4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
44 * FIXME: remove all knowledge of the buffer layer from the core VM
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
54 * Shared mappings now work. 15.8.1995 Bruno.
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
79 * ->lock_page (access_process_vm)
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
89 * ->anon_vma.lock (vma_adjust)
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
112 static void page_cache_tree_delete(struct address_space
*mapping
,
113 struct page
*page
, void *shadow
)
115 struct radix_tree_node
*node
;
121 VM_BUG_ON(!PageLocked(page
));
123 __radix_tree_lookup(&mapping
->page_tree
, page
->index
, &node
, &slot
);
126 mapping
->nrshadows
++;
128 * Make sure the nrshadows update is committed before
129 * the nrpages update so that final truncate racing
130 * with reclaim does not see both counters 0 at the
131 * same time and miss a shadow entry.
138 /* Clear direct pointer tags in root node */
139 mapping
->page_tree
.gfp_mask
&= __GFP_BITS_MASK
;
140 radix_tree_replace_slot(slot
, shadow
);
144 /* Clear tree tags for the removed page */
146 offset
= index
& RADIX_TREE_MAP_MASK
;
147 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
148 if (test_bit(offset
, node
->tags
[tag
]))
149 radix_tree_tag_clear(&mapping
->page_tree
, index
, tag
);
152 /* Delete page, swap shadow entry */
153 radix_tree_replace_slot(slot
, shadow
);
154 workingset_node_pages_dec(node
);
156 workingset_node_shadows_inc(node
);
158 if (__radix_tree_delete_node(&mapping
->page_tree
, node
))
162 * Track node that only contains shadow entries.
164 * Avoid acquiring the list_lru lock if already tracked. The
165 * list_empty() test is safe as node->private_list is
166 * protected by mapping->tree_lock.
168 if (!workingset_node_pages(node
) &&
169 list_empty(&node
->private_list
)) {
170 node
->private_data
= mapping
;
171 list_lru_add(&workingset_shadow_nodes
, &node
->private_list
);
176 * Delete a page from the page cache and free it. Caller has to make
177 * sure the page is locked and that nobody else uses it - or that usage
178 * is safe. The caller must hold the mapping's tree_lock.
180 void __delete_from_page_cache(struct page
*page
, void *shadow
)
182 struct address_space
*mapping
= page
->mapping
;
184 trace_mm_filemap_delete_from_page_cache(page
);
186 * if we're uptodate, flush out into the cleancache, otherwise
187 * invalidate any existing cleancache entries. We can't leave
188 * stale data around in the cleancache once our page is gone
190 if (PageUptodate(page
) && PageMappedToDisk(page
))
191 cleancache_put_page(page
);
193 cleancache_invalidate_page(mapping
, page
);
195 page_cache_tree_delete(mapping
, page
, shadow
);
197 page
->mapping
= NULL
;
198 /* Leave page->index set: truncation lookup relies upon it */
200 __dec_zone_page_state(page
, NR_FILE_PAGES
);
201 if (PageSwapBacked(page
))
202 __dec_zone_page_state(page
, NR_SHMEM
);
203 BUG_ON(page_mapped(page
));
206 * Some filesystems seem to re-dirty the page even after
207 * the VM has canceled the dirty bit (eg ext3 journaling).
209 * Fix it up by doing a final dirty accounting check after
210 * having removed the page entirely.
212 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
213 dec_zone_page_state(page
, NR_FILE_DIRTY
);
214 dec_bdi_stat(inode_to_bdi(mapping
->host
), BDI_RECLAIMABLE
);
219 * delete_from_page_cache - delete page from page cache
220 * @page: the page which the kernel is trying to remove from page cache
222 * This must be called only on pages that have been verified to be in the page
223 * cache and locked. It will never put the page into the free list, the caller
224 * has a reference on the page.
226 void delete_from_page_cache(struct page
*page
)
228 struct address_space
*mapping
= page
->mapping
;
229 void (*freepage
)(struct page
*);
231 BUG_ON(!PageLocked(page
));
233 freepage
= mapping
->a_ops
->freepage
;
234 spin_lock_irq(&mapping
->tree_lock
);
235 __delete_from_page_cache(page
, NULL
);
236 spin_unlock_irq(&mapping
->tree_lock
);
240 page_cache_release(page
);
242 EXPORT_SYMBOL(delete_from_page_cache
);
244 static int filemap_check_errors(struct address_space
*mapping
)
247 /* Check for outstanding write errors */
248 if (test_bit(AS_ENOSPC
, &mapping
->flags
) &&
249 test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
251 if (test_bit(AS_EIO
, &mapping
->flags
) &&
252 test_and_clear_bit(AS_EIO
, &mapping
->flags
))
258 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
259 * @mapping: address space structure to write
260 * @start: offset in bytes where the range starts
261 * @end: offset in bytes where the range ends (inclusive)
262 * @sync_mode: enable synchronous operation
264 * Start writeback against all of a mapping's dirty pages that lie
265 * within the byte offsets <start, end> inclusive.
267 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
268 * opposed to a regular memory cleansing writeback. The difference between
269 * these two operations is that if a dirty page/buffer is encountered, it must
270 * be waited upon, and not just skipped over.
272 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
273 loff_t end
, int sync_mode
)
276 struct writeback_control wbc
= {
277 .sync_mode
= sync_mode
,
278 .nr_to_write
= LONG_MAX
,
279 .range_start
= start
,
283 if (!mapping_cap_writeback_dirty(mapping
))
286 ret
= do_writepages(mapping
, &wbc
);
290 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
293 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
296 int filemap_fdatawrite(struct address_space
*mapping
)
298 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
300 EXPORT_SYMBOL(filemap_fdatawrite
);
302 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
305 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
307 EXPORT_SYMBOL(filemap_fdatawrite_range
);
310 * filemap_flush - mostly a non-blocking flush
311 * @mapping: target address_space
313 * This is a mostly non-blocking flush. Not suitable for data-integrity
314 * purposes - I/O may not be started against all dirty pages.
316 int filemap_flush(struct address_space
*mapping
)
318 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
320 EXPORT_SYMBOL(filemap_flush
);
323 * filemap_fdatawait_range - wait for writeback to complete
324 * @mapping: address space structure to wait for
325 * @start_byte: offset in bytes where the range starts
326 * @end_byte: offset in bytes where the range ends (inclusive)
328 * Walk the list of under-writeback pages of the given address space
329 * in the given range and wait for all of them.
331 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
334 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
335 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
340 if (end_byte
< start_byte
)
343 pagevec_init(&pvec
, 0);
344 while ((index
<= end
) &&
345 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
346 PAGECACHE_TAG_WRITEBACK
,
347 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
350 for (i
= 0; i
< nr_pages
; i
++) {
351 struct page
*page
= pvec
.pages
[i
];
353 /* until radix tree lookup accepts end_index */
354 if (page
->index
> end
)
357 wait_on_page_writeback(page
);
358 if (TestClearPageError(page
))
361 pagevec_release(&pvec
);
365 ret2
= filemap_check_errors(mapping
);
371 EXPORT_SYMBOL(filemap_fdatawait_range
);
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
380 int filemap_fdatawait(struct address_space
*mapping
)
382 loff_t i_size
= i_size_read(mapping
->host
);
387 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
389 EXPORT_SYMBOL(filemap_fdatawait
);
391 int filemap_write_and_wait(struct address_space
*mapping
)
395 if (mapping
->nrpages
) {
396 err
= filemap_fdatawrite(mapping
);
398 * Even if the above returned error, the pages may be
399 * written partially (e.g. -ENOSPC), so we wait for it.
400 * But the -EIO is special case, it may indicate the worst
401 * thing (e.g. bug) happened, so we avoid waiting for it.
