2 * Memory arbiter functions. Allocates bandwidth through the
3 * arbiter and sets up arbiter breakpoints.
5 * The algorithm first assigns slots to the clients that has specified
6 * bandwidth (e.g. ethernet) and then the remaining slots are divided
7 * on all the active clients.
9 * Copyright (c) 2004-2007 Axis Communications AB.
12 #include <hwregs/reg_map.h>
13 #include <hwregs/reg_rdwr.h>
14 #include <hwregs/marb_defs.h>
16 #include <hwregs/intr_vect.h>
17 #include <linux/interrupt.h>
18 #include <linux/signal.h>
19 #include <linux/errno.h>
20 #include <linux/spinlock.h>
22 #include <asm/irq_regs.h>
24 struct crisv32_watch_entry
{
25 unsigned long instance
;
32 #define NUMBER_OF_BP 4
33 #define NBR_OF_CLIENTS 14
34 #define NBR_OF_SLOTS 64
35 #define SDRAM_BANDWIDTH 100000000 /* Some kind of expected value */
36 #define INTMEM_BANDWIDTH 400000000
37 #define NBR_OF_REGIONS 2
39 static struct crisv32_watch_entry watches
[NUMBER_OF_BP
] = {
46 static u8 requested_slots
[NBR_OF_REGIONS
][NBR_OF_CLIENTS
];
47 static u8 active_clients
[NBR_OF_REGIONS
][NBR_OF_CLIENTS
];
48 static int max_bandwidth
[NBR_OF_REGIONS
] =
49 { SDRAM_BANDWIDTH
, INTMEM_BANDWIDTH
};
51 DEFINE_SPINLOCK(arbiter_lock
);
53 static irqreturn_t
crisv32_arbiter_irq(int irq
, void *dev_id
);
56 * "I'm the arbiter, I know the score.
57 * From square one I'll be watching all 64."
58 * (memory arbiter slots, that is)
61 * Program the memory arbiter slots for "region" according to what's
62 * in requested_slots[] and active_clients[], while minimizing
63 * latency. A caller may pass a non-zero positive amount for
64 * "unused_slots", which must then be the unallocated, remaining
65 * number of slots, free to hand out to any client.
68 static void crisv32_arbiter_config(int region
, int unused_slots
)
75 * This vector corresponds to the hardware arbiter slots (see
76 * the hardware documentation for semantics). We initialize
77 * each slot with a suitable sentinel value outside the valid
78 * range {0 .. NBR_OF_CLIENTS - 1} and replace them with
79 * client indexes. Then it's fed to the hardware.
83 for (slot
= 0; slot
< NBR_OF_SLOTS
; slot
++)
86 for (client
= 0; client
< NBR_OF_CLIENTS
; client
++) {
88 /* Allocate the requested non-zero number of slots, but
89 * also give clients with zero-requests one slot each
90 * while stocks last. We do the latter here, in client
91 * order. This makes sure zero-request clients are the
92 * first to get to any spare slots, else those slots
93 * could, when bandwidth is allocated close to the limit,
94 * all be allocated to low-index non-zero-request clients
95 * in the default-fill loop below. Another positive but
96 * secondary effect is a somewhat better spread of the
97 * zero-bandwidth clients in the vector, avoiding some of
98 * the latency that could otherwise be caused by the
99 * partitioning of non-zero-bandwidth clients at low
100 * indexes and zero-bandwidth clients at high
101 * indexes. (Note that this spreading can only affect the
102 * unallocated bandwidth.) All the above only matters for
103 * memory-intensive situations, of course.
105 if (!requested_slots
[region
][client
]) {
107 * Skip inactive clients. Also skip zero-slot
108 * allocations in this pass when there are no known
111 if (!active_clients
[region
][client
]
112 || unused_slots
<= 0)
117 /* Only allocate one slot for this client. */
118 interval
= NBR_OF_SLOTS
;
121 NBR_OF_SLOTS
/ requested_slots
[region
][client
];
124 while (pos
< NBR_OF_SLOTS
) {
135 for (slot
= 0; slot
< NBR_OF_SLOTS
; slot
++) {
137 * Allocate remaining slots in round-robin
138 * client-number order for active clients. For this
139 * pass, we ignore requested bandwidth and previous
144 while (!active_clients
[region
][client
]) {
145 client
= (client
+ 1) % NBR_OF_CLIENTS
;
150 client
= (client
+ 1) % NBR_OF_CLIENTS
;
152 if (region
== EXT_REGION
)
153 REG_WR_INT_VECT(marb
, regi_marb
, rw_ext_slots
, slot
,
155 else if (region
== INT_REGION
)
156 REG_WR_INT_VECT(marb
, regi_marb
, rw_int_slots
, slot
,
161 extern char _stext
, _etext
;
163 static void crisv32_arbiter_init(void)
165 static int initialized
;
173 * CPU caches are always set to active, but with zero
174 * bandwidth allocated. It should be ok to allocate zero
175 * bandwidth for the caches, because DMA for other channels
176 * will supposedly finish, once their programmed amount is
177 * done, and then the caches will get access according to the
178 * "fixed scheme" for unclaimed slots. Though, if for some
179 * use-case somewhere, there's a maximum CPU latency for
180 * e.g. some interrupt, we have to start allocating specific
181 * bandwidth for the CPU caches too.
