pt
->b7
, &ppr
->br
[7]);
923 for (i
= 2; i
< 6; i
++) {
924 if (unw_get_fr(&info
, i
, &fpval
) < 0)
926 retval
|= __copy_to_user(&ppr
->fr
[i
], &fpval
, sizeof (fpval
));
931 retval
|= __copy_to_user(&ppr
->fr
[6], &pt
->f6
,
932 sizeof(struct ia64_fpreg
) * 6);
934 /* fp scratch regs(12-15) */
936 retval
|= __copy_to_user(&ppr
->fr
[12], &sw
->f12
,
937 sizeof(struct ia64_fpreg
) * 4);
941 for (i
= 16; i
< 32; i
++) {
942 if (unw_get_fr(&info
, i
, &fpval
) < 0)
944 retval
|= __copy_to_user(&ppr
->fr
[i
], &fpval
, sizeof (fpval
));
949 ia64_flush_fph(child
);
950 retval
|= __copy_to_user(&ppr
->fr
[32], &child
->thread
.fph
,
951 sizeof(ppr
->fr
[32]) * 96);
955 retval
|= __put_user(pt
->pr
, &ppr
->pr
);
959 retval
|= __put_user(nat_bits
, &ppr
->nat
);
961 ret
= retval
? -EIO
: 0;
966 ptrace_setregs (struct task_struct
*child
, struct pt_all_user_regs __user
*ppr
)
968 unsigned long psr
, rsc
, ec
, lc
, rnat
, bsp
, cfm
, nat_bits
, val
= 0;
969 struct unw_frame_info info
;
970 struct switch_stack
*sw
;
971 struct ia64_fpreg fpval
;
973 long ret
, retval
= 0;
976 memset(&fpval
, 0, sizeof(fpval
));
978 if (!access_ok(VERIFY_READ
, ppr
, sizeof(struct pt_all_user_regs
)))
981 pt
= task_pt_regs(child
);
982 sw
= (struct switch_stack
*) (child
->thread
.ksp
+ 16);
983 unw_init_from_blocked_task(&info
, child
);
984 if (unw_unwind_to_user(&info
) < 0) {
988 if (((unsigned long) ppr
& 0x7) != 0) {
989 dprintk("ptrace:unaligned register address %p\n", ppr
);
995 retval
|= __get_user(pt
->cr_iip
, &ppr
->cr_iip
);
996 retval
|= __get_user(psr
, &ppr
->cr_ipsr
);
1000 retval
|= __get_user(pt
->ar_pfs
, &ppr
->ar
[PT_AUR_PFS
]);
1001 retval
|= __get_user(rsc
, &ppr
->ar
[PT_AUR_RSC
]);
1002 retval
|= __get_user(pt
->ar_bspstore
, &ppr
->ar
[PT_AUR_BSPSTORE
]);
1003 retval
|= __get_user(pt
->ar_unat
, &ppr
->ar
[PT_AUR_UNAT
]);
1004 retval
|= __get_user(pt
->ar_ccv
, &ppr
->ar
[PT_AUR_CCV
]);
1005 retval
|= __get_user(pt
->ar_fpsr
, &ppr
->ar
[PT_AUR_FPSR
]);
1007 retval
|= __get_user(ec
, &ppr
->ar
[PT_AUR_EC
]);
1008 retval
|= __get_user(lc
, &ppr
->ar
[PT_AUR_LC
]);
1009 retval
|= __get_user(rnat
, &ppr
->ar
[PT_AUR_RNAT
]);
1010 retval
|= __get_user(bsp
, &ppr
->ar
[PT_AUR_BSP
]);
1011 retval
|= __get_user(cfm
, &ppr
->cfm
);
1015 retval
|= __copy_from_user(&pt
->r1
, &ppr
->gr
[1], sizeof(long));
1016 retval
|= __copy_from_user(&pt
->r2
, &ppr
->gr
[2], sizeof(long) * 2);
1020 for (i
= 4; i
< 8; i
++) {
1021 retval
|= __get_user(val
, &ppr
->gr
[i
]);
1022 /* NaT bit will be set via PT_NAT_BITS: */
1023 if (unw_set_gr(&info
, i
, val
, 0) < 0)
1029 retval
|= __copy_from_user(&pt
->r8
, &ppr
->gr
[8], sizeof(long) * 4);
1033 retval
|= __copy_from_user(&pt
->r12
, &ppr
->gr
[12], sizeof(long) * 2);
1034 retval
|= __copy_from_user(&pt
->r14
, &ppr
->gr
[14], sizeof(long));
1035 retval
|= __copy_from_user(&pt
->r15
, &ppr