404 int err2
= filemap_fdatawait(mapping
);
409 err
= filemap_check_errors(mapping
);
413 EXPORT_SYMBOL(filemap_write_and_wait
);
416 * filemap_write_and_wait_range - write out & wait on a file range
417 * @mapping: the address_space for the pages
418 * @lstart: offset in bytes where the range starts
419 * @lend: offset in bytes where the range ends (inclusive)
421 * Write out and wait upon file offsets lstart->lend, inclusive.
423 * Note that `lend' is inclusive (describes the last byte to be written) so
424 * that this function can be used to write to the very end-of-file (end = -1).
426 int filemap_write_and_wait_range(struct address_space
*mapping
,
427 loff_t lstart
, loff_t lend
)
431 if (mapping
->nrpages
) {
432 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
434 /* See comment of filemap_write_and_wait() */
436 int err2
= filemap_fdatawait_range(mapping
,
442 err
= filemap_check_errors(mapping
);
446 EXPORT_SYMBOL(filemap_write_and_wait_range
);
449 * replace_page_cache_page - replace a pagecache page with a new one
450 * @old: page to be replaced
451 * @new: page to replace with
452 * @gfp_mask: allocation mode
454 * This function replaces a page in the pagecache with a new one. On
455 * success it acquires the pagecache reference for the new page and
456 * drops it for the old page. Both the old and new pages must be
457 * locked. This function does not add the new page to the LRU, the
458 * caller must do that.
460 * The remove + add is atomic. The only way this function can fail is
461 * memory allocation failure.
463 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
467 VM_BUG_ON_PAGE(!PageLocked(old
), old
);
468 VM_BUG_ON_PAGE(!PageLocked(new), new);
469 VM_BUG_ON_PAGE(new->mapping
, new);
471 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
473 struct address_space
*mapping
= old
->mapping
;
474 void (*freepage
)(struct page
*);
476 pgoff_t offset
= old
->index
;
477 freepage
= mapping
->a_ops
->freepage
;
480 new->mapping
= mapping
;
483 spin_lock_irq(&mapping
->tree_lock
);
484 __delete_from_page_cache(old
, NULL
);
485 error
= radix_tree_insert(&mapping
->page_tree
, offset
, new);
488 __inc_zone_page_state(new, NR_FILE_PAGES
);
489 if (PageSwapBacked(new))
490 __inc_zone_page_state(new, NR_SHMEM
);
491 spin_unlock_irq(&mapping
->tree_lock
);
492 mem_cgroup_migrate(old
, new, true);
493 radix_tree_preload_end();
496 page_cache_release(old
);
501 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
503 static int page_cache_tree_insert(struct address_space
*mapping
,
504 struct page
*page
, void **shadowp
)
506 struct radix_tree_node
*node
;
510 error
= __radix_tree_create(&mapping
->page_tree
, page
->index
,
517 p
= radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
518 if (!radix_tree_exceptional_entry(p
))
522 mapping
->nrshadows
--;
524 workingset_node_shadows_dec(node
);
526 radix_tree_replace_slot(slot
, page
);
529 workingset_node_pages_inc(node
);
531 * Don't track node that contains actual pages.
533 * Avoid acquiring the list_lru lock if already
534 * untracked. The list_empty() test is safe as
535 * node->private_list is protected by
536 * mapping->tree_lock.
538 if (!list_empty(&node
->private_list
))
539 list_lru_del(&workingset_shadow_nodes
,
540 &node
->private_list
);
545 static int __add_to_page_cache_locked(struct page
*page
,
546 struct address_space
*mapping
,
547 pgoff_t offset
, gfp_t gfp_mask
,
550 int huge
= PageHuge(page
);
551 struct mem_cgroup
*memcg
;
554 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
555 VM_BUG_ON_PAGE(PageSwapBacked(page
), page
);
558 error
= mem_cgroup_try_charge(page
, current
->mm
,
564 error
= radix_tree_maybe_preload(gfp_mask
& ~__GFP_HIGHMEM
);
567 mem_cgroup_cancel_charge(page
, memcg
);
571 page_cache_get(page
);
572 page
->mapping
= mapping
;
573 page
->index
= offset
;
575 spin_lock_irq(&mapping
->tree_lock
);
576 error
= page_cache_tree_insert(mapping
, page
, shadowp
);
577 radix_tree_preload_end();
580 __inc_zone_page_state(page
, NR_FILE_PAGES
);
581 spin_unlock_irq(&mapping
->tree_lock
);
583 mem_cgroup_commit_charge(page
, memcg
, false);
584 trace_mm_filemap_add_to_page_cache(page
);
587 page
->mapping
= NULL
;
588 /* Leave page->index set: truncation relies upon it */
589 spin_unlock_irq(&mapping
->tree_lock
);
591 mem_cgroup_cancel_charge(page
, memcg
);
592 page_cache_release(page
);
597 * add_to_page_cache_locked - add a locked page to the pagecache
599 * @mapping: the page's address_space
600 * @offset: page index
601 * @gfp_mask: page allocation mode
603 * This function is used to add a page to the pagecache. It must be locked.
604 * This function does not add the page to the LRU. The caller must do that.
606 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
607 pgoff_t offset
, gfp_t gfp_mask
)
609 return __add_to_page_cache_locked(page
, mapping
, offset
,
612 EXPORT_SYMBOL(add_to_page_cache_locked
);
614 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
615 pgoff_t offset
, gfp_t gfp_mask
)
620 __set_page_locked(page
);
621 ret
= __add_to_page_cache_locked(page
, mapping
, offset
,
624 __clear_page_locked(page
);
627 * The page might have been evicted from cache only
628 * recently, in which case it should be activated like
629 * any other repeatedly accessed page.
631 if (shadow
&& workingset_refault(shadow
)) {
633 workingset_activation(page
);
635 ClearPageActive(page
);
640 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
643 struct page
*__page_cache_alloc(gfp_t gfp
)
648 if (cpuset_do_page_mem_spread()) {
649 unsigned int cpuset_mems_cookie
;
651 cpuset_mems_cookie
= read_mems_allowed_begin();
652 n
= cpuset_mem_spread_node();
653 page
= alloc_pages_exact_node(n
, gfp
, 0);
654 } while (!page
&& read_mems_allowed_retry(cpuset_mems_cookie
));
658 return alloc_pages(gfp
, 0);
660 EXPORT_SYMBOL(__page_cache_alloc
);
664 * In order to wait for pages to become available there must be
665 * waitqueues associated with pages. By using a hash table of
666 * waitqueues where the bucket discipline is to maintain all
667 * waiters on the same queue and wake all when any of the pages
668 * become available, and for the woken contexts to check to be
669 * sure the appropriate page became available, this saves space
670 * at a cost of "thundering herd" phenomena during rare hash
673 wait_queue_head_t
*page_waitqueue(struct page
*page
)
675 const struct zone
*zone
= page_zone(page
);
677 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
679 EXPORT_SYMBOL(page_waitqueue
);
681 void wait_on_page_bit(struct page
*page
, int bit_nr
)
683 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
685 if (test_bit(bit_nr
, &page
->flags
))
686 __wait_on_bit(page_waitqueue(page
), &wait
, bit_wait_io
,
687 TASK_UNINTERRUPTIBLE
);
689 EXPORT_SYMBOL(wait_on_page_bit
);
691 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
693 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
695 if (!test_bit(bit_nr
, &page
->flags
))
698 return __wait_on_bit(page_waitqueue(page
), &wait
,
699 bit_wait_io
, TASK_KILLABLE
);
702 int wait_on_page_bit_killable_timeout(struct page
*page
,
703 int bit_nr
, unsigned long timeout
)
705 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
707 wait
.key
.timeout
= jiffies
+ timeout
;
708 if (!test_bit(bit_nr
, &page
->flags
))
710 return __wait_on_bit(page_waitqueue(page
), &wait
,
711 bit_wait_io_timeout
, TASK_KILLABLE
);
713 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout
);
716 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
717 * @page: Page defining the wait queue of interest
718 * @waiter: Waiter to add to the queue
720 * Add an arbitrary @waiter to the wait queue for the nominated @page.
