powerpc: Delete __cpuinit usage from all users
[linux/fpc-iii.git] / arch / mips / mm / tlbex.c
blobafeef93f81a79829ec564eaa8ddafebd4ed7e377
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
21 * (Condolences to Napoleon XIV)
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 #include <linux/cache.h>
32 #include <asm/cacheflush.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
39 * TLB load/store/modify handlers.
41 * Only the fastpath gets synthesized at runtime, the slowpath for
42 * do_page_fault remains normal asm.
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
47 struct work_registers {
48 int r1;
49 int r2;
50 int r3;
53 struct tlb_reg_save {
54 unsigned long a;
55 unsigned long b;
56 } ____cacheline_aligned_in_smp;
58 static struct tlb_reg_save handler_reg_save[NR_CPUS];
60 static inline int r45k_bvahwbug(void)
62 /* XXX: We should probe for the presence of this bug, but we don't. */
63 return 0;
66 static inline int r4k_250MHZhwbug(void)
68 /* XXX: We should probe for the presence of this bug, but we don't. */
69 return 0;
72 static inline int __maybe_unused bcm1250_m3_war(void)
74 return BCM1250_M3_WAR;
77 static inline int __maybe_unused r10000_llsc_war(void)
79 return R10000_LLSC_WAR;
82 static int use_bbit_insns(void)
84 switch (current_cpu_type()) {
85 case CPU_CAVIUM_OCTEON:
86 case CPU_CAVIUM_OCTEON_PLUS:
87 case CPU_CAVIUM_OCTEON2:
88 return 1;
89 default:
90 return 0;
94 static int use_lwx_insns(void)
96 switch (current_cpu_type()) {
97 case CPU_CAVIUM_OCTEON2:
98 return 1;
99 default:
100 return 0;
103 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
104 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
105 static bool scratchpad_available(void)
107 return true;
109 static int scratchpad_offset(int i)
112 * CVMSEG starts at address -32768 and extends for
113 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
115 i += 1; /* Kernel use starts at the top and works down. */
116 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
118 #else
119 static bool scratchpad_available(void)
121 return false;
123 static int scratchpad_offset(int i)
125 BUG();
126 /* Really unreachable, but evidently some GCC want this. */
127 return 0;
129 #endif
131 * Found by experiment: At least some revisions of the 4kc throw under
132 * some circumstances a machine check exception, triggered by invalid
133 * values in the index register. Delaying the tlbp instruction until
134 * after the next branch, plus adding an additional nop in front of
135 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
136 * why; it's not an issue caused by the core RTL.
139 static int __cpuinit m4kc_tlbp_war(void)
141 return (current_cpu_data.processor_id & 0xffff00) ==
142 (PRID_COMP_MIPS | PRID_IMP_4KC);
145 /* Handle labels (which must be positive integers). */
146 enum label_id {
147 label_second_part = 1,
148 label_leave,
149 label_vmalloc,
150 label_vmalloc_done,
151 label_tlbw_hazard_0,
152 label_split = label_tlbw_hazard_0 + 8,
153 label_tlbl_goaround1,
154 label_tlbl_goaround2,
155 label_nopage_tlbl,
156 label_nopage_tlbs,
157 label_nopage_tlbm,
158 label_smp_pgtable_change,
159 label_r3000_write_probe_fail,
160 label_large_segbits_fault,
161 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
162 label_tlb_huge_update,
163 #endif
166 UASM_L_LA(_second_part)
167 UASM_L_LA(_leave)
168 UASM_L_LA(_vmalloc)
169 UASM_L_LA(_vmalloc_done)
170 /* _tlbw_hazard_x is handled differently. */
171 UASM_L_LA(_split)
172 UASM_L_LA(_tlbl_goaround1)
173 UASM_L_LA(_tlbl_goaround2)
174 UASM_L_LA(_nopage_tlbl)
175 UASM_L_LA(_nopage_tlbs)
176 UASM_L_LA(_nopage_tlbm)
177 UASM_L_LA(_smp_pgtable_change)
178 UASM_L_LA(_r3000_write_probe_fail)
179 UASM_L_LA(_large_segbits_fault)
180 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
181 UASM_L_LA(_tlb_huge_update)
182 #endif
184 static int __cpuinitdata hazard_instance;
186 static void __cpuinit uasm_bgezl_hazard(u32 **p,
187 struct uasm_reloc **r,
188 int instance)
190 switch (instance) {
191 case 0 ... 7:
192 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
193 return;
194 default:
195 BUG();
199 static void __cpuinit uasm_bgezl_label(struct uasm_label **l,
200 u32 **p,
201 int instance)
203 switch (instance) {
204 case 0 ... 7:
205 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
206 break;
207 default:
208 BUG();
213 * pgtable bits are assigned dynamically depending on processor feature
214 * and statically based on kernel configuration. This spits out the actual
215 * values the kernel is using. Required to make sense from disassembled
216 * TLB exception handlers.
218 static void output_pgtable_bits_defines(void)
220 #define pr_define(fmt, ...) \
221 pr_debug("#define " fmt, ##__VA_ARGS__)
223 pr_debug("#include <asm/asm.h>\n");
224 pr_debug("#include <asm/regdef.h>\n");
225 pr_debug("\n");
227 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
228 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
229 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
230 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
231 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
232 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
233 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
234 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
235 #endif
236 if (cpu_has_rixi) {
237 #ifdef _PAGE_NO_EXEC_SHIFT
238 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
239 #endif
240 #ifdef _PAGE_NO_READ_SHIFT
241 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
242 #endif
244 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
245 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
246 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
247 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
248 pr_debug("\n");
251 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
253 int i;
255 pr_debug("LEAF(%s)\n", symbol);
257 pr_debug("\t.set push\n");
258 pr_debug("\t.set noreorder\n");
260 for (i = 0; i < count; i++)
261 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
263 pr_debug("\t.set\tpop\n");
265 pr_debug("\tEND(%s)\n", symbol);
268 /* The only general purpose registers allowed in TLB handlers. */
269 #define K0 26
270 #define K1 27
272 /* Some CP0 registers */
273 #define C0_INDEX 0, 0
274 #define C0_ENTRYLO0 2, 0
275 #define C0_TCBIND 2, 2
276 #define C0_ENTRYLO1 3, 0
277 #define C0_CONTEXT 4, 0
278 #define C0_PAGEMASK 5, 0
279 #define C0_BADVADDR 8, 0
280 #define C0_ENTRYHI 10, 0
281 #define C0_EPC 14, 0
282 #define C0_XCONTEXT 20, 0
284 #ifdef CONFIG_64BIT
285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
286 #else
287 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
288 #endif
290 /* The worst case length of the handler is around 18 instructions for
291 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
292 * Maximum space available is 32 instructions for R3000 and 64
293 * instructions for R4000.
295 * We deliberately chose a buffer size of 128, so we won't scribble
296 * over anything important on overflow before we panic.
