2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
37 static struct vfsmount
*shm_mnt
;
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
74 #include <linux/uaccess.h>
75 #include <asm/pgtable.h>
79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
94 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
95 pgoff_t start
; /* start of range currently being fallocated */
96 pgoff_t next
; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
102 static unsigned long shmem_default_max_blocks(void)
104 return totalram_pages
/ 2;
107 static unsigned long shmem_default_max_inodes(void)
109 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
113 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
114 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
115 struct shmem_inode_info
*info
, pgoff_t index
);
116 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
117 struct page
**pagep
, enum sgp_type sgp
,
118 gfp_t gfp
, struct mm_struct
*fault_mm
, int *fault_type
);
120 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
121 struct page
**pagep
, enum sgp_type sgp
)
123 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
124 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
);
127 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
129 return sb
->s_fs_info
;
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
138 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
140 return (flags
& VM_NORESERVE
) ?
141 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
144 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
146 if (!(flags
& VM_NORESERVE
))
147 vm_unacct_memory(VM_ACCT(size
));
150 static inline int shmem_reacct_size(unsigned long flags
,
151 loff_t oldsize
, loff_t newsize
)
153 if (!(flags
& VM_NORESERVE
)) {
154 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
155 return security_vm_enough_memory_mm(current
->mm
,
156 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
157 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
158 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow large sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169 static inline int shmem_acct_block(unsigned long flags
, long pages
)
171 if (!(flags
& VM_NORESERVE
))
174 return security_vm_enough_memory_mm(current
->mm
,
175 pages
* VM_ACCT(PAGE_SIZE
));
178 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
180 if (flags
& VM_NORESERVE
)
181 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
184 static const struct super_operations shmem_ops
;
185 static const struct address_space_operations shmem_aops
;
186 static const struct file_operations shmem_file_operations
;
187 static const struct inode_operations shmem_inode_operations
;
188 static const struct inode_operations shmem_dir_inode_operations
;
189 static const struct inode_operations shmem_special_inode_operations
;
190 static const struct vm_operations_struct shmem_vm_ops
;
191 static struct file_system_type shmem_fs_type
;
193 static LIST_HEAD(shmem_swaplist
);
194 static DEFINE_MUTEX(shmem_swaplist_mutex
);
196 static int shmem_reserve_inode(struct super_block
*sb
)
198 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
199 if (sbinfo
->max_inodes
) {
200 spin_lock(&sbinfo
->stat_lock
);
201 if (!sbinfo
->free_inodes
) {
202 spin_unlock(&sbinfo
->stat_lock
);
205 sbinfo
->free_inodes
--;
206 spin_unlock(&sbinfo
->stat_lock
);
211 static void shmem_free_inode(struct super_block
*sb
)
213 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
214 if (sbinfo
->max_inodes
) {
215 spin_lock(&sbinfo
->stat_lock
);
216 sbinfo
->free_inodes
++;
217 spin_unlock(&sbinfo
->stat_lock
);
222 * shmem_recalc_inode - recalculate the block usage of an inode
223 * @inode: inode to recalc
225 * We have to calculate the free blocks since the mm can drop
226 * undirtied hole pages behind our back.
228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
231 * It has to be called with the spinlock held.
233 static void shmem_recalc_inode(struct inode
*inode
)
235 struct shmem_inode_info
*info
= SHMEM_I(inode
);
238 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
240 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
241 if (sbinfo
->max_blocks
)
242 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
243 info
->alloced
-= freed
;
244 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
245 shmem_unacct_blocks(info
->flags
, freed
);
249 bool shmem_charge(struct inode
*inode
, long pages
)
251 struct shmem_inode_info
*info
= SHMEM_I(inode
);
252 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
255 if (shmem_acct_block(info
->flags
, pages
))
257 spin_lock_irqsave(&info
->lock
, flags
);
258 info
->alloced
+= pages
;
259 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
260 shmem_recalc_inode(inode
);
261 spin_unlock_irqrestore(&info
->lock
, flags
);
262 inode
->i_mapping
->nrpages
+= pages
;
264 if (!sbinfo
->max_blocks
)
266 if (percpu_counter_compare(&sbinfo
->used_blocks
,
267 sbinfo
->max_blocks
- pages
) > 0) {
268 inode
->i_mapping
->nrpages
-= pages
;
269 spin_lock_irqsave(&info
->lock
, flags
);
270 info
->alloced
-= pages
;
271 shmem_recalc_inode(inode
);
272 spin_unlock_irqrestore(&info
->lock
, flags
);
273 shmem_unacct_blocks(info
->flags
, pages
);
276 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
280 void shmem_uncharge(struct inode
*inode
, long pages
)
282 struct shmem_inode_info
*info
= SHMEM_I(inode
);
283 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
286 spin_lock_irqsave(&info
->lock
, flags
);
287 info
->alloced
-= pages
;
288 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
289 shmem_recalc_inode(inode
);
290 spin_unlock_irqrestore(&info
->lock
, flags
);
292 if (sbinfo
->max_blocks
)
293 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
294 shmem_unacct_blocks(info
->flags
, pages
);
298 * Replace item expected in radix tree by a new item, while holding tree lock.
300 static int shmem_radix_tree_replace(struct address_space
*mapping
,
301 pgoff_t index
, void *expected
, void *replacement
)
303 struct radix_tree_node
*node
;
307 VM_BUG_ON(!expected
);
308 VM_BUG_ON(!replacement
);
309 item
= __radix_tree_lookup(&mapping
->page_tree
, index
, &node
, &pslot
);
312 if (item
!= expected
)
314 __radix_tree_replace(&mapping
->page_tree
, node
, pslot
,
315 replacement
, NULL
, NULL
);
320 * Sometimes, before we decide whether to proceed or to fail, we must check
321 * that an entry was not already brought back from swap by a racing thread.
323 * Checking page is not enough: by the time a SwapCache page is locked, it
324 * might be reused, and again be SwapCache, using the same swap as before.
326 static bool shmem_confirm_swap(struct address_space
*mapping
,
327 pgoff_t index
, swp_entry_t swap
)
332 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
334 return item
== swp_to_radix_entry(swap
);
338 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
341 * disables huge pages for the mount;
343 * enables huge pages for the mount;
344 * SHMEM_HUGE_WITHIN_SIZE:
345 * only allocate huge pages if the page will be fully within i_size,
346 * also respect fadvise()/madvise() hints;
348 * only allocate huge pages if requested with fadvise()/madvise();
351 #define SHMEM_HUGE_NEVER 0
352 #define SHMEM_HUGE_ALWAYS 1
353 #define SHMEM_HUGE_WITHIN_SIZE 2
354 #define SHMEM_HUGE_ADVISE 3
358 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
361 * disables huge on shm_mnt and all mounts, for emergency use;
363 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
366 #define SHMEM_HUGE_DENY (-1)
367 #define SHMEM_HUGE_FORCE (-2)
369 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
370 /* ifdef here to avoid bloating shmem.o when not necessary */
372 int shmem_huge __read_mostly
;
374 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
375 static int shmem_parse_huge(const char *str
)
377 if (!strcmp(str
, "never"))
378 return SHMEM_HUGE_NEVER
;
379 if (!strcmp(str
, "always"))
380 return SHMEM_HUGE_ALWAYS
;
381 if (!strcmp(str
, "within_size"))
382 return SHMEM_HUGE_WITHIN_SIZE
;
383 if (!strcmp(str
, "advise"))
384 return SHMEM_HUGE_ADVISE
;
385 if (!strcmp(str
, "deny"))
386 return SHMEM_HUGE_DENY
;
387 if (!strcmp(str
, "force"))
388 return SHMEM_HUGE_FORCE
;
392 static const char *shmem_format_huge(int huge
)
395 case SHMEM_HUGE_NEVER
:
397 case SHMEM_HUGE_ALWAYS
:
399 case SHMEM_HUGE_WITHIN_SIZE
:
400 return "within_size";
401 case SHMEM_HUGE_ADVISE
:
403 case SHMEM_HUGE_DENY
:
405 case SHMEM_HUGE_FORCE
:
414 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
415 struct shrink_control
*sc
, unsigned long nr_to_split
)
417 LIST_HEAD(list
), *pos
, *next
;
419 struct shmem_inode_info
*info
;
421 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
422 int removed
= 0, split
= 0;
424 if (list_empty(&sbinfo
->shrinklist
))
427 spin_lock(&sbinfo
->shrinklist_lock
);
428 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
429 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
432 inode
= igrab(&info
->vfs_inode
);
434 /* inode is about to be evicted */
436 list_del_init(&info
->shrinklist
);
441 /* Check if there's anything to gain */
442 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
443 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
444 list_del_init(&info
->shrinklist
);
450 list_move(&info
->shrinklist
, &list
);
455 spin_unlock(&sbinfo
->shrinklist_lock
);
457 list_for_each_safe(pos
, next
, &list
) {
460 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
461 inode
= &info
->vfs_inode
;
463 if (nr_to_split
&& split
>= nr_to_split
) {
468 page
= find_lock_page(inode
->i_mapping
,
469 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
473 if (!PageTransHuge(page
)) {
479 ret
= split_huge_page(page
);
484 /* split failed: leave it on the list */
491 list_del_init(&info
->shrinklist
);
496 spin_lock(&sbinfo
->shrinklist_lock
);
497 list_splice_tail(&list
, &sbinfo
->shrinklist
);
498 sbinfo
->shrinklist_len
-= removed
;
499 spin_unlock(&sbinfo
->shrinklist_lock
);
504 static long shmem_unused_huge_scan(struct super_block
*sb
,
505 struct shrink_control
*sc
)
507 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
509 if (!READ_ONCE(sbinfo
->shrinklist_len
))
512 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
515 static long shmem_unused_huge_count(struct super_block
*sb
,
516 struct shrink_control
*sc
)
518 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
519 return READ_ONCE(sbinfo
->shrinklist_len
);
521 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
523 #define shmem_huge SHMEM_HUGE_DENY
525 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
526 struct shrink_control
*sc
, unsigned long nr_to_split
)
530 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
533 * Like add_to_page_cache_locked, but error if expected item has gone.
535 static int shmem_add_to_page_cache(struct page
*page
,
536 struct address_space
*mapping
,
537 pgoff_t index
, void *expected
)
539 int error
, nr
= hpage_nr_pages(page
);
541 VM_BUG_ON_PAGE(PageTail(page
), page
);
542 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
543 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
544 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
545 VM_BUG_ON(expected
&& PageTransHuge(page
));
547 page_ref_add(page
, nr
);
548 page
->mapping
= mapping
;
551 spin_lock_irq(&mapping
->tree_lock
);
552 if (PageTransHuge(page
)) {
553 void __rcu
**results
;
558 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
,
559 &results
, &idx
, index
, 1) &&
560 idx
< index
+ HPAGE_PMD_NR
) {
565 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
566 error
= radix_tree_insert(&mapping
->page_tree
,
567 index
+ i
, page
+ i
);
570 count_vm_event(THP_FILE_ALLOC
);
572 } else if (!expected
) {
573 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
575 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
580 mapping
->nrpages
+= nr
;
581 if (PageTransHuge(page
))
582 __inc_node_page_state(page
, NR_SHMEM_THPS
);
583 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
584 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
585 spin_unlock_irq(&mapping
->tree_lock
);
587 page
->mapping
= NULL
;
588 spin_unlock_irq(&mapping
->tree_lock
);
589 page_ref_sub(page
, nr
);
595 * Like delete_from_page_cache, but substitutes swap for page.