722 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
724 wait_queue_head_t
*q
= page_waitqueue(page
);
727 spin_lock_irqsave(&q
->lock
, flags
);
728 __add_wait_queue(q
, waiter
);
729 spin_unlock_irqrestore(&q
->lock
, flags
);
731 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
734 * unlock_page - unlock a locked page
737 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
738 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
739 * mechanism between PageLocked pages and PageWriteback pages is shared.
740 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
742 * The mb is necessary to enforce ordering between the clear_bit and the read
743 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
745 void unlock_page(struct page
*page
)
747 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
748 clear_bit_unlock(PG_locked
, &page
->flags
);
749 smp_mb__after_atomic();
750 wake_up_page(page
, PG_locked
);
752 EXPORT_SYMBOL(unlock_page
);
755 * end_page_writeback - end writeback against a page
758 void end_page_writeback(struct page
*page
)
761 * TestClearPageReclaim could be used here but it is an atomic
762 * operation and overkill in this particular case. Failing to
763 * shuffle a page marked for immediate reclaim is too mild to
764 * justify taking an atomic operation penalty at the end of
765 * ever page writeback.
767 if (PageReclaim(page
)) {
768 ClearPageReclaim(page
);
769 rotate_reclaimable_page(page
);
772 if (!test_clear_page_writeback(page
))
775 smp_mb__after_atomic();
776 wake_up_page(page
, PG_writeback
);
778 EXPORT_SYMBOL(end_page_writeback
);
781 * After completing I/O on a page, call this routine to update the page
782 * flags appropriately
784 void page_endio(struct page
*page
, int rw
, int err
)
788 SetPageUptodate(page
);
790 ClearPageUptodate(page
);
794 } else { /* rw == WRITE */
798 mapping_set_error(page
->mapping
, err
);
800 end_page_writeback(page
);
803 EXPORT_SYMBOL_GPL(page_endio
);
806 * __lock_page - get a lock on the page, assuming we need to sleep to get it
807 * @page: the page to lock
809 void __lock_page(struct page
*page
)
811 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
813 __wait_on_bit_lock(page_waitqueue(page
), &wait
, bit_wait_io
,
814 TASK_UNINTERRUPTIBLE
);
816 EXPORT_SYMBOL(__lock_page
);
818 int __lock_page_killable(struct page
*page
)
820 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
822 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
823 bit_wait_io
, TASK_KILLABLE
);
825 EXPORT_SYMBOL_GPL(__lock_page_killable
);
829 * 1 - page is locked; mmap_sem is still held.
830 * 0 - page is not locked.
831 * mmap_sem has been released (up_read()), unless flags had both
832 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
833 * which case mmap_sem is still held.
835 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
836 * with the page locked and the mmap_sem unperturbed.
838 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
841 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
843 * CAUTION! In this case, mmap_sem is not released
844 * even though return 0.
846 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
849 up_read(&mm
->mmap_sem
);
850 if (flags
& FAULT_FLAG_KILLABLE
)
851 wait_on_page_locked_killable(page
);
853 wait_on_page_locked(page
);
856 if (flags
& FAULT_FLAG_KILLABLE
) {
859 ret
= __lock_page_killable(page
);
861 up_read(&mm
->mmap_sem
);
871 * page_cache_next_hole - find the next hole (not-present entry)
874 * @max_scan: maximum range to search
876 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
877 * lowest indexed hole.
879 * Returns: the index of the hole if found, otherwise returns an index
880 * outside of the set specified (in which case 'return - index >=
881 * max_scan' will be true). In rare cases of index wrap-around, 0 will
884 * page_cache_next_hole may be called under rcu_read_lock. However,
885 * like radix_tree_gang_lookup, this will not atomically search a
886 * snapshot of the tree at a single point in time. For example, if a
887 * hole is created at index 5, then subsequently a hole is created at
888 * index 10, page_cache_next_hole covering both indexes may return 10
889 * if called under rcu_read_lock.
891 pgoff_t
page_cache_next_hole(struct address_space
*mapping
,
892 pgoff_t index
, unsigned long max_scan
)
896 for (i
= 0; i
< max_scan
; i
++) {
899 page
= radix_tree_lookup(&mapping
->page_tree
, index
);
900 if (!page
|| radix_tree_exceptional_entry(page
))
909 EXPORT_SYMBOL(page_cache_next_hole
);
912 * page_cache_prev_hole - find the prev hole (not-present entry)
915 * @max_scan: maximum range to search
917 * Search backwards in the range [max(index-max_scan+1, 0), index] for
920 * Returns: the index of the hole if found, otherwise returns an index
921 * outside of the set specified (in which case 'index - return >=
922 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
925 * page_cache_prev_hole may be called under rcu_read_lock. However,
926 * like radix_tree_gang_lookup, this will not atomically search a
927 * snapshot of the tree at a single point in time. For example, if a
928 * hole is created at index 10, then subsequently a hole is created at
929 * index 5, page_cache_prev_hole covering both indexes may return 5 if
930 * called under rcu_read_lock.
932 pgoff_t
page_cache_prev_hole(struct address_space
*mapping
,
933 pgoff_t index
, unsigned long max_scan
)
937 for (i
= 0; i
< max_scan
; i
++) {
940 page
= radix_tree_lookup(&mapping
->page_tree
, index
);
941 if (!page
|| radix_tree_exceptional_entry(page
))
944 if (index
== ULONG_MAX
)
950 EXPORT_SYMBOL(page_cache_prev_hole
);
953 * find_get_entry - find and get a page cache entry
954 * @mapping: the address_space to search
955 * @offset: the page cache index
957 * Looks up the page cache slot at @mapping & @offset. If there is a
958 * page cache page, it is returned with an increased refcount.
960 * If the slot holds a shadow entry of a previously evicted page, or a
961 * swap entry from shmem/tmpfs, it is returned.
963 * Otherwise, %NULL is returned.
965 struct page
*find_get_entry(struct address_space
*mapping
, pgoff_t offset
)
973 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
975 page
= radix_tree_deref_slot(pagep
);
978 if (radix_tree_exception(page
)) {
979 if (radix_tree_deref_retry(page
))
982 * A shadow entry of a recently evicted page,
983 * or a swap entry from shmem/tmpfs. Return
984 * it without attempting to raise page count.
988 if (!page_cache_get_speculative(page
))
992 * Has the page moved?
993 * This is part of the lockless pagecache protocol. See
994 * include/linux/pagemap.h for details.
996 if (unlikely(page
!= *pagep
)) {
997 page_cache_release(page
);
1006 EXPORT_SYMBOL(find_get_entry
);
1009 * find_lock_entry - locate, pin and lock a page cache entry
1010 * @mapping: the address_space to search
1011 * @offset: the page cache index
1013 * Looks up the page cache slot at @mapping & @offset. If there is a
1014 * page cache page, it is returned locked and with an increased
1017 * If the slot holds a shadow entry of a previously evicted page, or a
1018 * swap entry from shmem/tmpfs, it is returned.
1020 * Otherwise, %NULL is returned.
1022 * find_lock_entry() may sleep.
1024 struct page
*find_lock_entry(struct address_space
*mapping
, pgoff_t offset
)
1029 page
= find_get_entry(mapping
, offset
);
1030 if (page
&& !radix_tree_exception(page
)) {
1032 /* Has the page been truncated? */
1033 if (unlikely(page
->mapping
!= mapping
)) {
1035 page_cache_release(page
);
1038 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1042 EXPORT_SYMBOL(find_lock_entry
);
1045 * pagecache_get_page - find and get a page reference
1046 * @mapping: the address_space to search
1047 * @offset: the page index
1048 * @fgp_flags: PCG flags
1049 * @gfp_mask: gfp mask to use for the page cache data page allocation
1051 * Looks up the page cache slot at @mapping & @offset.