183 active_clients
[EXT_REGION
][10] = active_clients
[EXT_REGION
][11] = 1;
184 crisv32_arbiter_config(EXT_REGION
, 0);
185 crisv32_arbiter_config(INT_REGION
, 0);
187 if (request_irq(MEMARB_INTR_VECT
, crisv32_arbiter_irq
, IRQF_DISABLED
,
189 printk(KERN_ERR
"Couldn't allocate arbiter IRQ\n");
191 #ifndef CONFIG_ETRAX_KGDB
192 /* Global watch for writes to kernel text segment. */
193 crisv32_arbiter_watch(virt_to_phys(&_stext
), &_etext
- &_stext
,
194 arbiter_all_clients
, arbiter_all_write
, NULL
);
198 /* Main entry for bandwidth allocation. */
200 int crisv32_arbiter_allocate_bandwidth(int client
, int region
,
201 unsigned long bandwidth
)
204 int total_assigned
= 0;
205 int total_clients
= 0;
208 crisv32_arbiter_init();
210 for (i
= 0; i
< NBR_OF_CLIENTS
; i
++) {
211 total_assigned
+= requested_slots
[region
][i
];
212 total_clients
+= active_clients
[region
][i
];
215 /* Avoid division by 0 for 0-bandwidth requests. */
217 ? 0 : NBR_OF_SLOTS
/ (max_bandwidth
[region
] / bandwidth
);
220 * We make sure that there are enough slots only for non-zero
221 * requests. Requesting 0 bandwidth *may* allocate slots,
222 * though if all bandwidth is allocated, such a client won't
223 * get any and will have to rely on getting memory access
224 * according to the fixed scheme that's the default when one
225 * of the slot-allocated clients doesn't claim their slot.
227 if (total_assigned
+ req
> NBR_OF_SLOTS
)
230 active_clients
[region
][client
] = 1;
231 requested_slots
[region
][client
] = req
;
232 crisv32_arbiter_config(region
, NBR_OF_SLOTS
- total_assigned
);
238 * Main entry for bandwidth deallocation.
240 * Strictly speaking, for a somewhat constant set of clients where
241 * each client gets a constant bandwidth and is just enabled or
242 * disabled (somewhat dynamically), no action is necessary here to
243 * avoid starvation for non-zero-allocation clients, as the allocated
244 * slots will just be unused. However, handing out those unused slots
245 * to active clients avoids needless latency if the "fixed scheme"
246 * would give unclaimed slots to an eager low-index client.