597 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
599 struct address_space
*mapping
= page
->mapping
;
602 VM_BUG_ON_PAGE(PageCompound(page
), page
);
604 spin_lock_irq(&mapping
->tree_lock
);
605 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
606 page
->mapping
= NULL
;
608 __dec_node_page_state(page
, NR_FILE_PAGES
);
609 __dec_node_page_state(page
, NR_SHMEM
);
610 spin_unlock_irq(&mapping
->tree_lock
);
616 * Remove swap entry from radix tree, free the swap and its page cache.
618 static int shmem_free_swap(struct address_space
*mapping
,
619 pgoff_t index
, void *radswap
)
623 spin_lock_irq(&mapping
->tree_lock
);
624 old
= radix_tree_delete_item(&mapping
->page_tree
, index
, radswap
);
625 spin_unlock_irq(&mapping
->tree_lock
);
628 free_swap_and_cache(radix_to_swp_entry(radswap
));
633 * Determine (in bytes) how many of the shmem object's pages mapped by the
634 * given offsets are swapped out.
636 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
637 * as long as the inode doesn't go away and racy results are not a problem.
639 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
640 pgoff_t start
, pgoff_t end
)
642 struct radix_tree_iter iter
;
645 unsigned long swapped
= 0;
649 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
650 if (iter
.index
>= end
)
653 page
= radix_tree_deref_slot(slot
);
655 if (radix_tree_deref_retry(page
)) {
656 slot
= radix_tree_iter_retry(&iter
);
660 if (radix_tree_exceptional_entry(page
))
663 if (need_resched()) {
664 slot
= radix_tree_iter_resume(slot
, &iter
);
671 return swapped
<< PAGE_SHIFT
;
675 * Determine (in bytes) how many of the shmem object's pages mapped by the
676 * given vma is swapped out.
678 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
679 * as long as the inode doesn't go away and racy results are not a problem.
681 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
683 struct inode
*inode
= file_inode(vma
->vm_file
);
684 struct shmem_inode_info
*info
= SHMEM_I(inode
);
685 struct address_space
*mapping
= inode
->i_mapping
;
686 unsigned long swapped
;
688 /* Be careful as we don't hold info->lock */
689 swapped
= READ_ONCE(info
->swapped
);
692 * The easier cases are when the shmem object has nothing in swap, or
693 * the vma maps it whole. Then we can simply use the stats that we
699 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
700 return swapped
<< PAGE_SHIFT
;
702 /* Here comes the more involved part */
703 return shmem_partial_swap_usage(mapping
,
704 linear_page_index(vma
, vma
->vm_start
),
705 linear_page_index(vma
, vma
->vm_end
));
709 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
711 void shmem_unlock_mapping(struct address_space
*mapping
)
714 pgoff_t indices
[PAGEVEC_SIZE
];
717 pagevec_init(&pvec
, 0);
719 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
721 while (!mapping_unevictable(mapping
)) {
723 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
724 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
726 pvec
.nr
= find_get_entries(mapping
, index
,
727 PAGEVEC_SIZE
, pvec
.pages
, indices
);
730 index
= indices
[pvec
.nr
- 1] + 1;
731 pagevec_remove_exceptionals(&pvec
);
732 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
733 pagevec_release(&pvec
);
739 * Remove range of pages and swap entries from radix tree, and free them.
740 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
742 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
745 struct address_space
*mapping
= inode
->i_mapping
;
746 struct shmem_inode_info
*info
= SHMEM_I(inode
);
747 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
748 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
749 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
750 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
752 pgoff_t indices
[PAGEVEC_SIZE
];
753 long nr_swaps_freed
= 0;
758 end
= -1; /* unsigned, so actually very big */
760 pagevec_init(&pvec
, 0);
762 while (index
< end
) {
763 pvec
.nr
= find_get_entries(mapping
, index
,
764 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
765 pvec
.pages
, indices
);
768 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
769 struct page
*page
= pvec
.pages
[i
];
775 if (radix_tree_exceptional_entry(page
)) {
778 nr_swaps_freed
+= !shmem_free_swap(mapping
,
783 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
785 if (!trylock_page(page
))
788 if (PageTransTail(page
)) {
789 /* Middle of THP: zero out the page */
790 clear_highpage(page
);
793 } else if (PageTransHuge(page
)) {
794 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
796 * Range ends in the middle of THP:
799 clear_highpage(page
);
803 index
+= HPAGE_PMD_NR
- 1;
804 i
+= HPAGE_PMD_NR
- 1;
807 if (!unfalloc
|| !PageUptodate(page
)) {
808 VM_BUG_ON_PAGE(PageTail(page
), page
);
809 if (page_mapping(page
) == mapping
) {
810 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
811 truncate_inode_page(mapping
, page
);
816 pagevec_remove_exceptionals(&pvec
);
817 pagevec_release(&pvec
);
823 struct page
*page
= NULL
;
824 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
826 unsigned int top
= PAGE_SIZE
;
831 zero_user_segment(page
, partial_start
, top
);
832 set_page_dirty(page
);
838 struct page
*page
= NULL
;
839 shmem_getpage(inode
, end
, &page
, SGP_READ
);
841 zero_user_segment(page
, 0, partial_end
);
842 set_page_dirty(page
);
851 while (index
< end
) {
854 pvec
.nr
= find_get_entries(mapping
, index
,
855 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
856 pvec
.pages
, indices
);
858 /* If all gone or hole-punch or unfalloc, we're done */
859 if (index
== start
|| end
!= -1)
861 /* But if truncating, restart to make sure all gone */
865 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
866 struct page
*page
= pvec
.pages
[i
];
872 if (radix_tree_exceptional_entry(page
)) {
875 if (shmem_free_swap(mapping
, index
, page
)) {
876 /* Swap was replaced by page: retry */
886 if (PageTransTail(page
)) {
887 /* Middle of THP: zero out the page */
888 clear_highpage(page
);
891 * Partial thp truncate due 'start' in middle
892 * of THP: don't need to look on these pages
893 * again on !pvec.nr restart.
895 if (index
!= round_down(end
, HPAGE_PMD_NR
))
898 } else if (PageTransHuge(page
)) {
899 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
901 * Range ends in the middle of THP:
904 clear_highpage(page
);
908 index
+= HPAGE_PMD_NR
- 1;
909 i
+= HPAGE_PMD_NR
- 1;
912 if (!unfalloc
|| !PageUptodate(page
)) {
913 VM_BUG_ON_PAGE(PageTail(page
), page
);
914 if (page_mapping(page
) == mapping
) {
915 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
916 truncate_inode_page(mapping
, page
);
918 /* Page was replaced by swap: retry */
926 pagevec_remove_exceptionals(&pvec
);
927 pagevec_release(&pvec
);
931 spin_lock_irq(&info
->lock
);
932 info
->swapped
-= nr_swaps_freed
;
933 shmem_recalc_inode(inode
);
934 spin_unlock_irq(&info
->lock
);
937 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
939 shmem_undo_range(inode
, lstart
, lend
, false);
940 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
942 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
944 static int shmem_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
947 struct inode
*inode
= dentry
->d_inode
;
948 struct shmem_inode_info
*info
= SHMEM_I(inode
);
950 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
951 spin_lock_irq(&info
->lock
);
952 shmem_recalc_inode(inode
);
953 spin_unlock_irq(&info
->lock
);
955 generic_fillattr(inode
, stat
);
959 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
961 struct inode
*inode
= d_inode(dentry
);
962 struct shmem_inode_info
*info
= SHMEM_I(inode
);
963 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
966 error
= setattr_prepare(dentry
, attr
);
970 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
971 loff_t oldsize
= inode
->i_size
;
972 loff_t newsize
= attr
->ia_size
;
974 /* protected by i_mutex */
975 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
976 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
979 if (newsize
!= oldsize
) {
980 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
984 i_size_write(inode
, newsize
);
985 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
987 if (newsize
<= oldsize
) {
988 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
989 if (oldsize
> holebegin
)
990 unmap_mapping_range(inode
->i_mapping
,
993 shmem_truncate_range(inode
,
994 newsize
, (loff_t
)-1);
995 /* unmap again to remove racily COWed private pages */
996 if (oldsize
> holebegin
)
997 unmap_mapping_range(inode
->i_mapping
,
1001 * Part of the huge page can be beyond i_size: subject
1002 * to shrink under memory pressure.
1004 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1005 spin_lock(&sbinfo
->shrinklist_lock
);
1006 if (list_empty(&info
->shrinklist
)) {
1007 list_add_tail(&info
->shrinklist
,
1008 &sbinfo
->shrinklist
);
1009 sbinfo
->shrinklist_len
++;
1011 spin_unlock(&sbinfo
->shrinklist_lock
);
1016 setattr_copy(inode
, attr
);
1017 if (attr
->ia_valid
& ATTR_MODE
)
1018 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1022 static void shmem_evict_inode(struct inode
*inode
)
1024 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1025 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1027 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1028 shmem_unacct_size(info
->flags
, inode
->i_size
);
1030 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1031 if (!list_empty(&info
->shrinklist
)) {
1032 spin_lock(&sbinfo
->shrinklist_lock
);
1033 if (!list_empty(&info
->shrinklist
)) {
1034 list_del_init(&info
->shrinklist
);
1035 sbinfo
->shrinklist_len
--;
1037 spin_unlock(&sbinfo
->shrinklist_lock
);
1039 if (!list_empty(&info
->swaplist
)) {
1040 mutex_lock(&shmem_swaplist_mutex
);
1041 list_del_init(&info
->swaplist
);
1042 mutex_unlock(&shmem_swaplist_mutex
);
1046 simple_xattrs_free(&info
->xattrs
);
1047 WARN_ON(inode
->i_blocks
);
1048 shmem_free_inode(inode
->i_sb
);
1052 static unsigned long find_swap_entry(struct radix_tree_root
*root
, void *item
)
1054 struct radix_tree_iter iter
;
1056 unsigned long found
= -1;
1057 unsigned int checked
= 0;
1060 radix_tree_for_each_slot(slot
, root
, &iter
, 0) {
1061 if (*slot
== item
) {
1066 if ((checked
% 4096) != 0)
1068 slot
= radix_tree_iter_resume(slot
, &iter
);
1077 * If swap found in inode, free it and move page from swapcache to filecache.
1079 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1080 swp_entry_t swap
, struct page
**pagep
)
1082 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1088 radswap
= swp_to_radix_entry(swap
);
1089 index
= find_swap_entry(&mapping
->page_tree
, radswap
);
1091 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1094 * Move _head_ to start search for next from here.
1095 * But be careful: shmem_evict_inode checks list_empty without taking
1096 * mutex, and there's an instant in list_move_tail when info->swaplist
1097 * would appear empty, if it were the only one on shmem_swaplist.
1099 if (shmem_swaplist
.next
!= &info
->swaplist
)
1100 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1102 gfp
= mapping_gfp_mask(mapping
);
1103 if (shmem_should_replace_page(*pagep
, gfp
)) {
1104 mutex_unlock(&shmem_swaplist_mutex
);
1105 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1106 mutex_lock(&shmem_swaplist_mutex
);
1108 * We needed to drop mutex to make that restrictive page
1109 * allocation, but the inode might have been freed while we
1110 * dropped it: although a racing shmem_evict_inode() cannot
1111 * complete without emptying the radix_tree, our page lock
1112 * on this swapcache page is not enough to prevent that -
1113 * free_swap_and_cache() of our swap entry will only
1114 * trylock_page(), removing swap from radix_tree whatever.