1053 * PCG flags modify how the page is returned.
1055 * FGP_ACCESSED: the page will be marked accessed
1056 * FGP_LOCK: Page is return locked
1057 * FGP_CREAT: If page is not present then a new page is allocated using
1058 * @gfp_mask and added to the page cache and the VM's LRU
1059 * list. The page is returned locked and with an increased
1060 * refcount. Otherwise, %NULL is returned.
1062 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1063 * if the GFP flags specified for FGP_CREAT are atomic.
1065 * If there is a page cache page, it is returned with an increased refcount.
1067 struct page
*pagecache_get_page(struct address_space
*mapping
, pgoff_t offset
,
1068 int fgp_flags
, gfp_t gfp_mask
)
1073 page
= find_get_entry(mapping
, offset
);
1074 if (radix_tree_exceptional_entry(page
))
1079 if (fgp_flags
& FGP_LOCK
) {
1080 if (fgp_flags
& FGP_NOWAIT
) {
1081 if (!trylock_page(page
)) {
1082 page_cache_release(page
);
1089 /* Has the page been truncated? */
1090 if (unlikely(page
->mapping
!= mapping
)) {
1092 page_cache_release(page
);
1095 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1098 if (page
&& (fgp_flags
& FGP_ACCESSED
))
1099 mark_page_accessed(page
);
1102 if (!page
&& (fgp_flags
& FGP_CREAT
)) {
1104 if ((fgp_flags
& FGP_WRITE
) && mapping_cap_account_dirty(mapping
))
1105 gfp_mask
|= __GFP_WRITE
;
1106 if (fgp_flags
& FGP_NOFS
)
1107 gfp_mask
&= ~__GFP_FS
;
1109 page
= __page_cache_alloc(gfp_mask
);
1113 if (WARN_ON_ONCE(!(fgp_flags
& FGP_LOCK
)))
1114 fgp_flags
|= FGP_LOCK
;
1116 /* Init accessed so avoid atomic mark_page_accessed later */
1117 if (fgp_flags
& FGP_ACCESSED
)
1118 __SetPageReferenced(page
);
1120 err
= add_to_page_cache_lru(page
, mapping
, offset
,
1121 gfp_mask
& GFP_RECLAIM_MASK
);
1122 if (unlikely(err
)) {
1123 page_cache_release(page
);
1132 EXPORT_SYMBOL(pagecache_get_page
);
1135 * find_get_entries - gang pagecache lookup
1136 * @mapping: The address_space to search
1137 * @start: The starting page cache index
1138 * @nr_entries: The maximum number of entries
1139 * @entries: Where the resulting entries are placed
1140 * @indices: The cache indices corresponding to the entries in @entries
1142 * find_get_entries() will search for and return a group of up to
1143 * @nr_entries entries in the mapping. The entries are placed at
1144 * @entries. find_get_entries() takes a reference against any actual
1147 * The search returns a group of mapping-contiguous page cache entries
1148 * with ascending indexes. There may be holes in the indices due to
1149 * not-present pages.
1151 * Any shadow entries of evicted pages, or swap entries from
1152 * shmem/tmpfs, are included in the returned array.
1154 * find_get_entries() returns the number of pages and shadow entries
1157 unsigned find_get_entries(struct address_space
*mapping
,
1158 pgoff_t start
, unsigned int nr_entries
,
1159 struct page
**entries
, pgoff_t
*indices
)
1162 unsigned int ret
= 0;
1163 struct radix_tree_iter iter
;
1170 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1173 page
= radix_tree_deref_slot(slot
);
1174 if (unlikely(!page
))
1176 if (radix_tree_exception(page
)) {
1177 if (radix_tree_deref_retry(page
))
1180 * A shadow entry of a recently evicted page,
1181 * or a swap entry from shmem/tmpfs. Return
1182 * it without attempting to raise page count.
1186 if (!page_cache_get_speculative(page
))
1189 /* Has the page moved? */
1190 if (unlikely(page
!= *slot
)) {
1191 page_cache_release(page
);
1195 indices
[ret
] = iter
.index
;
1196 entries
[ret
] = page
;
1197 if (++ret
== nr_entries
)
1205 * find_get_pages - gang pagecache lookup
1206 * @mapping: The address_space to search
1207 * @start: The starting page index
1208 * @nr_pages: The maximum number of pages
1209 * @pages: Where the resulting pages are placed
1211 * find_get_pages() will search for and return a group of up to
1212 * @nr_pages pages in the mapping. The pages are placed at @pages.
1213 * find_get_pages() takes a reference against the returned pages.
1215 * The search returns a group of mapping-contiguous pages with ascending
1216 * indexes. There may be holes in the indices due to not-present pages.
1218 * find_get_pages() returns the number of pages which were found.
1220 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
1221 unsigned int nr_pages
, struct page
**pages
)
1223 struct radix_tree_iter iter
;
1227 if (unlikely(!nr_pages
))
1232 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1235 page
= radix_tree_deref_slot(slot
);
1236 if (unlikely(!page
))
1239 if (radix_tree_exception(page
)) {
1240 if (radix_tree_deref_retry(page
)) {
1242 * Transient condition which can only trigger
1243 * when entry at index 0 moves out of or back
1244 * to root: none yet gotten, safe to restart.
1246 WARN_ON(iter
.index
);
1250 * A shadow entry of a recently evicted page,
1251 * or a swap entry from shmem/tmpfs. Skip
1257 if (!page_cache_get_speculative(page
))
1260 /* Has the page moved? */
1261 if (unlikely(page
!= *slot
)) {
1262 page_cache_release(page
);
1267 if (++ret
== nr_pages
)
1276 * find_get_pages_contig - gang contiguous pagecache lookup
1277 * @mapping: The address_space to search
1278 * @index: The starting page index
1279 * @nr_pages: The maximum number of pages
1280 * @pages: Where the resulting pages are placed
1282 * find_get_pages_contig() works exactly like find_get_pages(), except
1283 * that the returned number of pages are guaranteed to be contiguous.
1285 * find_get_pages_contig() returns the number of pages which were found.
1287 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
1288 unsigned int nr_pages
, struct page
**pages
)
1290 struct radix_tree_iter iter
;
1292 unsigned int ret
= 0;
1294 if (unlikely(!nr_pages
))
1299 radix_tree_for_each_contig(slot
, &mapping
->page_tree
, &iter
, index
) {
1302 page
= radix_tree_deref_slot(slot
);
1303 /* The hole, there no reason to continue */
1304 if (unlikely(!page
))
1307 if (radix_tree_exception(page
)) {
1308 if (radix_tree_deref_retry(page
)) {
1310 * Transient condition which can only trigger
1311 * when entry at index 0 moves out of or back
1312 * to root: none yet gotten, safe to restart.
1317 * A shadow entry of a recently evicted page,
1318 * or a swap entry from shmem/tmpfs. Stop
1319 * looking for contiguous pages.
1324 if (!page_cache_get_speculative(page
))
1327 /* Has the page moved? */
1328 if (unlikely(page
!= *slot
)) {
1329 page_cache_release(page
);
1334 * must check mapping and index after taking the ref.
1335 * otherwise we can get both false positives and false
1336 * negatives, which is just confusing to the caller.
1338 if (page
->mapping
== NULL
|| page
->index
!= iter
.index
) {
1339 page_cache_release(page
);
1344 if (++ret
== nr_pages
)
1350 EXPORT_SYMBOL(find_get_pages_contig
);
1353 * find_get_pages_tag - find and return pages that match @tag
1354 * @mapping: the address_space to search
1355 * @index: the starting page index
1356 * @tag: the tag index
1357 * @nr_pages: the maximum number of pages
1358 * @pages: where the resulting pages are placed
1360 * Like find_get_pages, except we only return pages which are tagged with
1361 * @tag. We update @index to index the next page for the traversal.