298 static u32 tlb_handler[128] __cpuinitdata;
300 /* simply assume worst case size for labels and relocs */
301 static struct uasm_label labels[128] __cpuinitdata;
302 static struct uasm_reloc relocs[128] __cpuinitdata;
304 static int check_for_high_segbits __cpuinitdata;
306 static unsigned int kscratch_used_mask __cpuinitdata;
308 static int __cpuinit allocate_kscratch(void)
310 int r;
311 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
313 r = ffs(a);
315 if (r == 0)
316 return -1;
318 r--; /* make it zero based */
320 kscratch_used_mask |= (1 << r);
322 return r;
325 static int scratch_reg __cpuinitdata;
326 static int pgd_reg __cpuinitdata;
327 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
329 static struct work_registers __cpuinit build_get_work_registers(u32 **p)
331 struct work_registers r;
333 int smp_processor_id_reg;
334 int smp_processor_id_sel;
335 int smp_processor_id_shift;
337 if (scratch_reg > 0) {
338 /* Save in CPU local C0_KScratch? */
339 UASM_i_MTC0(p, 1, 31, scratch_reg);
340 r.r1 = K0;
341 r.r2 = K1;
342 r.r3 = 1;
343 return r;
346 if (num_possible_cpus() > 1) {
347 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
348 smp_processor_id_shift = 51;
349 smp_processor_id_reg = 20; /* XContext */
350 smp_processor_id_sel = 0;
351 #else
352 # ifdef CONFIG_32BIT
353 smp_processor_id_shift = 25;
354 smp_processor_id_reg = 4; /* Context */
355 smp_processor_id_sel = 0;
356 # endif
357 # ifdef CONFIG_64BIT
358 smp_processor_id_shift = 26;
359 smp_processor_id_reg = 4; /* Context */
360 smp_processor_id_sel = 0;
361 # endif
362 #endif
363 /* Get smp_processor_id */
364 UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
365 UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
367 /* handler_reg_save index in K0 */
368 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
370 UASM_i_LA(p, K1, (long)&handler_reg_save);
371 UASM_i_ADDU(p, K0, K0, K1);
372 } else {
373 UASM_i_LA(p, K0, (long)&handler_reg_save);
375 /* K0 now points to save area, save $1 and $2 */
376 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
377 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
379 r.r1 = K1;
380 r.r2 = 1;
381 r.r3 = 2;
382 return r;
385 static void __cpuinit build_restore_work_registers(u32 **p)
387 if (scratch_reg > 0) {
388 UASM_i_MFC0(p, 1, 31, scratch_reg);
389 return;
391 /* K0 already points to save area, restore $1 and $2 */
392 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
393 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
396 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
399 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
400 * we cannot do r3000 under these circumstances.
402 * Declare pgd_current here instead of including mmu_context.h to avoid type
403 * conflicts for tlbmiss_handler_setup_pgd
405 extern unsigned long pgd_current[];
408 * The R3000 TLB handler is simple.
410 static void __cpuinit build_r3000_tlb_refill_handler(void)
412 long pgdc = (long)pgd_current;
413 u32 *p;
415 memset(tlb_handler, 0, sizeof(tlb_handler));
416 p = tlb_handler;
418 uasm_i_mfc0(&p, K0, C0_BADVADDR);
419 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
420 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
421 uasm_i_srl(&p, K0, K0, 22); /* load delay */
422 uasm_i_sll(&p, K0, K0, 2);
423 uasm_i_addu(&p, K1, K1, K0);
424 uasm_i_mfc0(&p, K0, C0_CONTEXT);
425 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
426 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
427 uasm_i_addu(&p, K1, K1, K0);
428 uasm_i_lw(&p, K0, 0, K1);
429 uasm_i_nop(&p); /* load delay */
430 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
431 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
432 uasm_i_tlbwr(&p); /* cp0 delay */
433 uasm_i_jr(&p, K1);
434 uasm_i_rfe(&p); /* branch delay */
436 if (p > tlb_handler + 32)
437 panic("TLB refill handler space exceeded");
439 pr_debug("Wrote TLB refill handler (%u instructions).\n",
440 (unsigned int)(p - tlb_handler));
442 memcpy((void *)ebase, tlb_handler, 0x80);
444 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
446 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
449 * The R4000 TLB handler is much more complicated. We have two
450 * consecutive handler areas with 32 instructions space each.
451 * Since they aren't used at the same time, we can overflow in the
452 * other one.To keep things simple, we first assume linear space,
453 * then we relocate it to the final handler layout as needed.
455 static u32 final_handler[64] __cpuinitdata;
458 * Hazards
460 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
461 * 2. A timing hazard exists for the TLBP instruction.
463 * stalling_instruction
464 * TLBP
466 * The JTLB is being read for the TLBP throughout the stall generated by the
467 * previous instruction. This is not really correct as the stalling instruction
468 * can modify the address used to access the JTLB. The failure symptom is that
469 * the TLBP instruction will use an address created for the stalling instruction
470 * and not the address held in C0_ENHI and thus report the wrong results.
472 * The software work-around is to not allow the instruction preceding the TLBP
473 * to stall - make it an NOP or some other instruction guaranteed not to stall.
475 * Errata 2 will not be fixed. This errata is also on the R5000.
477 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
479 static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
481 switch (current_cpu_type()) {
482 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
483 case CPU_R4600:
484 case CPU_R4700:
485 case CPU_R5000:
486 case CPU_NEVADA:
487 uasm_i_nop(p);
488 uasm_i_tlbp(p);
489 break;
491 default:
492 uasm_i_tlbp(p);
493 break;
498 * Write random or indexed TLB entry, and care about the hazards from
499 * the preceding mtc0 and for the following eret.
501 enum tlb_write_entry { tlb_random, tlb_indexed };
503 static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
504 struct uasm_reloc **r,
505 enum tlb_write_entry wmode)
507 void(*tlbw)(u32 **) = NULL;
509 switch (wmode) {
510 case tlb_random: tlbw = uasm_i_tlbwr; break;
511 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
514 if (cpu_has_mips_r2) {
516 * The architecture spec says an ehb is required here,
517 * but a number of cores do not have the hazard and
518 * using an ehb causes an expensive pipeline stall.
520 switch (current_cpu_type()) {
521 case CPU_M14KC:
522 case CPU_74K:
523 break;
525 default:
526 uasm_i_ehb(p);
527 break;
529 tlbw(p);
530 return;
533 switch (current_cpu_type()) {
534 case CPU_R4000PC:
535 case CPU_R4000SC:
536 case CPU_R4000MC:
537 case CPU_R4400PC:
538 case CPU_R4400SC:
539 case CPU_R4400MC:
541 * This branch uses up a mtc0 hazard nop slot and saves
542 * two nops after the tlbw instruction.