1116 * We must not proceed to shmem_add_to_page_cache() if the
1117 * inode has been freed, but of course we cannot rely on
1118 * inode or mapping or info to check that. However, we can
1119 * safely check if our swap entry is still in use (and here
1120 * it can't have got reused for another page): if it's still
1121 * in use, then the inode cannot have been freed yet, and we
1122 * can safely proceed (if it's no longer in use, that tells
1123 * nothing about the inode, but we don't need to unuse swap).
1125 if (!page_swapcount(*pagep
))
1130 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1131 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1132 * beneath us (pagelock doesn't help until the page is in pagecache).
1135 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1137 if (error
!= -ENOMEM
) {
1139 * Truncation and eviction use free_swap_and_cache(), which
1140 * only does trylock page: if we raced, best clean up here.
1142 delete_from_swap_cache(*pagep
);
1143 set_page_dirty(*pagep
);
1145 spin_lock_irq(&info
->lock
);
1147 spin_unlock_irq(&info
->lock
);
1155 * Search through swapped inodes to find and replace swap by page.
1157 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1159 struct list_head
*this, *next
;
1160 struct shmem_inode_info
*info
;
1161 struct mem_cgroup
*memcg
;
1165 * There's a faint possibility that swap page was replaced before
1166 * caller locked it: caller will come back later with the right page.
1168 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1172 * Charge page using GFP_KERNEL while we can wait, before taking
1173 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1174 * Charged back to the user (not to caller) when swap account is used.
1176 error
= mem_cgroup_try_charge(page
, current
->mm
, GFP_KERNEL
, &memcg
,
1180 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1183 mutex_lock(&shmem_swaplist_mutex
);
1184 list_for_each_safe(this, next
, &shmem_swaplist
) {
1185 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1187 error
= shmem_unuse_inode(info
, swap
, &page
);
1189 list_del_init(&info
->swaplist
);
1191 if (error
!= -EAGAIN
)
1193 /* found nothing in this: move on to search the next */
1195 mutex_unlock(&shmem_swaplist_mutex
);
1198 if (error
!= -ENOMEM
)
1200 mem_cgroup_cancel_charge(page
, memcg
, false);
1202 mem_cgroup_commit_charge(page
, memcg
, true, false);
1210 * Move the page from the page cache to the swap cache.
1212 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1214 struct shmem_inode_info
*info
;
1215 struct address_space
*mapping
;
1216 struct inode
*inode
;
1220 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1221 BUG_ON(!PageLocked(page
));
1222 mapping
= page
->mapping
;
1223 index
= page
->index
;
1224 inode
= mapping
->host
;
1225 info
= SHMEM_I(inode
);
1226 if (info
->flags
& VM_LOCKED
)
1228 if (!total_swap_pages
)
1232 * Our capabilities prevent regular writeback or sync from ever calling
1233 * shmem_writepage; but a stacking filesystem might use ->writepage of
1234 * its underlying filesystem, in which case tmpfs should write out to
1235 * swap only in response to memory pressure, and not for the writeback
1238 if (!wbc
->for_reclaim
) {
1239 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1244 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1245 * value into swapfile.c, the only way we can correctly account for a
1246 * fallocated page arriving here is now to initialize it and write it.
1248 * That's okay for a page already fallocated earlier, but if we have
1249 * not yet completed the fallocation, then (a) we want to keep track
1250 * of this page in case we have to undo it, and (b) it may not be a
1251 * good idea to continue anyway, once we're pushing into swap. So
1252 * reactivate the page, and let shmem_fallocate() quit when too many.
1254 if (!PageUptodate(page
)) {
1255 if (inode
->i_private
) {
1256 struct shmem_falloc
*shmem_falloc
;
1257 spin_lock(&inode
->i_lock
);
1258 shmem_falloc
= inode
->i_private
;
1260 !shmem_falloc
->waitq
&&
1261 index
>= shmem_falloc
->start
&&
1262 index
< shmem_falloc
->next
)
1263 shmem_falloc
->nr_unswapped
++;
1265 shmem_falloc
= NULL
;
1266 spin_unlock(&inode
->i_lock
);
1270 clear_highpage(page
);
1271 flush_dcache_page(page
);
1272 SetPageUptodate(page
);
1275 swap
= get_swap_page();
1279 if (mem_cgroup_try_charge_swap(page
, swap
))
1283 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1284 * if it's not already there. Do it now before the page is
1285 * moved to swap cache, when its pagelock no longer protects
1286 * the inode from eviction. But don't unlock the mutex until
1287 * we've incremented swapped, because shmem_unuse_inode() will
1288 * prune a !swapped inode from the swaplist under this mutex.
1290 mutex_lock(&shmem_swaplist_mutex
);
1291 if (list_empty(&info
->swaplist
))
1292 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1294 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1295 spin_lock_irq(&info
->lock
);
1296 shmem_recalc_inode(inode
);
1298 spin_unlock_irq(&info
->lock
);
1300 swap_shmem_alloc(swap
);
1301 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1303 mutex_unlock(&shmem_swaplist_mutex
);
1304 BUG_ON(page_mapped(page
));
1305 swap_writepage(page
, wbc
);
1309 mutex_unlock(&shmem_swaplist_mutex
);
1311 swapcache_free(swap
);
1313 set_page_dirty(page
);
1314 if (wbc
->for_reclaim
)
1315 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1320 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1321 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1325 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1326 return; /* show nothing */
1328 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1330 seq_printf(seq
, ",mpol=%s", buffer
);
1333 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1335 struct mempolicy
*mpol
= NULL
;
1337 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1338 mpol
= sbinfo
->mpol
;
1340 spin_unlock(&sbinfo
->stat_lock
);
1344 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1345 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1348 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1352 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1354 #define vm_policy vm_private_data
1357 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1358 struct shmem_inode_info
*info
, pgoff_t index
)
1360 /* Create a pseudo vma that just contains the policy */
1362 /* Bias interleave by inode number to distribute better across nodes */
1363 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1365 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1368 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1370 /* Drop reference taken by mpol_shared_policy_lookup() */
1371 mpol_cond_put(vma
->vm_policy
);
1374 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1375 struct shmem_inode_info
*info
, pgoff_t index
)
1377 struct vm_area_struct pvma
;
1380 shmem_pseudo_vma_init(&pvma
, info
, index
);
1381 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
1382 shmem_pseudo_vma_destroy(&pvma
);
1387 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1388 struct shmem_inode_info
*info
, pgoff_t index
)
1390 struct vm_area_struct pvma
;
1391 struct inode
*inode
= &info
->vfs_inode
;
1392 struct address_space
*mapping
= inode
->i_mapping
;
1393 pgoff_t idx
, hindex
;
1394 void __rcu
**results
;
1397 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1400 hindex
= round_down(index
, HPAGE_PMD_NR
);
1402 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
, &results
, &idx
,
1403 hindex
, 1) && idx
< hindex
+ HPAGE_PMD_NR
) {
1409 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1410 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1411 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1412 shmem_pseudo_vma_destroy(&pvma
);
1414 prep_transhuge_page(page
);
1418 static struct page
*shmem_alloc_page(gfp_t gfp
,
1419 struct shmem_inode_info
*info
, pgoff_t index
)
1421 struct vm_area_struct pvma
;
1424 shmem_pseudo_vma_init(&pvma
, info
, index
);
1425 page
= alloc_page_vma(gfp
, &pvma
, 0);
1426 shmem_pseudo_vma_destroy(&pvma
);
1431 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1432 struct shmem_inode_info
*info
, struct shmem_sb_info
*sbinfo
,
1433 pgoff_t index
, bool huge
)
1439 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1441 nr
= huge
? HPAGE_PMD_NR
: 1;
1443 if (shmem_acct_block(info
->flags
, nr
))
1445 if (sbinfo
->max_blocks
) {
1446 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1447 sbinfo
->max_blocks
- nr
) > 0)
1449 percpu_counter_add(&sbinfo
->used_blocks
, nr
);
1453 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1455 page
= shmem_alloc_page(gfp
, info
, index
);
1457 __SetPageLocked(page
);
1458 __SetPageSwapBacked(page
);
1463 if (sbinfo
->max_blocks
)
1464 percpu_counter_add(&sbinfo
->used_blocks
, -nr
);
1466 shmem_unacct_blocks(info
->flags
, nr
);
1468 return ERR_PTR(err
);
1472 * When a page is moved from swapcache to shmem filecache (either by the
1473 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1474 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1475 * ignorance of the mapping it belongs to. If that mapping has special
1476 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1477 * we may need to copy to a suitable page before moving to filecache.
1479 * In a future release, this may well be extended to respect cpuset and
1480 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1481 * but for now it is a simple matter of zone.
1483 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1485 return page_zonenum(page
) > gfp_zone(gfp
);
1488 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1489 struct shmem_inode_info
*info
, pgoff_t index
)
1491 struct page
*oldpage
, *newpage
;
1492 struct address_space
*swap_mapping
;
1497 swap_index
= page_private(oldpage
);
1498 swap_mapping
= page_mapping(oldpage
);
1501 * We have arrived here because our zones are constrained, so don't
1502 * limit chance of success by further cpuset and node constraints.
1504 gfp
&= ~GFP_CONSTRAINT_MASK
;
1505 newpage
= shmem_alloc_page(gfp
, info
, index
);
1510 copy_highpage(newpage
, oldpage
);
1511 flush_dcache_page(newpage
);
1513 __SetPageLocked(newpage
);
1514 __SetPageSwapBacked(newpage
);
1515 SetPageUptodate(newpage
);
1516 set_page_private(newpage
, swap_index
);
1517 SetPageSwapCache(newpage
);
1520 * Our caller will very soon move newpage out of swapcache, but it's
1521 * a nice clean interface for us to replace oldpage by newpage there.
1523 spin_lock_irq(&swap_mapping
->tree_lock
);
1524 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1527 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1528 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1530 spin_unlock_irq(&swap_mapping
->tree_lock
);
1532 if (unlikely(error
)) {
1534 * Is this possible? I think not, now that our callers check
1535 * both PageSwapCache and page_private after getting page lock;
1536 * but be defensive. Reverse old to newpage for clear and free.
1540 mem_cgroup_migrate(oldpage
, newpage
);
1541 lru_cache_add_anon(newpage
);
1545 ClearPageSwapCache(oldpage
);
1546 set_page_private(oldpage
, 0);
1548 unlock_page(oldpage
);
1555 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1557 * If we allocate a new one we do not mark it dirty. That's up to the
1558 * vm. If we swap it in we mark it dirty since we also free the swap
1559 * entry since a page cannot live in both the swap and page cache.
1561 * fault_mm and fault_type are only supplied by shmem_fault:
1562 * otherwise they are NULL.
1564 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1565 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1566 struct mm_struct
*fault_mm
, int *fault_type
)
1568 struct address_space
*mapping
= inode
->i_mapping
;
1569 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1570 struct shmem_sb_info
*sbinfo
;
1571 struct mm_struct
*charge_mm
;
1572 struct mem_cgroup
*memcg
;
1575 enum sgp_type sgp_huge
= sgp
;
1576 pgoff_t hindex
= index
;
1581 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1583 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1587 page
= find_lock_entry(mapping
, index
);
1588 if (radix_tree_exceptional_entry(page
)) {
1589 swap
= radix_to_swp_entry(page
);
1593 if (sgp
<= SGP_CACHE
&&
1594 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1599 if (page
&& sgp
== SGP_WRITE
)
1600 mark_page_accessed(page
);
1602 /* fallocated page? */
1603 if (page
&& !PageUptodate(page
)) {
1604 if (sgp
!= SGP_READ
)
1610 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1616 * Fast cache lookup did not find it:
1617 * bring it back from swap or allocate.