1363 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
1364 int tag
, unsigned int nr_pages
, struct page
**pages
)
1366 struct radix_tree_iter iter
;
1370 if (unlikely(!nr_pages
))
1375 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
,
1376 &iter
, *index
, tag
) {
1379 page
= radix_tree_deref_slot(slot
);
1380 if (unlikely(!page
))
1383 if (radix_tree_exception(page
)) {
1384 if (radix_tree_deref_retry(page
)) {
1386 * Transient condition which can only trigger
1387 * when entry at index 0 moves out of or back
1388 * to root: none yet gotten, safe to restart.
1393 * A shadow entry of a recently evicted page.
1395 * Those entries should never be tagged, but
1396 * this tree walk is lockless and the tags are
1397 * looked up in bulk, one radix tree node at a
1398 * time, so there is a sizable window for page
1399 * reclaim to evict a page we saw tagged.
1406 if (!page_cache_get_speculative(page
))
1409 /* Has the page moved? */
1410 if (unlikely(page
!= *slot
)) {
1411 page_cache_release(page
);
1416 if (++ret
== nr_pages
)
1423 *index
= pages
[ret
- 1]->index
+ 1;
1427 EXPORT_SYMBOL(find_get_pages_tag
);
1430 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1431 * a _large_ part of the i/o request. Imagine the worst scenario:
1433 * ---R__________________________________________B__________
1434 * ^ reading here ^ bad block(assume 4k)
1436 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1437 * => failing the whole request => read(R) => read(R+1) =>
1438 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1439 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1440 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1442 * It is going insane. Fix it by quickly scaling down the readahead size.
1444 static void shrink_readahead_size_eio(struct file
*filp
,
1445 struct file_ra_state
*ra
)
1451 * do_generic_file_read - generic file read routine
1452 * @filp: the file to read
1453 * @ppos: current file position
1454 * @iter: data destination
1455 * @written: already copied
1457 * This is a generic file read routine, and uses the
1458 * mapping->a_ops->readpage() function for the actual low-level stuff.
1460 * This is really ugly. But the goto's actually try to clarify some
1461 * of the logic when it comes to error handling etc.
1463 static ssize_t
do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
1464 struct iov_iter
*iter
, ssize_t written
)
1466 struct address_space
*mapping
= filp
->f_mapping
;
1467 struct inode
*inode
= mapping
->host
;
1468 struct file_ra_state
*ra
= &filp
->f_ra
;
1472 unsigned long offset
; /* offset into pagecache page */
1473 unsigned int prev_offset
;
1476 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1477 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1478 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1479 last_index
= (*ppos
+ iter
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1480 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1486 unsigned long nr
, ret
;
1490 page
= find_get_page(mapping
, index
);
1492 page_cache_sync_readahead(mapping
,
1494 index
, last_index
- index
);
1495 page
= find_get_page(mapping
, index
);
1496 if (unlikely(page
== NULL
))
1497 goto no_cached_page
;
1499 if (PageReadahead(page
)) {
1500 page_cache_async_readahead(mapping
,
1502 index
, last_index
- index
);
1504 if (!PageUptodate(page
)) {
1505 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1506 !mapping
->a_ops
->is_partially_uptodate
)
1507 goto page_not_up_to_date
;
1508 if (!trylock_page(page
))
1509 goto page_not_up_to_date
;
1510 /* Did it get truncated before we got the lock? */
1512 goto page_not_up_to_date_locked
;
1513 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1514 offset
, iter
->count
))
1515 goto page_not_up_to_date_locked
;
1520 * i_size must be checked after we know the page is Uptodate.
1522 * Checking i_size after the check allows us to calculate
1523 * the correct value for "nr", which means the zero-filled
1524 * part of the page is not copied back to userspace (unless
1525 * another truncate extends the file - this is desired though).
1528 isize
= i_size_read(inode
);
1529 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1530 if (unlikely(!isize
|| index
> end_index
)) {
1531 page_cache_release(page
);
1535 /* nr is the maximum number of bytes to copy from this page */
1536 nr
= PAGE_CACHE_SIZE
;
1537 if (index
== end_index
) {
1538 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1540 page_cache_release(page
);
1546 /* If users can be writing to this page using arbitrary
1547 * virtual addresses, take care about potential aliasing
1548 * before reading the page on the kernel side.
1550 if (mapping_writably_mapped(mapping
))
1551 flush_dcache_page(page
);
1554 * When a sequential read accesses a page several times,
1555 * only mark it as accessed the first time.
1557 if (prev_index
!= index
|| offset
!= prev_offset
)
1558 mark_page_accessed(page
);
1562 * Ok, we have the page, and it's up-to-date, so
1563 * now we can copy it to user space...
1566 ret
= copy_page_to_iter(page
, offset
, nr
, iter
);
1568 index
+= offset
>> PAGE_CACHE_SHIFT
;
1569 offset
&= ~PAGE_CACHE_MASK
;
1570 prev_offset
= offset
;
1572 page_cache_release(page
);
1574 if (!iov_iter_count(iter
))
1582 page_not_up_to_date
:
1583 /* Get exclusive access to the page ... */
1584 error
= lock_page_killable(page
);
1585 if (unlikely(error
))
1586 goto readpage_error
;
1588 page_not_up_to_date_locked
:
1589 /* Did it get truncated before we got the lock? */
1590 if (!page
->mapping
) {
1592 page_cache_release(page
);
1596 /* Did somebody else fill it already? */
1597 if (PageUptodate(page
)) {
1604 * A previous I/O error may have been due to temporary
1605 * failures, eg. multipath errors.
1606 * PG_error will be set again if readpage fails.
1608 ClearPageError(page
);
1609 /* Start the actual read. The read will unlock the page. */
1610 error
= mapping
->a_ops
->readpage(filp
, page
);
1612 if (unlikely(error
)) {
1613 if (error
== AOP_TRUNCATED_PAGE
) {
1614 page_cache_release(page
);
1618 goto readpage_error
;
1621 if (!PageUptodate(page
)) {
1622 error
= lock_page_killable(page
);
1623 if (unlikely(error
))
1624 goto readpage_error
;
1625 if (!PageUptodate(page
)) {
1626 if (page
->mapping
== NULL
) {
1628 * invalidate_mapping_pages got it
1631 page_cache_release(page
);
1635 shrink_readahead_size_eio(filp
, ra
);
1637 goto readpage_error
;
1645 /* UHHUH! A synchronous read error occurred. Report it */
1646 page_cache_release(page
);
1651 * Ok, it wasn't cached, so we need to create a new
1654 page
= page_cache_alloc_cold(mapping
);
1659 error
= add_to_page_cache_lru(page
, mapping
,
1662 page_cache_release(page
);
1663 if (error
== -EEXIST
) {
1673 ra
->prev_pos
= prev_index
;
1674 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1675 ra
->prev_pos
|= prev_offset
;
1677 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1678 file_accessed(filp
);
1679 return written
? written
: error
;
1683 * generic_file_read_iter - generic filesystem read routine
1684 * @iocb: kernel I/O control block
1685 * @iter: destination for the data read
1687 * This is the "read_iter()" routine for all filesystems
1688 * that can use the page cache directly.
1691 generic_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*iter
)
1693 struct file
*file
= iocb
->ki_filp
;
1695 loff_t
*ppos
= &iocb
->ki_pos
;
1698 if (io_is_direct(file
)) {
1699 struct address_space
*mapping
= file
->f_mapping
;
1700 struct inode
*inode
= mapping
->host
;
1701 size_t count
= iov_iter_count(iter
);
1705 goto out
; /* skip atime */
1706 size
= i_size_read(inode
);
1707 retval
= filemap_write_and_wait_range(mapping
, pos
,
1710 struct iov_iter data
= *iter
;
1711 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
, &data
, pos
);
1715 *ppos
= pos
+ retval
;
1716 iov_iter_advance(iter
, retval
);
1720 * Btrfs can have a short DIO read if we encounter
1721 * compressed extents, so if there was an error, or if
1722 * we've already read everything we wanted to, or if
1723 * there was a short read because we hit EOF, go ahead
1724 * and return. Otherwise fallthrough to buffered io for
1725 * the rest of the read. Buffered reads will not work for
1726 * DAX files, so don't bother trying.