544 uasm_bgezl_hazard(p, r, hazard_instance);
545 tlbw(p);
546 uasm_bgezl_label(l, p, hazard_instance);
547 hazard_instance++;
548 uasm_i_nop(p);
549 break;
551 case CPU_R4600:
552 case CPU_R4700:
553 uasm_i_nop(p);
554 tlbw(p);
555 uasm_i_nop(p);
556 break;
558 case CPU_R5000:
559 case CPU_NEVADA:
560 uasm_i_nop(p); /* QED specifies 2 nops hazard */
561 uasm_i_nop(p); /* QED specifies 2 nops hazard */
562 tlbw(p);
563 break;
565 case CPU_R4300:
566 case CPU_5KC:
567 case CPU_TX49XX:
568 case CPU_PR4450:
569 case CPU_XLR:
570 uasm_i_nop(p);
571 tlbw(p);
572 break;
574 case CPU_R10000:
575 case CPU_R12000:
576 case CPU_R14000:
577 case CPU_4KC:
578 case CPU_4KEC:
579 case CPU_M14KC:
580 case CPU_M14KEC:
581 case CPU_SB1:
582 case CPU_SB1A:
583 case CPU_4KSC:
584 case CPU_20KC:
585 case CPU_25KF:
586 case CPU_BMIPS32:
587 case CPU_BMIPS3300:
588 case CPU_BMIPS4350:
589 case CPU_BMIPS4380:
590 case CPU_BMIPS5000:
591 case CPU_LOONGSON2:
592 case CPU_R5500:
593 if (m4kc_tlbp_war())
594 uasm_i_nop(p);
595 case CPU_ALCHEMY:
596 tlbw(p);
597 break;
599 case CPU_RM7000:
600 uasm_i_nop(p);
601 uasm_i_nop(p);
602 uasm_i_nop(p);
603 uasm_i_nop(p);
604 tlbw(p);
605 break;
607 case CPU_VR4111:
608 case CPU_VR4121:
609 case CPU_VR4122:
610 case CPU_VR4181:
611 case CPU_VR4181A:
612 uasm_i_nop(p);
613 uasm_i_nop(p);
614 tlbw(p);
615 uasm_i_nop(p);
616 uasm_i_nop(p);
617 break;
619 case CPU_VR4131:
620 case CPU_VR4133:
621 case CPU_R5432:
622 uasm_i_nop(p);
623 uasm_i_nop(p);
624 tlbw(p);
625 break;
627 case CPU_JZRISC:
628 tlbw(p);
629 uasm_i_nop(p);
630 break;
632 default:
633 panic("No TLB refill handler yet (CPU type: %d)",
634 current_cpu_data.cputype);
635 break;
639 static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
640 unsigned int reg)
642 if (cpu_has_rixi) {
643 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
644 } else {
645 #ifdef CONFIG_64BIT_PHYS_ADDR
646 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
647 #else
648 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
649 #endif
653 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
655 static __cpuinit void build_restore_pagemask(u32 **p,
656 struct uasm_reloc **r,
657 unsigned int tmp,
658 enum label_id lid,
659 int restore_scratch)
661 if (restore_scratch) {
662 /* Reset default page size */
663 if (PM_DEFAULT_MASK >> 16) {
664 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
665 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
666 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
667 uasm_il_b(p, r, lid);
668 } else if (PM_DEFAULT_MASK) {
669 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
670 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
671 uasm_il_b(p, r, lid);
672 } else {
673 uasm_i_mtc0(p, 0, C0_PAGEMASK);
674 uasm_il_b(p, r, lid);
676 if (scratch_reg > 0)
677 UASM_i_MFC0(p, 1, 31, scratch_reg);
678 else
679 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
680 } else {
681 /* Reset default page size */
682 if (PM_DEFAULT_MASK >> 16) {
683 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
684 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
685 uasm_il_b(p, r, lid);
686 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
687 } else if (PM_DEFAULT_MASK) {
688 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
689 uasm_il_b(p, r, lid);
690 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
691 } else {
692 uasm_il_b(p, r, lid);
693 uasm_i_mtc0(p, 0, C0_PAGEMASK);
698 static __cpuinit void build_huge_tlb_write_entry(u32 **p,
699 struct uasm_label **l,
700 struct uasm_reloc **r,
701 unsigned int tmp,
702 enum tlb_write_entry wmode,
703 int restore_scratch)
705 /* Set huge page tlb entry size */
706 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
707 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
708 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
710 build_tlb_write_entry(p, l, r, wmode);
712 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
716 * Check if Huge PTE is present, if so then jump to LABEL.
718 static void __cpuinit
719 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
720 unsigned int pmd, int lid)
722 UASM_i_LW(p, tmp, 0, pmd);
723 if (use_bbit_insns()) {
724 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
725 } else {
726 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
727 uasm_il_bnez(p, r, tmp, lid);
731 static __cpuinit void build_huge_update_entries(u32 **p,
732 unsigned int pte,
733 unsigned int tmp)
735 int small_sequence;
738 * A huge PTE describes an area the size of the
739 * configured huge page size. This is twice the
740 * of the large TLB entry size we intend to use.
741 * A TLB entry half the size of the configured
742 * huge page size is configured into entrylo0
743 * and entrylo1 to cover the contiguous huge PTE
744 * address space.
746 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
748 /* We can clobber tmp. It isn't used after this.*/
749 if (!small_sequence)
750 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
752 build_convert_pte_to_entrylo(p, pte);
753 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
754 /* convert to entrylo1 */
755 if (small_sequence)
756 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
757 else
758 UASM_i_ADDU(p, pte, pte, tmp);
760 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
763 static __cpuinit void build_huge_handler_tail(u32 **p,
764 struct uasm_reloc **r,
765 struct uasm_label **l,
766 unsigned int pte,
767 unsigned int ptr)
769 #ifdef CONFIG_SMP
770 UASM_i_SC(p, pte, 0, ptr);
771 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
772 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
773 #else
774 UASM_i_SW(p, pte, 0, ptr);
775 #endif
776 build_huge_update_entries(p, pte, ptr);
777 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
779 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
781 #ifdef CONFIG_64BIT
783 * TMP and PTR are scratch.
784 * TMP will be clobbered, PTR will hold the pmd entry.
786 static void __cpuinit
787 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
788 unsigned int tmp, unsigned int ptr)
790 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
791 long pgdc = (long)pgd_current;
792 #endif
794 * The vmalloc handling is not in the hotpath.
796 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
798 if (check_for_high_segbits) {
800 * The kernel currently implicitely assumes that the
801 * MIPS SEGBITS parameter for the processor is
802 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
803 * allocate virtual addresses outside the maximum
804 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
805 * that doesn't prevent user code from accessing the
806 * higher xuseg addresses. Here, we make sure that
807 * everything but the lower xuseg addresses goes down
808 * the module_alloc/vmalloc path.
810 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
811 uasm_il_bnez(p, r, ptr, label_vmalloc);
812 } else {
813 uasm_il_bltz(p, r, tmp, label_vmalloc);
815 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
817 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
818 if (pgd_reg != -1) {
819 /* pgd is in pgd_reg */
820 UASM_i_MFC0(p, ptr, 31, pgd_reg);
821 } else {
823 * &pgd << 11 stored in CONTEXT [23..63].
825 UASM_i_MFC0(p, ptr, C0_CONTEXT);
827 /* Clear lower 23 bits of context. */
828 uasm_i_dins(p, ptr, 0, 0, 23);
830 /* 1 0 1 0 1 << 6 xkphys cached */
831 uasm_i_ori(p, ptr, ptr, 0x540);
832 uasm_i_drotr(p, ptr, ptr, 11);
834 #elif defined(CONFIG_SMP)
835 # ifdef CONFIG_MIPS_MT_SMTC
837 * SMTC uses TCBind value as "CPU" index
839 uasm_i_mfc0(p, ptr, C0_TCBIND);
840 uasm_i_dsrl_safe(p, ptr, ptr, 19);
841 # else
843 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
844 * stored in CONTEXT.
846 uasm_i_dmfc0(p, ptr, C0_CONTEXT);
847 uasm_i_dsrl_safe(p, ptr, ptr, 23);
848 # endif
849 UASM_i_LA_mostly(p, tmp, pgdc);
850 uasm_i_daddu(p, ptr, ptr, tmp);
851 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
852 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
853 #else
854 UASM_i_LA_mostly(p, ptr, pgdc);
855 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
856 #endif
858 uasm_l_vmalloc_done(l, *p);
860 /* get pgd offset in bytes */
861 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
863 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
864 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
865 #ifndef __PAGETABLE_PMD_FOLDED
866 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
867 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
868 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
869 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
870 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
871 #endif
875 * BVADDR is the faulting address, PTR is scratch.
876 * PTR will hold the pgd for vmalloc.
