4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/export.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
39 #include <asm/uaccess.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
46 #define kenter(FMT, ...) \
47 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48 #define kleave(FMT, ...) \
49 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50 #define kdebug(FMT, ...) \
51 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
53 #define kenter(FMT, ...) \
54 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55 #define kleave(FMT, ...) \
56 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57 #define kdebug(FMT, ...) \
58 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
62 EXPORT_SYMBOL(high_memory
);
64 unsigned long max_mapnr
;
65 unsigned long highest_memmap_pfn
;
66 struct percpu_counter vm_committed_as
;
67 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
68 int sysctl_overcommit_ratio
= 50; /* default is 50% */
69 unsigned long sysctl_overcommit_kbytes __read_mostly
;
70 int sysctl_max_map_count
= DEFAULT_MAX_MAP_COUNT
;
71 int sysctl_nr_trim_pages
= CONFIG_NOMMU_INITIAL_TRIM_EXCESS
;
72 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
73 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
74 int heap_stack_gap
= 0;
76 atomic_long_t mmap_pages_allocated
;
79 * The global memory commitment made in the system can be a metric
80 * that can be used to drive ballooning decisions when Linux is hosted
81 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
82 * balancing memory across competing virtual machines that are hosted.
83 * Several metrics drive this policy engine including the guest reported
86 unsigned long vm_memory_committed(void)
88 return percpu_counter_read_positive(&vm_committed_as
);
91 EXPORT_SYMBOL_GPL(vm_memory_committed
);
93 EXPORT_SYMBOL(mem_map
);
95 /* list of mapped, potentially shareable regions */
96 static struct kmem_cache
*vm_region_jar
;
97 struct rb_root nommu_region_tree
= RB_ROOT
;
98 DECLARE_RWSEM(nommu_region_sem
);
100 const struct vm_operations_struct generic_file_vm_ops
= {
104 * Return the total memory allocated for this pointer, not
105 * just what the caller asked for.
107 * Doesn't have to be accurate, i.e. may have races.
109 unsigned int kobjsize(const void *objp
)
114 * If the object we have should not have ksize performed on it,
117 if (!objp
|| !virt_addr_valid(objp
))
120 page
= virt_to_head_page(objp
);
123 * If the allocator sets PageSlab, we know the pointer came from
130 * If it's not a compound page, see if we have a matching VMA
131 * region. This test is intentionally done in reverse order,
132 * so if there's no VMA, we still fall through and hand back
133 * PAGE_SIZE for 0-order pages.
135 if (!PageCompound(page
)) {
136 struct vm_area_struct
*vma
;
138 vma
= find_vma(current
->mm
, (unsigned long)objp
);
140 return vma
->vm_end
- vma
->vm_start
;
144 * The ksize() function is only guaranteed to work for pointers
145 * returned by kmalloc(). So handle arbitrary pointers here.
147 return PAGE_SIZE
<< compound_order(page
);
150 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
151 unsigned long start
, unsigned long nr_pages
,
152 unsigned int foll_flags
, struct page
**pages
,
153 struct vm_area_struct
**vmas
, int *nonblocking
)
155 struct vm_area_struct
*vma
;
156 unsigned long vm_flags
;
159 /* calculate required read or write permissions.
160 * If FOLL_FORCE is set, we only require the "MAY" flags.