1728 if (retval
< 0 || !iov_iter_count(iter
) || *ppos
>= size
||
1730 file_accessed(file
);
1735 retval
= do_generic_file_read(file
, ppos
, iter
, retval
);
1739 EXPORT_SYMBOL(generic_file_read_iter
);
1743 * page_cache_read - adds requested page to the page cache if not already there
1744 * @file: file to read
1745 * @offset: page index
1747 * This adds the requested page to the page cache if it isn't already there,
1748 * and schedules an I/O to read in its contents from disk.
1750 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1752 struct address_space
*mapping
= file
->f_mapping
;
1757 page
= page_cache_alloc_cold(mapping
);
1761 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1763 ret
= mapping
->a_ops
->readpage(file
, page
);
1764 else if (ret
== -EEXIST
)
1765 ret
= 0; /* losing race to add is OK */
1767 page_cache_release(page
);
1769 } while (ret
== AOP_TRUNCATED_PAGE
);
1774 #define MMAP_LOTSAMISS (100)
1777 * Synchronous readahead happens when we don't even find
1778 * a page in the page cache at all.
1780 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1781 struct file_ra_state
*ra
,
1785 unsigned long ra_pages
;
1786 struct address_space
*mapping
= file
->f_mapping
;
1788 /* If we don't want any read-ahead, don't bother */
1789 if (vma
->vm_flags
& VM_RAND_READ
)
1794 if (vma
->vm_flags
& VM_SEQ_READ
) {
1795 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1800 /* Avoid banging the cache line if not needed */
1801 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
1805 * Do we miss much more than hit in this file? If so,
1806 * stop bothering with read-ahead. It will only hurt.
1808 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1814 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1815 ra
->start
= max_t(long, 0, offset
- ra_pages
/ 2);
1816 ra
->size
= ra_pages
;
1817 ra
->async_size
= ra_pages
/ 4;
1818 ra_submit(ra
, mapping
, file
);
1822 * Asynchronous readahead happens when we find the page and PG_readahead,
1823 * so we want to possibly extend the readahead further..
1825 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1826 struct file_ra_state
*ra
,
1831 struct address_space
*mapping
= file
->f_mapping
;
1833 /* If we don't want any read-ahead, don't bother */
1834 if (vma
->vm_flags
& VM_RAND_READ
)
1836 if (ra
->mmap_miss
> 0)
1838 if (PageReadahead(page
))
1839 page_cache_async_readahead(mapping
, ra
, file
,
1840 page
, offset
, ra
->ra_pages
);
1844 * filemap_fault - read in file data for page fault handling
1845 * @vma: vma in which the fault was taken
1846 * @vmf: struct vm_fault containing details of the fault
1848 * filemap_fault() is invoked via the vma operations vector for a
1849 * mapped memory region to read in file data during a page fault.
1851 * The goto's are kind of ugly, but this streamlines the normal case of having
1852 * it in the page cache, and handles the special cases reasonably without
1853 * having a lot of duplicated code.
1855 * vma->vm_mm->mmap_sem must be held on entry.
1857 * If our return value has VM_FAULT_RETRY set, it's because
1858 * lock_page_or_retry() returned 0.
1859 * The mmap_sem has usually been released in this case.
1860 * See __lock_page_or_retry() for the exception.
1862 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1863 * has not been released.
1865 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1867 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1870 struct file
*file
= vma
->vm_file
;
1871 struct address_space
*mapping
= file
->f_mapping
;
1872 struct file_ra_state
*ra
= &file
->f_ra
;
1873 struct inode
*inode
= mapping
->host
;
1874 pgoff_t offset
= vmf
->pgoff
;
1879 size
= round_up(i_size_read(inode
), PAGE_CACHE_SIZE
);
1880 if (offset
>= size
>> PAGE_CACHE_SHIFT
)
1881 return VM_FAULT_SIGBUS
;
1884 * Do we have something in the page cache already?
1886 page
= find_get_page(mapping
, offset
);
1887 if (likely(page
) && !(vmf
->flags
& FAULT_FLAG_TRIED
)) {
1889 * We found the page, so try async readahead before
1890 * waiting for the lock.
1892 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1894 /* No page in the page cache at all */
1895 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1896 count_vm_event(PGMAJFAULT
);
1897 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1898 ret
= VM_FAULT_MAJOR
;
1900 page
= find_get_page(mapping
, offset
);
1902 goto no_cached_page
;
1905 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
1906 page_cache_release(page
);
1907 return ret
| VM_FAULT_RETRY
;
1910 /* Did it get truncated? */
1911 if (unlikely(page
->mapping
!= mapping
)) {
1916 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1919 * We have a locked page in the page cache, now we need to check
1920 * that it's up-to-date. If not, it is going to be due to an error.
1922 if (unlikely(!PageUptodate(page
)))
1923 goto page_not_uptodate
;
1926 * Found the page and have a reference on it.
1927 * We must recheck i_size under page lock.
1929 size
= round_up(i_size_read(inode
), PAGE_CACHE_SIZE
);
1930 if (unlikely(offset
>= size
>> PAGE_CACHE_SHIFT
)) {
1932 page_cache_release(page
);
1933 return VM_FAULT_SIGBUS
;
1937 return ret
| VM_FAULT_LOCKED
;
1941 * We're only likely to ever get here if MADV_RANDOM is in
1944 error
= page_cache_read(file
, offset
);
1947 * The page we want has now been added to the page cache.
1948 * In the unlikely event that someone removed it in the
1949 * meantime, we'll just come back here and read it again.
1955 * An error return from page_cache_read can result if the
1956 * system is low on memory, or a problem occurs while trying
1959 if (error
== -ENOMEM
)
1960 return VM_FAULT_OOM
;
1961 return VM_FAULT_SIGBUS
;
1965 * Umm, take care of errors if the page isn't up-to-date.
1966 * Try to re-read it _once_. We do this synchronously,
1967 * because there really aren't any performance issues here
1968 * and we need to check for errors.
1970 ClearPageError(page
);
1971 error
= mapping
->a_ops
->readpage(file
, page
);
1973 wait_on_page_locked(page
);
1974 if (!PageUptodate(page
))
1977 page_cache_release(page
);
1979 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1982 /* Things didn't work out. Return zero to tell the mm layer so. */
1983 shrink_readahead_size_eio(file
, ra
);
1984 return VM_FAULT_SIGBUS
;
1986 EXPORT_SYMBOL(filemap_fault
);
1988 void filemap_map_pages(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1990 struct radix_tree_iter iter
;
1992 struct file
*file
= vma
->vm_file
;
1993 struct address_space
*mapping
= file
->f_mapping
;
1996 unsigned long address
= (unsigned long) vmf
->virtual_address
;
2001 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, vmf
->pgoff
) {
2002 if (iter
.index
> vmf
->max_pgoff
)
2005 page
= radix_tree_deref_slot(slot
);
2006 if (unlikely(!page
))
2008 if (radix_tree_exception(page
)) {
2009 if (radix_tree_deref_retry(page
))
2015 if (!page_cache_get_speculative(page
))
2018 /* Has the page moved? */
2019 if (unlikely(page
!= *slot
)) {
2020 page_cache_release(page
);
2024 if (!PageUptodate(page
) ||
2025 PageReadahead(page
) ||
2028 if (!trylock_page(page
))
2031 if (page
->mapping
!= mapping
|| !PageUptodate(page
))
2034 size
= round_up(i_size_read(mapping
->host
), PAGE_CACHE_SIZE
);
2035 if (page
->index
>= size
>> PAGE_CACHE_SHIFT
)
2038 pte
= vmf
->pte
+ page
->index
- vmf
->pgoff
;
2039 if (!pte_none(*pte
))
2042 if (file
->f_ra
.mmap_miss
> 0)
2043 file
->f_ra
.mmap_miss
--;
2044 addr
= address
+ (page
->index
- vmf
->pgoff
) * PAGE_SIZE
;
2045 do_set_pte(vma
, addr
, page
, pte
, false, false);
2051 page_cache_release(page
);
2053 if (iter
.index
== vmf
->max_pgoff
)
2058 EXPORT_SYMBOL(filemap_map_pages
);
2060 int filemap_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2062 struct page
*page
= vmf
->page
;
2063 struct inode
*inode
= file_inode(vma
->vm_file
);
2064 int ret
= VM_FAULT_LOCKED
;
2066 sb_start_pagefault(inode
->i_sb
);
2067 file_update_time(vma
->vm_file
);
2069 if (page
->mapping
!= inode
->i_mapping
) {
2071 ret
= VM_FAULT_NOPAGE
;
2075 * We mark the page dirty already here so that when freeze is in
2076 * progress, we are guaranteed that writeback during freezing will
2077 * see the dirty page and writeprotect it again.