878 static void __cpuinit
879 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
880 unsigned int bvaddr, unsigned int ptr,
881 enum vmalloc64_mode mode)
883 long swpd = (long)swapper_pg_dir;
884 int single_insn_swpd;
885 int did_vmalloc_branch = 0;
887 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
889 uasm_l_vmalloc(l, *p);
891 if (mode != not_refill && check_for_high_segbits) {
892 if (single_insn_swpd) {
893 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
894 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
895 did_vmalloc_branch = 1;
896 /* fall through */
897 } else {
898 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
901 if (!did_vmalloc_branch) {
902 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
903 uasm_il_b(p, r, label_vmalloc_done);
904 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
905 } else {
906 UASM_i_LA_mostly(p, ptr, swpd);
907 uasm_il_b(p, r, label_vmalloc_done);
908 if (uasm_in_compat_space_p(swpd))
909 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
910 else
911 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
914 if (mode != not_refill && check_for_high_segbits) {
915 uasm_l_large_segbits_fault(l, *p);
917 * We get here if we are an xsseg address, or if we are
918 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
920 * Ignoring xsseg (assume disabled so would generate
921 * (address errors?), the only remaining possibility
922 * is the upper xuseg addresses. On processors with
923 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
924 * addresses would have taken an address error. We try
925 * to mimic that here by taking a load/istream page
926 * fault.
928 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
929 uasm_i_jr(p, ptr);
931 if (mode == refill_scratch) {
932 if (scratch_reg > 0)
933 UASM_i_MFC0(p, 1, 31, scratch_reg);
934 else
935 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
936 } else {
937 uasm_i_nop(p);
942 #else /* !CONFIG_64BIT */
945 * TMP and PTR are scratch.
946 * TMP will be clobbered, PTR will hold the pgd entry.
948 static void __cpuinit __maybe_unused
949 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
951 long pgdc = (long)pgd_current;
953 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
954 #ifdef CONFIG_SMP
955 #ifdef CONFIG_MIPS_MT_SMTC
957 * SMTC uses TCBind value as "CPU" index
959 uasm_i_mfc0(p, ptr, C0_TCBIND);
960 UASM_i_LA_mostly(p, tmp, pgdc);
961 uasm_i_srl(p, ptr, ptr, 19);
962 #else
964 * smp_processor_id() << 3 is stored in CONTEXT.
966 uasm_i_mfc0(p, ptr, C0_CONTEXT);
967 UASM_i_LA_mostly(p, tmp, pgdc);
968 uasm_i_srl(p, ptr, ptr, 23);
969 #endif
970 uasm_i_addu(p, ptr, tmp, ptr);
971 #else
972 UASM_i_LA_mostly(p, ptr, pgdc);
973 #endif
974 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
975 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
976 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
977 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
978 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
981 #endif /* !CONFIG_64BIT */
983 static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
985 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
986 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
988 switch (current_cpu_type()) {
989 case CPU_VR41XX:
990 case CPU_VR4111:
991 case CPU_VR4121:
992 case CPU_VR4122:
993 case CPU_VR4131:
994 case CPU_VR4181:
995 case CPU_VR4181A:
996 case CPU_VR4133:
997 shift += 2;
998 break;
1000 default:
1001 break;
1004 if (shift)
1005 UASM_i_SRL(p, ctx, ctx, shift);
1006 uasm_i_andi(p, ctx, ctx, mask);
1009 static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1012 * Bug workaround for the Nevada. It seems as if under certain
1013 * circumstances the move from cp0_context might produce a
1014 * bogus result when the mfc0 instruction and its consumer are
1015 * in a different cacheline or a load instruction, probably any
1016 * memory reference, is between them.
1018 switch (current_cpu_type()) {
1019 case CPU_NEVADA:
1020 UASM_i_LW(p, ptr, 0, ptr);
1021 GET_CONTEXT(p, tmp); /* get context reg */
1022 break;
1024 default:
1025 GET_CONTEXT(p, tmp); /* get context reg */
1026 UASM_i_LW(p, ptr, 0, ptr);
1027 break;
1030 build_adjust_context(p, tmp);
1031 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1034 static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
1035 unsigned int ptep)
1038 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1039 * Kernel is a special case. Only a few CPUs use it.
1041 #ifdef CONFIG_64BIT_PHYS_ADDR
1042 if (cpu_has_64bits) {
1043 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1044 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1045 if (cpu_has_rixi) {
1046 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1047 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1048 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1049 } else {
1050 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1051 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1052 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1054 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1055 } else {
1056 int pte_off_even = sizeof(pte_t) / 2;
1057 int pte_off_odd = pte_off_even + sizeof(pte_t);
1059 /* The pte entries are pre-shifted */
1060 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1061 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1062 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1063 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1065 #else
1066 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1067 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1068 if (r45k_bvahwbug())
1069 build_tlb_probe_entry(p);
1070 if (cpu_has_rixi) {
1071 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1072 if (r4k_250MHZhwbug())
1073 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1074 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1075 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1076 } else {
1077 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1078 if (r4k_250MHZhwbug())
1079 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1080 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1081 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1082 if (r45k_bvahwbug())
1083 uasm_i_mfc0(p, tmp, C0_INDEX);
1085 if (r4k_250MHZhwbug())
1086 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1087 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1088 #endif
1091 struct mips_huge_tlb_info {
1092 int huge_pte;
1093 int restore_scratch;
1096 static struct mips_huge_tlb_info __cpuinit
1097 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1098 struct uasm_reloc **r, unsigned int tmp,
1099 unsigned int ptr, int c0_scratch)
1101 struct mips_huge_tlb_info rv;
1102 unsigned int even, odd;
1103 int vmalloc_branch_delay_filled = 0;
1104 const int scratch = 1; /* Our extra working register */
1106 rv.huge_pte = scratch;
1107 rv.restore_scratch = 0;
1109 if (check_for_high_segbits) {
1110 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1112 if (pgd_reg != -1)
1113 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1114 else
1115 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1117 if (c0_scratch >= 0)
1118 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1119 else
1120 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1122 uasm_i_dsrl_safe(p, scratch, tmp,
1123 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1124 uasm_il_bnez(p, r, scratch, label_vmalloc);
1126 if (pgd_reg == -1) {
1127 vmalloc_branch_delay_filled = 1;
1128 /* Clear lower 23 bits of context. */
1129 uasm_i_dins(p, ptr, 0, 0, 23);
1131 } else {
1132 if (pgd_reg != -1)
1133 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1134 else
1135 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1137 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1139 if (c0_scratch >= 0)
1140 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1141 else
1142 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1144 if (pgd_reg == -1)
1145 /* Clear lower 23 bits of context. */
1146 uasm_i_dins(p, ptr, 0, 0, 23);
1148 uasm_il_bltz(p, r, tmp, label_vmalloc);
1151 if (pgd_reg == -1) {
1152 vmalloc_branch_delay_filled = 1;
1153 /* 1 0 1 0 1 << 6 xkphys cached */
1154 uasm_i_ori(p, ptr, ptr, 0x540);
1155 uasm_i_drotr(p, ptr, ptr, 11);
1158 #ifdef __PAGETABLE_PMD_FOLDED
1159 #define LOC_PTEP scratch
1160 #else
1161 #define LOC_PTEP ptr
1162 #endif
1164 if (!vmalloc_branch_delay_filled)
1165 /* get pgd offset in bytes */
1166 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1168 uasm_l_vmalloc_done(l, *p);
1171 * tmp ptr
1172 * fall-through case = badvaddr *pgd_current
1173 * vmalloc case = badvaddr swapper_pg_dir
1176 if (vmalloc_branch_delay_filled)
1177 /* get pgd offset in bytes */
1178 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1180 #ifdef __PAGETABLE_PMD_FOLDED
1181 GET_CONTEXT(p, tmp); /* get context reg */
1182 #endif
1183 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1185 if (use_lwx_insns()) {
1186 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1187 } else {
1188 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1189 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1192 #ifndef __PAGETABLE_PMD_FOLDED
1193 /* get pmd offset in bytes */
1194 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1195 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1196 GET_CONTEXT(p, tmp); /* get context reg */
1198 if (use_lwx_insns()) {
1199 UASM_i_LWX(p, scratch, scratch, ptr);
1200 } else {
1201 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1202 UASM_i_LW(p, scratch, 0, ptr);
1204 #endif
1205 /* Adjust the context during the load latency. */
1206 build_adjust_context(p, tmp);
1208 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1209 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1211 * The in the LWX case we don't want to do the load in the
1212 * delay slot. It cannot issue in the same cycle and may be
1213 * speculative and unneeded.