->gr
[15], sizeof(long));
1039 retval
|= __copy_from_user(&pt
->r16
, &ppr
->gr
[16], sizeof(long) * 16);
1043 retval
|= __get_user(pt
->b0
, &ppr
->br
[0]);
1047 for (i
= 1; i
< 6; i
++) {
1048 retval
|= __get_user(val
, &ppr
->br
[i
]);
1049 unw_set_br(&info
, i
, val
);
1054 retval
|= __get_user(pt
->b6
, &ppr
->br
[6]);
1055 retval
|= __get_user(pt
->b7
, &ppr
->br
[7]);
1059 for (i
= 2; i
< 6; i
++) {
1060 retval
|= __copy_from_user(&fpval
, &ppr
->fr
[i
], sizeof(fpval
));
1061 if (unw_set_fr(&info
, i
, fpval
) < 0)
1067 retval
|= __copy_from_user(&pt
->f6
, &ppr
->fr
[6],
1068 sizeof(ppr
->fr
[6]) * 6);
1070 /* fp scratch regs(12-15) */
1072 retval
|= __copy_from_user(&sw
->f12
, &ppr
->fr
[12],
1073 sizeof(ppr
->fr
[12]) * 4);
1077 for (i
= 16; i
< 32; i
++) {
1078 retval
|= __copy_from_user(&fpval
, &ppr
->fr
[i
],
1080 if (unw_set_fr(&info
, i
, fpval
) < 0)
1086 ia64_sync_fph(child
);
1087 retval
|= __copy_from_user(&child
->thread
.fph
, &ppr
->fr
[32],
1088 sizeof(ppr
->fr
[32]) * 96);
1092 retval
|= __get_user(pt
->pr
, &ppr
->pr
);
1096 retval
|= __get_user(nat_bits
, &ppr
->nat
);
1098 retval
|= access_uarea(child
, PT_CR_IPSR
, &psr
, 1);
1099 retval
|= access_uarea(child
, PT_AR_RSC
, &rsc
, 1);
1100 retval
|= access_uarea(child
, PT_AR_EC
, &ec
, 1);
1101 retval
|= access_uarea(child
, PT_AR_LC
, &lc
, 1);
1102 retval
|= access_uarea(child
, PT_AR_RNAT
, &rnat
, 1);
1103 retval
|= access_uarea(child
, PT_AR_BSP
, &bsp
, 1);
1104 retval
|= access_uarea(child
, PT_CFM
, &cfm
, 1);
1105 retval
|= access_uarea(child
, PT_NAT_BITS
, &nat_bits
, 1);
1107 ret
= retval
? -EIO
: 0;
1112 user_enable_single_step (struct task_struct
*child
)
1114 struct ia64_psr
*child_psr
= ia64_psr(task_pt_regs(child
));
1116 set_tsk_thread_flag(child
, TIF_SINGLESTEP
);
1121 user_enable_block_step (struct task_struct
*child
)
1123 struct ia64_psr
*child_psr
= ia64_psr(task_pt_regs(child
));
1125 set_tsk_thread_flag(child
, TIF_SINGLESTEP
);
1130 user_disable_single_step (struct task_struct
*child
)
1132 struct ia64_psr
*child_psr
= ia64_psr(task_pt_regs(child
));
1134 /* make sure the single step/taken-branch trap bits are not set: */
1135 clear_tsk_thread_flag(child
, TIF_SINGLESTEP
);
1141 * Called by kernel/ptrace.c when detaching..
1143 * Make sure the single step bit is not set.
1146 ptrace_disable (struct task_struct
*child
)
1148 user_disable_single_step(child
);
1152 arch_ptrace (struct task_struct
*child
, long request
,
1153 unsigned long addr
, unsigned long data
)
1156 case PTRACE_PEEKTEXT
:
1157 case PTRACE_PEEKDATA
:
1158 /* read word at location addr */
1159 if (access_process_vm(child
, addr
, &data
, sizeof(data
), 0)
1162 /* ensure return value is not mistaken for error code */
1163 force_successful_syscall_return();
1166 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1167 * by the generic ptrace_request().