162 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
163 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
164 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
165 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
167 for (i
= 0; i
< nr_pages
; i
++) {
168 vma
= find_vma(mm
, start
);
170 goto finish_or_fault
;
172 /* protect what we can, including chardevs */
173 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
174 !(vm_flags
& vma
->vm_flags
))
175 goto finish_or_fault
;
178 pages
[i
] = virt_to_page(start
);
180 page_cache_get(pages
[i
]);
184 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
190 return i
? : -EFAULT
;
194 * get a list of pages in an address range belonging to the specified process
195 * and indicate the VMA that covers each page
196 * - this is potentially dodgy as we may end incrementing the page count of a
197 * slab page or a secondary page from a compound page
198 * - don't permit access to VMAs that don't support it, such as I/O mappings
200 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
201 unsigned long start
, unsigned long nr_pages
,
202 int write
, int force
, struct page
**pages
,
203 struct vm_area_struct
**vmas
)
212 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
215 EXPORT_SYMBOL(get_user_pages
);
217 long get_user_pages_locked(struct task_struct
*tsk
, struct mm_struct
*mm
,
218 unsigned long start
, unsigned long nr_pages
,
219 int write
, int force
, struct page
**pages
,
222 return get_user_pages(tsk
, mm
, start
, nr_pages
, write
, force
,
225 EXPORT_SYMBOL(get_user_pages_locked
);
227 long __get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
228 unsigned long start
, unsigned long nr_pages
,
229 int write
, int force
, struct page
**pages
,
230 unsigned int gup_flags
)
233 down_read(&mm
->mmap_sem
);
234 ret
= get_user_pages(tsk
, mm
, start
, nr_pages
, write
, force
,
236 up_read(&mm
->mmap_sem
);
239 EXPORT_SYMBOL(__get_user_pages_unlocked
);
241 long get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
242 unsigned long start
, unsigned long nr_pages
,
243 int write
, int force
, struct page
**pages
)
245 return __get_user_pages_unlocked(tsk
, mm
, start
, nr_pages
, write
,
248 EXPORT_SYMBOL(get_user_pages_unlocked
);
251 * follow_pfn - look up PFN at a user virtual address
252 * @vma: memory mapping
253 * @address: user virtual address
254 * @pfn: location to store found PFN
256 * Only IO mappings and raw PFN mappings are allowed.
258 * Returns zero and the pfn at @pfn on success, -ve otherwise.
260 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
263 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
266 *pfn
= address
>> PAGE_SHIFT
;
269 EXPORT_SYMBOL(follow_pfn
);
271 LIST_HEAD(vmap_area_list
);
273 void vfree(const void *addr
)
277 EXPORT_SYMBOL(vfree
);
279 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
282 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
283 * returns only a logical address.
285 return kmalloc(size
, (gfp_mask
| __GFP_COMP
) & ~__GFP_HIGHMEM
);
287 EXPORT_SYMBOL(__vmalloc
);
289 void *vmalloc_user(unsigned long size
)
293 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
296 struct vm_area_struct
*vma
;
298 down_write(¤t
->mm
->mmap_sem
);
299 vma
= find_vma(current
->mm
, (unsigned long)ret
);
301 vma
->vm_flags
|= VM_USERMAP
;
302 up_write(¤t
->mm
->mmap_sem
);
307 EXPORT_SYMBOL(vmalloc_user
);
309 struct page
*vmalloc_to_page(const void *addr
)
311 return virt_to_page(addr
);
313 EXPORT_SYMBOL(vmalloc_to_page
);
315 unsigned long vmalloc_to_pfn(const void *addr
)
317 return page_to_pfn(virt_to_page(addr
));
319 EXPORT_SYMBOL(vmalloc_to_pfn
);
321 long vread(char *buf
, char *addr
, unsigned long count
)
323 /* Don't allow overflow */
324 if ((unsigned long) buf
+ count
< count
)
325 count
= -(unsigned long) buf
;
327 memcpy(buf
, addr
, count
);
331 long vwrite(char *buf
, char *addr
, unsigned long count
)
333 /* Don't allow overflow */
334 if ((unsigned long) addr
+ count
< count
)
335 count
= -(unsigned long) addr
;
337 memcpy(addr
, buf
, count
);
342 * vmalloc - allocate virtually continguos memory
344 * @size: allocation size
346 * Allocate enough pages to cover @size from the page level
347 * allocator and map them into continguos kernel virtual space.
349 * For tight control over page level allocator and protection flags
350 * use __vmalloc() instead.
