powerpc: Delete __cpuinit usage from all users
[linux/fpc-iii.git] / arch / mips / math-emu / cp1emu.c
blobf03771900813cb69c9ddd5f579841350a8c48786
1 /*
2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
7 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8 * Copyright (C) 2000 MIPS Technologies, Inc.
10 * This program is free software; you can distribute it and/or modify it
11 * under the terms of the GNU General Public License (Version 2) as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 * for more details.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 * A complete emulator for MIPS coprocessor 1 instructions. This is
24 * required for #float(switch) or #float(trap), where it catches all
25 * COP1 instructions via the "CoProcessor Unusable" exception.
27 * More surprisingly it is also required for #float(ieee), to help out
28 * the hardware fpu at the boundaries of the IEEE-754 representation
29 * (denormalised values, infinities, underflow, etc). It is made
30 * quite nasty because emulation of some non-COP1 instructions is
31 * required, e.g. in branch delay slots.
33 * Note if you know that you won't have an fpu, then you'll get much
34 * better performance by compiling with -msoft-float!
36 #include <linux/sched.h>
37 #include <linux/module.h>
38 #include <linux/debugfs.h>
39 #include <linux/perf_event.h>
41 #include <asm/inst.h>
42 #include <asm/bootinfo.h>
43 #include <asm/processor.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/mipsregs.h>
47 #include <asm/fpu_emulator.h>
48 #include <asm/fpu.h>
49 #include <asm/uaccess.h>
50 #include <asm/branch.h>
52 #include "ieee754.h"
54 /* Strap kernel emulator for full MIPS IV emulation */
56 #ifdef __mips
57 #undef __mips
58 #endif
59 #define __mips 4
61 /* Function which emulates a floating point instruction. */
63 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
64 mips_instruction);
66 #if __mips >= 4 && __mips != 32
67 static int fpux_emu(struct pt_regs *,
68 struct mips_fpu_struct *, mips_instruction, void *__user *);
69 #endif
71 /* Further private data for which no space exists in mips_fpu_struct */
73 #ifdef CONFIG_DEBUG_FS
74 DEFINE_PER_CPU(struct mips_fpu_emulator_stats, fpuemustats);
75 #endif
77 /* Control registers */
79 #define FPCREG_RID 0 /* $0 = revision id */
80 #define FPCREG_CSR 31 /* $31 = csr */
82 /* Determine rounding mode from the RM bits of the FCSR */
83 #define modeindex(v) ((v) & FPU_CSR_RM)
85 /* microMIPS bitfields */
86 #define MM_POOL32A_MINOR_MASK 0x3f
87 #define MM_POOL32A_MINOR_SHIFT 0x6
88 #define MM_MIPS32_COND_FC 0x30
90 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
91 static const unsigned char ieee_rm[4] = {
92 [FPU_CSR_RN] = IEEE754_RN,
93 [FPU_CSR_RZ] = IEEE754_RZ,
94 [FPU_CSR_RU] = IEEE754_RU,
95 [FPU_CSR_RD] = IEEE754_RD,
97 /* Convert IEEE library modes to Mips rounding mode (0..3). */
98 static const unsigned char mips_rm[4] = {
99 [IEEE754_RN] = FPU_CSR_RN,
100 [IEEE754_RZ] = FPU_CSR_RZ,
101 [IEEE754_RD] = FPU_CSR_RD,
102 [IEEE754_RU] = FPU_CSR_RU,
105 #if __mips >= 4
106 /* convert condition code register number to csr bit */
107 static const unsigned int fpucondbit[8] = {
108 FPU_CSR_COND0,
109 FPU_CSR_COND1,
110 FPU_CSR_COND2,
111 FPU_CSR_COND3,
112 FPU_CSR_COND4,
113 FPU_CSR_COND5,
114 FPU_CSR_COND6,
115 FPU_CSR_COND7
117 #endif
119 /* (microMIPS) Convert 16-bit register encoding to 32-bit register encoding. */
120 static const unsigned int reg16to32map[8] = {16, 17, 2, 3, 4, 5, 6, 7};
122 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
123 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
124 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
125 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
126 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
129 * This functions translates a 32-bit microMIPS instruction
130 * into a 32-bit MIPS32 instruction. Returns 0 on success
131 * and SIGILL otherwise.
133 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
135 union mips_instruction insn = *insn_ptr;
136 union mips_instruction mips32_insn = insn;
137 int func, fmt, op;
139 switch (insn.mm_i_format.opcode) {
140 case mm_ldc132_op:
141 mips32_insn.mm_i_format.opcode = ldc1_op;
142 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
143 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
144 break;
145 case mm_lwc132_op:
146 mips32_insn.mm_i_format.opcode = lwc1_op;
147 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
148 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
149 break;
150 case mm_sdc132_op:
151 mips32_insn.mm_i_format.opcode = sdc1_op;
152 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
153 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
154 break;
155 case mm_swc132_op:
156 mips32_insn.mm_i_format.opcode = swc1_op;
157 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
158 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
159 break;
160 case mm_pool32i_op:
161 /* NOTE: offset is << by 1 if in microMIPS mode. */
162 if ((insn.mm_i_format.rt == mm_bc1f_op) ||
163 (insn.mm_i_format.rt == mm_bc1t_op)) {
164 mips32_insn.fb_format.opcode = cop1_op;
165 mips32_insn.fb_format.bc = bc_op;
166 mips32_insn.fb_format.flag =
167 (insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
168 } else
169 return SIGILL;
170 break;
171 case mm_pool32f_op:
172 switch (insn.mm_fp0_format.func) {
173 case mm_32f_01_op:
174 case mm_32f_11_op:
175 case mm_32f_02_op:
176 case mm_32f_12_op:
177 case mm_32f_41_op:
178 case mm_32f_51_op:
179 case mm_32f_42_op:
180 case mm_32f_52_op:
181 op = insn.mm_fp0_format.func;
182 if (op == mm_32f_01_op)
183 func = madd_s_op;
184 else if (op == mm_32f_11_op)
185 func = madd_d_op;
186 else if (op == mm_32f_02_op)
187 func = nmadd_s_op;
188 else if (op == mm_32f_12_op)
189 func = nmadd_d_op;
190 else if (op == mm_32f_41_op)
191 func = msub_s_op;
192 else if (op == mm_32f_51_op)
193 func = msub_d_op;
194 else if (op == mm_32f_42_op)
195 func = nmsub_s_op;
196 else
197 func = nmsub_d_op;
198 mips32_insn.fp6_format.opcode = cop1x_op;
199 mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
200 mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
201 mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
202 mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
203 mips32_insn.fp6_format.func = func;
204 break;
205 case mm_32f_10_op:
206 func = -1; /* Invalid */
207 op = insn.mm_fp5_format.op & 0x7;
208 if (op == mm_ldxc1_op)
209 func = ldxc1_op;
210 else if (op == mm_sdxc1_op)
211 func = sdxc1_op;
212 else if (op == mm_lwxc1_op)
213 func = lwxc1_op;
214 else if (op == mm_swxc1_op)
215 func = swxc1_op;
217 if (func != -1) {
218 mips32_insn.r_format.opcode = cop1x_op;
219 mips32_insn.r_format.rs =
220 insn.mm_fp5_format.base;
221 mips32_insn.r_format.rt =
222 insn.mm_fp5_format.index;
223 mips32_insn.r_format.rd = 0;
224 mips32_insn.r_format.re = insn.mm_fp5_format.fd;
225 mips32_insn.r_format.func = func;
226 } else
227 return SIGILL;
228 break;
229 case mm_32f_40_op:
230 op = -1; /* Invalid */
231 if (insn.mm_fp2_format.op == mm_fmovt_op)
232 op = 1;
233 else if (insn.mm_fp2_format.op == mm_fmovf_op)
234 op = 0;
235 if (op != -1) {
236 mips32_insn.fp0_format.opcode = cop1_op;
237 mips32_insn.fp0_format.fmt =
238 sdps_format[insn.mm_fp2_format.fmt];
239 mips32_insn.fp0_format.ft =
240 (insn.mm_fp2_format.cc<<2) + op;
241 mips32_insn.fp0_format.fs =
242 insn.mm_fp2_format.fs;
243 mips32_insn.fp0_format.fd =
244 insn.mm_fp2_format.fd;
245 mips32_insn.fp0_format.func = fmovc_op;
246 } else
247 return SIGILL;
248 break;
249 case mm_32f_60_op:
250 func = -1; /* Invalid */
251 if (insn.mm_fp0_format.op == mm_fadd_op)
252 func = fadd_op;
253 else if (insn.mm_fp0_format.op == mm_fsub_op)
254 func = fsub_op;
255 else if (insn.mm_fp0_format.op == mm_fmul_op)
256 func = fmul_op;
257 else if (insn.mm_fp0_format.op == mm_fdiv_op)
258 func = fdiv_op;
259 if (func != -1) {
260 mips32_insn.fp0_format.opcode = cop1_op;
261 mips32_insn.fp0_format.fmt =
262 sdps_format[insn.mm_fp0_format.fmt];
263 mips32_insn.fp0_format.ft =
264 insn.mm_fp0_format.ft;
265 mips32_insn.fp0_format.fs =
266 insn.mm_fp0_format.fs;
267 mips32_insn.fp0_format.fd =
268 insn.mm_fp0_format.fd;
269 mips32_insn.fp0_format.func = func;
270 } else
271 return SIGILL;
272 break;
273 case mm_32f_70_op:
274 func = -1; /* Invalid */
275 if (insn.mm_fp0_format.op == mm_fmovn_op)
276 func = fmovn_op;
277 else if (insn.mm_fp0_format.op == mm_fmovz_op)
278 func = fmovz_op;
279 if (func != -1) {
280 mips32_insn.fp0_format.opcode = cop1_op;
281 mips32_insn.fp0_format.fmt =
282 sdps_format[insn.mm_fp0_format.fmt];
283 mips32_insn.fp0_format.ft =
284 insn.mm_fp0_format.ft;
285 mips32_insn.fp0_format.fs =
286 insn.mm_fp0_format.fs;
287 mips32_insn.fp0_format.fd =
288 insn.mm_fp0_format.fd;
289 mips32_insn.fp0_format.func = func;
290 } else
291 return SIGILL;
292 break;
293 case mm_32f_73_op: /* POOL32FXF */
294 switch (insn.mm_fp1_format.op) {
295 case mm_movf0_op:
296 case mm_movf1_op:
297 case mm_movt0_op:
298 case mm_movt1_op:
299 if ((insn.mm_fp1_format.op & 0x7f) ==
300 mm_movf0_op)
301 op = 0;
302 else
303 op = 1;
304 mips32_insn.r_format.opcode = spec_op;
305 mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
306 mips32_insn.r_format.rt =
307 (insn.mm_fp4_format.cc << 2) + op;
308 mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
309 mips32_insn.r_format.re = 0;
310 mips32_insn.r_format.func = movc_op;
311 break;
312 case mm_fcvtd0_op:
313 case mm_fcvtd1_op:
314 case mm_fcvts0_op:
315 case mm_fcvts1_op:
316 if ((insn.mm_fp1_format.op & 0x7f) ==
317 mm_fcvtd0_op) {
318 func = fcvtd_op;
319 fmt = swl_format[insn.mm_fp3_format.fmt];
320 } else {
321 func = fcvts_op;
322 fmt = dwl_format[insn.mm_fp3_format.fmt];
324 mips32_insn.fp0_format.opcode = cop1_op;
325 mips32_insn.fp0_format.fmt = fmt;
326 mips32_insn.fp0_format.ft = 0;
327 mips32_insn.fp0_format.fs =
328 insn.mm_fp3_format.fs;
329 mips32_insn.fp0_format.fd =
330 insn.mm_fp3_format.rt;
331 mips32_insn.fp0_format.func = func;
332 break;
333 case mm_fmov0_op:
334 case mm_fmov1_op:
335 case mm_fabs0_op:
336 case mm_fabs1_op:
337 case mm_fneg0_op:
338 case mm_fneg1_op:
339 if ((insn.mm_fp1_format.op & 0x7f) ==
340 mm_fmov0_op)
341 func = fmov_op;
342 else if ((insn.mm_fp1_format.op & 0x7f) ==
343 mm_fabs0_op)
344 func = fabs_op;
345 else
346 func = fneg_op;
347 mips32_insn.fp0_format.opcode = cop1_op;
348 mips32_insn.fp0_format.fmt =
349 sdps_format[insn.mm_fp3_format.fmt];
350 mips32_insn.fp0_format.ft = 0;
351 mips32_insn.fp0_format.fs =
352 insn.mm_fp3_format.fs;
353 mips32_insn.fp0_format.fd =
354 insn.mm_fp3_format.rt;
355 mips32_insn.fp0_format.func = func;
356 break;
357 case mm_ffloorl_op:
358 case mm_ffloorw_op:
359 case mm_fceill_op:
360 case mm_fceilw_op:
361 case mm_ftruncl_op:
362 case mm_ftruncw_op:
363 case mm_froundl_op:
364 case mm_froundw_op:
365 case mm_fcvtl_op:
366 case mm_fcvtw_op:
367 if (insn.mm_fp1_format.op == mm_ffloorl_op)
368 func = ffloorl_op;
369 else if (insn.mm_fp1_format.op == mm_ffloorw_op)
370 func = ffloor_op;
371 else if (insn.mm_fp1_format.op == mm_fceill_op)
372 func = fceill_op;
373 else if (insn.mm_fp1_format.op == mm_fceilw_op)
374 func = fceil_op;
375 else if (insn.mm_fp1_format.op == mm_ftruncl_op)
376 func = ftruncl_op;
377 else if (insn.mm_fp1_format.op == mm_ftruncw_op)
378 func = ftrunc_op;
379 else if (insn.mm_fp1_format.op == mm_froundl_op)
380 func = froundl_op;
381 else if (insn.mm_fp1_format.op == mm_froundw_op)
382 func = fround_op;
383 else if (insn.mm_fp1_format.op == mm_fcvtl_op)
384 func = fcvtl_op;
385 else
386 func = fcvtw_op;
387 mips32_insn.fp0_format.opcode = cop1_op;
388 mips32_insn.fp0_format.fmt =
389 sd_format[insn.mm_fp1_format.fmt];
390 mips32_insn.fp0_format.ft = 0;
391 mips32_insn.fp0_format.fs =
392 insn.mm_fp1_format.fs;
393 mips32_insn.fp0_format.fd =
394 insn.mm_fp1_format.rt;
395 mips32_insn.fp0_format.func = func;
396 break;
397 case mm_frsqrt_op:
398 case mm_fsqrt_op:
399 case mm_frecip_op:
400 if (insn.mm_fp1_format.op == mm_frsqrt_op)
401 func = frsqrt_op;
402 else if (insn.mm_fp1_format.op == mm_fsqrt_op)
403 func = fsqrt_op;
404 else
405 func = frecip_op;
406 mips32_insn.fp0_format.opcode = cop1_op;
407 mips32_insn.fp0_format.fmt =
408 sdps_format[insn.mm_fp1_format.fmt];
409 mips32_insn.fp0_format.ft = 0;
410 mips32_insn.fp0_format.fs =
411 insn.mm_fp1_format.fs;
412 mips32_insn.fp0_format.fd =
413 insn.mm_fp1_format.rt;
414 mips32_insn.fp0_format.func = func;
415 break;
416 case mm_mfc1_op:
417 case mm_mtc1_op:
418 case mm_cfc1_op:
419 case mm_ctc1_op:
420 if (insn.mm_fp1_format.op == mm_mfc1_op)
421 op = mfc_op;
422 else if (insn.mm_fp1_format.op == mm_mtc1_op)
423 op = mtc_op;