2079 set_page_dirty(page
);
2080 wait_for_stable_page(page
);
2082 sb_end_pagefault(inode
->i_sb
);
2085 EXPORT_SYMBOL(filemap_page_mkwrite
);
2087 const struct vm_operations_struct generic_file_vm_ops
= {
2088 .fault
= filemap_fault
,
2089 .map_pages
= filemap_map_pages
,
2090 .page_mkwrite
= filemap_page_mkwrite
,
2093 /* This is used for a general mmap of a disk file */
2095 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2097 struct address_space
*mapping
= file
->f_mapping
;
2099 if (!mapping
->a_ops
->readpage
)
2101 file_accessed(file
);
2102 vma
->vm_ops
= &generic_file_vm_ops
;
2107 * This is for filesystems which do not implement ->writepage.
2109 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2111 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
2113 return generic_file_mmap(file
, vma
);
2116 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2120 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2124 #endif /* CONFIG_MMU */
2126 EXPORT_SYMBOL(generic_file_mmap
);
2127 EXPORT_SYMBOL(generic_file_readonly_mmap
);
2129 static struct page
*wait_on_page_read(struct page
*page
)
2131 if (!IS_ERR(page
)) {
2132 wait_on_page_locked(page
);
2133 if (!PageUptodate(page
)) {
2134 page_cache_release(page
);
2135 page
= ERR_PTR(-EIO
);
2141 static struct page
*__read_cache_page(struct address_space
*mapping
,
2143 int (*filler
)(void *, struct page
*),
2150 page
= find_get_page(mapping
, index
);
2152 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
2154 return ERR_PTR(-ENOMEM
);
2155 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp
);
2156 if (unlikely(err
)) {
2157 page_cache_release(page
);
2160 /* Presumably ENOMEM for radix tree node */
2161 return ERR_PTR(err
);
2163 err
= filler(data
, page
);
2165 page_cache_release(page
);
2166 page
= ERR_PTR(err
);
2168 page
= wait_on_page_read(page
);
2174 static struct page
*do_read_cache_page(struct address_space
*mapping
,
2176 int (*filler
)(void *, struct page
*),
2185 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
2188 if (PageUptodate(page
))
2192 if (!page
->mapping
) {
2194 page_cache_release(page
);
2197 if (PageUptodate(page
)) {
2201 err
= filler(data
, page
);
2203 page_cache_release(page
);
2204 return ERR_PTR(err
);
2206 page
= wait_on_page_read(page
);
2211 mark_page_accessed(page
);
2216 * read_cache_page - read into page cache, fill it if needed
2217 * @mapping: the page's address_space
2218 * @index: the page index
2219 * @filler: function to perform the read
2220 * @data: first arg to filler(data, page) function, often left as NULL
2222 * Read into the page cache. If a page already exists, and PageUptodate() is
2223 * not set, try to fill the page and wait for it to become unlocked.
2225 * If the page does not get brought uptodate, return -EIO.
2227 struct page
*read_cache_page(struct address_space
*mapping
,
2229 int (*filler
)(void *, struct page
*),
2232 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
2234 EXPORT_SYMBOL(read_cache_page
);
2237 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2238 * @mapping: the page's address_space
2239 * @index: the page index
2240 * @gfp: the page allocator flags to use if allocating
2242 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2243 * any new page allocations done using the specified allocation flags.
2245 * If the page does not get brought uptodate, return -EIO.
2247 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
2251 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
2253 return do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
);
2255 EXPORT_SYMBOL(read_cache_page_gfp
);
2258 * Performs necessary checks before doing a write
2260 * Can adjust writing position or amount of bytes to write.
2261 * Returns appropriate error code that caller should return or
2262 * zero in case that write should be allowed.
2264 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2266 struct inode
*inode
= file
->f_mapping
->host
;
2267 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2269 if (unlikely(*pos
< 0))
2273 /* FIXME: this is for backwards compatibility with 2.4 */
2274 if (file
->f_flags
& O_APPEND
)
2275 *pos
= i_size_read(inode
);
2277 if (limit
!= RLIM_INFINITY
) {
2278 if (*pos
>= limit
) {
2279 send_sig(SIGXFSZ
, current
, 0);
2282 if (*count
> limit
- (typeof(limit
))*pos
) {
2283 *count
= limit
- (typeof(limit
))*pos
;
2291 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2292 !(file
->f_flags
& O_LARGEFILE
))) {
2293 if (*pos
>= MAX_NON_LFS
) {
2296 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2297 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2302 * Are we about to exceed the fs block limit ?
2304 * If we have written data it becomes a short write. If we have
2305 * exceeded without writing data we send a signal and return EFBIG.
2306 * Linus frestrict idea will clean these up nicely..
2308 if (likely(!isblk
)) {
2309 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2310 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2313 /* zero-length writes at ->s_maxbytes are OK */
2316 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2317 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2321 if (bdev_read_only(I_BDEV(inode
)))
2323 isize
= i_size_read(inode
);
2324 if (*pos
>= isize
) {
2325 if (*count
|| *pos
> isize
)
2329 if (*pos
+ *count
> isize
)
2330 *count
= isize
- *pos
;
2337 EXPORT_SYMBOL(generic_write_checks
);
2339 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2340 loff_t pos
, unsigned len
, unsigned flags
,
2341 struct page
**pagep
, void **fsdata
)
2343 const struct address_space_operations
*aops
= mapping
->a_ops
;
2345 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2348 EXPORT_SYMBOL(pagecache_write_begin
);
2350 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2351 loff_t pos
, unsigned len
, unsigned copied
,
2352 struct page
*page
, void *fsdata
)
2354 const struct address_space_operations
*aops
= mapping
->a_ops
;
2356 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2358 EXPORT_SYMBOL(pagecache_write_end
);
2361 generic_file_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
, loff_t pos
)
2363 struct file
*file
= iocb
->ki_filp
;
2364 struct address_space
*mapping
= file
->f_mapping
;
2365 struct inode
*inode
= mapping
->host
;
2369 struct iov_iter data
;
2371 write_len
= iov_iter_count(from
);
2372 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2374 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2379 * After a write we want buffered reads to be sure to go to disk to get
2380 * the new data. We invalidate clean cached page from the region we're
2381 * about to write. We do this *before* the write so that we can return
2382 * without clobbering -EIOCBQUEUED from ->direct_IO().
2384 if (mapping
->nrpages
) {
2385 written
= invalidate_inode_pages2_range(mapping
,
2386 pos
>> PAGE_CACHE_SHIFT
, end
);
2388 * If a page can not be invalidated, return 0 to fall back
2389 * to buffered write.