1170 case PTRACE_PEEKUSR
:
1171 /* read the word at addr in the USER area */
1172 if (access_uarea(child
, addr
, &data
, 0) < 0)
1174 /* ensure return value is not mistaken for error code */
1175 force_successful_syscall_return();
1178 case PTRACE_POKEUSR
:
1179 /* write the word at addr in the USER area */
1180 if (access_uarea(child
, addr
, &data
, 1) < 0)
1184 case PTRACE_OLD_GETSIGINFO
:
1185 /* for backwards-compatibility */
1186 return ptrace_request(child
, PTRACE_GETSIGINFO
, addr
, data
);
1188 case PTRACE_OLD_SETSIGINFO
:
1189 /* for backwards-compatibility */
1190 return ptrace_request(child
, PTRACE_SETSIGINFO
, addr
, data
);
1192 case PTRACE_GETREGS
:
1193 return ptrace_getregs(child
,
1194 (struct pt_all_user_regs __user
*) data
);
1196 case PTRACE_SETREGS
:
1197 return ptrace_setregs(child
,
1198 (struct pt_all_user_regs __user
*) data
);
1201 return ptrace_request(child
, request
, addr
, data
);
1206 /* "asmlinkage" so the input arguments are preserved... */
1209 syscall_trace_enter (long arg0
, long arg1
, long arg2
, long arg3
,
1210 long arg4
, long arg5
, long arg6
, long arg7
,
1211 struct pt_regs regs
)
1213 if (test_thread_flag(TIF_SYSCALL_TRACE
))
1214 if (tracehook_report_syscall_entry(®s
))
1217 /* copy user rbs to kernel rbs */
1218 if (test_thread_flag(TIF_RESTORE_RSE
))
1222 audit_syscall_entry(AUDIT_ARCH_IA64
, regs
.r15
, arg0
, arg1
, arg2
, arg3
);
1227 /* "asmlinkage" so the input arguments are preserved... */
1230 syscall_trace_leave (long arg0
, long arg1
, long arg2
, long arg3
,
1231 long arg4
, long arg5
, long arg6
, long arg7
,
1232 struct pt_regs regs
)
1236 audit_syscall_exit(®s
);
1238 step
= test_thread_flag(TIF_SINGLESTEP
);
1239 if (step
|| test_thread_flag(TIF_SYSCALL_TRACE
))
1240 tracehook_report_syscall_exit(®s
, step
);
1242 /* copy user rbs to kernel rbs */
1243 if (test_thread_flag(TIF_RESTORE_RSE
))
1247 /* Utrace implementation starts here */
1255 const void __user
*ubuf
;
1258 struct regset_getset
{
1259 struct task_struct
*target
;
1260 const struct user_regset
*regset
;
1262 struct regset_get get
;
1263 struct regset_set set
;
1271 access_elf_gpreg(struct task_struct
*target
, struct unw_frame_info
*info
,
1272 unsigned long addr
, unsigned long *data
, int write_access
)
1275 unsigned long *ptr
= NULL
;
1279 pt
= task_pt_regs(target
);
1281 case ELF_GR_OFFSET(1):
1284 case ELF_GR_OFFSET(2):
1285 case ELF_GR_OFFSET(3):
1286 ptr
= (void *)&pt
->r2
+ (addr
- ELF_GR_OFFSET(2));
1288 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1290 /* read NaT bit first: */
1291 unsigned long dummy
;
1293 ret
= unw_get_gr(info
, addr
/8, &dummy
, &nat
);
1297 return unw_access_gr(info
, addr
/8, data
, &nat
, write_access
);
1298 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1299 ptr
= (void *)&pt
->r8
+ addr
- ELF_GR_OFFSET(8);
1301 case ELF_GR_OFFSET(12):
1302 case ELF_GR_OFFSET(13):
1303 ptr
= (void *)&pt
->r12
+ addr
- ELF_GR_OFFSET(12);
1305 case ELF_GR_OFFSET(14):
1308 case ELF_GR_OFFSET(15):
1319 access_elf_breg(struct task_struct
*target
, struct unw_frame_info
*info
,
1320 unsigned long addr
, unsigned long *data
, int write_access
)
1323 unsigned long *ptr
= NULL
;
1325 pt
= task_pt_regs(target
);
1327 case ELF_BR_OFFSET(0):
1330 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1331 return unw_access_br(info
, (addr
- ELF_BR_OFFSET(0))/8,
1332 data
, write_access
);
1333 case ELF_BR_OFFSET(6):
1336 case ELF_BR_OFFSET(7):
1347 access_elf_areg(struct task_struct
*target
, struct unw_frame_info
*info
,
1348 unsigned long addr
, unsigned long *data
, int write_access
)
1351 unsigned long cfm
, urbs_end
;
1352 unsigned long *ptr
= NULL
;
1354 pt
= task_pt_regs(target
);
1355 if (addr
>= ELF_AR_RSC_OFFSET
&& addr
<= ELF_AR_SSD_OFFSET
) {
1357 case ELF_AR_RSC_OFFSET
:
1360 pt
->ar_rsc
= *data
| (3 << 2);
1364 case ELF_AR_BSP_OFFSET
:
1366 * By convention, we use PT_AR_BSP to refer to
1367 * the end of the user-level backing store.
1368 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1369 * to get the real value of ar.bsp at the time
1370 * the kernel was entered.