1619 sbinfo
= SHMEM_SB(inode
->i_sb
);
1620 charge_mm
= fault_mm
? : current
->mm
;
1623 /* Look it up and read it in.. */
1624 page
= lookup_swap_cache(swap
);
1626 /* Or update major stats only when swapin succeeds?? */
1628 *fault_type
|= VM_FAULT_MAJOR
;
1629 count_vm_event(PGMAJFAULT
);
1630 mem_cgroup_count_vm_event(fault_mm
, PGMAJFAULT
);
1632 /* Here we actually start the io */
1633 page
= shmem_swapin(swap
, gfp
, info
, index
);
1640 /* We have to do this with page locked to prevent races */
1642 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1643 !shmem_confirm_swap(mapping
, index
, swap
)) {
1644 error
= -EEXIST
; /* try again */
1647 if (!PageUptodate(page
)) {
1651 wait_on_page_writeback(page
);
1653 if (shmem_should_replace_page(page
, gfp
)) {
1654 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1659 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1662 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1663 swp_to_radix_entry(swap
));
1665 * We already confirmed swap under page lock, and make
1666 * no memory allocation here, so usually no possibility
1667 * of error; but free_swap_and_cache() only trylocks a
1668 * page, so it is just possible that the entry has been
1669 * truncated or holepunched since swap was confirmed.
1670 * shmem_undo_range() will have done some of the
1671 * unaccounting, now delete_from_swap_cache() will do
1673 * Reset swap.val? No, leave it so "failed" goes back to
1674 * "repeat": reading a hole and writing should succeed.
1677 mem_cgroup_cancel_charge(page
, memcg
, false);
1678 delete_from_swap_cache(page
);
1684 mem_cgroup_commit_charge(page
, memcg
, true, false);
1686 spin_lock_irq(&info
->lock
);
1688 shmem_recalc_inode(inode
);
1689 spin_unlock_irq(&info
->lock
);
1691 if (sgp
== SGP_WRITE
)
1692 mark_page_accessed(page
);
1694 delete_from_swap_cache(page
);
1695 set_page_dirty(page
);
1699 /* shmem_symlink() */
1700 if (mapping
->a_ops
!= &shmem_aops
)
1702 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1704 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1706 switch (sbinfo
->huge
) {
1709 case SHMEM_HUGE_NEVER
:
1711 case SHMEM_HUGE_WITHIN_SIZE
:
1712 off
= round_up(index
, HPAGE_PMD_NR
);
1713 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1714 if (i_size
>= HPAGE_PMD_SIZE
&&
1715 i_size
>> PAGE_SHIFT
>= off
)
1718 case SHMEM_HUGE_ADVISE
:
1719 if (sgp_huge
== SGP_HUGE
)
1721 /* TODO: implement fadvise() hints */
1726 page
= shmem_alloc_and_acct_page(gfp
, info
, sbinfo
,
1729 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, info
, sbinfo
,
1734 error
= PTR_ERR(page
);
1736 if (error
!= -ENOSPC
)
1739 * Try to reclaim some spece by splitting a huge page
1740 * beyond i_size on the filesystem.
1744 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1745 if (ret
== SHRINK_STOP
)
1753 if (PageTransHuge(page
))
1754 hindex
= round_down(index
, HPAGE_PMD_NR
);
1758 if (sgp
== SGP_WRITE
)
1759 __SetPageReferenced(page
);
1761 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1762 PageTransHuge(page
));
1765 error
= radix_tree_maybe_preload_order(gfp
& GFP_RECLAIM_MASK
,
1766 compound_order(page
));
1768 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1770 radix_tree_preload_end();
1773 mem_cgroup_cancel_charge(page
, memcg
,
1774 PageTransHuge(page
));
1777 mem_cgroup_commit_charge(page
, memcg
, false,
1778 PageTransHuge(page
));
1779 lru_cache_add_anon(page
);
1781 spin_lock_irq(&info
->lock
);
1782 info
->alloced
+= 1 << compound_order(page
);
1783 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1784 shmem_recalc_inode(inode
);
1785 spin_unlock_irq(&info
->lock
);
1788 if (PageTransHuge(page
) &&
1789 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1790 hindex
+ HPAGE_PMD_NR
- 1) {
1792 * Part of the huge page is beyond i_size: subject
1793 * to shrink under memory pressure.
1795 spin_lock(&sbinfo
->shrinklist_lock
);
1796 if (list_empty(&info
->shrinklist
)) {
1797 list_add_tail(&info
->shrinklist
,
1798 &sbinfo
->shrinklist
);
1799 sbinfo
->shrinklist_len
++;
1801 spin_unlock(&sbinfo
->shrinklist_lock
);
1805 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1807 if (sgp
== SGP_FALLOC
)
1811 * Let SGP_WRITE caller clear ends if write does not fill page;
1812 * but SGP_FALLOC on a page fallocated earlier must initialize
1813 * it now, lest undo on failure cancel our earlier guarantee.
1815 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1816 struct page
*head
= compound_head(page
);
1819 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1820 clear_highpage(head
+ i
);
1821 flush_dcache_page(head
+ i
);
1823 SetPageUptodate(head
);
1827 /* Perhaps the file has been truncated since we checked */
1828 if (sgp
<= SGP_CACHE
&&
1829 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1831 ClearPageDirty(page
);
1832 delete_from_page_cache(page
);
1833 spin_lock_irq(&info
->lock
);
1834 shmem_recalc_inode(inode
);
1835 spin_unlock_irq(&info
->lock
);
1840 *pagep
= page
+ index
- hindex
;
1847 if (sbinfo
->max_blocks
)
1848 percpu_counter_sub(&sbinfo
->used_blocks
,
1849 1 << compound_order(page
));
1850 shmem_unacct_blocks(info
->flags
, 1 << compound_order(page
));
1852 if (PageTransHuge(page
)) {
1858 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1865 if (error
== -ENOSPC
&& !once
++) {
1866 spin_lock_irq(&info
->lock
);
1867 shmem_recalc_inode(inode
);
1868 spin_unlock_irq(&info
->lock
);
1871 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1877 * This is like autoremove_wake_function, but it removes the wait queue
1878 * entry unconditionally - even if something else had already woken the
1881 static int synchronous_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
1883 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1884 list_del_init(&wait
->task_list
);
1888 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1890 struct inode
*inode
= file_inode(vma
->vm_file
);
1891 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1894 int ret
= VM_FAULT_LOCKED
;
1897 * Trinity finds that probing a hole which tmpfs is punching can
1898 * prevent the hole-punch from ever completing: which in turn
1899 * locks writers out with its hold on i_mutex. So refrain from
1900 * faulting pages into the hole while it's being punched. Although
1901 * shmem_undo_range() does remove the additions, it may be unable to
1902 * keep up, as each new page needs its own unmap_mapping_range() call,
1903 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1905 * It does not matter if we sometimes reach this check just before the
1906 * hole-punch begins, so that one fault then races with the punch:
1907 * we just need to make racing faults a rare case.
1909 * The implementation below would be much simpler if we just used a
1910 * standard mutex or completion: but we cannot take i_mutex in fault,
1911 * and bloating every shmem inode for this unlikely case would be sad.
1913 if (unlikely(inode
->i_private
)) {
1914 struct shmem_falloc
*shmem_falloc
;
1916 spin_lock(&inode
->i_lock
);
1917 shmem_falloc
= inode
->i_private
;
1919 shmem_falloc
->waitq
&&
1920 vmf
->pgoff
>= shmem_falloc
->start
&&
1921 vmf
->pgoff
< shmem_falloc
->next
) {
1922 wait_queue_head_t
*shmem_falloc_waitq
;
1923 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1925 ret
= VM_FAULT_NOPAGE
;
1926 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1927 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1928 /* It's polite to up mmap_sem if we can */
1929 up_read(&vma
->vm_mm
->mmap_sem
);
1930 ret
= VM_FAULT_RETRY
;
1933 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1934 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1935 TASK_UNINTERRUPTIBLE
);
1936 spin_unlock(&inode
->i_lock
);
1940 * shmem_falloc_waitq points into the shmem_fallocate()
1941 * stack of the hole-punching task: shmem_falloc_waitq
1942 * is usually invalid by the time we reach here, but
1943 * finish_wait() does not dereference it in that case;
1944 * though i_lock needed lest racing with wake_up_all().
1946 spin_lock(&inode
->i_lock
);
1947 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1948 spin_unlock(&inode
->i_lock
);
1951 spin_unlock(&inode
->i_lock
);
1955 if (vma
->vm_flags
& VM_HUGEPAGE
)
1957 else if (vma
->vm_flags
& VM_NOHUGEPAGE
)
1960 error
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
1961 gfp
, vma
->vm_mm
, &ret
);
1963 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1967 unsigned long shmem_get_unmapped_area(struct file
*file
,
1968 unsigned long uaddr
, unsigned long len
,
1969 unsigned long pgoff
, unsigned long flags
)
1971 unsigned long (*get_area
)(struct file
*,
1972 unsigned long, unsigned long, unsigned long, unsigned long);
1974 unsigned long offset
;
1975 unsigned long inflated_len
;
1976 unsigned long inflated_addr
;
1977 unsigned long inflated_offset
;
1979 if (len
> TASK_SIZE
)
1982 get_area
= current
->mm
->get_unmapped_area
;
1983 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
1985 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1987 if (IS_ERR_VALUE(addr
))
1989 if (addr
& ~PAGE_MASK
)
1991 if (addr
> TASK_SIZE
- len
)
1994 if (shmem_huge
== SHMEM_HUGE_DENY
)
1996 if (len
< HPAGE_PMD_SIZE
)
1998 if (flags
& MAP_FIXED
)
2001 * Our priority is to support MAP_SHARED mapped hugely;
2002 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2003 * But if caller specified an address hint, respect that as before.
2008 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2009 struct super_block
*sb
;
2012 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2013 sb
= file_inode(file
)->i_sb
;
2016 * Called directly from mm/mmap.c, or drivers/char/mem.c
2017 * for "/dev/zero", to create a shared anonymous object.