352 void *vmalloc(unsigned long size
)
354 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
);
356 EXPORT_SYMBOL(vmalloc
);
359 * vzalloc - allocate virtually continguos memory with zero fill
361 * @size: allocation size
363 * Allocate enough pages to cover @size from the page level
364 * allocator and map them into continguos kernel virtual space.
365 * The memory allocated is set to zero.
367 * For tight control over page level allocator and protection flags
368 * use __vmalloc() instead.
370 void *vzalloc(unsigned long size
)
372 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
375 EXPORT_SYMBOL(vzalloc
);
378 * vmalloc_node - allocate memory on a specific node
379 * @size: allocation size
382 * Allocate enough pages to cover @size from the page level
383 * allocator and map them into contiguous kernel virtual space.
385 * For tight control over page level allocator and protection flags
386 * use __vmalloc() instead.
388 void *vmalloc_node(unsigned long size
, int node
)
390 return vmalloc(size
);
392 EXPORT_SYMBOL(vmalloc_node
);
395 * vzalloc_node - allocate memory on a specific node with zero fill
396 * @size: allocation size
399 * Allocate enough pages to cover @size from the page level
400 * allocator and map them into contiguous kernel virtual space.
401 * The memory allocated is set to zero.
403 * For tight control over page level allocator and protection flags
404 * use __vmalloc() instead.
406 void *vzalloc_node(unsigned long size
, int node
)
408 return vzalloc(size
);
410 EXPORT_SYMBOL(vzalloc_node
);
412 #ifndef PAGE_KERNEL_EXEC
413 # define PAGE_KERNEL_EXEC PAGE_KERNEL
417 * vmalloc_exec - allocate virtually contiguous, executable memory
418 * @size: allocation size
420 * Kernel-internal function to allocate enough pages to cover @size
421 * the page level allocator and map them into contiguous and
422 * executable kernel virtual space.
424 * For tight control over page level allocator and protection flags
425 * use __vmalloc() instead.
428 void *vmalloc_exec(unsigned long size
)
430 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
434 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
435 * @size: allocation size
437 * Allocate enough 32bit PA addressable pages to cover @size from the
438 * page level allocator and map them into continguos kernel virtual space.
440 void *vmalloc_32(unsigned long size
)
442 return __vmalloc(size
, GFP_KERNEL
, PAGE_KERNEL
);
444 EXPORT_SYMBOL(vmalloc_32
);
447 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
448 * @size: allocation size
450 * The resulting memory area is 32bit addressable and zeroed so it can be
451 * mapped to userspace without leaking data.
453 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
454 * remap_vmalloc_range() are permissible.
456 void *vmalloc_32_user(unsigned long size
)
459 * We'll have to sort out the ZONE_DMA bits for 64-bit,
460 * but for now this can simply use vmalloc_user() directly.
462 return vmalloc_user(size
);
464 EXPORT_SYMBOL(vmalloc_32_user
);
466 void *vmap(struct page
**pages
, unsigned int count
, unsigned long flags
, pgprot_t prot
)
473 void vunmap(const void *addr
)
477 EXPORT_SYMBOL(vunmap
);
479 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
484 EXPORT_SYMBOL(vm_map_ram
);
486 void vm_unmap_ram(const void *mem
, unsigned int count
)
490 EXPORT_SYMBOL(vm_unmap_ram
);
492 void vm_unmap_aliases(void)
495 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
498 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
501 void __weak
vmalloc_sync_all(void)
506 * alloc_vm_area - allocate a range of kernel address space
507 * @size: size of the area
509 * Returns: NULL on failure, vm_struct on success
511 * This function reserves a range of kernel address space, and
512 * allocates pagetables to map that range. No actual mappings
513 * are created. If the kernel address space is not shared
514 * between processes, it syncs the pagetable across all
517 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
522 EXPORT_SYMBOL_GPL(alloc_vm_area
);
524 void free_vm_area(struct vm_struct
*area
)
528 EXPORT_SYMBOL_GPL(free_vm_area
);
530 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
535 EXPORT_SYMBOL(vm_insert_page
);
538 * sys_brk() for the most part doesn't need the global kernel
539 * lock, except when an application is doing something nasty
540 * like trying to un-brk an area that has already been mapped
541 * to a regular file. in this case, the unmapping will need
542 * to invoke file system routines that need the global lock.