424 else if (insn.mm_fp1_format.op == mm_cfc1_op)
425 op = cfc_op;
426 else
427 op = ctc_op;
428 mips32_insn.fp1_format.opcode = cop1_op;
429 mips32_insn.fp1_format.op = op;
430 mips32_insn.fp1_format.rt =
431 insn.mm_fp1_format.rt;
432 mips32_insn.fp1_format.fs =
433 insn.mm_fp1_format.fs;
434 mips32_insn.fp1_format.fd = 0;
435 mips32_insn.fp1_format.func = 0;
436 break;
437 default:
438 return SIGILL;
439 break;
441 break;
442 case mm_32f_74_op: /* c.cond.fmt */
443 mips32_insn.fp0_format.opcode = cop1_op;
444 mips32_insn.fp0_format.fmt =
445 sdps_format[insn.mm_fp4_format.fmt];
446 mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
447 mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
448 mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
449 mips32_insn.fp0_format.func =
450 insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
451 break;
452 default:
453 return SIGILL;
454 break;
456 break;
457 default:
458 return SIGILL;
459 break;
462 *insn_ptr = mips32_insn;
463 return 0;
466 int mm_isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
467 unsigned long *contpc)
469 union mips_instruction insn = (union mips_instruction)dec_insn.insn;
470 int bc_false = 0;
471 unsigned int fcr31;
472 unsigned int bit;
474 switch (insn.mm_i_format.opcode) {
475 case mm_pool32a_op:
476 if ((insn.mm_i_format.simmediate & MM_POOL32A_MINOR_MASK) ==
477 mm_pool32axf_op) {
478 switch (insn.mm_i_format.simmediate >>
479 MM_POOL32A_MINOR_SHIFT) {
480 case mm_jalr_op:
481 case mm_jalrhb_op:
482 case mm_jalrs_op:
483 case mm_jalrshb_op:
484 if (insn.mm_i_format.rt != 0) /* Not mm_jr */
485 regs->regs[insn.mm_i_format.rt] =
486 regs->cp0_epc +
487 dec_insn.pc_inc +
488 dec_insn.next_pc_inc;
489 *contpc = regs->regs[insn.mm_i_format.rs];
490 return 1;
491 break;
494 break;
495 case mm_pool32i_op:
496 switch (insn.mm_i_format.rt) {
497 case mm_bltzals_op:
498 case mm_bltzal_op:
499 regs->regs[31] = regs->cp0_epc +
500 dec_insn.pc_inc +
501 dec_insn.next_pc_inc;
502 /* Fall through */
503 case mm_bltz_op:
504 if ((long)regs->regs[insn.mm_i_format.rs] < 0)
505 *contpc = regs->cp0_epc +
506 dec_insn.pc_inc +
507 (insn.mm_i_format.simmediate << 1);
508 else
509 *contpc = regs->cp0_epc +
510 dec_insn.pc_inc +
511 dec_insn.next_pc_inc;
512 return 1;
513 break;
514 case mm_bgezals_op:
515 case mm_bgezal_op:
516 regs->regs[31] = regs->cp0_epc +
517 dec_insn.pc_inc +
518 dec_insn.next_pc_inc;
519 /* Fall through */
520 case mm_bgez_op:
521 if ((long)regs->regs[insn.mm_i_format.rs] >= 0)
522 *contpc = regs->cp0_epc +
523 dec_insn.pc_inc +
524 (insn.mm_i_format.simmediate << 1);
525 else
526 *contpc = regs->cp0_epc +
527 dec_insn.pc_inc +
528 dec_insn.next_pc_inc;
529 return 1;
530 break;
531 case mm_blez_op:
532 if ((long)regs->regs[insn.mm_i_format.rs] <= 0)
533 *contpc = regs->cp0_epc +
534 dec_insn.pc_inc +
535 (insn.mm_i_format.simmediate << 1);
536 else
537 *contpc = regs->cp0_epc +
538 dec_insn.pc_inc +
539 dec_insn.next_pc_inc;
540 return 1;
541 break;
542 case mm_bgtz_op:
543 if ((long)regs->regs[insn.mm_i_format.rs] <= 0)
544 *contpc = regs->cp0_epc +
545 dec_insn.pc_inc +
546 (insn.mm_i_format.simmediate << 1);
547 else
548 *contpc = regs->cp0_epc +
549 dec_insn.pc_inc +
550 dec_insn.next_pc_inc;
551 return 1;
552 break;
553 case mm_bc2f_op:
554 case mm_bc1f_op:
555 bc_false = 1;
556 /* Fall through */
557 case mm_bc2t_op:
558 case mm_bc1t_op:
559 preempt_disable();
560 if (is_fpu_owner())
561 asm volatile("cfc1\t%0,$31" : "=r" (fcr31));
562 else
563 fcr31 = current->thread.fpu.fcr31;
564 preempt_enable();
566 if (bc_false)
567 fcr31 = ~fcr31;
569 bit = (insn.mm_i_format.rs >> 2);
570 bit += (bit != 0);
571 bit += 23;
572 if (fcr31 & (1 << bit))
573 *contpc = regs->cp0_epc +
574 dec_insn.pc_inc +
575 (insn.mm_i_format.simmediate << 1);
576 else
577 *contpc = regs->cp0_epc +
578 dec_insn.pc_inc + dec_insn.next_pc_inc;
579 return 1;
580 break;
582 break;
583 case mm_pool16c_op:
584 switch (insn.mm_i_format.rt) {
585 case mm_jalr16_op:
586 case mm_jalrs16_op:
587 regs->regs[31] = regs->cp0_epc +
588 dec_insn.pc_inc + dec_insn.next_pc_inc;
589 /* Fall through */
590 case mm_jr16_op:
591 *contpc = regs->regs[insn.mm_i_format.rs];
592 return 1;
593 break;
595 break;
596 case mm_beqz16_op:
597 if ((long)regs->regs[reg16to32map[insn.mm_b1_format.rs]] == 0)
598 *contpc = regs->cp0_epc +
599 dec_insn.pc_inc +
600 (insn.mm_b1_format.simmediate << 1);
601 else
602 *contpc = regs->cp0_epc +
603 dec_insn.pc_inc + dec_insn.next_pc_inc;
604 return 1;
605 break;
606 case mm_bnez16_op:
607 if ((long)regs->regs[reg16to32map[insn.mm_b1_format.rs]] != 0)
608 *contpc = regs->cp0_epc +
609 dec_insn.pc_inc +
610 (insn.mm_b1_format.simmediate << 1);
611 else
612 *contpc = regs->cp0_epc +
613 dec_insn.pc_inc + dec_insn.next_pc_inc;
614 return 1;
615 break;
616 case mm_b16_op:
617 *contpc = regs->cp0_epc + dec_insn.pc_inc +
618 (insn.mm_b0_format.simmediate << 1);
619 return 1;
620 break;
621 case mm_beq32_op:
622 if (regs->regs[insn.mm_i_format.rs] ==
623 regs->regs[insn.mm_i_format.rt])
624 *contpc = regs->cp0_epc +
625 dec_insn.pc_inc +
626 (insn.mm_i_format.simmediate << 1);
627 else
628 *contpc = regs->cp0_epc +
629 dec_insn.pc_inc +
630 dec_insn.next_pc_inc;
631 return 1;
632 break;
633 case mm_bne32_op:
634 if (regs->regs[insn.mm_i_format.rs] !=
635 regs->regs[insn.mm_i_format.rt])
636 *contpc = regs->cp0_epc +
637 dec_insn.pc_inc +
638 (insn.mm_i_format.simmediate << 1);
639 else
640 *contpc = regs->cp0_epc +
641 dec_insn.pc_inc + dec_insn.next_pc_inc;
642 return 1;
643 break;
644 case mm_jalx32_op:
645 regs->regs[31] = regs->cp0_epc +
646 dec_insn.pc_inc + dec_insn.next_pc_inc;
647 *contpc = regs->cp0_epc + dec_insn.pc_inc;
648 *contpc >>= 28;
649 *contpc <<= 28;
650 *contpc |= (insn.j_format.target << 2);
651 return 1;
652 break;
653 case mm_jals32_op:
654 case mm_jal32_op:
655 regs->regs[31] = regs->cp0_epc +
656 dec_insn.pc_inc + dec_insn.next_pc_inc;
657 /* Fall through */
658 case mm_j32_op:
659 *contpc = regs->cp0_epc + dec_insn.pc_inc;
660 *contpc >>= 27;
661 *contpc <<= 27;
662 *contpc |= (insn.j_format.target << 1);
663 set_isa16_mode(*contpc);
664 return 1;
665 break;
667 return 0;
671 * Redundant with logic already in kernel/branch.c,
672 * embedded in compute_return_epc. At some point,
673 * a single subroutine should be used across both
674 * modules.