2019 if (IS_ERR(shm_mnt
))
2021 sb
= shm_mnt
->mnt_sb
;
2023 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2027 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2028 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2030 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2033 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2034 if (inflated_len
> TASK_SIZE
)
2036 if (inflated_len
< len
)
2039 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2040 if (IS_ERR_VALUE(inflated_addr
))
2042 if (inflated_addr
& ~PAGE_MASK
)
2045 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2046 inflated_addr
+= offset
- inflated_offset
;
2047 if (inflated_offset
> offset
)
2048 inflated_addr
+= HPAGE_PMD_SIZE
;
2050 if (inflated_addr
> TASK_SIZE
- len
)
2052 return inflated_addr
;
2056 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2058 struct inode
*inode
= file_inode(vma
->vm_file
);
2059 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2062 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2065 struct inode
*inode
= file_inode(vma
->vm_file
);
2068 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2069 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2073 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2075 struct inode
*inode
= file_inode(file
);
2076 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2077 int retval
= -ENOMEM
;
2079 spin_lock_irq(&info
->lock
);
2080 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2081 if (!user_shm_lock(inode
->i_size
, user
))
2083 info
->flags
|= VM_LOCKED
;
2084 mapping_set_unevictable(file
->f_mapping
);
2086 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2087 user_shm_unlock(inode
->i_size
, user
);
2088 info
->flags
&= ~VM_LOCKED
;
2089 mapping_clear_unevictable(file
->f_mapping
);
2094 spin_unlock_irq(&info
->lock
);
2098 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2100 file_accessed(file
);
2101 vma
->vm_ops
= &shmem_vm_ops
;
2102 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2103 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2104 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2105 khugepaged_enter(vma
, vma
->vm_flags
);
2110 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2111 umode_t mode
, dev_t dev
, unsigned long flags
)
2113 struct inode
*inode
;
2114 struct shmem_inode_info
*info
;
2115 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2117 if (shmem_reserve_inode(sb
))
2120 inode
= new_inode(sb
);
2122 inode
->i_ino
= get_next_ino();
2123 inode_init_owner(inode
, dir
, mode
);
2124 inode
->i_blocks
= 0;
2125 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2126 inode
->i_generation
= get_seconds();
2127 info
= SHMEM_I(inode
);
2128 memset(info
, 0, (char *)inode
- (char *)info
);
2129 spin_lock_init(&info
->lock
);
2130 info
->seals
= F_SEAL_SEAL
;
2131 info
->flags
= flags
& VM_NORESERVE
;
2132 INIT_LIST_HEAD(&info
->shrinklist
);
2133 INIT_LIST_HEAD(&info
->swaplist
);
2134 simple_xattrs_init(&info
->xattrs
);
2135 cache_no_acl(inode
);
2137 switch (mode
& S_IFMT
) {
2139 inode
->i_op
= &shmem_special_inode_operations
;
2140 init_special_inode(inode
, mode
, dev
);
2143 inode
->i_mapping
->a_ops
= &shmem_aops
;
2144 inode
->i_op
= &shmem_inode_operations
;
2145 inode
->i_fop
= &shmem_file_operations
;
2146 mpol_shared_policy_init(&info
->policy
,
2147 shmem_get_sbmpol(sbinfo
));
2151 /* Some things misbehave if size == 0 on a directory */
2152 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2153 inode
->i_op
= &shmem_dir_inode_operations
;
2154 inode
->i_fop
= &simple_dir_operations
;
2158 * Must not load anything in the rbtree,
2159 * mpol_free_shared_policy will not be called.
2161 mpol_shared_policy_init(&info
->policy
, NULL
);
2165 shmem_free_inode(sb
);
2169 bool shmem_mapping(struct address_space
*mapping
)
2174 return mapping
->host
->i_sb
->s_op
== &shmem_ops
;
2178 static const struct inode_operations shmem_symlink_inode_operations
;
2179 static const struct inode_operations shmem_short_symlink_operations
;
2181 #ifdef CONFIG_TMPFS_XATTR
2182 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2184 #define shmem_initxattrs NULL
2188 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2189 loff_t pos
, unsigned len
, unsigned flags
,
2190 struct page
**pagep
, void **fsdata
)
2192 struct inode
*inode
= mapping
->host
;
2193 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2194 pgoff_t index
= pos
>> PAGE_SHIFT
;
2196 /* i_mutex is held by caller */
2197 if (unlikely(info
->seals
)) {
2198 if (info
->seals
& F_SEAL_WRITE
)
2200 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2204 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2208 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2209 loff_t pos
, unsigned len
, unsigned copied
,
2210 struct page
*page
, void *fsdata
)
2212 struct inode
*inode
= mapping
->host
;
2214 if (pos
+ copied
> inode
->i_size
)
2215 i_size_write(inode
, pos
+ copied
);
2217 if (!PageUptodate(page
)) {
2218 struct page
*head
= compound_head(page
);
2219 if (PageTransCompound(page
)) {
2222 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2223 if (head
+ i
== page
)
2225 clear_highpage(head
+ i
);
2226 flush_dcache_page(head
+ i
);
2229 if (copied
< PAGE_SIZE
) {
2230 unsigned from
= pos
& (PAGE_SIZE
- 1);
2231 zero_user_segments(page
, 0, from
,
2232 from
+ copied
, PAGE_SIZE
);
2234 SetPageUptodate(head
);
2236 set_page_dirty(page
);
2243 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2245 struct file
*file
= iocb
->ki_filp
;
2246 struct inode
*inode
= file_inode(file
);
2247 struct address_space
*mapping
= inode
->i_mapping
;
2249 unsigned long offset
;
2250 enum sgp_type sgp
= SGP_READ
;
2253 loff_t
*ppos
= &iocb
->ki_pos
;
2256 * Might this read be for a stacking filesystem? Then when reading
2257 * holes of a sparse file, we actually need to allocate those pages,
2258 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2260 if (!iter_is_iovec(to
))
2263 index
= *ppos
>> PAGE_SHIFT
;
2264 offset
= *ppos
& ~PAGE_MASK
;
2267 struct page
*page
= NULL
;
2269 unsigned long nr
, ret
;
2270 loff_t i_size
= i_size_read(inode
);
2272 end_index
= i_size
>> PAGE_SHIFT
;
2273 if (index
> end_index
)
2275 if (index
== end_index
) {
2276 nr
= i_size
& ~PAGE_MASK
;
2281 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2283 if (error
== -EINVAL
)
2288 if (sgp
== SGP_CACHE
)
2289 set_page_dirty(page
);
2294 * We must evaluate after, since reads (unlike writes)
2295 * are called without i_mutex protection against truncate
2298 i_size
= i_size_read(inode
);
2299 end_index
= i_size
>> PAGE_SHIFT
;
2300 if (index
== end_index
) {
2301 nr
= i_size
& ~PAGE_MASK
;
2312 * If users can be writing to this page using arbitrary
2313 * virtual addresses, take care about potential aliasing
2314 * before reading the page on the kernel side.
2316 if (mapping_writably_mapped(mapping
))
2317 flush_dcache_page(page
);
2319 * Mark the page accessed if we read the beginning.
2322 mark_page_accessed(page
);
2324 page
= ZERO_PAGE(0);
2329 * Ok, we have the page, and it's up-to-date, so
2330 * now we can copy it to user space...
2332 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2335 index
+= offset
>> PAGE_SHIFT
;
2336 offset
&= ~PAGE_MASK
;
2339 if (!iov_iter_count(to
))
2348 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2349 file_accessed(file
);
2350 return retval
? retval
: error
;
2354 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2356 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2357 pgoff_t index
, pgoff_t end
, int whence
)
2360 struct pagevec pvec
;
2361 pgoff_t indices
[PAGEVEC_SIZE
];
2365 pagevec_init(&pvec
, 0);
2366 pvec
.nr
= 1; /* start small: we may be there already */
2368 pvec
.nr
= find_get_entries(mapping
, index
,
2369 pvec
.nr
, pvec
.pages
, indices
);
2371 if (whence
== SEEK_DATA
)
2375 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2376 if (index
< indices
[i
]) {
2377 if (whence
== SEEK_HOLE
) {
2383 page
= pvec
.pages
[i
];
2384 if (page
&& !radix_tree_exceptional_entry(page
)) {
2385 if (!PageUptodate(page
))
2389 (page
&& whence
== SEEK_DATA
) ||
2390 (!page
&& whence
== SEEK_HOLE
)) {
2395 pagevec_remove_exceptionals(&pvec
);
2396 pagevec_release(&pvec
);
2397 pvec
.nr
= PAGEVEC_SIZE
;
2403 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2405 struct address_space
*mapping
= file
->f_mapping
;
2406 struct inode
*inode
= mapping
->host
;
2410 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2411 return generic_file_llseek_size(file
, offset
, whence
,
2412 MAX_LFS_FILESIZE
, i_size_read(inode
));
2414 /* We're holding i_mutex so we can access i_size directly */
2418 else if (offset
>= inode
->i_size
)
2421 start
= offset
>> PAGE_SHIFT
;
2422 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2423 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2424 new_offset
<<= PAGE_SHIFT
;
2425 if (new_offset
> offset
) {
2426 if (new_offset
< inode
->i_size
)
2427 offset
= new_offset
;
2428 else if (whence
== SEEK_DATA
)
2431 offset
= inode
->i_size
;
2436 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2437 inode_unlock(inode
);
2442 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2443 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2445 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2446 #define LAST_SCAN 4 /* about 150ms max */
2448 static void shmem_tag_pins(struct address_space
*mapping
)
2450 struct radix_tree_iter iter
;
2459 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
2460 page
= radix_tree_deref_slot(slot
);
2461 if (!page
|| radix_tree_exception(page
)) {
2462 if (radix_tree_deref_retry(page
)) {
2463 slot
= radix_tree_iter_retry(&iter
);
2466 } else if (page_count(page
) - page_mapcount(page
) > 1) {
2467 spin_lock_irq(&mapping
->tree_lock
);
2468 radix_tree_tag_set(&mapping
->page_tree
, iter
.index
,
2470 spin_unlock_irq(&mapping
->tree_lock
);
2473 if (need_resched()) {
2474 slot
= radix_tree_iter_resume(slot
, &iter
);
2482 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2483 * via get_user_pages(), drivers might have some pending I/O without any active
2484 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2485 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2486 * them to be dropped.
2487 * The caller must guarantee that no new user will acquire writable references
2488 * to those pages to avoid races.
2490 static int shmem_wait_for_pins(struct address_space
*mapping
)
2492 struct radix_tree_iter iter
;
2498 shmem_tag_pins(mapping
);
2501 for (scan
= 0; scan
<= LAST_SCAN
; scan
++) {
2502 if (!radix_tree_tagged(&mapping
->page_tree
, SHMEM_TAG_PINNED
))
2506 lru_add_drain_all();
2507 else if (schedule_timeout_killable((HZ
<< scan
) / 200))
2512 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
,
2513 start
, SHMEM_TAG_PINNED
) {
2515 page
= radix_tree_deref_slot(slot
);
2516 if (radix_tree_exception(page
)) {
2517 if (radix_tree_deref_retry(page
)) {
2518 slot
= radix_tree_iter_retry(&iter
);
2526 page_count(page
) - page_mapcount(page
) != 1) {
2527 if (scan
< LAST_SCAN
)
2528 goto continue_resched
;
2531 * On the last scan, we clean up all those tags
2532 * we inserted; but make a note that we still
2533 * found pages pinned.
2538 spin_lock_irq(&mapping
->tree_lock
);
2539 radix_tree_tag_clear(&mapping
->page_tree
,
2540 iter
.index
, SHMEM_TAG_PINNED
);
2541 spin_unlock_irq(&mapping
->tree_lock
);
2543 if (need_resched()) {
2544 slot
= radix_tree_iter_resume(slot
, &iter
);
2554 #define F_ALL_SEALS (F_SEAL_SEAL | \
2559 int shmem_add_seals(struct file
*file
, unsigned int seals
)
2561 struct inode
*inode
= file_inode(file
);
2562 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2567 * Sealing allows multiple parties to share a shmem-file but restrict
2568 * access to a specific subset of file operations. Seals can only be
2569 * added, but never removed. This way, mutually untrusted parties can
2570 * share common memory regions with a well-defined policy. A malicious
2571 * peer can thus never perform unwanted operations on a shared object.