1372 * Furthermore, when changing the contents of
1373 * PT_AR_BSP (or PT_CFM) while the task is
1374 * blocked in a system call, convert the state
1375 * so that the non-system-call exit
1376 * path is used. This ensures that the proper
1377 * state will be picked up when resuming
1378 * execution. However, it *also* means that
1379 * once we write PT_AR_BSP/PT_CFM, it won't be
1380 * possible to modify the syscall arguments of
1381 * the pending system call any longer. This
1382 * shouldn't be an issue because modifying
1383 * PT_AR_BSP/PT_CFM generally implies that
1384 * we're either abandoning the pending system
1385 * call or that we defer it's re-execution
1386 * (e.g., due to GDB doing an inferior
1389 urbs_end
= ia64_get_user_rbs_end(target
, pt
, &cfm
);
1391 if (*data
!= urbs_end
) {
1393 convert_to_non_syscall(target
,
1397 * Simulate user-level write
1401 pt
->ar_bspstore
= *data
;
1406 case ELF_AR_BSPSTORE_OFFSET
:
1407 ptr
= &pt
->ar_bspstore
;
1409 case ELF_AR_RNAT_OFFSET
:
1412 case ELF_AR_CCV_OFFSET
:
1415 case ELF_AR_UNAT_OFFSET
:
1418 case ELF_AR_FPSR_OFFSET
:
1421 case ELF_AR_PFS_OFFSET
:
1424 case ELF_AR_LC_OFFSET
:
1425 return unw_access_ar(info
, UNW_AR_LC
, data
,
1427 case ELF_AR_EC_OFFSET
:
1428 return unw_access_ar(info
, UNW_AR_EC
, data
,
1430 case ELF_AR_CSD_OFFSET
:
1433 case ELF_AR_SSD_OFFSET
:
1436 } else if (addr
>= ELF_CR_IIP_OFFSET
&& addr
<= ELF_CR_IPSR_OFFSET
) {
1438 case ELF_CR_IIP_OFFSET
:
1441 case ELF_CFM_OFFSET
:
1442 urbs_end
= ia64_get_user_rbs_end(target
, pt
, &cfm
);
1444 if (((cfm
^ *data
) & PFM_MASK
) != 0) {
1446 convert_to_non_syscall(target
,
1449 pt
->cr_ifs
= ((pt
->cr_ifs
& ~PFM_MASK
)
1450 | (*data
& PFM_MASK
));
1455 case ELF_CR_IPSR_OFFSET
:
1457 unsigned long tmp
= *data
;
1458 /* psr.ri==3 is a reserved value: SDM 2:25 */
1459 if ((tmp
& IA64_PSR_RI
) == IA64_PSR_RI
)
1460 tmp
&= ~IA64_PSR_RI
;
1461 pt
->cr_ipsr
= ((tmp
& IPSR_MASK
)
1462 | (pt
->cr_ipsr
& ~IPSR_MASK
));
1464 *data
= (pt
->cr_ipsr
& IPSR_MASK
);
1467 } else if (addr
== ELF_NAT_OFFSET
)
1468 return access_nat_bits(target
, pt
, info
,
1469 data
, write_access
);
1470 else if (addr
== ELF_PR_OFFSET
)
1484 access_elf_reg(struct task_struct
*target
, struct unw_frame_info
*info
,
1485 unsigned long addr
, unsigned long *data
, int write_access
)
1487 if (addr
>= ELF_GR_OFFSET(1) && addr
<= ELF_GR_OFFSET(15))
1488 return access_elf_gpreg(target
, info
, addr
, data
, write_access
);
1489 else if (addr
>= ELF_BR_OFFSET(0) && addr
<= ELF_BR_OFFSET(7))
1490 return access_elf_breg(target
, info
, addr
, data
, write_access
);
1492 return access_elf_areg(target
, info
, addr
, data
, write_access
);
1495 void do_gpregs_get(struct unw_frame_info
*info
, void *arg
)
1498 struct regset_getset
*dst
= arg
;
1500 unsigned int i
, index
, min_copy
;
1502 if (unw_unwind_to_user(info
) < 0)
1508 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1509 * predicate registers (p0-p63)
1512 * ar.rsc ar.bsp ar.bspstore ar.rnat
1513 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1518 if (dst
->count
> 0 && dst
->pos
< ELF_GR_OFFSET(1)) {
1519 dst
->ret
= user_regset_copyout_zero(&dst
->pos
, &dst
->count
,
1522 0, ELF_GR_OFFSET(1));
1523 if (dst
->ret
|| dst
->count
== 0)
1528 if (dst
->count
> 0 && dst
->pos
< ELF_GR_OFFSET(16)) {
1529 index
= (dst
->pos
- ELF_GR_OFFSET(1)) / sizeof(elf_greg_t
);
1530 min_copy
= ELF_GR_OFFSET(16) > (dst
->pos
+ dst
->count
) ?
1531 (dst
->pos
+ dst
->count
) : ELF_GR_OFFSET(16);
1532 for (i
= dst
->pos
; i
< min_copy
; i
+= sizeof(elf_greg_t
),
1534 if (access_elf_reg(dst
->target
, info
, i
,
1535 &tmp
[index
], 0) < 0) {
1539 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1540 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, tmp
,
1541 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1542 if (dst
->ret
|| dst
->count
== 0)
1547 if (dst
->count
> 0 && dst
->pos
< ELF_NAT_OFFSET
) {
1548 pt
= task_pt_regs(dst
->target
);
1549 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1550 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, &pt
->r16
,
1551 ELF_GR_OFFSET(16), ELF_NAT_OFFSET
);
1552 if (dst
->ret
|| dst
->count
== 0)
1556 /* nat, pr, b0 - b7 */
1557 if (dst
->count
> 0 && dst
->pos
< ELF_CR_IIP_OFFSET
) {
1558 index
= (dst
->pos
- ELF_NAT_OFFSET
) / sizeof(elf_greg_t
);
1559 min_copy
= ELF_CR_IIP_OFFSET
> (dst
->pos
+ dst
->count
) ?