1215 if (use_lwx_insns())
1216 uasm_i_nop(p);
1217 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1220 /* build_update_entries */
1221 if (use_lwx_insns()) {
1222 even = ptr;
1223 odd = tmp;
1224 UASM_i_LWX(p, even, scratch, tmp);
1225 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1226 UASM_i_LWX(p, odd, scratch, tmp);
1227 } else {
1228 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1229 even = tmp;
1230 odd = ptr;
1231 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1232 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1234 if (cpu_has_rixi) {
1235 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1236 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1237 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1238 } else {
1239 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1240 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1241 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1243 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1245 if (c0_scratch >= 0) {
1246 UASM_i_MFC0(p, scratch, 31, c0_scratch);
1247 build_tlb_write_entry(p, l, r, tlb_random);
1248 uasm_l_leave(l, *p);
1249 rv.restore_scratch = 1;
1250 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1251 build_tlb_write_entry(p, l, r, tlb_random);
1252 uasm_l_leave(l, *p);
1253 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1254 } else {
1255 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1256 build_tlb_write_entry(p, l, r, tlb_random);
1257 uasm_l_leave(l, *p);
1258 rv.restore_scratch = 1;
1261 uasm_i_eret(p); /* return from trap */
1263 return rv;
1267 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1268 * because EXL == 0. If we wrap, we can also use the 32 instruction
1269 * slots before the XTLB refill exception handler which belong to the
1270 * unused TLB refill exception.
1272 #define MIPS64_REFILL_INSNS 32
1274 static void __cpuinit build_r4000_tlb_refill_handler(void)
1276 u32 *p = tlb_handler;
1277 struct uasm_label *l = labels;
1278 struct uasm_reloc *r = relocs;
1279 u32 *f;
1280 unsigned int final_len;
1281 struct mips_huge_tlb_info htlb_info __maybe_unused;
1282 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1284 memset(tlb_handler, 0, sizeof(tlb_handler));
1285 memset(labels, 0, sizeof(labels));
1286 memset(relocs, 0, sizeof(relocs));
1287 memset(final_handler, 0, sizeof(final_handler));
1289 if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
1290 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1291 scratch_reg);
1292 vmalloc_mode = refill_scratch;
1293 } else {
1294 htlb_info.huge_pte = K0;
1295 htlb_info.restore_scratch = 0;
1296 vmalloc_mode = refill_noscratch;
1298 * create the plain linear handler
1300 if (bcm1250_m3_war()) {
1301 unsigned int segbits = 44;
1303 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1304 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1305 uasm_i_xor(&p, K0, K0, K1);
1306 uasm_i_dsrl_safe(&p, K1, K0, 62);
1307 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1308 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1309 uasm_i_or(&p, K0, K0, K1);
1310 uasm_il_bnez(&p, &r, K0, label_leave);
1311 /* No need for uasm_i_nop */
1314 #ifdef CONFIG_64BIT
1315 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1316 #else
1317 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1318 #endif
1320 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1321 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1322 #endif
1324 build_get_ptep(&p, K0, K1);
1325 build_update_entries(&p, K0, K1);
1326 build_tlb_write_entry(&p, &l, &r, tlb_random);
1327 uasm_l_leave(&l, p);
1328 uasm_i_eret(&p); /* return from trap */
1330 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1331 uasm_l_tlb_huge_update(&l, p);
1332 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1333 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1334 htlb_info.restore_scratch);
1335 #endif
1337 #ifdef CONFIG_64BIT
1338 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1339 #endif
1342 * Overflow check: For the 64bit handler, we need at least one
1343 * free instruction slot for the wrap-around branch. In worst
1344 * case, if the intended insertion point is a delay slot, we
1345 * need three, with the second nop'ed and the third being
1346 * unused.
1348 /* Loongson2 ebase is different than r4k, we have more space */
1349 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1350 if ((p - tlb_handler) > 64)
1351 panic("TLB refill handler space exceeded");
1352 #else
1353 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1354 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1355 && uasm_insn_has_bdelay(relocs,
1356 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1357 panic("TLB refill handler space exceeded");
1358 #endif
1361 * Now fold the handler in the TLB refill handler space.
1363 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1364 f = final_handler;
1365 /* Simplest case, just copy the handler. */
1366 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1367 final_len = p - tlb_handler;
1368 #else /* CONFIG_64BIT */
1369 f = final_handler + MIPS64_REFILL_INSNS;
1370 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1371 /* Just copy the handler. */
1372 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1373 final_len = p - tlb_handler;
1374 } else {
1375 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1376 const enum label_id ls = label_tlb_huge_update;
1377 #else
1378 const enum label_id ls = label_vmalloc;
1379 #endif
1380 u32 *split;
1381 int ov = 0;
1382 int i;
1384 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1386 BUG_ON(i == ARRAY_SIZE(labels));
1387 split = labels[i].addr;
1390 * See if we have overflown one way or the other.
1392 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1393 split < p - MIPS64_REFILL_INSNS)
1394 ov = 1;
1396 if (ov) {
1398 * Split two instructions before the end. One
1399 * for the branch and one for the instruction
1400 * in the delay slot.
1402 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1405 * If the branch would fall in a delay slot,
1406 * we must back up an additional instruction
1407 * so that it is no longer in a delay slot.
1409 if (uasm_insn_has_bdelay(relocs, split - 1))
1410 split--;
1412 /* Copy first part of the handler. */
1413 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1414 f += split - tlb_handler;
1416 if (ov) {
1417 /* Insert branch. */
1418 uasm_l_split(&l, final_handler);
1419 uasm_il_b(&f, &r, label_split);
1420 if (uasm_insn_has_bdelay(relocs, split))
1421 uasm_i_nop(&f);
1422 else {
1423 uasm_copy_handler(relocs, labels,
1424 split, split + 1, f);
1425 uasm_move_labels(labels, f, f + 1, -1);
1426 f++;
1427 split++;
1431 /* Copy the rest of the handler. */
1432 uasm_copy_handler(relocs, labels, split, p, final_handler);
1433 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1434 (p - split);
1436 #endif /* CONFIG_64BIT */
1438 uasm_resolve_relocs(relocs, labels);
1439 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1440 final_len);
1442 memcpy((void *)ebase, final_handler, 0x100);
1444 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1448 * 128 instructions for the fastpath handler is generous and should
1449 * never be exceeded.