249 void crisv32_arbiter_deallocate_bandwidth(int client
, int region
)
252 int total_assigned
= 0;
254 requested_slots
[region
][client
] = 0;
255 active_clients
[region
][client
] = 0;
257 for (i
= 0; i
< NBR_OF_CLIENTS
; i
++)
258 total_assigned
+= requested_slots
[region
][i
];
260 crisv32_arbiter_config(region
, NBR_OF_SLOTS
- total_assigned
);
263 int crisv32_arbiter_watch(unsigned long start
, unsigned long size
,
264 unsigned long clients
, unsigned long accesses
,
269 crisv32_arbiter_init();
271 if (start
> 0x80000000) {
272 printk(KERN_ERR
"Arbiter: %lX doesn't look like a "
273 "physical address", start
);
277 spin_lock(&arbiter_lock
);
279 for (i
= 0; i
< NUMBER_OF_BP
; i
++) {
280 if (!watches
[i
].used
) {
281 reg_marb_rw_intr_mask intr_mask
=
282 REG_RD(marb
, regi_marb
, rw_intr_mask
);
285 watches
[i
].start
= start
;
286 watches
[i
].end
= start
+ size
;
289 REG_WR_INT(marb_bp
, watches
[i
].instance
, rw_first_addr
,
291 REG_WR_INT(marb_bp
, watches
[i
].instance
, rw_last_addr
,
293 REG_WR_INT(marb_bp
, watches
[i
].instance
, rw_op
,
295 REG_WR_INT(marb_bp
, watches
[i
].instance
, rw_clients
,
299 intr_mask
.bp0
= regk_marb_yes
;
301 intr_mask
.bp1
= regk_marb_yes
;
303 intr_mask
.bp2
= regk_marb_yes
;
305 intr_mask
.bp3
= regk_marb_yes
;
307 REG_WR(marb
, regi_marb
, rw_intr_mask
, intr_mask
);
308 spin_unlock(&arbiter_lock
);
313 spin_unlock(&arbiter_lock
);
317 int crisv32_arbiter_unwatch(int id
)
319 reg_marb_rw_intr_mask intr_mask
= REG_RD(marb
, regi_marb
, rw_intr_mask
);
321 crisv32_arbiter_init();
323 spin_lock(&arbiter_lock
);
325 if ((id
< 0) || (id
>= NUMBER_OF_BP
) || (!watches
[id
].used
)) {
326 spin_unlock(&arbiter_lock
);
330 memset(&watches
[id
], 0, sizeof(struct crisv32_watch_entry
));
333 intr_mask
.bp0
= regk_marb_no
;
335 intr_mask
.bp1
= regk_marb_no
;
337 intr_mask
.bp2
= regk_marb_no
;
339 intr_mask
.bp3
= regk_marb_no
;
341 REG_WR(marb
, regi_marb
, rw_intr_mask
, intr_mask
);
343 spin_unlock(&arbiter_lock
);
347 extern void show_registers(struct pt_regs
*regs
);
349 static irqreturn_t
crisv32_arbiter_irq(int irq
, void *dev_id
)
351 reg_marb_r_masked_intr masked_intr
=
352 REG_RD(marb
, regi_marb
, r_masked_intr
);
353 reg_marb_bp_r_brk_clients r_clients
;
354 reg_marb_bp_r_brk_addr r_addr
;
355 reg_marb_bp_r_brk_op r_op
;
356 reg_marb_bp_r_brk_first_client r_first
;
357 reg_marb_bp_r_brk_size r_size
;
358 reg_marb_bp_rw_ack ack
= { 0 };
359 reg_marb_rw_ack_intr ack_intr
= {
360 .bp0
= 1, .bp1
= 1, .bp2
= 1, .bp3
= 1
362 struct crisv32_watch_entry
*watch
;
364 if (masked_intr
.bp0
) {
366 ack_intr
.bp0
= regk_marb_yes
;
367 } else if (masked_intr
.bp1
) {
369 ack_intr
.bp1
= regk_marb_yes
;
370 } else if (masked_intr
.bp2
) {
372 ack_intr
.bp2
= regk_marb_yes
;
373 } else if (masked_intr
.bp3
) {
375 ack_intr
.bp3
= regk_marb_yes
;
380 /* Retrieve all useful information and print it. */
381 r_clients
= REG_RD(marb_bp
, watch
->instance
, r_brk_clients
);
382 r_addr
= REG_RD(marb_bp
, watch
->instance
, r_brk_addr
);
383 r_op
= REG_RD(marb_bp
, watch
->instance
, r_brk_op
);
384 r_first
= REG_RD(marb_bp
, watch
->instance
, r_brk_first_client
);
385 r_size
= REG_RD(marb_bp
, watch
->instance
, r_brk_size
);
387 printk(KERN_INFO
"Arbiter IRQ\n");
388 printk(KERN_INFO
"Clients %X addr %X op %X first %X size %X\n",
389 REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients
, r_clients
),
390 REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr
, r_addr
),
391 REG_TYPE_CONV(int, reg_marb_bp_r_brk_op
, r_op
),
392 REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client
, r_first
),
393 REG_TYPE_CONV(int, reg_marb_bp_r_brk_size
, r_size
));
395 REG_WR(marb_bp
, watch
->instance
, rw_ack
, ack
);
396 REG_WR(marb
, regi_marb
, rw_ack_intr
, ack_intr
);
398 printk(KERN_INFO
"IRQ occurred at %lX\n", get_irq_regs()->erp
);