2573 * Seals are only supported on special shmem-files and always affect
2574 * the whole underlying inode. Once a seal is set, it may prevent some
2575 * kinds of access to the file. Currently, the following seals are
2577 * SEAL_SEAL: Prevent further seals from being set on this file
2578 * SEAL_SHRINK: Prevent the file from shrinking
2579 * SEAL_GROW: Prevent the file from growing
2580 * SEAL_WRITE: Prevent write access to the file
2582 * As we don't require any trust relationship between two parties, we
2583 * must prevent seals from being removed. Therefore, sealing a file
2584 * only adds a given set of seals to the file, it never touches
2585 * existing seals. Furthermore, the "setting seals"-operation can be
2586 * sealed itself, which basically prevents any further seal from being
2589 * Semantics of sealing are only defined on volatile files. Only
2590 * anonymous shmem files support sealing. More importantly, seals are
2591 * never written to disk. Therefore, there's no plan to support it on
2595 if (file
->f_op
!= &shmem_file_operations
)
2597 if (!(file
->f_mode
& FMODE_WRITE
))
2599 if (seals
& ~(unsigned int)F_ALL_SEALS
)
2604 if (info
->seals
& F_SEAL_SEAL
) {
2609 if ((seals
& F_SEAL_WRITE
) && !(info
->seals
& F_SEAL_WRITE
)) {
2610 error
= mapping_deny_writable(file
->f_mapping
);
2614 error
= shmem_wait_for_pins(file
->f_mapping
);
2616 mapping_allow_writable(file
->f_mapping
);
2621 info
->seals
|= seals
;
2625 inode_unlock(inode
);
2628 EXPORT_SYMBOL_GPL(shmem_add_seals
);
2630 int shmem_get_seals(struct file
*file
)
2632 if (file
->f_op
!= &shmem_file_operations
)
2635 return SHMEM_I(file_inode(file
))->seals
;
2637 EXPORT_SYMBOL_GPL(shmem_get_seals
);
2639 long shmem_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2645 /* disallow upper 32bit */
2649 error
= shmem_add_seals(file
, arg
);
2652 error
= shmem_get_seals(file
);
2662 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2665 struct inode
*inode
= file_inode(file
);
2666 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2667 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2668 struct shmem_falloc shmem_falloc
;
2669 pgoff_t start
, index
, end
;
2672 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2677 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2678 struct address_space
*mapping
= file
->f_mapping
;
2679 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2680 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2681 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2683 /* protected by i_mutex */
2684 if (info
->seals
& F_SEAL_WRITE
) {
2689 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2690 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2691 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2692 spin_lock(&inode
->i_lock
);
2693 inode
->i_private
= &shmem_falloc
;
2694 spin_unlock(&inode
->i_lock
);
2696 if ((u64
)unmap_end
> (u64
)unmap_start
)
2697 unmap_mapping_range(mapping
, unmap_start
,
2698 1 + unmap_end
- unmap_start
, 0);
2699 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2700 /* No need to unmap again: hole-punching leaves COWed pages */
2702 spin_lock(&inode
->i_lock
);
2703 inode
->i_private
= NULL
;
2704 wake_up_all(&shmem_falloc_waitq
);
2705 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.task_list
));
2706 spin_unlock(&inode
->i_lock
);
2711 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2712 error
= inode_newsize_ok(inode
, offset
+ len
);
2716 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2721 start
= offset
>> PAGE_SHIFT
;
2722 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2723 /* Try to avoid a swapstorm if len is impossible to satisfy */
2724 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2729 shmem_falloc
.waitq
= NULL
;
2730 shmem_falloc
.start
= start
;
2731 shmem_falloc
.next
= start
;
2732 shmem_falloc
.nr_falloced
= 0;
2733 shmem_falloc
.nr_unswapped
= 0;
2734 spin_lock(&inode
->i_lock
);
2735 inode
->i_private
= &shmem_falloc
;
2736 spin_unlock(&inode
->i_lock
);
2738 for (index
= start
; index
< end
; index
++) {
2742 * Good, the fallocate(2) manpage permits EINTR: we may have
2743 * been interrupted because we are using up too much memory.
2745 if (signal_pending(current
))
2747 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2750 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2752 /* Remove the !PageUptodate pages we added */
2753 if (index
> start
) {
2754 shmem_undo_range(inode
,
2755 (loff_t
)start
<< PAGE_SHIFT
,
2756 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2762 * Inform shmem_writepage() how far we have reached.
2763 * No need for lock or barrier: we have the page lock.
2765 shmem_falloc
.next
++;
2766 if (!PageUptodate(page
))
2767 shmem_falloc
.nr_falloced
++;
2770 * If !PageUptodate, leave it that way so that freeable pages
2771 * can be recognized if we need to rollback on error later.
2772 * But set_page_dirty so that memory pressure will swap rather
2773 * than free the pages we are allocating (and SGP_CACHE pages
2774 * might still be clean: we now need to mark those dirty too).
2776 set_page_dirty(page
);
2782 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2783 i_size_write(inode
, offset
+ len
);
2784 inode
->i_ctime
= current_time(inode
);
2786 spin_lock(&inode
->i_lock
);
2787 inode
->i_private
= NULL
;
2788 spin_unlock(&inode
->i_lock
);
2790 inode_unlock(inode
);
2794 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2796 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2798 buf
->f_type
= TMPFS_MAGIC
;
2799 buf
->f_bsize
= PAGE_SIZE
;
2800 buf
->f_namelen
= NAME_MAX
;
2801 if (sbinfo
->max_blocks
) {
2802 buf
->f_blocks
= sbinfo
->max_blocks
;
2804 buf
->f_bfree
= sbinfo
->max_blocks
-
2805 percpu_counter_sum(&sbinfo
->used_blocks
);
2807 if (sbinfo
->max_inodes
) {
2808 buf
->f_files
= sbinfo
->max_inodes
;
2809 buf
->f_ffree
= sbinfo
->free_inodes
;
2811 /* else leave those fields 0 like simple_statfs */
2816 * File creation. Allocate an inode, and we're done..
2819 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2821 struct inode
*inode
;
2822 int error
= -ENOSPC
;
2824 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2826 error
= simple_acl_create(dir
, inode
);
2829 error
= security_inode_init_security(inode
, dir
,
2831 shmem_initxattrs
, NULL
);
2832 if (error
&& error
!= -EOPNOTSUPP
)
2836 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2837 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2838 d_instantiate(dentry
, inode
);
2839 dget(dentry
); /* Extra count - pin the dentry in core */
2848 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2850 struct inode
*inode
;
2851 int error
= -ENOSPC
;
2853 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2855 error
= security_inode_init_security(inode
, dir
,
2857 shmem_initxattrs
, NULL
);
2858 if (error
&& error
!= -EOPNOTSUPP
)
2860 error
= simple_acl_create(dir
, inode
);
2863 d_tmpfile(dentry
, inode
);
2871 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2875 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2881 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2884 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2890 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2892 struct inode
*inode
= d_inode(old_dentry
);
2896 * No ordinary (disk based) filesystem counts links as inodes;
2897 * but each new link needs a new dentry, pinning lowmem, and
2898 * tmpfs dentries cannot be pruned until they are unlinked.
2900 ret
= shmem_reserve_inode(inode
->i_sb
);
2904 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2905 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2907 ihold(inode
); /* New dentry reference */
2908 dget(dentry
); /* Extra pinning count for the created dentry */
2909 d_instantiate(dentry
, inode
);
2914 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2916 struct inode
*inode
= d_inode(dentry
);
2918 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2919 shmem_free_inode(inode
->i_sb
);
2921 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2922 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2924 dput(dentry
); /* Undo the count from "create" - this does all the work */
2928 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2930 if (!simple_empty(dentry
))
2933 drop_nlink(d_inode(dentry
));
2935 return shmem_unlink(dir
, dentry
);
2938 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2940 bool old_is_dir
= d_is_dir(old_dentry
);
2941 bool new_is_dir
= d_is_dir(new_dentry
);
2943 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2945 drop_nlink(old_dir
);
2948 drop_nlink(new_dir
);
2952 old_dir
->i_ctime
= old_dir
->i_mtime
=
2953 new_dir
->i_ctime
= new_dir
->i_mtime
=
2954 d_inode(old_dentry
)->i_ctime
=
2955 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
2960 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
2962 struct dentry
*whiteout
;
2965 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
2969 error
= shmem_mknod(old_dir
, whiteout
,
2970 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
2976 * Cheat and hash the whiteout while the old dentry is still in
2977 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2979 * d_lookup() will consistently find one of them at this point,
2980 * not sure which one, but that isn't even important.
2987 * The VFS layer already does all the dentry stuff for rename,
2988 * we just have to decrement the usage count for the target if
2989 * it exists so that the VFS layer correctly free's it when it
2992 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
2994 struct inode
*inode
= d_inode(old_dentry
);
2995 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2997 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
3000 if (flags
& RENAME_EXCHANGE
)
3001 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
3003 if (!simple_empty(new_dentry
))
3006 if (flags
& RENAME_WHITEOUT
) {
3009 error
= shmem_whiteout(old_dir
, old_dentry
);
3014 if (d_really_is_positive(new_dentry
)) {
3015 (void) shmem_unlink(new_dir
, new_dentry
);
3016 if (they_are_dirs
) {
3017 drop_nlink(d_inode(new_dentry
));
3018 drop_nlink(old_dir
);
3020 } else if (they_are_dirs
) {
3021 drop_nlink(old_dir
);
3025 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
3026 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3027 old_dir
->i_ctime
= old_dir
->i_mtime
=
3028 new_dir
->i_ctime
= new_dir
->i_mtime
=
3029 inode
->i_ctime
= current_time(old_dir
);
3033 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3037 struct inode
*inode
;
3039 struct shmem_inode_info
*info
;
3041 len
= strlen(symname
) + 1;
3042 if (len
> PAGE_SIZE
)
3043 return -ENAMETOOLONG
;
3045 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
3049 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3050 shmem_initxattrs
, NULL
);
3052 if (error
!= -EOPNOTSUPP
) {
3059 info
= SHMEM_I(inode
);
3060 inode
->i_size
= len
-1;
3061 if (len
<= SHORT_SYMLINK_LEN
) {
3062 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3063 if (!inode
->i_link
) {
3067 inode
->i_op
= &shmem_short_symlink_operations
;
3069 inode_nohighmem(inode
);
3070 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3075 inode
->i_mapping
->a_ops
= &shmem_aops
;
3076 inode
->i_op
= &shmem_symlink_inode_operations
;
3077 memcpy(page_address(page
), symname
, len
);
3078 SetPageUptodate(page
);
3079 set_page_dirty(page
);
3083 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3084 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3085 d_instantiate(dentry
, inode
);
3090 static void shmem_put_link(void *arg
)
3092 mark_page_accessed(arg
);
3096 static const char *shmem_get_link(struct dentry
*dentry
,
3097 struct inode
*inode
,
3098 struct delayed_call
*done
)
3100 struct page
*page
= NULL
;
3103 page
= find_get_page(inode
->i_mapping
, 0);
3105 return ERR_PTR(-ECHILD
);
3106 if (!PageUptodate(page
)) {
3108 return ERR_PTR(-ECHILD
);
3111 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3113 return ERR_PTR(error
);
3116 set_delayed_call(done
, shmem_put_link
, page
);
3117 return page_address(page
);
3120 #ifdef CONFIG_TMPFS_XATTR
3122 * Superblocks without xattr inode operations may get some security.* xattr
3123 * support from the LSM "for free". As soon as we have any other xattrs
3124 * like ACLs, we also need to implement the security.* handlers at
3125 * filesystem level, though.
3129 * Callback for security_inode_init_security() for acquiring xattrs.