676 static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
677 unsigned long *contpc)
679 union mips_instruction insn = (union mips_instruction)dec_insn.insn;
680 unsigned int fcr31;
681 unsigned int bit = 0;
683 switch (insn.i_format.opcode) {
684 case spec_op:
685 switch (insn.r_format.func) {
686 case jalr_op:
687 regs->regs[insn.r_format.rd] =
688 regs->cp0_epc + dec_insn.pc_inc +
689 dec_insn.next_pc_inc;
690 /* Fall through */
691 case jr_op:
692 *contpc = regs->regs[insn.r_format.rs];
693 return 1;
694 break;
696 break;
697 case bcond_op:
698 switch (insn.i_format.rt) {
699 case bltzal_op:
700 case bltzall_op:
701 regs->regs[31] = regs->cp0_epc +
702 dec_insn.pc_inc +
703 dec_insn.next_pc_inc;
704 /* Fall through */
705 case bltz_op:
706 case bltzl_op:
707 if ((long)regs->regs[insn.i_format.rs] < 0)
708 *contpc = regs->cp0_epc +
709 dec_insn.pc_inc +
710 (insn.i_format.simmediate << 2);
711 else
712 *contpc = regs->cp0_epc +
713 dec_insn.pc_inc +
714 dec_insn.next_pc_inc;
715 return 1;
716 break;
717 case bgezal_op:
718 case bgezall_op:
719 regs->regs[31] = regs->cp0_epc +
720 dec_insn.pc_inc +
721 dec_insn.next_pc_inc;
722 /* Fall through */
723 case bgez_op:
724 case bgezl_op:
725 if ((long)regs->regs[insn.i_format.rs] >= 0)
726 *contpc = regs->cp0_epc +
727 dec_insn.pc_inc +
728 (insn.i_format.simmediate << 2);
729 else
730 *contpc = regs->cp0_epc +
731 dec_insn.pc_inc +
732 dec_insn.next_pc_inc;
733 return 1;
734 break;
736 break;
737 case jalx_op:
738 set_isa16_mode(bit);
739 case jal_op:
740 regs->regs[31] = regs->cp0_epc +
741 dec_insn.pc_inc +
742 dec_insn.next_pc_inc;
743 /* Fall through */
744 case j_op:
745 *contpc = regs->cp0_epc + dec_insn.pc_inc;
746 *contpc >>= 28;
747 *contpc <<= 28;
748 *contpc |= (insn.j_format.target << 2);
749 /* Set microMIPS mode bit: XOR for jalx. */
750 *contpc ^= bit;
751 return 1;
752 break;
753 case beq_op:
754 case beql_op:
755 if (regs->regs[insn.i_format.rs] ==
756 regs->regs[insn.i_format.rt])
757 *contpc = regs->cp0_epc +
758 dec_insn.pc_inc +
759 (insn.i_format.simmediate << 2);
760 else
761 *contpc = regs->cp0_epc +
762 dec_insn.pc_inc +
763 dec_insn.next_pc_inc;
764 return 1;
765 break;
766 case bne_op:
767 case bnel_op:
768 if (regs->regs[insn.i_format.rs] !=
769 regs->regs[insn.i_format.rt])
770 *contpc = regs->cp0_epc +
771 dec_insn.pc_inc +
772 (insn.i_format.simmediate << 2);
773 else
774 *contpc = regs->cp0_epc +
775 dec_insn.pc_inc +
776 dec_insn.next_pc_inc;
777 return 1;
778 break;
779 case blez_op:
780 case blezl_op:
781 if ((long)regs->regs[insn.i_format.rs] <= 0)
782 *contpc = regs->cp0_epc +
783 dec_insn.pc_inc +
784 (insn.i_format.simmediate << 2);
785 else
786 *contpc = regs->cp0_epc +
787 dec_insn.pc_inc +
788 dec_insn.next_pc_inc;
789 return 1;
790 break;
791 case bgtz_op:
792 case bgtzl_op:
793 if ((long)regs->regs[insn.i_format.rs] > 0)
794 *contpc = regs->cp0_epc +
795 dec_insn.pc_inc +
796 (insn.i_format.simmediate << 2);
797 else
798 *contpc = regs->cp0_epc +
799 dec_insn.pc_inc +
800 dec_insn.next_pc_inc;
801 return 1;
802 break;
803 case cop0_op:
804 case cop1_op:
805 case cop2_op:
806 case cop1x_op:
807 if (insn.i_format.rs == bc_op) {
808 preempt_disable();
809 if (is_fpu_owner())
810 asm volatile("cfc1\t%0,$31" : "=r" (fcr31));
811 else
812 fcr31 = current->thread.fpu.fcr31;
813 preempt_enable();
815 bit = (insn.i_format.rt >> 2);
816 bit += (bit != 0);
817 bit += 23;
818 switch (insn.i_format.rt & 3) {
819 case 0: /* bc1f */
820 case 2: /* bc1fl */
821 if (~fcr31 & (1 << bit))
822 *contpc = regs->cp0_epc +
823 dec_insn.pc_inc +
824 (insn.i_format.simmediate << 2);
825 else
826 *contpc = regs->cp0_epc +
827 dec_insn.pc_inc +
828 dec_insn.next_pc_inc;
829 return 1;
830 break;
831 case 1: /* bc1t */
832 case 3: /* bc1tl */
833 if (fcr31 & (1 << bit))
834 *contpc = regs->cp0_epc +
835 dec_insn.pc_inc +
836 (insn.i_format.simmediate << 2);
837 else
838 *contpc = regs->cp0_epc +
839 dec_insn.pc_inc +
840 dec_insn.next_pc_inc;
841 return 1;
842 break;
845 break;
847 return 0;
851 * In the Linux kernel, we support selection of FPR format on the
852 * basis of the Status.FR bit. If an FPU is not present, the FR bit
853 * is hardwired to zero, which would imply a 32-bit FPU even for
854 * 64-bit CPUs so we rather look at TIF_32BIT_REGS.
855 * FPU emu is slow and bulky and optimizing this function offers fairly
856 * sizeable benefits so we try to be clever and make this function return
857 * a constant whenever possible, that is on 64-bit kernels without O32
858 * compatibility enabled and on 32-bit kernels.
860 static inline int cop1_64bit(struct pt_regs *xcp)
862 #if defined(CONFIG_64BIT) && !defined(CONFIG_MIPS32_O32)
863 return 1;
864 #elif defined(CONFIG_64BIT) && defined(CONFIG_MIPS32_O32)
865 return !test_thread_flag(TIF_32BIT_REGS);
866 #else
867 return 0;
868 #endif
871 #define SIFROMREG(si, x) ((si) = cop1_64bit(xcp) || !(x & 1) ? \
872 (int)ctx->fpr[x] : (int)(ctx->fpr[x & ~1] >> 32))
874 #define SITOREG(si, x) (ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = \
875 cop1_64bit(xcp) || !(x & 1) ? \
876 ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
877 ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
879 #define DIFROMREG(di, x) ((di) = ctx->fpr[x & ~(cop1_64bit(xcp) == 0)])
880 #define DITOREG(di, x) (ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = (di))
882 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
883 #define SPTOREG(sp, x) SITOREG((sp).bits, x)
884 #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x)
885 #define DPTOREG(dp, x) DITOREG((dp).bits, x)
888 * Emulate the single floating point instruction pointed at by EPC.
889 * Two instructions if the instruction is in a branch delay slot.
892 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
893 struct mm_decoded_insn dec_insn, void *__user *fault_addr)
895 mips_instruction ir;
896 unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
897 unsigned int cond;
898 int pc_inc;
900 /* XXX NEC Vr54xx bug workaround */
901 if (xcp->cp0_cause & CAUSEF_BD) {
902 if (dec_insn.micro_mips_mode) {
903 if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
904 xcp->cp0_cause &= ~CAUSEF_BD;
905 } else {
906 if (!isBranchInstr(xcp, dec_insn, &contpc))
907 xcp->cp0_cause &= ~CAUSEF_BD;
911 if (xcp->cp0_cause & CAUSEF_BD) {
913 * The instruction to be emulated is in a branch delay slot
914 * which means that we have to emulate the branch instruction
915 * BEFORE we do the cop1 instruction.
917 * This branch could be a COP1 branch, but in that case we
918 * would have had a trap for that instruction, and would not
919 * come through this route.
921 * Linux MIPS branch emulator operates on context, updating the
922 * cp0_epc.
924 ir = dec_insn.next_insn; /* process delay slot instr */
925 pc_inc = dec_insn.next_pc_inc;
926 } else {
927 ir = dec_insn.insn; /* process current instr */
928 pc_inc = dec_insn.pc_inc;
932 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
933 * instructions, we want to convert microMIPS FPU instructions
934 * into MIPS32 instructions so that we could reuse all of the
935 * FPU emulation code.
937 * NOTE: We cannot do this for branch instructions since they
938 * are not a subset. Example: Cannot emulate a 16-bit
939 * aligned target address with a MIPS32 instruction.
941 if (dec_insn.micro_mips_mode) {
943 * If next instruction is a 16-bit instruction, then it
944 * it cannot be a FPU instruction. This could happen
945 * since we can be called for non-FPU instructions.