1451 #define FASTPATH_SIZE 128
1453 u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1454 u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1455 u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1456 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1457 u32 tlbmiss_handler_setup_pgd_array[16] __cacheline_aligned;
1459 static void __cpuinit build_r4000_setup_pgd(void)
1461 const int a0 = 4;
1462 const int a1 = 5;
1463 u32 *p = tlbmiss_handler_setup_pgd_array;
1464 struct uasm_label *l = labels;
1465 struct uasm_reloc *r = relocs;
1467 memset(tlbmiss_handler_setup_pgd_array, 0, sizeof(tlbmiss_handler_setup_pgd_array));
1468 memset(labels, 0, sizeof(labels));
1469 memset(relocs, 0, sizeof(relocs));
1471 pgd_reg = allocate_kscratch();
1473 if (pgd_reg == -1) {
1474 /* PGD << 11 in c0_Context */
1476 * If it is a ckseg0 address, convert to a physical
1477 * address. Shifting right by 29 and adding 4 will
1478 * result in zero for these addresses.
1481 UASM_i_SRA(&p, a1, a0, 29);
1482 UASM_i_ADDIU(&p, a1, a1, 4);
1483 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1484 uasm_i_nop(&p);
1485 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1486 uasm_l_tlbl_goaround1(&l, p);
1487 UASM_i_SLL(&p, a0, a0, 11);
1488 uasm_i_jr(&p, 31);
1489 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1490 } else {
1491 /* PGD in c0_KScratch */
1492 uasm_i_jr(&p, 31);
1493 UASM_i_MTC0(&p, a0, 31, pgd_reg);
1495 if (p - tlbmiss_handler_setup_pgd_array > ARRAY_SIZE(tlbmiss_handler_setup_pgd_array))
1496 panic("tlbmiss_handler_setup_pgd_array space exceeded");
1497 uasm_resolve_relocs(relocs, labels);
1498 pr_debug("Wrote tlbmiss_handler_setup_pgd_array (%u instructions).\n",
1499 (unsigned int)(p - tlbmiss_handler_setup_pgd_array));
1501 dump_handler("tlbmiss_handler",
1502 tlbmiss_handler_setup_pgd_array,
1503 ARRAY_SIZE(tlbmiss_handler_setup_pgd_array));
1505 #endif
1507 static void __cpuinit
1508 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1510 #ifdef CONFIG_SMP
1511 # ifdef CONFIG_64BIT_PHYS_ADDR
1512 if (cpu_has_64bits)
1513 uasm_i_lld(p, pte, 0, ptr);
1514 else
1515 # endif
1516 UASM_i_LL(p, pte, 0, ptr);
1517 #else
1518 # ifdef CONFIG_64BIT_PHYS_ADDR
1519 if (cpu_has_64bits)
1520 uasm_i_ld(p, pte, 0, ptr);
1521 else
1522 # endif
1523 UASM_i_LW(p, pte, 0, ptr);
1524 #endif
1527 static void __cpuinit
1528 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1529 unsigned int mode)
1531 #ifdef CONFIG_64BIT_PHYS_ADDR
1532 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1533 #endif
1535 uasm_i_ori(p, pte, pte, mode);
1536 #ifdef CONFIG_SMP
1537 # ifdef CONFIG_64BIT_PHYS_ADDR
1538 if (cpu_has_64bits)
1539 uasm_i_scd(p, pte, 0, ptr);
1540 else
1541 # endif
1542 UASM_i_SC(p, pte, 0, ptr);
1544 if (r10000_llsc_war())
1545 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1546 else
1547 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1549 # ifdef CONFIG_64BIT_PHYS_ADDR
1550 if (!cpu_has_64bits) {
1551 /* no uasm_i_nop needed */
1552 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1553 uasm_i_ori(p, pte, pte, hwmode);
1554 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1555 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1556 /* no uasm_i_nop needed */
1557 uasm_i_lw(p, pte, 0, ptr);
1558 } else
1559 uasm_i_nop(p);
1560 # else
1561 uasm_i_nop(p);
1562 # endif
1563 #else
1564 # ifdef CONFIG_64BIT_PHYS_ADDR
1565 if (cpu_has_64bits)
1566 uasm_i_sd(p, pte, 0, ptr);
1567 else
1568 # endif
1569 UASM_i_SW(p, pte, 0, ptr);
1571 # ifdef CONFIG_64BIT_PHYS_ADDR
1572 if (!cpu_has_64bits) {
1573 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1574 uasm_i_ori(p, pte, pte, hwmode);
1575 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1576 uasm_i_lw(p, pte, 0, ptr);
1578 # endif
1579 #endif
1583 * Check if PTE is present, if not then jump to LABEL. PTR points to
1584 * the page table where this PTE is located, PTE will be re-loaded
1585 * with it's original value.
1587 static void __cpuinit
1588 build_pte_present(u32 **p, struct uasm_reloc **r,
1589 int pte, int ptr, int scratch, enum label_id lid)
1591 int t = scratch >= 0 ? scratch : pte;
1593 if (cpu_has_rixi) {
1594 if (use_bbit_insns()) {
1595 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1596 uasm_i_nop(p);
1597 } else {
1598 uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1599 uasm_il_beqz(p, r, t, lid);
1600 if (pte == t)
1601 /* You lose the SMP race :-(*/
1602 iPTE_LW(p, pte, ptr);
1604 } else {
1605 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1606 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1607 uasm_il_bnez(p, r, t, lid);
1608 if (pte == t)
1609 /* You lose the SMP race :-(*/
1610 iPTE_LW(p, pte, ptr);
1614 /* Make PTE valid, store result in PTR. */
1615 static void __cpuinit
1616 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1617 unsigned int ptr)
1619 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1621 iPTE_SW(p, r, pte, ptr, mode);
1625 * Check if PTE can be written to, if not branch to LABEL. Regardless
1626 * restore PTE with value from PTR when done.
1628 static void __cpuinit
1629 build_pte_writable(u32 **p, struct uasm_reloc **r,
1630 unsigned int pte, unsigned int ptr, int scratch,
1631 enum label_id lid)
1633 int t = scratch >= 0 ? scratch : pte;
1635 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1636 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1637 uasm_il_bnez(p, r, t, lid);
1638 if (pte == t)
1639 /* You lose the SMP race :-(*/
1640 iPTE_LW(p, pte, ptr);
1641 else
1642 uasm_i_nop(p);
1645 /* Make PTE writable, update software status bits as well, then store
1646 * at PTR.
1648 static void __cpuinit
1649 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1650 unsigned int ptr)
1652 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1653 | _PAGE_DIRTY);
1655 iPTE_SW(p, r, pte, ptr, mode);
1659 * Check if PTE can be modified, if not branch to LABEL. Regardless
1660 * restore PTE with value from PTR when done.
1662 static void __cpuinit
1663 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1664 unsigned int pte, unsigned int ptr, int scratch,
1665 enum label_id lid)
1667 if (use_bbit_insns()) {
1668 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1669 uasm_i_nop(p);
1670 } else {
1671 int t = scratch >= 0 ? scratch : pte;
1672 uasm_i_andi(p, t, pte, _PAGE_WRITE);
1673 uasm_il_beqz(p, r, t, lid);
1674 if (pte == t)
1675 /* You lose the SMP race :-(*/
1676 iPTE_LW(p, pte, ptr);
1680 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1684 * R3000 style TLB load/store/modify handlers.
1688 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1689 * Then it returns.
1691 static void __cpuinit
1692 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1694 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1695 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1696 uasm_i_tlbwi(p);
1697 uasm_i_jr(p, tmp);
1698 uasm_i_rfe(p); /* branch delay */
1702 * This places the pte into ENTRYLO0 and writes it with tlbwi
1703 * or tlbwr as appropriate. This is because the index register
1704 * may have the probe fail bit set as a result of a trap on a
1705 * kseg2 access, i.e. without refill. Then it returns.