3131 static int shmem_initxattrs(struct inode
*inode
,
3132 const struct xattr
*xattr_array
,
3135 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3136 const struct xattr
*xattr
;
3137 struct simple_xattr
*new_xattr
;
3140 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3141 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3145 len
= strlen(xattr
->name
) + 1;
3146 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3148 if (!new_xattr
->name
) {
3153 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3154 XATTR_SECURITY_PREFIX_LEN
);
3155 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3158 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3164 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3165 struct dentry
*unused
, struct inode
*inode
,
3166 const char *name
, void *buffer
, size_t size
)
3168 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3170 name
= xattr_full_name(handler
, name
);
3171 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3174 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3175 struct dentry
*unused
, struct inode
*inode
,
3176 const char *name
, const void *value
,
3177 size_t size
, int flags
)
3179 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3181 name
= xattr_full_name(handler
, name
);
3182 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3185 static const struct xattr_handler shmem_security_xattr_handler
= {
3186 .prefix
= XATTR_SECURITY_PREFIX
,
3187 .get
= shmem_xattr_handler_get
,
3188 .set
= shmem_xattr_handler_set
,
3191 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3192 .prefix
= XATTR_TRUSTED_PREFIX
,
3193 .get
= shmem_xattr_handler_get
,
3194 .set
= shmem_xattr_handler_set
,
3197 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3198 #ifdef CONFIG_TMPFS_POSIX_ACL
3199 &posix_acl_access_xattr_handler
,
3200 &posix_acl_default_xattr_handler
,
3202 &shmem_security_xattr_handler
,
3203 &shmem_trusted_xattr_handler
,
3207 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3209 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3210 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3212 #endif /* CONFIG_TMPFS_XATTR */
3214 static const struct inode_operations shmem_short_symlink_operations
= {
3215 .get_link
= simple_get_link
,
3216 #ifdef CONFIG_TMPFS_XATTR
3217 .listxattr
= shmem_listxattr
,
3221 static const struct inode_operations shmem_symlink_inode_operations
= {
3222 .get_link
= shmem_get_link
,
3223 #ifdef CONFIG_TMPFS_XATTR
3224 .listxattr
= shmem_listxattr
,
3228 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3230 return ERR_PTR(-ESTALE
);
3233 static int shmem_match(struct inode
*ino
, void *vfh
)
3237 inum
= (inum
<< 32) | fh
[1];
3238 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3241 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3242 struct fid
*fid
, int fh_len
, int fh_type
)
3244 struct inode
*inode
;
3245 struct dentry
*dentry
= NULL
;
3252 inum
= (inum
<< 32) | fid
->raw
[1];
3254 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3255 shmem_match
, fid
->raw
);
3257 dentry
= d_find_alias(inode
);
3264 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3265 struct inode
*parent
)
3269 return FILEID_INVALID
;
3272 if (inode_unhashed(inode
)) {
3273 /* Unfortunately insert_inode_hash is not idempotent,
3274 * so as we hash inodes here rather than at creation
3275 * time, we need a lock to ensure we only try
3278 static DEFINE_SPINLOCK(lock
);
3280 if (inode_unhashed(inode
))
3281 __insert_inode_hash(inode
,
3282 inode
->i_ino
+ inode
->i_generation
);
3286 fh
[0] = inode
->i_generation
;
3287 fh
[1] = inode
->i_ino
;
3288 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3294 static const struct export_operations shmem_export_ops
= {
3295 .get_parent
= shmem_get_parent
,
3296 .encode_fh
= shmem_encode_fh
,
3297 .fh_to_dentry
= shmem_fh_to_dentry
,
3300 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3303 char *this_char
, *value
, *rest
;
3304 struct mempolicy
*mpol
= NULL
;
3308 while (options
!= NULL
) {
3309 this_char
= options
;
3312 * NUL-terminate this option: unfortunately,
3313 * mount options form a comma-separated list,
3314 * but mpol's nodelist may also contain commas.
3316 options
= strchr(options
, ',');
3317 if (options
== NULL
)
3320 if (!isdigit(*options
)) {
3327 if ((value
= strchr(this_char
,'=')) != NULL
) {
3330 pr_err("tmpfs: No value for mount option '%s'\n",
3335 if (!strcmp(this_char
,"size")) {
3336 unsigned long long size
;
3337 size
= memparse(value
,&rest
);
3339 size
<<= PAGE_SHIFT
;
3340 size
*= totalram_pages
;
3346 sbinfo
->max_blocks
=
3347 DIV_ROUND_UP(size
, PAGE_SIZE
);
3348 } else if (!strcmp(this_char
,"nr_blocks")) {
3349 sbinfo
->max_blocks
= memparse(value
, &rest
);
3352 } else if (!strcmp(this_char
,"nr_inodes")) {
3353 sbinfo
->max_inodes
= memparse(value
, &rest
);
3356 } else if (!strcmp(this_char
,"mode")) {
3359 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3362 } else if (!strcmp(this_char
,"uid")) {
3365 uid
= simple_strtoul(value
, &rest
, 0);
3368 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3369 if (!uid_valid(sbinfo
->uid
))
3371 } else if (!strcmp(this_char
,"gid")) {
3374 gid
= simple_strtoul(value
, &rest
, 0);
3377 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3378 if (!gid_valid(sbinfo
->gid
))
3380 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3381 } else if (!strcmp(this_char
, "huge")) {
3383 huge
= shmem_parse_huge(value
);
3386 if (!has_transparent_hugepage() &&
3387 huge
!= SHMEM_HUGE_NEVER
)
3389 sbinfo
->huge
= huge
;
3392 } else if (!strcmp(this_char
,"mpol")) {
3395 if (mpol_parse_str(value
, &mpol
))
3399 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3403 sbinfo
->mpol
= mpol
;
3407 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3415 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3417 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3418 struct shmem_sb_info config
= *sbinfo
;
3419 unsigned long inodes
;
3420 int error
= -EINVAL
;
3423 if (shmem_parse_options(data
, &config
, true))
3426 spin_lock(&sbinfo
->stat_lock
);
3427 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3428 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3430 if (config
.max_inodes
< inodes
)
3433 * Those tests disallow limited->unlimited while any are in use;
3434 * but we must separately disallow unlimited->limited, because
3435 * in that case we have no record of how much is already in use.
3437 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3439 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3443 sbinfo
->huge
= config
.huge
;
3444 sbinfo
->max_blocks
= config
.max_blocks
;
3445 sbinfo
->max_inodes
= config
.max_inodes
;
3446 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3449 * Preserve previous mempolicy unless mpol remount option was specified.
3452 mpol_put(sbinfo
->mpol
);
3453 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3456 spin_unlock(&sbinfo
->stat_lock
);
3460 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3462 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3464 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3465 seq_printf(seq
, ",size=%luk",
3466 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3467 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3468 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3469 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
3470 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3471 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3472 seq_printf(seq
, ",uid=%u",
3473 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3474 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3475 seq_printf(seq
, ",gid=%u",
3476 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3477 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3478 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3480 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3482 shmem_show_mpol(seq
, sbinfo
->mpol
);
3486 #define MFD_NAME_PREFIX "memfd:"
3487 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3488 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3490 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3492 SYSCALL_DEFINE2(memfd_create
,
3493 const char __user
*, uname
,
3494 unsigned int, flags
)
3496 struct shmem_inode_info
*info
;
3502 if (flags
& ~(unsigned int)MFD_ALL_FLAGS
)
3505 /* length includes terminating zero */
3506 len
= strnlen_user(uname
, MFD_NAME_MAX_LEN
+ 1);
3509 if (len
> MFD_NAME_MAX_LEN
+ 1)
3512 name
= kmalloc(len
+ MFD_NAME_PREFIX_LEN
, GFP_TEMPORARY
);
3516 strcpy(name
, MFD_NAME_PREFIX
);
3517 if (copy_from_user(&name
[MFD_NAME_PREFIX_LEN
], uname
, len
)) {
3522 /* terminating-zero may have changed after strnlen_user() returned */
3523 if (name
[len
+ MFD_NAME_PREFIX_LEN
- 1]) {
3528 fd
= get_unused_fd_flags((flags
& MFD_CLOEXEC
) ? O_CLOEXEC
: 0);
3534 file
= shmem_file_setup(name
, 0, VM_NORESERVE
);
3536 error
= PTR_ERR(file
);
3539 info
= SHMEM_I(file_inode(file
));
3540 file
->f_mode
|= FMODE_LSEEK
| FMODE_PREAD
| FMODE_PWRITE
;
3541 file
->f_flags
|= O_RDWR
| O_LARGEFILE
;
3542 if (flags
& MFD_ALLOW_SEALING
)
3543 info
->seals
&= ~F_SEAL_SEAL
;
3545 fd_install(fd
, file
);
3556 #endif /* CONFIG_TMPFS */
3558 static void shmem_put_super(struct super_block
*sb
)
3560 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3562 percpu_counter_destroy(&sbinfo
->used_blocks
);
3563 mpol_put(sbinfo
->mpol
);
3565 sb
->s_fs_info
= NULL
;
3568 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3570 struct inode
*inode
;
3571 struct shmem_sb_info
*sbinfo
;
3574 /* Round up to L1_CACHE_BYTES to resist false sharing */
3575 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3576 L1_CACHE_BYTES
), GFP_KERNEL
);
3580 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
3581 sbinfo
->uid
= current_fsuid();
3582 sbinfo
->gid
= current_fsgid();
3583 sb
->s_fs_info
= sbinfo
;
3587 * Per default we only allow half of the physical ram per
3588 * tmpfs instance, limiting inodes to one per page of lowmem;
3589 * but the internal instance is left unlimited.