1560 (dst
->pos
+ dst
->count
) : ELF_CR_IIP_OFFSET
;
1561 for (i
= dst
->pos
; i
< min_copy
; i
+= sizeof(elf_greg_t
),
1563 if (access_elf_reg(dst
->target
, info
, i
,
1564 &tmp
[index
], 0) < 0) {
1568 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1569 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, tmp
,
1570 ELF_NAT_OFFSET
, ELF_CR_IIP_OFFSET
);
1571 if (dst
->ret
|| dst
->count
== 0)
1575 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1576 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1578 if (dst
->count
> 0 && dst
->pos
< (ELF_AR_END_OFFSET
)) {
1579 index
= (dst
->pos
- ELF_CR_IIP_OFFSET
) / sizeof(elf_greg_t
);
1580 min_copy
= ELF_AR_END_OFFSET
> (dst
->pos
+ dst
->count
) ?
1581 (dst
->pos
+ dst
->count
) : ELF_AR_END_OFFSET
;
1582 for (i
= dst
->pos
; i
< min_copy
; i
+= sizeof(elf_greg_t
),
1584 if (access_elf_reg(dst
->target
, info
, i
,
1585 &tmp
[index
], 0) < 0) {
1589 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1590 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, tmp
,
1591 ELF_CR_IIP_OFFSET
, ELF_AR_END_OFFSET
);
1595 void do_gpregs_set(struct unw_frame_info
*info
, void *arg
)
1598 struct regset_getset
*dst
= arg
;
1600 unsigned int i
, index
;
1602 if (unw_unwind_to_user(info
) < 0)
1606 if (dst
->count
> 0 && dst
->pos
< ELF_GR_OFFSET(1)) {
1607 dst
->ret
= user_regset_copyin_ignore(&dst
->pos
, &dst
->count
,
1610 0, ELF_GR_OFFSET(1));
1611 if (dst
->ret
|| dst
->count
== 0)
1616 if (dst
->count
> 0 && dst
->pos
< ELF_GR_OFFSET(16)) {
1618 index
= (dst
->pos
- ELF_GR_OFFSET(1)) / sizeof(elf_greg_t
);
1619 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1620 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1621 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1624 for ( ; i
< dst
->pos
; i
+= sizeof(elf_greg_t
), index
++)
1625 if (access_elf_reg(dst
->target
, info
, i
,
1626 &tmp
[index
], 1) < 0) {
1630 if (dst
->count
== 0)
1635 if (dst
->count
> 0 && dst
->pos
< ELF_NAT_OFFSET
) {
1636 pt
= task_pt_regs(dst
->target
);
1637 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1638 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, &pt
->r16
,
1639 ELF_GR_OFFSET(16), ELF_NAT_OFFSET
);
1640 if (dst
->ret
|| dst
->count
== 0)
1644 /* nat, pr, b0 - b7 */
1645 if (dst
->count
> 0 && dst
->pos
< ELF_CR_IIP_OFFSET
) {
1647 index
= (dst
->pos
- ELF_NAT_OFFSET
) / sizeof(elf_greg_t
);
1648 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1649 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1650 ELF_NAT_OFFSET
, ELF_CR_IIP_OFFSET
);
1653 for (; i
< dst
->pos
; i
+= sizeof(elf_greg_t
), index
++)
1654 if (access_elf_reg(dst
->target
, info
, i
,
1655 &tmp
[index
], 1) < 0) {
1659 if (dst
->count
== 0)
1663 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1664 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1666 if (dst
->count
> 0 && dst
->pos
< (ELF_AR_END_OFFSET
)) {
1668 index
= (dst
->pos
- ELF_CR_IIP_OFFSET
) / sizeof(elf_greg_t
);
1669 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1670 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1671 ELF_CR_IIP_OFFSET
, ELF_AR_END_OFFSET
);
1674 for ( ; i
< dst
->pos
; i
+= sizeof(elf_greg_t
), index
++)
1675 if (access_elf_reg(dst
->target
, info
, i
,
1676 &tmp
[index
], 1) < 0) {
1683 #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1685 void do_fpregs_get(struct unw_frame_info
*info
, void *arg
)
1687 struct regset_getset
*dst
= arg
;
1688 struct task_struct
*task
= dst
->target
;
1689 elf_fpreg_t tmp
[30];
1690 int index
, min_copy
, i
;
1692 if (unw_unwind_to_user(info
) < 0)
1695 /* Skip pos 0 and 1 */
1696 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(2)) {
1697 dst
->ret
= user_regset_copyout_zero(&dst
->pos
, &dst
->count
,
1700 0, ELF_FP_OFFSET(2));
1701 if (dst
->count
== 0 || dst
->ret
)
1706 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(32)) {