2392 if (written
== -EBUSY
)
2399 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, &data
, pos
);
2402 * Finally, try again to invalidate clean pages which might have been
2403 * cached by non-direct readahead, or faulted in by get_user_pages()
2404 * if the source of the write was an mmap'ed region of the file
2405 * we're writing. Either one is a pretty crazy thing to do,
2406 * so we don't support it 100%. If this invalidation
2407 * fails, tough, the write still worked...
2409 if (mapping
->nrpages
) {
2410 invalidate_inode_pages2_range(mapping
,
2411 pos
>> PAGE_CACHE_SHIFT
, end
);
2416 iov_iter_advance(from
, written
);
2417 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2418 i_size_write(inode
, pos
);
2419 mark_inode_dirty(inode
);
2426 EXPORT_SYMBOL(generic_file_direct_write
);
2429 * Find or create a page at the given pagecache position. Return the locked
2430 * page. This function is specifically for buffered writes.
2432 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2433 pgoff_t index
, unsigned flags
)
2436 int fgp_flags
= FGP_LOCK
|FGP_ACCESSED
|FGP_WRITE
|FGP_CREAT
;
2438 if (flags
& AOP_FLAG_NOFS
)
2439 fgp_flags
|= FGP_NOFS
;
2441 page
= pagecache_get_page(mapping
, index
, fgp_flags
,
2442 mapping_gfp_mask(mapping
));
2444 wait_for_stable_page(page
);
2448 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2450 ssize_t
generic_perform_write(struct file
*file
,
2451 struct iov_iter
*i
, loff_t pos
)
2453 struct address_space
*mapping
= file
->f_mapping
;
2454 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2456 ssize_t written
= 0;
2457 unsigned int flags
= 0;
2460 * Copies from kernel address space cannot fail (NFSD is a big user).
2462 if (!iter_is_iovec(i
))
2463 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2467 unsigned long offset
; /* Offset into pagecache page */
2468 unsigned long bytes
; /* Bytes to write to page */
2469 size_t copied
; /* Bytes copied from user */
2472 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2473 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2478 * Bring in the user page that we will copy from _first_.
2479 * Otherwise there's a nasty deadlock on copying from the
2480 * same page as we're writing to, without it being marked
2483 * Not only is this an optimisation, but it is also required
2484 * to check that the address is actually valid, when atomic
2485 * usercopies are used, below.
2487 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2492 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2494 if (unlikely(status
< 0))
2497 if (mapping_writably_mapped(mapping
))
2498 flush_dcache_page(page
);
2500 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2501 flush_dcache_page(page
);
2503 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2505 if (unlikely(status
< 0))
2511 iov_iter_advance(i
, copied
);
2512 if (unlikely(copied
== 0)) {
2514 * If we were unable to copy any data at all, we must
2515 * fall back to a single segment length write.
2517 * If we didn't fallback here, we could livelock
2518 * because not all segments in the iov can be copied at
2519 * once without a pagefault.
2521 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2522 iov_iter_single_seg_count(i
));
2528 balance_dirty_pages_ratelimited(mapping
);
2529 if (fatal_signal_pending(current
)) {
2533 } while (iov_iter_count(i
));
2535 return written
? written
: status
;
2537 EXPORT_SYMBOL(generic_perform_write
);
2540 * __generic_file_write_iter - write data to a file
2541 * @iocb: IO state structure (file, offset, etc.)
2542 * @from: iov_iter with data to write
2544 * This function does all the work needed for actually writing data to a
2545 * file. It does all basic checks, removes SUID from the file, updates
2546 * modification times and calls proper subroutines depending on whether we
2547 * do direct IO or a standard buffered write.
2549 * It expects i_mutex to be grabbed unless we work on a block device or similar
2550 * object which does not need locking at all.
2552 * This function does *not* take care of syncing data in case of O_SYNC write.
2553 * A caller has to handle it. This is mainly due to the fact that we want to
2554 * avoid syncing under i_mutex.
2556 ssize_t
__generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
2558 struct file
*file
= iocb
->ki_filp
;
2559 struct address_space
* mapping
= file
->f_mapping
;
2560 struct inode
*inode
= mapping
->host
;
2561 loff_t pos
= iocb
->ki_pos
;
2562 ssize_t written
= 0;
2565 size_t count
= iov_iter_count(from
);
2567 /* We can write back this queue in page reclaim */
2568 current
->backing_dev_info
= inode_to_bdi(inode
);
2569 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2576 iov_iter_truncate(from
, count
);
2578 err
= file_remove_suid(file
);
2582 err
= file_update_time(file
);
2586 if (io_is_direct(file
)) {
2589 written
= generic_file_direct_write(iocb
, from
, pos
);
2591 * If the write stopped short of completing, fall back to
2592 * buffered writes. Some filesystems do this for writes to
2593 * holes, for example. For DAX files, a buffered write will
2594 * not succeed (even if it did, DAX does not handle dirty
2595 * page-cache pages correctly).
2597 if (written
< 0 || written
== count
|| IS_DAX(inode
))
2603 status
= generic_perform_write(file
, from
, pos
);
2605 * If generic_perform_write() returned a synchronous error
2606 * then we want to return the number of bytes which were
2607 * direct-written, or the error code if that was zero. Note
2608 * that this differs from normal direct-io semantics, which
2609 * will return -EFOO even if some bytes were written.
2611 if (unlikely(status
< 0)) {
2615 iocb
->ki_pos
= pos
+ status
;
2617 * We need to ensure that the page cache pages are written to
2618 * disk and invalidated to preserve the expected O_DIRECT
2621 endbyte
= pos
+ status
- 1;
2622 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2625 invalidate_mapping_pages(mapping
,
2626 pos
>> PAGE_CACHE_SHIFT
,
2627 endbyte
>> PAGE_CACHE_SHIFT
);
2630 * We don't know how much we wrote, so just return
2631 * the number of bytes which were direct-written
2635 written
= generic_perform_write(file
, from
, pos
);
2636 if (likely(written
>= 0))
2637 iocb
->ki_pos
= pos
+ written
;
2640 current
->backing_dev_info
= NULL
;
2641 return written
? written
: err
;
2643 EXPORT_SYMBOL(__generic_file_write_iter
);
2646 * generic_file_write_iter - write data to a file
2647 * @iocb: IO state structure
2648 * @from: iov_iter with data to write
2650 * This is a wrapper around __generic_file_write_iter() to be used by most
2651 * filesystems. It takes care of syncing the file in case of O_SYNC file
2652 * and acquires i_mutex as needed.
2654 ssize_t
generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
2656 struct file
*file
= iocb
->ki_filp
;
2657 struct inode
*inode
= file
->f_mapping
->host
;
2660 mutex_lock(&inode
->i_mutex
);
2661 ret
= __generic_file_write_iter(iocb
, from
);
2662 mutex_unlock(&inode
->i_mutex
);
2667 err
= generic_write_sync(file
, iocb
->ki_pos
- ret
, ret
);
2673 EXPORT_SYMBOL(generic_file_write_iter
);
2676 * try_to_release_page() - release old fs-specific metadata on a page
2678 * @page: the page which the kernel is trying to free
2679 * @gfp_mask: memory allocation flags (and I/O mode)
2681 * The address_space is to try to release any data against the page
2682 * (presumably at page->private). If the release was successful, return `1'.
2683 * Otherwise return zero.
2685 * This may also be called if PG_fscache is set on a page, indicating that the
2686 * page is known to the local caching routines.
2688 * The @gfp_mask argument specifies whether I/O may be performed to release
2689 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2692 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2694 struct address_space
* const mapping
= page
->mapping
;
2696 BUG_ON(!PageLocked(page
));
2697 if (PageWriteback(page
))
2700 if (mapping
&& mapping
->a_ops
->releasepage
)
2701 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2702 return try_to_free_buffers(page
);
2705 EXPORT_SYMBOL(try_to_release_page
);