1707 static void __cpuinit
1708 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1709 struct uasm_reloc **r, unsigned int pte,
1710 unsigned int tmp)
1712 uasm_i_mfc0(p, tmp, C0_INDEX);
1713 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1714 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1715 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1716 uasm_i_tlbwi(p); /* cp0 delay */
1717 uasm_i_jr(p, tmp);
1718 uasm_i_rfe(p); /* branch delay */
1719 uasm_l_r3000_write_probe_fail(l, *p);
1720 uasm_i_tlbwr(p); /* cp0 delay */
1721 uasm_i_jr(p, tmp);
1722 uasm_i_rfe(p); /* branch delay */
1725 static void __cpuinit
1726 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1727 unsigned int ptr)
1729 long pgdc = (long)pgd_current;
1731 uasm_i_mfc0(p, pte, C0_BADVADDR);
1732 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1733 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1734 uasm_i_srl(p, pte, pte, 22); /* load delay */
1735 uasm_i_sll(p, pte, pte, 2);
1736 uasm_i_addu(p, ptr, ptr, pte);
1737 uasm_i_mfc0(p, pte, C0_CONTEXT);
1738 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1739 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1740 uasm_i_addu(p, ptr, ptr, pte);
1741 uasm_i_lw(p, pte, 0, ptr);
1742 uasm_i_tlbp(p); /* load delay */
1745 static void __cpuinit build_r3000_tlb_load_handler(void)
1747 u32 *p = handle_tlbl;
1748 struct uasm_label *l = labels;
1749 struct uasm_reloc *r = relocs;
1751 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1752 memset(labels, 0, sizeof(labels));
1753 memset(relocs, 0, sizeof(relocs));
1755 build_r3000_tlbchange_handler_head(&p, K0, K1);
1756 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1757 uasm_i_nop(&p); /* load delay */
1758 build_make_valid(&p, &r, K0, K1);
1759 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1761 uasm_l_nopage_tlbl(&l, p);
1762 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1763 uasm_i_nop(&p);
1765 if ((p - handle_tlbl) > FASTPATH_SIZE)
1766 panic("TLB load handler fastpath space exceeded");
1768 uasm_resolve_relocs(relocs, labels);
1769 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1770 (unsigned int)(p - handle_tlbl));
1772 dump_handler("r3000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
1775 static void __cpuinit build_r3000_tlb_store_handler(void)
1777 u32 *p = handle_tlbs;
1778 struct uasm_label *l = labels;
1779 struct uasm_reloc *r = relocs;
1781 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1782 memset(labels, 0, sizeof(labels));
1783 memset(relocs, 0, sizeof(relocs));
1785 build_r3000_tlbchange_handler_head(&p, K0, K1);
1786 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1787 uasm_i_nop(&p); /* load delay */
1788 build_make_write(&p, &r, K0, K1);
1789 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1791 uasm_l_nopage_tlbs(&l, p);
1792 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1793 uasm_i_nop(&p);
1795 if ((p - handle_tlbs) > FASTPATH_SIZE)
1796 panic("TLB store handler fastpath space exceeded");
1798 uasm_resolve_relocs(relocs, labels);
1799 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1800 (unsigned int)(p - handle_tlbs));
1802 dump_handler("r3000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
1805 static void __cpuinit build_r3000_tlb_modify_handler(void)
1807 u32 *p = handle_tlbm;
1808 struct uasm_label *l = labels;
1809 struct uasm_reloc *r = relocs;
1811 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1812 memset(labels, 0, sizeof(labels));
1813 memset(relocs, 0, sizeof(relocs));
1815 build_r3000_tlbchange_handler_head(&p, K0, K1);
1816 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1817 uasm_i_nop(&p); /* load delay */
1818 build_make_write(&p, &r, K0, K1);
1819 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1821 uasm_l_nopage_tlbm(&l, p);
1822 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1823 uasm_i_nop(&p);
1825 if ((p - handle_tlbm) > FASTPATH_SIZE)
1826 panic("TLB modify handler fastpath space exceeded");
1828 uasm_resolve_relocs(relocs, labels);
1829 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1830 (unsigned int)(p - handle_tlbm));
1832 dump_handler("r3000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
1834 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1837 * R4000 style TLB load/store/modify handlers.
1839 static struct work_registers __cpuinit
1840 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1841 struct uasm_reloc **r)
1843 struct work_registers wr = build_get_work_registers(p);
1845 #ifdef CONFIG_64BIT
1846 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1847 #else
1848 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1849 #endif
1851 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1853 * For huge tlb entries, pmd doesn't contain an address but
1854 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1855 * see if we need to jump to huge tlb processing.
1857 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1858 #endif
1860 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1861 UASM_i_LW(p, wr.r2, 0, wr.r2);
1862 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1863 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1864 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1866 #ifdef CONFIG_SMP
1867 uasm_l_smp_pgtable_change(l, *p);
1868 #endif
1869 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1870 if (!m4kc_tlbp_war())
1871 build_tlb_probe_entry(p);
1872 return wr;
1875 static void __cpuinit
1876 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1877 struct uasm_reloc **r, unsigned int tmp,
1878 unsigned int ptr)
1880 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1881 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1882 build_update_entries(p, tmp, ptr);
1883 build_tlb_write_entry(p, l, r, tlb_indexed);
1884 uasm_l_leave(l, *p);
1885 build_restore_work_registers(p);
1886 uasm_i_eret(p); /* return from trap */
1888 #ifdef CONFIG_64BIT
1889 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1890 #endif
1893 static void __cpuinit build_r4000_tlb_load_handler(void)
1895 u32 *p = handle_tlbl;
1896 struct uasm_label *l = labels;
1897 struct uasm_reloc *r = relocs;
1898 struct work_registers wr;
1900 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1901 memset(labels, 0, sizeof(labels));
1902 memset(relocs, 0, sizeof(relocs));
1904 if (bcm1250_m3_war()) {
1905 unsigned int segbits = 44;
1907 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1908 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1909 uasm_i_xor(&p, K0, K0, K1);
1910 uasm_i_dsrl_safe(&p, K1, K0, 62);
1911 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1912 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1913 uasm_i_or(&p, K0, K0, K1);
1914 uasm_il_bnez(&p, &r, K0, label_leave);
1915 /* No need for uasm_i_nop */
1918 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1919 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1920 if (m4kc_tlbp_war())
1921 build_tlb_probe_entry(&p);
1923 if (cpu_has_rixi) {
1925 * If the page is not _PAGE_VALID, RI or XI could not
1926 * have triggered it. Skip the expensive test..
1928 if (use_bbit_insns()) {
1929 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1930 label_tlbl_goaround1);
1931 } else {
1932 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1933 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1935 uasm_i_nop(&p);
1937 uasm_i_tlbr(&p);
1938 /* Examine entrylo 0 or 1 based on ptr. */
1939 if (use_bbit_insns()) {
1940 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1941 } else {
1942 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1943 uasm_i_beqz(&p, wr.r3, 8);
1945 /* load it in the delay slot*/
1946 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1947 /* load it if ptr is odd */
1948 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1950 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1951 * XI must have triggered it.
1953 if (use_bbit_insns()) {
1954 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1955 uasm_i_nop(&p);
1956 uasm_l_tlbl_goaround1(&l, p);
1957 } else {
1958 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1959 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1960 uasm_i_nop(&p);
1962 uasm_l_tlbl_goaround1(&l, p);
1964 build_make_valid(&p, &r, wr.r1, wr.r2);
1965 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1967 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1969 * This is the entry point when build_r4000_tlbchange_handler_head
1970 * spots a huge page.