3591 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
3592 sbinfo
->max_blocks
= shmem_default_max_blocks();
3593 sbinfo
->max_inodes
= shmem_default_max_inodes();
3594 if (shmem_parse_options(data
, sbinfo
, false)) {
3599 sb
->s_flags
|= MS_NOUSER
;
3601 sb
->s_export_op
= &shmem_export_ops
;
3602 sb
->s_flags
|= MS_NOSEC
;
3604 sb
->s_flags
|= MS_NOUSER
;
3607 spin_lock_init(&sbinfo
->stat_lock
);
3608 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3610 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3611 spin_lock_init(&sbinfo
->shrinklist_lock
);
3612 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3614 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3615 sb
->s_blocksize
= PAGE_SIZE
;
3616 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3617 sb
->s_magic
= TMPFS_MAGIC
;
3618 sb
->s_op
= &shmem_ops
;
3619 sb
->s_time_gran
= 1;
3620 #ifdef CONFIG_TMPFS_XATTR
3621 sb
->s_xattr
= shmem_xattr_handlers
;
3623 #ifdef CONFIG_TMPFS_POSIX_ACL
3624 sb
->s_flags
|= MS_POSIXACL
;
3627 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3630 inode
->i_uid
= sbinfo
->uid
;
3631 inode
->i_gid
= sbinfo
->gid
;
3632 sb
->s_root
= d_make_root(inode
);
3638 shmem_put_super(sb
);
3642 static struct kmem_cache
*shmem_inode_cachep
;
3644 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3646 struct shmem_inode_info
*info
;
3647 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3650 return &info
->vfs_inode
;
3653 static void shmem_destroy_callback(struct rcu_head
*head
)
3655 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3656 if (S_ISLNK(inode
->i_mode
))
3657 kfree(inode
->i_link
);
3658 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3661 static void shmem_destroy_inode(struct inode
*inode
)
3663 if (S_ISREG(inode
->i_mode
))
3664 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3665 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3668 static void shmem_init_inode(void *foo
)
3670 struct shmem_inode_info
*info
= foo
;
3671 inode_init_once(&info
->vfs_inode
);
3674 static int shmem_init_inodecache(void)
3676 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3677 sizeof(struct shmem_inode_info
),
3678 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3682 static void shmem_destroy_inodecache(void)
3684 kmem_cache_destroy(shmem_inode_cachep
);
3687 static const struct address_space_operations shmem_aops
= {
3688 .writepage
= shmem_writepage
,
3689 .set_page_dirty
= __set_page_dirty_no_writeback
,
3691 .write_begin
= shmem_write_begin
,
3692 .write_end
= shmem_write_end
,
3694 #ifdef CONFIG_MIGRATION
3695 .migratepage
= migrate_page
,
3697 .error_remove_page
= generic_error_remove_page
,
3700 static const struct file_operations shmem_file_operations
= {
3702 .get_unmapped_area
= shmem_get_unmapped_area
,
3704 .llseek
= shmem_file_llseek
,
3705 .read_iter
= shmem_file_read_iter
,
3706 .write_iter
= generic_file_write_iter
,
3707 .fsync
= noop_fsync
,
3708 .splice_read
= generic_file_splice_read
,
3709 .splice_write
= iter_file_splice_write
,
3710 .fallocate
= shmem_fallocate
,
3714 static const struct inode_operations shmem_inode_operations
= {
3715 .getattr
= shmem_getattr
,
3716 .setattr
= shmem_setattr
,
3717 #ifdef CONFIG_TMPFS_XATTR
3718 .listxattr
= shmem_listxattr
,
3719 .set_acl
= simple_set_acl
,
3723 static const struct inode_operations shmem_dir_inode_operations
= {
3725 .create
= shmem_create
,
3726 .lookup
= simple_lookup
,
3728 .unlink
= shmem_unlink
,
3729 .symlink
= shmem_symlink
,
3730 .mkdir
= shmem_mkdir
,
3731 .rmdir
= shmem_rmdir
,
3732 .mknod
= shmem_mknod
,
3733 .rename
= shmem_rename2
,
3734 .tmpfile
= shmem_tmpfile
,
3736 #ifdef CONFIG_TMPFS_XATTR
3737 .listxattr
= shmem_listxattr
,
3739 #ifdef CONFIG_TMPFS_POSIX_ACL
3740 .setattr
= shmem_setattr
,
3741 .set_acl
= simple_set_acl
,
3745 static const struct inode_operations shmem_special_inode_operations
= {
3746 #ifdef CONFIG_TMPFS_XATTR
3747 .listxattr
= shmem_listxattr
,
3749 #ifdef CONFIG_TMPFS_POSIX_ACL
3750 .setattr
= shmem_setattr
,
3751 .set_acl
= simple_set_acl
,
3755 static const struct super_operations shmem_ops
= {
3756 .alloc_inode
= shmem_alloc_inode
,
3757 .destroy_inode
= shmem_destroy_inode
,
3759 .statfs
= shmem_statfs
,
3760 .remount_fs
= shmem_remount_fs
,
3761 .show_options
= shmem_show_options
,
3763 .evict_inode
= shmem_evict_inode
,
3764 .drop_inode
= generic_delete_inode
,
3765 .put_super
= shmem_put_super
,
3766 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3767 .nr_cached_objects
= shmem_unused_huge_count
,
3768 .free_cached_objects
= shmem_unused_huge_scan
,
3772 static const struct vm_operations_struct shmem_vm_ops
= {
3773 .fault
= shmem_fault
,
3774 .map_pages
= filemap_map_pages
,
3776 .set_policy
= shmem_set_policy
,
3777 .get_policy
= shmem_get_policy
,
3781 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3782 int flags
, const char *dev_name
, void *data
)
3784 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3787 static struct file_system_type shmem_fs_type
= {
3788 .owner
= THIS_MODULE
,
3790 .mount
= shmem_mount
,
3791 .kill_sb
= kill_litter_super
,
3792 .fs_flags
= FS_USERNS_MOUNT
,
3795 int __init
shmem_init(void)
3799 /* If rootfs called this, don't re-init */
3800 if (shmem_inode_cachep
)
3803 error
= shmem_init_inodecache();
3807 error
= register_filesystem(&shmem_fs_type
);
3809 pr_err("Could not register tmpfs\n");
3813 shm_mnt
= kern_mount(&shmem_fs_type
);
3814 if (IS_ERR(shm_mnt
)) {
3815 error
= PTR_ERR(shm_mnt
);
3816 pr_err("Could not kern_mount tmpfs\n");
3820 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3821 if (has_transparent_hugepage() && shmem_huge
< SHMEM_HUGE_DENY
)
3822 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3824 shmem_huge
= 0; /* just in case it was patched */
3829 unregister_filesystem(&shmem_fs_type
);
3831 shmem_destroy_inodecache();
3833 shm_mnt
= ERR_PTR(error
);
3837 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3838 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3839 struct kobj_attribute
*attr
, char *buf
)
3843 SHMEM_HUGE_WITHIN_SIZE
,
3851 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3852 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3854 count
+= sprintf(buf
+ count
, fmt
,
3855 shmem_format_huge(values
[i
]));
3857 buf
[count
- 1] = '\n';
3861 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
3862 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
3867 if (count
+ 1 > sizeof(tmp
))
3869 memcpy(tmp
, buf
, count
);
3871 if (count
&& tmp
[count
- 1] == '\n')
3872 tmp
[count
- 1] = '\0';
3874 huge
= shmem_parse_huge(tmp
);
3875 if (huge
== -EINVAL
)
3877 if (!has_transparent_hugepage() &&
3878 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
3882 if (shmem_huge
< SHMEM_HUGE_DENY
)
3883 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3887 struct kobj_attribute shmem_enabled_attr
=
3888 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
3889 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3891 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3892 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
3894 struct inode
*inode
= file_inode(vma
->vm_file
);
3895 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
3899 if (shmem_huge
== SHMEM_HUGE_FORCE
)
3901 if (shmem_huge
== SHMEM_HUGE_DENY
)
3903 switch (sbinfo
->huge
) {
3904 case SHMEM_HUGE_NEVER
:
3906 case SHMEM_HUGE_ALWAYS
:
3908 case SHMEM_HUGE_WITHIN_SIZE
:
3909 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
3910 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
3911 if (i_size
>= HPAGE_PMD_SIZE
&&
3912 i_size
>> PAGE_SHIFT
>= off
)
3914 case SHMEM_HUGE_ADVISE
:
3915 /* TODO: implement fadvise() hints */
3916 return (vma
->vm_flags
& VM_HUGEPAGE
);
3922 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3924 #else /* !CONFIG_SHMEM */
3927 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3929 * This is intended for small system where the benefits of the full
3930 * shmem code (swap-backed and resource-limited) are outweighed by
3931 * their complexity. On systems without swap this code should be
3932 * effectively equivalent, but much lighter weight.
3935 static struct file_system_type shmem_fs_type
= {
3937 .mount
= ramfs_mount
,
3938 .kill_sb
= kill_litter_super
,
3939 .fs_flags
= FS_USERNS_MOUNT
,
3942 int __init
shmem_init(void)
3944 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3946 shm_mnt
= kern_mount(&shmem_fs_type
);
3947 BUG_ON(IS_ERR(shm_mnt
));
3952 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
3957 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3962 void shmem_unlock_mapping(struct address_space
*mapping
)
3967 unsigned long shmem_get_unmapped_area(struct file
*file
,
3968 unsigned long addr
, unsigned long len
,
3969 unsigned long pgoff
, unsigned long flags
)
3971 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
3975 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3977 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3979 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3981 #define shmem_vm_ops generic_file_vm_ops
3982 #define shmem_file_operations ramfs_file_operations
3983 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3984 #define shmem_acct_size(flags, size) 0
3985 #define shmem_unacct_size(flags, size) do {} while (0)
3987 #endif /* CONFIG_SHMEM */
3991 static const struct dentry_operations anon_ops
= {
3992 .d_dname
= simple_dname
3995 static struct file
*__shmem_file_setup(const char *name
, loff_t size
,
3996 unsigned long flags
, unsigned int i_flags
)
3999 struct inode
*inode
;
4001 struct super_block
*sb
;
4004 if (IS_ERR(shm_mnt
))
4005 return ERR_CAST(shm_mnt
);
4007 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
4008 return ERR_PTR(-EINVAL
);
4010 if (shmem_acct_size(flags
, size
))
4011 return ERR_PTR(-ENOMEM
);
4013 res
= ERR_PTR(-ENOMEM
);
4015 this.len
= strlen(name
);
4016 this.hash
= 0; /* will go */
4017 sb
= shm_mnt
->mnt_sb
;
4018 path
.mnt
= mntget(shm_mnt
);
4019 path
.dentry
= d_alloc_pseudo(sb
, &this);
4022 d_set_d_op(path
.dentry
, &anon_ops
);
4024 res
= ERR_PTR(-ENOSPC
);
4025 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
4029 inode
->i_flags
|= i_flags
;
4030 d_instantiate(path
.dentry
, inode
);
4031 inode
->i_size
= size
;
4032 clear_nlink(inode
); /* It is unlinked */
4033 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
4037 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
4038 &shmem_file_operations
);
4045 shmem_unacct_size(flags
, size
);
4052 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4053 * kernel internal. There will be NO LSM permission checks against the
4054 * underlying inode. So users of this interface must do LSM checks at a
4055 * higher layer. The users are the big_key and shm implementations. LSM
4056 * checks are provided at the key or shm level rather than the inode.
4057 * @name: name for dentry (to be seen in /proc/<pid>/maps
4058 * @size: size to be set for the file
4059 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4061 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4063 return __shmem_file_setup(name
, size
, flags
, S_PRIVATE
);
4067 * shmem_file_setup - get an unlinked file living in tmpfs
4068 * @name: name for dentry (to be seen in /proc/<pid>/maps
4069 * @size: size to be set for the file
4070 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4072 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4074 return __shmem_file_setup(name
, size
, flags
, 0);
4076 EXPORT_SYMBOL_GPL(shmem_file_setup
);
4079 * shmem_zero_setup - setup a shared anonymous mapping
4080 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4082 int shmem_zero_setup(struct vm_area_struct
*vma
)
4085 loff_t size
= vma
->vm_end
- vma
->vm_start
;
4088 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4089 * between XFS directory reading and selinux: since this file is only
4090 * accessible to the user through its mapping, use S_PRIVATE flag to
4091 * bypass file security, in the same way as shmem_kernel_file_setup().
4093 file
= __shmem_file_setup("dev/zero", size
, vma
->vm_flags
, S_PRIVATE
);
4095 return PTR_ERR(file
);
4099 vma
->vm_file
= file
;
4100 vma
->vm_ops
= &shmem_vm_ops
;
4102 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
4103 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4104 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4105 khugepaged_enter(vma
, vma
->vm_flags
);
4112 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4113 * @mapping: the page's address_space
4114 * @index: the page index
4115 * @gfp: the page allocator flags to use if allocating
4117 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4118 * with any new page allocations done using the specified allocation flags.
4119 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4120 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4121 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4123 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4124 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4126 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4127 pgoff_t index
, gfp_t gfp
)
4130 struct inode
*inode
= mapping
->host
;
4134 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4135 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4138 page
= ERR_PTR(error
);
4144 * The tiny !SHMEM case uses ramfs without swap
4146 return read_cache_page_gfp(mapping
, index
, gfp
);
4149 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);