1707 index
= (dst
->pos
- ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t
);
1709 min_copy
= min(((unsigned int)ELF_FP_OFFSET(32)),
1710 dst
->pos
+ dst
->count
);
1711 for (i
= dst
->pos
; i
< min_copy
; i
+= sizeof(elf_fpreg_t
),
1713 if (unw_get_fr(info
, i
/ sizeof(elf_fpreg_t
),
1718 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1719 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, tmp
,
1720 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1721 if (dst
->count
== 0 || dst
->ret
)
1726 if (dst
->count
> 0) {
1727 ia64_flush_fph(dst
->target
);
1728 if (task
->thread
.flags
& IA64_THREAD_FPH_VALID
)
1729 dst
->ret
= user_regset_copyout(
1730 &dst
->pos
, &dst
->count
,
1731 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
,
1732 &dst
->target
->thread
.fph
,
1733 ELF_FP_OFFSET(32), -1);
1735 /* Zero fill instead. */
1736 dst
->ret
= user_regset_copyout_zero(
1737 &dst
->pos
, &dst
->count
,
1738 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
,
1739 ELF_FP_OFFSET(32), -1);
1743 void do_fpregs_set(struct unw_frame_info
*info
, void *arg
)
1745 struct regset_getset
*dst
= arg
;
1746 elf_fpreg_t fpreg
, tmp
[30];
1747 int index
, start
, end
;
1749 if (unw_unwind_to_user(info
) < 0)
1752 /* Skip pos 0 and 1 */
1753 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(2)) {
1754 dst
->ret
= user_regset_copyin_ignore(&dst
->pos
, &dst
->count
,
1757 0, ELF_FP_OFFSET(2));
1758 if (dst
->count
== 0 || dst
->ret
)
1763 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(32)) {
1765 end
= min(((unsigned int)ELF_FP_OFFSET(32)),
1766 dst
->pos
+ dst
->count
);
1767 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1768 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1769 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1773 if (start
& 0xF) { /* only write high part */
1774 if (unw_get_fr(info
, start
/ sizeof(elf_fpreg_t
),
1779 tmp
[start
/ sizeof(elf_fpreg_t
) - 2].u
.bits
[0]
1783 if (end
& 0xF) { /* only write low part */
1784 if (unw_get_fr(info
, end
/ sizeof(elf_fpreg_t
),
1789 tmp
[end
/ sizeof(elf_fpreg_t
) - 2].u
.bits
[1]
1791 end
= (end
+ 0xF) & ~0xFUL
;
1794 for ( ; start
< end
; start
+= sizeof(elf_fpreg_t
)) {
1795 index
= start
/ sizeof(elf_fpreg_t
);
1796 if (unw_set_fr(info
, index
, tmp
[index
- 2])) {
1801 if (dst
->ret
|| dst
->count
== 0)
1806 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(128)) {
1807 ia64_sync_fph(dst
->target
);
1808 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1811 &dst
->target
->thread
.fph
,
1812 ELF_FP_OFFSET(32), -1);
1817 do_regset_call(void (*call
)(struct unw_frame_info
*, void *),
1818 struct task_struct
*target
,
1819 const struct user_regset
*regset
,
1820 unsigned int pos
, unsigned int count
,
1821 const void *kbuf
, const void __user
*ubuf
)
1823 struct regset_getset info
= { .target
= target
, .regset
= regset
,
1824 .pos
= pos
, .count
= count
,
1825 .u
.set
= { .kbuf
= kbuf
, .ubuf
= ubuf
},
1828 if (target
== current
)
1829 unw_init_running(call
, &info
);
1831 struct unw_frame_info ufi
;
1832 memset(&ufi
, 0, sizeof(ufi
));
1833 unw_init_from_blocked_task(&ufi
, target
);
1834 (*call
)(&ufi
, &info
);
1841 gpregs_get(struct task_struct
*target
,
1842 const struct user_regset
*regset
,
1843 unsigned int pos
, unsigned int count
,
1844 void *kbuf
, void __user
*ubuf
)
1846 return do_regset_call(do_gpregs_get
, target
, regset
, pos
, count
,
1850 static int gpregs_set(struct task_struct
*target
,
1851 const struct user_regset
*regset
,
1852 unsigned int pos
, unsigned int count
,
1853 const void *kbuf
, const void __user
*ubuf
)
1855 return do_regset_call(do_gpregs_set
, target
, regset
, pos
, count
,
1859 static void do_gpregs_writeback(struct unw_frame_info
*info
, void *arg
)
1861 do_sync_rbs(info
, ia64_sync_user_rbs
);
1865 * This is called to write back the register backing store.