1972 uasm_l_tlb_huge_update(&l, p);
1973 iPTE_LW(&p, wr.r1, wr.r2);
1974 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1975 build_tlb_probe_entry(&p);
1977 if (cpu_has_rixi) {
1979 * If the page is not _PAGE_VALID, RI or XI could not
1980 * have triggered it. Skip the expensive test..
1982 if (use_bbit_insns()) {
1983 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1984 label_tlbl_goaround2);
1985 } else {
1986 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1987 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1989 uasm_i_nop(&p);
1991 uasm_i_tlbr(&p);
1992 /* Examine entrylo 0 or 1 based on ptr. */
1993 if (use_bbit_insns()) {
1994 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1995 } else {
1996 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1997 uasm_i_beqz(&p, wr.r3, 8);
1999 /* load it in the delay slot*/
2000 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2001 /* load it if ptr is odd */
2002 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2004 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2005 * XI must have triggered it.
2007 if (use_bbit_insns()) {
2008 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2009 } else {
2010 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2011 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2013 if (PM_DEFAULT_MASK == 0)
2014 uasm_i_nop(&p);
2016 * We clobbered C0_PAGEMASK, restore it. On the other branch
2017 * it is restored in build_huge_tlb_write_entry.
2019 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2021 uasm_l_tlbl_goaround2(&l, p);
2023 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2024 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2025 #endif
2027 uasm_l_nopage_tlbl(&l, p);
2028 build_restore_work_registers(&p);
2029 #ifdef CONFIG_CPU_MICROMIPS
2030 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2031 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2032 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2033 uasm_i_jr(&p, K0);
2034 } else
2035 #endif
2036 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2037 uasm_i_nop(&p);
2039 if ((p - handle_tlbl) > FASTPATH_SIZE)
2040 panic("TLB load handler fastpath space exceeded");
2042 uasm_resolve_relocs(relocs, labels);
2043 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2044 (unsigned int)(p - handle_tlbl));
2046 dump_handler("r4000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
2049 static void __cpuinit build_r4000_tlb_store_handler(void)
2051 u32 *p = handle_tlbs;
2052 struct uasm_label *l = labels;
2053 struct uasm_reloc *r = relocs;
2054 struct work_registers wr;
2056 memset(handle_tlbs, 0, sizeof(handle_tlbs));
2057 memset(labels, 0, sizeof(labels));
2058 memset(relocs, 0, sizeof(relocs));
2060 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2061 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2062 if (m4kc_tlbp_war())
2063 build_tlb_probe_entry(&p);
2064 build_make_write(&p, &r, wr.r1, wr.r2);
2065 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2067 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2069 * This is the entry point when
2070 * build_r4000_tlbchange_handler_head spots a huge page.
2072 uasm_l_tlb_huge_update(&l, p);
2073 iPTE_LW(&p, wr.r1, wr.r2);
2074 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2075 build_tlb_probe_entry(&p);
2076 uasm_i_ori(&p, wr.r1, wr.r1,
2077 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2078 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2079 #endif
2081 uasm_l_nopage_tlbs(&l, p);
2082 build_restore_work_registers(&p);
2083 #ifdef CONFIG_CPU_MICROMIPS
2084 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2085 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2086 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2087 uasm_i_jr(&p, K0);
2088 } else
2089 #endif
2090 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2091 uasm_i_nop(&p);
2093 if ((p - handle_tlbs) > FASTPATH_SIZE)
2094 panic("TLB store handler fastpath space exceeded");
2096 uasm_resolve_relocs(relocs, labels);
2097 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2098 (unsigned int)(p - handle_tlbs));
2100 dump_handler("r4000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
2103 static void __cpuinit build_r4000_tlb_modify_handler(void)
2105 u32 *p = handle_tlbm;
2106 struct uasm_label *l = labels;
2107 struct uasm_reloc *r = relocs;
2108 struct work_registers wr;
2110 memset(handle_tlbm, 0, sizeof(handle_tlbm));
2111 memset(labels, 0, sizeof(labels));
2112 memset(relocs, 0, sizeof(relocs));
2114 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2115 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2116 if (m4kc_tlbp_war())
2117 build_tlb_probe_entry(&p);
2118 /* Present and writable bits set, set accessed and dirty bits. */
2119 build_make_write(&p, &r, wr.r1, wr.r2);
2120 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2122 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2124 * This is the entry point when
2125 * build_r4000_tlbchange_handler_head spots a huge page.
2127 uasm_l_tlb_huge_update(&l, p);
2128 iPTE_LW(&p, wr.r1, wr.r2);
2129 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2130 build_tlb_probe_entry(&p);
2131 uasm_i_ori(&p, wr.r1, wr.r1,
2132 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2133 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2134 #endif
2136 uasm_l_nopage_tlbm(&l, p);
2137 build_restore_work_registers(&p);
2138 #ifdef CONFIG_CPU_MICROMIPS
2139 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2140 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2141 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2142 uasm_i_jr(&p, K0);
2143 } else
2144 #endif
2145 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2146 uasm_i_nop(&p);
2148 if ((p - handle_tlbm) > FASTPATH_SIZE)
2149 panic("TLB modify handler fastpath space exceeded");
2151 uasm_resolve_relocs(relocs, labels);
2152 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2153 (unsigned int)(p - handle_tlbm));
2155 dump_handler("r4000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
2158 void __cpuinit build_tlb_refill_handler(void)
2161 * The refill handler is generated per-CPU, multi-node systems
2162 * may have local storage for it. The other handlers are only
2163 * needed once.
2165 static int run_once = 0;
2167 output_pgtable_bits_defines();
2169 #ifdef CONFIG_64BIT
2170 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2171 #endif
2173 switch (current_cpu_type()) {
2174 case CPU_R2000:
2175 case CPU_R3000:
2176 case CPU_R3000A:
2177 case CPU_R3081E:
2178 case CPU_TX3912:
2179 case CPU_TX3922:
2180 case CPU_TX3927:
2181 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2182 if (cpu_has_local_ebase)
2183 build_r3000_tlb_refill_handler();
2184 if (!run_once) {
2185 if (!cpu_has_local_ebase)
2186 build_r3000_tlb_refill_handler();
2187 build_r3000_tlb_load_handler();
2188 build_r3000_tlb_store_handler();
2189 build_r3000_tlb_modify_handler();
2190 run_once++;
2192 #else
2193 panic("No R3000 TLB refill handler");
2194 #endif
2195 break;
2197 case CPU_R6000:
2198 case CPU_R6000A:
2199 panic("No R6000 TLB refill handler yet");
2200 break;
2202 case CPU_R8000:
2203 panic("No R8000 TLB refill handler yet");
2204 break;
2206 default:
2207 if (!run_once) {
2208 scratch_reg = allocate_kscratch();
2209 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2210 build_r4000_setup_pgd();
2211 #endif
2212 build_r4000_tlb_load_handler();
2213 build_r4000_tlb_store_handler();
2214 build_r4000_tlb_modify_handler();
2215 if (!cpu_has_local_ebase)
2216 build_r4000_tlb_refill_handler();
2217 run_once++;
2219 if (cpu_has_local_ebase)
2220 build_r4000_tlb_refill_handler();
2224 void __cpuinit flush_tlb_handlers(void)
2226 local_flush_icache_range((unsigned long)handle_tlbl,
2227 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
2228 local_flush_icache_range((unsigned long)handle_tlbs,
2229 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
2230 local_flush_icache_range((unsigned long)handle_tlbm,
2231 (unsigned long)handle_tlbm + sizeof(handle_tlbm));
2232 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2233 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd_array,
2234 (unsigned long)tlbmiss_handler_setup_pgd_array + sizeof(handle_tlbm));
2235 #endif