947 if ((pc_inc == 2) ||
948 (microMIPS32_to_MIPS32((union mips_instruction *)&ir)
949 == SIGILL))
950 return SIGILL;
953 emul:
954 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
955 MIPS_FPU_EMU_INC_STATS(emulated);
956 switch (MIPSInst_OPCODE(ir)) {
957 case ldc1_op:{
958 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
959 MIPSInst_SIMM(ir));
960 u64 val;
962 MIPS_FPU_EMU_INC_STATS(loads);
964 if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
965 MIPS_FPU_EMU_INC_STATS(errors);
966 *fault_addr = va;
967 return SIGBUS;
969 if (__get_user(val, va)) {
970 MIPS_FPU_EMU_INC_STATS(errors);
971 *fault_addr = va;
972 return SIGSEGV;
974 DITOREG(val, MIPSInst_RT(ir));
975 break;
978 case sdc1_op:{
979 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
980 MIPSInst_SIMM(ir));
981 u64 val;
983 MIPS_FPU_EMU_INC_STATS(stores);
984 DIFROMREG(val, MIPSInst_RT(ir));
985 if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
986 MIPS_FPU_EMU_INC_STATS(errors);
987 *fault_addr = va;
988 return SIGBUS;
990 if (__put_user(val, va)) {
991 MIPS_FPU_EMU_INC_STATS(errors);
992 *fault_addr = va;
993 return SIGSEGV;
995 break;
998 case lwc1_op:{
999 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1000 MIPSInst_SIMM(ir));
1001 u32 val;
1003 MIPS_FPU_EMU_INC_STATS(loads);
1004 if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1005 MIPS_FPU_EMU_INC_STATS(errors);
1006 *fault_addr = va;
1007 return SIGBUS;
1009 if (__get_user(val, va)) {
1010 MIPS_FPU_EMU_INC_STATS(errors);
1011 *fault_addr = va;
1012 return SIGSEGV;
1014 SITOREG(val, MIPSInst_RT(ir));
1015 break;
1018 case swc1_op:{
1019 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1020 MIPSInst_SIMM(ir));
1021 u32 val;
1023 MIPS_FPU_EMU_INC_STATS(stores);
1024 SIFROMREG(val, MIPSInst_RT(ir));
1025 if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1026 MIPS_FPU_EMU_INC_STATS(errors);
1027 *fault_addr = va;
1028 return SIGBUS;
1030 if (__put_user(val, va)) {
1031 MIPS_FPU_EMU_INC_STATS(errors);
1032 *fault_addr = va;
1033 return SIGSEGV;
1035 break;
1038 case cop1_op:
1039 switch (MIPSInst_RS(ir)) {
1041 #if defined(__mips64)
1042 case dmfc_op:
1043 /* copregister fs -> gpr[rt] */
1044 if (MIPSInst_RT(ir) != 0) {
1045 DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1046 MIPSInst_RD(ir));
1048 break;
1050 case dmtc_op:
1051 /* copregister fs <- rt */
1052 DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1053 break;
1054 #endif
1056 case mfc_op:
1057 /* copregister rd -> gpr[rt] */
1058 if (MIPSInst_RT(ir) != 0) {
1059 SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1060 MIPSInst_RD(ir));
1062 break;
1064 case mtc_op:
1065 /* copregister rd <- rt */
1066 SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1067 break;
1069 case cfc_op:{
1070 /* cop control register rd -> gpr[rt] */
1071 u32 value;
1073 if (MIPSInst_RD(ir) == FPCREG_CSR) {
1074 value = ctx->fcr31;
1075 value = (value & ~FPU_CSR_RM) |
1076 mips_rm[modeindex(value)];
1077 #ifdef CSRTRACE
1078 printk("%p gpr[%d]<-csr=%08x\n",
1079 (void *) (xcp->cp0_epc),
1080 MIPSInst_RT(ir), value);
1081 #endif
1083 else if (MIPSInst_RD(ir) == FPCREG_RID)
1084 value = 0;
1085 else
1086 value = 0;
1087 if (MIPSInst_RT(ir))
1088 xcp->regs[MIPSInst_RT(ir)] = value;
1089 break;
1092 case ctc_op:{
1093 /* copregister rd <- rt */
1094 u32 value;
1096 if (MIPSInst_RT(ir) == 0)
1097 value = 0;
1098 else
1099 value = xcp->regs[MIPSInst_RT(ir)];
1101 /* we only have one writable control reg
1103 if (MIPSInst_RD(ir) == FPCREG_CSR) {
1104 #ifdef CSRTRACE
1105 printk("%p gpr[%d]->csr=%08x\n",
1106 (void *) (xcp->cp0_epc),
1107 MIPSInst_RT(ir), value);
1108 #endif
1111 * Don't write reserved bits,
1112 * and convert to ieee library modes
1114 ctx->fcr31 = (value &
1115 ~(FPU_CSR_RSVD | FPU_CSR_RM)) |
1116 ieee_rm[modeindex(value)];
1118 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1119 return SIGFPE;
1121 break;
1124 case bc_op:{
1125 int likely = 0;
1127 if (xcp->cp0_cause & CAUSEF_BD)
1128 return SIGILL;
1130 #if __mips >= 4
1131 cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
1132 #else
1133 cond = ctx->fcr31 & FPU_CSR_COND;
1134 #endif
1135 switch (MIPSInst_RT(ir) & 3) {
1136 case bcfl_op:
1137 likely = 1;
1138 case bcf_op:
1139 cond = !cond;
1140 break;
1141 case bctl_op:
1142 likely = 1;
1143 case bct_op:
1144 break;
1145 default:
1146 /* thats an illegal instruction */
1147 return SIGILL;
1150 xcp->cp0_cause |= CAUSEF_BD;
1151 if (cond) {
1152 /* branch taken: emulate dslot
1153 * instruction
1155 xcp->cp0_epc += dec_insn.pc_inc;
1157 contpc = MIPSInst_SIMM(ir);
1158 ir = dec_insn.next_insn;
1159 if (dec_insn.micro_mips_mode) {
1160 contpc = (xcp->cp0_epc + (contpc << 1));
1162 /* If 16-bit instruction, not FPU. */
1163 if ((dec_insn.next_pc_inc == 2) ||
1164 (microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1167 * Since this instruction will
1168 * be put on the stack with
1169 * 32-bit words, get around
1170 * this problem by putting a
1171 * NOP16 as the second one.
1173 if (dec_insn.next_pc_inc == 2)
1174 ir = (ir & (~0xffff)) | MM_NOP16;
1177 * Single step the non-CP1
1178 * instruction in the dslot.
1180 return mips_dsemul(xcp, ir, contpc);
1182 } else
1183 contpc = (xcp->cp0_epc + (contpc << 2));
1185 switch (MIPSInst_OPCODE(ir)) {
1186 case lwc1_op:
1187 case swc1_op:
1188 #if (__mips >= 2 || defined(__mips64))
1189 case ldc1_op:
1190 case sdc1_op:
1191 #endif
1192 case cop1_op:
1193 #if __mips >= 4 && __mips != 32
1194 case cop1x_op:
1195 #endif
1196 /* its one of ours */
1197 goto emul;
1198 #if __mips >= 4
1199 case spec_op:
1200 if (MIPSInst_FUNC(ir) == movc_op)
1201 goto emul;
1202 break;
1203 #endif
1207 * Single step the non-cp1
1208 * instruction in the dslot
1210 return mips_dsemul(xcp, ir, contpc);
1212 else {
1213 /* branch not taken */
1214 if (likely) {
1216 * branch likely nullifies
1217 * dslot if not taken
1219 xcp->cp0_epc += dec_insn.pc_inc;
1220 contpc += dec_insn.pc_inc;
1222 * else continue & execute
1223 * dslot as normal insn
1227 break;
1230 default:
1231 if (!(MIPSInst_RS(ir) & 0x10))
1232 return SIGILL;
1234 int sig;
1236 /* a real fpu computation instruction */
1237 if ((sig = fpu_emu(xcp, ctx, ir)))
1238 return sig;
1241 break;
1243 #if __mips >= 4 && __mips != 32
1244 case cop1x_op:{
1245 int sig = fpux_emu(xcp, ctx, ir, fault_addr);
1246 if (sig)
1247 return sig;
1248 break;
1250 #endif
1252 #if __mips >= 4
1253 case spec_op:
1254 if (MIPSInst_FUNC(ir) != movc_op)
1255 return SIGILL;
1256 cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1257 if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1258 xcp->regs[MIPSInst_RD(ir)] =