1866 * ptrace does this before it stops, so that a tracer reading the user
1867 * memory after the thread stops will get the current register data.
1870 gpregs_writeback(struct task_struct
*target
,
1871 const struct user_regset
*regset
,
1874 if (test_and_set_tsk_thread_flag(target
, TIF_RESTORE_RSE
))
1876 set_notify_resume(target
);
1877 return do_regset_call(do_gpregs_writeback
, target
, regset
, 0, 0,
1882 fpregs_active(struct task_struct
*target
, const struct user_regset
*regset
)
1884 return (target
->thread
.flags
& IA64_THREAD_FPH_VALID
) ? 128 : 32;
1887 static int fpregs_get(struct task_struct
*target
,
1888 const struct user_regset
*regset
,
1889 unsigned int pos
, unsigned int count
,
1890 void *kbuf
, void __user
*ubuf
)
1892 return do_regset_call(do_fpregs_get
, target
, regset
, pos
, count
,
1896 static int fpregs_set(struct task_struct
*target
,
1897 const struct user_regset
*regset
,
1898 unsigned int pos
, unsigned int count
,
1899 const void *kbuf
, const void __user
*ubuf
)
1901 return do_regset_call(do_fpregs_set
, target
, regset
, pos
, count
,
1906 access_uarea(struct task_struct
*child
, unsigned long addr
,
1907 unsigned long *data
, int write_access
)
1909 unsigned int pos
= -1; /* an invalid value */
1911 unsigned long *ptr
, regnum
;
1913 if ((addr
& 0x7) != 0) {
1914 dprintk("ptrace: unaligned register address 0x%lx\n", addr
);
1917 if ((addr
>= PT_NAT_BITS
+ 8 && addr
< PT_F2
) ||
1918 (addr
>= PT_R7
+ 8 && addr
< PT_B1
) ||
1919 (addr
>= PT_AR_LC
+ 8 && addr
< PT_CR_IPSR
) ||
1920 (addr
>= PT_AR_SSD
+ 8 && addr
< PT_DBR
)) {
1921 dprintk("ptrace: rejecting access to register "
1922 "address 0x%lx\n", addr
);
1927 case PT_F32
... (PT_F127
+ 15):
1928 pos
= addr
- PT_F32
+ ELF_FP_OFFSET(32);
1930 case PT_F2
... (PT_F5
+ 15):
1931 pos
= addr
- PT_F2
+ ELF_FP_OFFSET(2);
1933 case PT_F10
... (PT_F31
+ 15):
1934 pos
= addr
- PT_F10
+ ELF_FP_OFFSET(10);
1936 case PT_F6
... (PT_F9
+ 15):
1937 pos
= addr
- PT_F6
+ ELF_FP_OFFSET(6);
1943 ret
= fpregs_set(child
, NULL
, pos
,
1944 sizeof(unsigned long), data
, NULL
);
1946 ret
= fpregs_get(child
, NULL
, pos
,
1947 sizeof(unsigned long), data
, NULL
);
1955 pos
= ELF_NAT_OFFSET
;
1957 case PT_R4
... PT_R7
:
1958 pos
= addr
- PT_R4
+ ELF_GR_OFFSET(4);
1960 case PT_B1
... PT_B5
:
1961 pos
= addr
- PT_B1
+ ELF_BR_OFFSET(1);
1964 pos
= ELF_AR_EC_OFFSET
;
1967 pos
= ELF_AR_LC_OFFSET
;
1970 pos
= ELF_CR_IPSR_OFFSET
;
1973 pos
= ELF_CR_IIP_OFFSET
;
1976 pos
= ELF_CFM_OFFSET
;
1979 pos
= ELF_AR_UNAT_OFFSET
;
1982 pos
= ELF_AR_PFS_OFFSET
;
1985 pos
= ELF_AR_RSC_OFFSET
;
1988 pos
= ELF_AR_RNAT_OFFSET
;
1990 case PT_AR_BSPSTORE
:
1991 pos
= ELF_AR_BSPSTORE_OFFSET
;
1994 pos
= ELF_PR_OFFSET
;
1997 pos
= ELF_BR_OFFSET(6);
2000 pos
= ELF_AR_BSP_OFFSET
;
2002 case PT_R1
... PT_R3
:
2003 pos
= addr
- PT_R1
+ ELF_GR_OFFSET(1);
2005 case PT_R12
... PT_R15
:
2006 pos
= addr
- PT_R12
+ ELF_GR_OFFSET(12);
2008 case PT_R8
... PT_R11
:
2009 pos
= addr
- PT_R8
+ ELF_GR_OFFSET(8);
2011 case PT_R16
... PT_R31
:
2012 pos
= addr
- PT_R16
+ ELF_GR_OFFSET(16);
2015 pos
= ELF_AR_CCV_OFFSET
;
2018 pos
= ELF_AR_FPSR_OFFSET
;
2021 pos
= ELF_BR_OFFSET(0);
2024 pos
= ELF_BR_OFFSET(7);
2027 pos
= ELF_AR_CSD_OFFSET
;
2030 pos
= ELF_AR_SSD_OFFSET
;
2036 ret
= gpregs_set(child
, NULL
, pos
,
2037 sizeof(unsigned long), data
, NULL
);
2039 ret
= gpregs_get(child
, NULL
, pos
,
2040 sizeof(unsigned long), data
, NULL
);
2046 /* access debug registers */
2047 if (addr
>= PT_IBR
) {
2048 regnum
= (addr
- PT_IBR
) >> 3;
2049 ptr
= &child
->thread
.ibr
[0];
2051 regnum
= (addr
- PT_DBR
) >> 3;
2052 ptr
= &child
->thread
.dbr
[0];
2056 dprintk("ptrace: rejecting access to register "
2057 "address 0x%lx\n", addr
);
2060 #ifdef CONFIG_PERFMON
2062 * Check if debug registers are used by perfmon. This
2063 * test must be done once we know that we can do the
2064 * operation, i.e. the arguments are all valid, but
2065 * before we start modifying the state.
