2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 2007 by Ralf Baechle
7 * Copyright (C) 2009, 2012 Cavium, Inc.
9 #include <linux/clocksource.h>
10 #include <linux/export.h>
11 #include <linux/init.h>
12 #include <linux/smp.h>
14 #include <asm/cpu-info.h>
17 #include <asm/octeon/octeon.h>
18 #include <asm/octeon/cvmx-ipd-defs.h>
19 #include <asm/octeon/cvmx-mio-defs.h>
25 static u64 octeon_udelay_factor
;
26 static u64 octeon_ndelay_factor
;
28 void __init
octeon_setup_delays(void)
30 octeon_udelay_factor
= octeon_get_clock_rate() / 1000000;
32 * For __ndelay we divide by 2^16, so the factor is multiplied
35 octeon_ndelay_factor
= (octeon_udelay_factor
* 0x10000ull
) / 1000ull;
37 preset_lpj
= octeon_get_clock_rate() / HZ
;
39 if (current_cpu_type() == CPU_CAVIUM_OCTEON2
) {
40 union cvmx_mio_rst_boot rst_boot
;
41 rst_boot
.u64
= cvmx_read_csr(CVMX_MIO_RST_BOOT
);
42 rdiv
= rst_boot
.s
.c_mul
; /* CPU clock */
43 sdiv
= rst_boot
.s
.pnr_mul
; /* I/O clock */
44 f
= (0x8000000000000000ull
/ sdiv
) * 2;
49 * Set the current core's cvmcount counter to the value of the
50 * IPD_CLK_COUNT. We do this on all cores as they are brought
51 * on-line. This allows for a read from a local cpu register to
52 * access a synchronized counter.
54 * On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv.
56 void octeon_init_cvmcount(void)
61 /* Clobber loops so GCC will not unroll the following while loop. */
62 asm("" : "+r" (loops
));
64 local_irq_save(flags
);
66 * Loop several times so we are executing from the cache,
67 * which should give more deterministic timing.
70 u64 ipd_clk_count
= cvmx_read_csr(CVMX_IPD_CLK_COUNT
);
72 ipd_clk_count
*= rdiv
;
74 asm("dmultu\t%[cnt],%[f]\n\t"
76 : [cnt
] "+r" (ipd_clk_count
)
81 write_c0_cvmcount(ipd_clk_count
);
83 local_irq_restore(flags
);
86 static cycle_t
octeon_cvmcount_read(struct clocksource
*cs
)
88 return read_c0_cvmcount();
91 static struct clocksource clocksource_mips
= {
92 .name
= "OCTEON_CVMCOUNT",
93 .read
= octeon_cvmcount_read
,
94 .mask
= CLOCKSOURCE_MASK(64),
95 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
98 unsigned long long notrace
sched_clock(void)
100 /* 64-bit arithmatic can overflow, so use 128-bit. */
102 unsigned long long rv
;
103 u64 mult
= clocksource_mips
.mult
;
104 u64 shift
= clocksource_mips
.shift
;
105 u64 cnt
= read_c0_cvmcount();
108 "dmultu\t%[cnt],%[mult]\n\t"
109 "nor\t%[t1],$0,%[shift]\n\t"
112 "dsll\t%[t2],%[t2],1\n\t"
113 "dsrlv\t%[rv],%[t3],%[shift]\n\t"
114 "dsllv\t%[t1],%[t2],%[t1]\n\t"
115 "or\t%[rv],%[t1],%[rv]\n\t"
116 : [rv
] "=&r" (rv
), [t1
] "=&r" (t1
), [t2
] "=&r" (t2
), [t3
] "=&r" (t3
)
117 : [cnt
] "r" (cnt
), [mult
] "r" (mult
), [shift
] "r" (shift
)
122 void __init
plat_time_init(void)
124 clocksource_mips
.rating
= 300;
125 clocksource_register_hz(&clocksource_mips
, octeon_get_clock_rate());
128 void __udelay(unsigned long us
)
132 cur
= read_c0_cvmcount();
134 inc
= us
* octeon_udelay_factor
;
138 cur
= read_c0_cvmcount();
140 EXPORT_SYMBOL(__udelay
);
142 void __ndelay(unsigned long ns
)
146 cur
= read_c0_cvmcount();
148 inc
= ((ns
* octeon_ndelay_factor
) >> 16);
152 cur
= read_c0_cvmcount();
154 EXPORT_SYMBOL(__ndelay
);
156 void __delay(unsigned long loops
)
160 cur
= read_c0_cvmcount();
164 cur
= read_c0_cvmcount();
166 EXPORT_SYMBOL(__delay
);
170 * octeon_io_clk_delay - wait for a given number of io clock cycles to pass.
172 * We scale the wait by the clock ratio, and then wait for the
173 * corresponding number of core clocks.
175 * @count: The number of clocks to wait.
177 void octeon_io_clk_delay(unsigned long count
)
181 cur
= read_c0_cvmcount();
185 asm("dmultu\t%[cnt],%[f]\n\t"
196 cur
= read_c0_cvmcount();
198 EXPORT_SYMBOL(octeon_io_clk_delay
);