1259 xcp->regs[MIPSInst_RS(ir)];
1260 break;
1261 #endif
1263 default:
1264 return SIGILL;
1267 /* we did it !! */
1268 xcp->cp0_epc = contpc;
1269 xcp->cp0_cause &= ~CAUSEF_BD;
1271 return 0;
1275 * Conversion table from MIPS compare ops 48-63
1276 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1278 static const unsigned char cmptab[8] = {
1279 0, /* cmp_0 (sig) cmp_sf */
1280 IEEE754_CUN, /* cmp_un (sig) cmp_ngle */
1281 IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */
1282 IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */
1283 IEEE754_CLT, /* cmp_olt (sig) cmp_lt */
1284 IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */
1285 IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */
1286 IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */
1290 #if __mips >= 4 && __mips != 32
1293 * Additional MIPS4 instructions
1296 #define DEF3OP(name, p, f1, f2, f3) \
1297 static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
1298 ieee754##p t) \
1300 struct _ieee754_csr ieee754_csr_save; \
1301 s = f1(s, t); \
1302 ieee754_csr_save = ieee754_csr; \
1303 s = f2(s, r); \
1304 ieee754_csr_save.cx |= ieee754_csr.cx; \
1305 ieee754_csr_save.sx |= ieee754_csr.sx; \
1306 s = f3(s); \
1307 ieee754_csr.cx |= ieee754_csr_save.cx; \
1308 ieee754_csr.sx |= ieee754_csr_save.sx; \
1309 return s; \
1312 static ieee754dp fpemu_dp_recip(ieee754dp d)
1314 return ieee754dp_div(ieee754dp_one(0), d);
1317 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
1319 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1322 static ieee754sp fpemu_sp_recip(ieee754sp s)
1324 return ieee754sp_div(ieee754sp_one(0), s);
1327 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
1329 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1332 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1333 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1334 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1335 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1336 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1337 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1338 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1339 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1341 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1342 mips_instruction ir, void *__user *fault_addr)
1344 unsigned rcsr = 0; /* resulting csr */
1346 MIPS_FPU_EMU_INC_STATS(cp1xops);
1348 switch (MIPSInst_FMA_FFMT(ir)) {
1349 case s_fmt:{ /* 0 */
1351 ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
1352 ieee754sp fd, fr, fs, ft;
1353 u32 __user *va;
1354 u32 val;
1356 switch (MIPSInst_FUNC(ir)) {
1357 case lwxc1_op:
1358 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1359 xcp->regs[MIPSInst_FT(ir)]);
1361 MIPS_FPU_EMU_INC_STATS(loads);
1362 if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1363 MIPS_FPU_EMU_INC_STATS(errors);
1364 *fault_addr = va;
1365 return SIGBUS;
1367 if (__get_user(val, va)) {
1368 MIPS_FPU_EMU_INC_STATS(errors);
1369 *fault_addr = va;
1370 return SIGSEGV;
1372 SITOREG(val, MIPSInst_FD(ir));
1373 break;
1375 case swxc1_op:
1376 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1377 xcp->regs[MIPSInst_FT(ir)]);
1379 MIPS_FPU_EMU_INC_STATS(stores);
1381 SIFROMREG(val, MIPSInst_FS(ir));
1382 if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1383 MIPS_FPU_EMU_INC_STATS(errors);
1384 *fault_addr = va;
1385 return SIGBUS;
1387 if (put_user(val, va)) {
1388 MIPS_FPU_EMU_INC_STATS(errors);
1389 *fault_addr = va;
1390 return SIGSEGV;
1392 break;
1394 case madd_s_op:
1395 handler = fpemu_sp_madd;
1396 goto scoptop;
1397 case msub_s_op:
1398 handler = fpemu_sp_msub;
1399 goto scoptop;
1400 case nmadd_s_op:
1401 handler = fpemu_sp_nmadd;
1402 goto scoptop;
1403 case nmsub_s_op:
1404 handler = fpemu_sp_nmsub;
1405 goto scoptop;
1407 scoptop:
1408 SPFROMREG(fr, MIPSInst_FR(ir));
1409 SPFROMREG(fs, MIPSInst_FS(ir));
1410 SPFROMREG(ft, MIPSInst_FT(ir));
1411 fd = (*handler) (fr, fs, ft);
1412 SPTOREG(fd, MIPSInst_FD(ir));
1414 copcsr:
1415 if (ieee754_cxtest(IEEE754_INEXACT))
1416 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1417 if (ieee754_cxtest(IEEE754_UNDERFLOW))
1418 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1419 if (ieee754_cxtest(IEEE754_OVERFLOW))
1420 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1421 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
1422 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1424 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1425 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1426 /*printk ("SIGFPE: fpu csr = %08x\n",
1427 ctx->fcr31); */
1428 return SIGFPE;
1431 break;
1433 default:
1434 return SIGILL;
1436 break;
1439 case d_fmt:{ /* 1 */
1440 ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
1441 ieee754dp fd, fr, fs, ft;
1442 u64 __user *va;
1443 u64 val;
1445 switch (MIPSInst_FUNC(ir)) {
1446 case ldxc1_op:
1447 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1448 xcp->regs[MIPSInst_FT(ir)]);
1450 MIPS_FPU_EMU_INC_STATS(loads);
1451 if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1452 MIPS_FPU_EMU_INC_STATS(errors);
1453 *fault_addr = va;
1454 return SIGBUS;
1456 if (__get_user(val, va)) {
1457 MIPS_FPU_EMU_INC_STATS(errors);
1458 *fault_addr = va;
1459 return SIGSEGV;
1461 DITOREG(val, MIPSInst_FD(ir));
1462 break;
1464 case sdxc1_op:
1465 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1466 xcp->regs[MIPSInst_FT(ir)]);
1468 MIPS_FPU_EMU_INC_STATS(stores);
1469 DIFROMREG(val, MIPSInst_FS(ir));
1470 if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1471 MIPS_FPU_EMU_INC_STATS(errors);
1472 *fault_addr = va;
1473 return SIGBUS;
1475 if (__put_user(val, va)) {
1476 MIPS_FPU_EMU_INC_STATS(errors);
1477 *fault_addr = va;
1478 return SIGSEGV;
1480 break;
1482 case madd_d_op:
1483 handler = fpemu_dp_madd;
1484 goto dcoptop;
1485 case msub_d_op:
1486 handler = fpemu_dp_msub;
1487 goto dcoptop;
1488 case nmadd_d_op:
1489 handler = fpemu_dp_nmadd;
1490 goto dcoptop;
1491 case nmsub_d_op:
1492 handler = fpemu_dp_nmsub;
1493 goto dcoptop;
1495 dcoptop:
1496 DPFROMREG(fr, MIPSInst_FR(ir));
1497 DPFROMREG(fs, MIPSInst_FS(ir));
1498 DPFROMREG(ft, MIPSInst_FT(ir));
1499 fd = (*handler) (fr, fs, ft);
1500 DPTOREG(fd, MIPSInst_FD(ir));
1501 goto copcsr;
1503 default:
1504 return SIGILL;
1506 break;
1509 case 0x7: /* 7 */
1510 if (MIPSInst_FUNC(ir) != pfetch_op) {
1511 return SIGILL;
1513 /* ignore prefx operation */
1514 break;
1516 default:
1517 return SIGILL;
1520 return 0;
1522 #endif
1527 * Emulate a single COP1 arithmetic instruction.