2067 * Perfmon needs to keep a count of how many processes
2068 * are trying to modify the debug registers for system
2069 * wide monitoring sessions.
2071 * We also include read access here, because they may
2072 * cause the PMU-installed debug register state
2073 * (dbr[], ibr[]) to be reset. The two arrays are also
2074 * used by perfmon, but we do not use
2075 * IA64_THREAD_DBG_VALID. The registers are restored
2076 * by the PMU context switch code.
2078 if (pfm_use_debug_registers(child
))
2082 if (!(child
->thread
.flags
& IA64_THREAD_DBG_VALID
)) {
2083 child
->thread
.flags
|= IA64_THREAD_DBG_VALID
;
2084 memset(child
->thread
.dbr
, 0,
2085 sizeof(child
->thread
.dbr
));
2086 memset(child
->thread
.ibr
, 0,
2087 sizeof(child
->thread
.ibr
));
2092 if ((regnum
& 1) && write_access
) {
2093 /* don't let the user set kernel-level breakpoints: */
2094 *ptr
= *data
& ~(7UL << 56);
2104 static const struct user_regset native_regsets
[] = {
2106 .core_note_type
= NT_PRSTATUS
,
2108 .size
= sizeof(elf_greg_t
), .align
= sizeof(elf_greg_t
),
2109 .get
= gpregs_get
, .set
= gpregs_set
,
2110 .writeback
= gpregs_writeback
2113 .core_note_type
= NT_PRFPREG
,
2115 .size
= sizeof(elf_fpreg_t
), .align
= sizeof(elf_fpreg_t
),
2116 .get
= fpregs_get
, .set
= fpregs_set
, .active
= fpregs_active
2120 static const struct user_regset_view user_ia64_view
= {
2122 .e_machine
= EM_IA_64
,
2123 .regsets
= native_regsets
, .n
= ARRAY_SIZE(native_regsets
)
2126 const struct user_regset_view
*task_user_regset_view(struct task_struct
*tsk
)
2128 return &user_ia64_view
;
2131 struct syscall_get_set_args
{
2134 unsigned long *args
;
2135 struct pt_regs
*regs
;
2139 static void syscall_get_set_args_cb(struct unw_frame_info
*info
, void *data
)
2141 struct syscall_get_set_args
*args
= data
;
2142 struct pt_regs
*pt
= args
->regs
;
2143 unsigned long *krbs
, cfm
, ndirty
;
2146 if (unw_unwind_to_user(info
) < 0)
2150 krbs
= (unsigned long *)info
->task
+ IA64_RBS_OFFSET
/8;
2151 ndirty
= ia64_rse_num_regs(krbs
, krbs
+ (pt
->loadrs
>> 19));
2155 count
= min_t(int, args
->n
, cfm
& 0x7f);
2157 for (i
= 0; i
< count
; i
++) {
2159 *ia64_rse_skip_regs(krbs
, ndirty
+ i
+ args
->i
) =
2162 args
->args
[i
] = *ia64_rse_skip_regs(krbs
,
2163 ndirty
+ i
+ args
->i
);
2167 while (i
< args
->n
) {
2174 void ia64_syscall_get_set_arguments(struct task_struct
*task
,
2175 struct pt_regs
*regs
, unsigned int i
, unsigned int n
,
2176 unsigned long *args
, int rw
)
2178 struct syscall_get_set_args data
= {
2186 if (task
== current
)
2187 unw_init_running(syscall_get_set_args_cb
, &data
);
2189 struct unw_frame_info ufi
;
2190 memset(&ufi
, 0, sizeof(ufi
));
2191 unw_init_from_blocked_task(&ufi
, task
);
2192 syscall_get_set_args_cb(&ufi
, &data
);