1529 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1530 mips_instruction ir)
1532 int rfmt; /* resulting format */
1533 unsigned rcsr = 0; /* resulting csr */
1534 unsigned cond;
1535 union {
1536 ieee754dp d;
1537 ieee754sp s;
1538 int w;
1539 #ifdef __mips64
1540 s64 l;
1541 #endif
1542 } rv; /* resulting value */
1544 MIPS_FPU_EMU_INC_STATS(cp1ops);
1545 switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1546 case s_fmt:{ /* 0 */
1547 union {
1548 ieee754sp(*b) (ieee754sp, ieee754sp);
1549 ieee754sp(*u) (ieee754sp);
1550 } handler;
1552 switch (MIPSInst_FUNC(ir)) {
1553 /* binary ops */
1554 case fadd_op:
1555 handler.b = ieee754sp_add;
1556 goto scopbop;
1557 case fsub_op:
1558 handler.b = ieee754sp_sub;
1559 goto scopbop;
1560 case fmul_op:
1561 handler.b = ieee754sp_mul;
1562 goto scopbop;
1563 case fdiv_op:
1564 handler.b = ieee754sp_div;
1565 goto scopbop;
1567 /* unary ops */
1568 #if __mips >= 2 || defined(__mips64)
1569 case fsqrt_op:
1570 handler.u = ieee754sp_sqrt;
1571 goto scopuop;
1572 #endif
1573 #if __mips >= 4 && __mips != 32
1574 case frsqrt_op:
1575 handler.u = fpemu_sp_rsqrt;
1576 goto scopuop;
1577 case frecip_op:
1578 handler.u = fpemu_sp_recip;
1579 goto scopuop;
1580 #endif
1581 #if __mips >= 4
1582 case fmovc_op:
1583 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1584 if (((ctx->fcr31 & cond) != 0) !=
1585 ((MIPSInst_FT(ir) & 1) != 0))
1586 return 0;
1587 SPFROMREG(rv.s, MIPSInst_FS(ir));
1588 break;
1589 case fmovz_op:
1590 if (xcp->regs[MIPSInst_FT(ir)] != 0)
1591 return 0;
1592 SPFROMREG(rv.s, MIPSInst_FS(ir));
1593 break;
1594 case fmovn_op:
1595 if (xcp->regs[MIPSInst_FT(ir)] == 0)
1596 return 0;
1597 SPFROMREG(rv.s, MIPSInst_FS(ir));
1598 break;
1599 #endif
1600 case fabs_op:
1601 handler.u = ieee754sp_abs;
1602 goto scopuop;
1603 case fneg_op:
1604 handler.u = ieee754sp_neg;
1605 goto scopuop;
1606 case fmov_op:
1607 /* an easy one */
1608 SPFROMREG(rv.s, MIPSInst_FS(ir));
1609 goto copcsr;
1611 /* binary op on handler */
1612 scopbop:
1614 ieee754sp fs, ft;
1616 SPFROMREG(fs, MIPSInst_FS(ir));
1617 SPFROMREG(ft, MIPSInst_FT(ir));
1619 rv.s = (*handler.b) (fs, ft);
1620 goto copcsr;
1622 scopuop:
1624 ieee754sp fs;
1626 SPFROMREG(fs, MIPSInst_FS(ir));
1627 rv.s = (*handler.u) (fs);
1628 goto copcsr;
1630 copcsr:
1631 if (ieee754_cxtest(IEEE754_INEXACT))
1632 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1633 if (ieee754_cxtest(IEEE754_UNDERFLOW))
1634 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1635 if (ieee754_cxtest(IEEE754_OVERFLOW))
1636 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1637 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
1638 rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1639 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
1640 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1641 break;
1643 /* unary conv ops */
1644 case fcvts_op:
1645 return SIGILL; /* not defined */
1646 case fcvtd_op:{
1647 ieee754sp fs;
1649 SPFROMREG(fs, MIPSInst_FS(ir));
1650 rv.d = ieee754dp_fsp(fs);
1651 rfmt = d_fmt;
1652 goto copcsr;
1654 case fcvtw_op:{
1655 ieee754sp fs;
1657 SPFROMREG(fs, MIPSInst_FS(ir));
1658 rv.w = ieee754sp_tint(fs);
1659 rfmt = w_fmt;
1660 goto copcsr;
1663 #if __mips >= 2 || defined(__mips64)
1664 case fround_op:
1665 case ftrunc_op:
1666 case fceil_op:
1667 case ffloor_op:{
1668 unsigned int oldrm = ieee754_csr.rm;
1669 ieee754sp fs;
1671 SPFROMREG(fs, MIPSInst_FS(ir));
1672 ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1673 rv.w = ieee754sp_tint(fs);
1674 ieee754_csr.rm = oldrm;
1675 rfmt = w_fmt;
1676 goto copcsr;
1678 #endif /* __mips >= 2 */
1680 #if defined(__mips64)
1681 case fcvtl_op:{
1682 ieee754sp fs;
1684 SPFROMREG(fs, MIPSInst_FS(ir));
1685 rv.l = ieee754sp_tlong(fs);
1686 rfmt = l_fmt;
1687 goto copcsr;
1690 case froundl_op:
1691 case ftruncl_op:
1692 case fceill_op:
1693 case ffloorl_op:{
1694 unsigned int oldrm = ieee754_csr.rm;
1695 ieee754sp fs;
1697 SPFROMREG(fs, MIPSInst_FS(ir));
1698 ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1699 rv.l = ieee754sp_tlong(fs);
1700 ieee754_csr.rm = oldrm;
1701 rfmt = l_fmt;
1702 goto copcsr;
1704 #endif /* defined(__mips64) */
1706 default:
1707 if (MIPSInst_FUNC(ir) >= fcmp_op) {
1708 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1709 ieee754sp fs, ft;
1711 SPFROMREG(fs, MIPSInst_FS(ir));
1712 SPFROMREG(ft, MIPSInst_FT(ir));
1713 rv.w = ieee754sp_cmp(fs, ft,
1714 cmptab[cmpop & 0x7], cmpop & 0x8);
1715 rfmt = -1;
1716 if ((cmpop & 0x8) && ieee754_cxtest
1717 (IEEE754_INVALID_OPERATION))
1718 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1719 else
1720 goto copcsr;
1723 else {
1724 return SIGILL;
1726 break;
1728 break;
1731 case d_fmt:{
1732 union {
1733 ieee754dp(*b) (ieee754dp, ieee754dp);
1734 ieee754dp(*u) (ieee754dp);
1735 } handler;
1737 switch (MIPSInst_FUNC(ir)) {
1738 /* binary ops */
1739 case fadd_op:
1740 handler.b = ieee754dp_add;
1741 goto dcopbop;
1742 case fsub_op:
1743 handler.b = ieee754dp_sub;
1744 goto dcopbop;
1745 case fmul_op:
1746 handler.b = ieee754dp_mul;
1747 goto dcopbop;
1748 case fdiv_op:
1749 handler.b = ieee754dp_div;
1750 goto dcopbop;
1752 /* unary ops */
1753 #if __mips >= 2 || defined(__mips64)
1754 case fsqrt_op:
1755 handler.u = ieee754dp_sqrt;
1756 goto dcopuop;
1757 #endif
1758 #if __mips >= 4 && __mips != 32
1759 case frsqrt_op:
1760 handler.u = fpemu_dp_rsqrt;
1761 goto dcopuop;
1762 case frecip_op:
1763 handler.u = fpemu_dp_recip;
1764 goto dcopuop;
1765 #endif
1766 #if __mips >= 4
1767 case fmovc_op:
1768 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1769 if (((ctx->fcr31 & cond) != 0) !=
1770 ((MIPSInst_FT(ir) & 1) != 0))
1771 return 0;
1772 DPFROMREG(rv.d, MIPSInst_FS(ir));
1773 break;
1774 case fmovz_op:
1775 if (xcp->regs[MIPSInst_FT(ir)] != 0)
1776 return 0;
1777 DPFROMREG(rv.d, MIPSInst_FS(ir));
1778 break;
1779 case fmovn_op:
1780 if (xcp->regs[MIPSInst_FT(ir)] == 0)
1781 return 0;
1782 DPFROMREG(rv.d, MIPSInst_FS(ir));
1783 break;
1784 #endif
1785 case fabs_op:
1786 handler.u = ieee754dp_abs;
1787 goto dcopuop;
1789 case fneg_op:
1790 handler.u = ieee754dp_neg;
1791 goto dcopuop;
1793 case fmov_op:
1794 /* an easy one */
1795 DPFROMREG(rv.d, MIPSInst_FS(ir));
1796 goto copcsr;
1798 /* binary op on handler */
1799 dcopbop:{
1800 ieee754dp fs, ft;
1802 DPFROMREG(fs, MIPSInst_FS(ir));
1803 DPFROMREG(ft, MIPSInst_FT(ir));
1805 rv.d = (*handler.b) (fs, ft);
1806 goto copcsr;
1808 dcopuop:{
1809 ieee754dp fs;
1811 DPFROMREG(fs, MIPSInst_FS(ir));
1812 rv.d = (*handler.u) (fs);
1813 goto copcsr;
1816 /* unary conv ops */
1817 case fcvts_op:{
1818 ieee754dp fs;
1820 DPFROMREG(fs, MIPSInst_FS(ir));
1821 rv.s = ieee754sp_fdp(fs);
1822 rfmt = s_fmt;
1823 goto copcsr;
1825 case fcvtd_op:
1826 return SIGILL; /* not defined */
1828 case fcvtw_op:{
1829 ieee754dp fs;
1831 DPFROMREG(fs, MIPSInst_FS(ir));
1832 rv.w = ieee754dp_tint(fs); /* wrong */
1833 rfmt = w_fmt;
1834 goto copcsr;
1837 #if __mips >= 2 || defined(__mips64)
1838 case fround_op:
1839 case ftrunc_op:
1840 case fceil_op:
1841 case ffloor_op:{
1842 unsigned int oldrm = ieee754_csr.rm;
1843 ieee754dp fs;
1845 DPFROMREG(fs, MIPSInst_FS(ir));
1846 ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1847 rv.w = ieee754dp_tint(fs);
1848 ieee754_csr.rm = oldrm;
1849 rfmt = w_fmt;
1850 goto copcsr;
1852 #endif
1854 #if defined(__mips64)
1855 case fcvtl_op:{
1856 ieee754dp fs;
1858 DPFROMREG(fs, MIPSInst_FS(ir));
1859 rv.l = ieee754dp_tlong(fs);
1860 rfmt = l_fmt;
1861 goto copcsr;
1864 case froundl_op:
1865 case ftruncl_op:
1866 case fceill_op:
1867 case ffloorl_op:{
1868 unsigned int oldrm = ieee754_csr.rm;
1869 ieee754dp fs;
1871 DPFROMREG(fs, MIPSInst_FS(ir));
1872 ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1873 rv.l = ieee754dp_tlong(fs);
1874 ieee754_csr.rm = oldrm;
1875 rfmt = l_fmt;
1876 goto copcsr;
1878 #endif /* __mips >= 3 */
1880 default:
1881 if (MIPSInst_FUNC(ir) >= fcmp_op) {
1882 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1883 ieee754dp fs, ft;
1885 DPFROMREG(fs, MIPSInst_FS(ir));
1886 DPFROMREG(ft, MIPSInst_FT(ir));
1887 rv.w = ieee754dp_cmp(fs, ft,
1888 cmptab[cmpop & 0x7], cmpop & 0x8);
1889 rfmt = -1;
1890 if ((cmpop & 0x8)
1892 ieee754_cxtest
1893 (IEEE754_INVALID_OPERATION))
1894 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1895 else
1896 goto copcsr;
1899 else {
1900 return SIGILL;
1902 break;
1904 break;
1907 case w_fmt:{
1908 ieee754sp fs;
1910 switch (MIPSInst_FUNC(ir)) {
1911 case fcvts_op:
1912 /* convert word to single precision real */
1913 SPFROMREG(fs, MIPSInst_FS(ir));
1914 rv.s = ieee754sp_fint(fs.bits);
1915 rfmt = s_fmt;
1916 goto copcsr;
1917 case fcvtd_op:
1918 /* convert word to double precision real */
1919 SPFROMREG(fs, MIPSInst_FS(ir));
1920 rv.d = ieee754dp_fint(fs.bits);
1921 rfmt = d_fmt;
1922 goto copcsr;
1923 default:
1924 return SIGILL;
1926 break;
1929 #if defined(__mips64)
1930 case l_fmt:{
1931 switch (MIPSInst_FUNC(ir)) {
1932 case fcvts_op:
1933 /* convert long to single precision real */
1934 rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1935 rfmt = s_fmt;
1936 goto copcsr;
1937 case fcvtd_op:
1938 /* convert long to double precision real */
1939 rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1940 rfmt = d_fmt;
1941 goto copcsr;
1942 default:
1943 return SIGILL;
1945 break;
1947 #endif
1949 default:
1950 return SIGILL;
1954 * Update the fpu CSR register for this operation.
1955 * If an exception is required, generate a tidy SIGFPE exception,
1956 * without updating the result register.
1957 * Note: cause exception bits do not accumulate, they are rewritten
1958 * for each op; only the flag/sticky bits accumulate.
1960 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1961 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1962 /*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1963 return SIGFPE;
1967 * Now we can safely write the result back to the register file.
1969 switch (rfmt) {
1970 case -1:{
1971 #if __mips >= 4
1972 cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1973 #else
1974 cond = FPU_CSR_COND;
1975 #endif
1976 if (rv.w)
1977 ctx->fcr31 |= cond;
1978 else
1979 ctx->fcr31 &= ~cond;
1980 break;
1982 case d_fmt:
1983 DPTOREG(rv.d, MIPSInst_FD(ir));
1984 break;
1985 case s_fmt:
1986 SPTOREG(rv.s, MIPSInst_FD(ir));
1987 break;
1988 case w_fmt:
1989 SITOREG(rv.w, MIPSInst_FD(ir));
1990 break;
1991 #if defined(__mips64)
1992 case l_fmt:
1993 DITOREG(rv.l, MIPSInst_FD(ir));
1994 break;
1995 #endif
1996 default:
1997 return SIGILL;
2000 return 0;
2003 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2004 int has_fpu, void *__user *fault_addr)
2006 unsigned long oldepc, prevepc;
2007 struct mm_decoded_insn dec_insn;
2008 u16 instr[4];
2009 u16 *instr_ptr;
2010 int sig = 0;
2012 oldepc = xcp->cp0_epc;
2013 do {
2014 prevepc = xcp->cp0_epc;
2016 if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2018 * Get next 2 microMIPS instructions and convert them
2019 * into 32-bit instructions.
2021 if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2022 (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2023 (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2024 (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2025 MIPS_FPU_EMU_INC_STATS(errors);
2026 return SIGBUS;
2028 instr_ptr = instr;
2030 /* Get first instruction. */
2031 if (mm_insn_16bit(*instr_ptr)) {
2032 /* Duplicate the half-word. */
2033 dec_insn.insn = (*instr_ptr << 16) |
2034 (*instr_ptr);
2035 /* 16-bit instruction. */
2036 dec_insn.pc_inc = 2;
2037 instr_ptr += 1;
2038 } else {
2039 dec_insn.insn = (*instr_ptr << 16) |
2040 *(instr_ptr+1);
2041 /* 32-bit instruction. */
2042 dec_insn.pc_inc = 4;
2043 instr_ptr += 2;
2045 /* Get second instruction. */
2046 if (mm_insn_16bit(*instr_ptr)) {
2047 /* Duplicate the half-word. */
2048 dec_insn.next_insn = (*instr_ptr << 16) |
2049 (*instr_ptr);
2050 /* 16-bit instruction. */
2051 dec_insn.next_pc_inc = 2;
2052 } else {
2053 dec_insn.next_insn = (*instr_ptr << 16) |
2054 *(instr_ptr+1);
2055 /* 32-bit instruction. */
2056 dec_insn.next_pc_inc = 4;
2058 dec_insn.micro_mips_mode = 1;
2059 } else {
2060 if ((get_user(dec_insn.insn,
2061 (mips_instruction __user *) xcp->cp0_epc)) ||
2062 (get_user(dec_insn.next_insn,
2063 (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2064 MIPS_FPU_EMU_INC_STATS(errors);
2065 return SIGBUS;
2067 dec_insn.pc_inc = 4;
2068 dec_insn.next_pc_inc = 4;
2069 dec_insn.micro_mips_mode = 0;
2072 if ((dec_insn.insn == 0) ||
2073 ((dec_insn.pc_inc == 2) &&
2074 ((dec_insn.insn & 0xffff) == MM_NOP16)))
2075 xcp->cp0_epc += dec_insn.pc_inc; /* Skip NOPs */
2076 else {
2078 * The 'ieee754_csr' is an alias of
2079 * ctx->fcr31. No need to copy ctx->fcr31 to
2080 * ieee754_csr. But ieee754_csr.rm is ieee
2081 * library modes. (not mips rounding mode)
2083 /* convert to ieee library modes */
2084 ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
2085 sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2086 /* revert to mips rounding mode */
2087 ieee754_csr.rm = mips_rm[ieee754_csr.rm];
2090 if (has_fpu)
2091 break;
2092 if (sig)
2093 break;
2095 cond_resched();
2096 } while (xcp->cp0_epc > prevepc);
2098 /* SIGILL indicates a non-fpu instruction */
2099 if (sig == SIGILL && xcp->cp0_epc != oldepc)
2100 /* but if epc has advanced, then ignore it */
2101 sig = 0;
2103 return sig;
2106 #ifdef CONFIG_DEBUG_FS
2108 static int fpuemu_stat_get(void *data, u64 *val)
2110 int cpu;
2111 unsigned long sum = 0;
2112 for_each_online_cpu(cpu) {
2113 struct mips_fpu_emulator_stats *ps;
2114 local_t *pv;
2115 ps = &per_cpu(fpuemustats, cpu);
2116 pv = (void *)ps + (unsigned long)data;
2117 sum += local_read(pv);
2119 *val = sum;
2120 return 0;
2122 DEFINE_SIMPLE_ATTRIBUTE(fops_fpuemu_stat, fpuemu_stat_get, NULL, "%llu\n");
2124 extern struct dentry *mips_debugfs_dir;
2125 static int __init debugfs_fpuemu(void)
2127 struct dentry *d, *dir;
2129 if (!mips_debugfs_dir)
2130 return -ENODEV;
2131 dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
2132 if (!dir)
2133 return -ENOMEM;
2135 #define FPU_STAT_CREATE(M) \
2136 do { \
2137 d = debugfs_create_file(#M , S_IRUGO, dir, \
2138 (void *)offsetof(struct mips_fpu_emulator_stats, M), \
2139 &fops_fpuemu_stat); \
2140 if (!d) \
2141 return -ENOMEM; \
2142 } while (0)
2144 FPU_STAT_CREATE(emulated);
2145 FPU_STAT_CREATE(loads);
2146 FPU_STAT_CREATE(stores);
2147 FPU_STAT_CREATE(cp1ops);
2148 FPU_STAT_CREATE(cp1xops);
2149 FPU_STAT_CREATE(errors);
2151 return 0;
2153 __initcall(debugfs_fpuemu);
2154 #endif