544 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
546 struct mm_struct
*mm
= current
->mm
;
548 if (brk
< mm
->start_brk
|| brk
> mm
->context
.end_brk
)
555 * Always allow shrinking brk
557 if (brk
<= mm
->brk
) {
563 * Ok, looks good - let it rip.
565 flush_icache_range(mm
->brk
, brk
);
566 return mm
->brk
= brk
;
570 * initialise the VMA and region record slabs
572 void __init
mmap_init(void)
576 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
578 vm_region_jar
= KMEM_CACHE(vm_region
, SLAB_PANIC
);
582 * validate the region tree
583 * - the caller must hold the region lock
585 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
586 static noinline
void validate_nommu_regions(void)
588 struct vm_region
*region
, *last
;
589 struct rb_node
*p
, *lastp
;
591 lastp
= rb_first(&nommu_region_tree
);
595 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
596 BUG_ON(unlikely(last
->vm_end
<= last
->vm_start
));
597 BUG_ON(unlikely(last
->vm_top
< last
->vm_end
));
599 while ((p
= rb_next(lastp
))) {
600 region
= rb_entry(p
, struct vm_region
, vm_rb
);
601 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
603 BUG_ON(unlikely(region
->vm_end
<= region
->vm_start
));
604 BUG_ON(unlikely(region
->vm_top
< region
->vm_end
));
605 BUG_ON(unlikely(region
->vm_start
< last
->vm_top
));
611 static void validate_nommu_regions(void)
617 * add a region into the global tree
619 static void add_nommu_region(struct vm_region
*region
)
621 struct vm_region
*pregion
;
622 struct rb_node
**p
, *parent
;
624 validate_nommu_regions();
627 p
= &nommu_region_tree
.rb_node
;
630 pregion
= rb_entry(parent
, struct vm_region
, vm_rb
);
631 if (region
->vm_start
< pregion
->vm_start
)
633 else if (region
->vm_start
> pregion
->vm_start
)
635 else if (pregion
== region
)
641 rb_link_node(®ion
->vm_rb
, parent
, p
);
642 rb_insert_color(®ion
->vm_rb
, &nommu_region_tree
);
644 validate_nommu_regions();
648 * delete a region from the global tree
650 static void delete_nommu_region(struct vm_region
*region
)
652 BUG_ON(!nommu_region_tree
.rb_node
);
654 validate_nommu_regions();
655 rb_erase(®ion
->vm_rb
, &nommu_region_tree
);
656 validate_nommu_regions();
660 * free a contiguous series of pages
662 static void free_page_series(unsigned long from
, unsigned long to
)
664 for (; from
< to
; from
+= PAGE_SIZE
) {
665 struct page
*page
= virt_to_page(from
);
667 kdebug("- free %lx", from
);
668 atomic_long_dec(&mmap_pages_allocated
);
669 if (page_count(page
) != 1)
670 kdebug("free page %p: refcount not one: %d",
671 page
, page_count(page
));
677 * release a reference to a region
678 * - the caller must hold the region semaphore for writing, which this releases
679 * - the region may not have been added to the tree yet, in which case vm_top
680 * will equal vm_start
682 static void __put_nommu_region(struct vm_region
*region
)
683 __releases(nommu_region_sem
)
685 kenter("%p{%d}", region
, region
->vm_usage
);
687 BUG_ON(!nommu_region_tree
.rb_node
);
689 if (--region
->vm_usage
== 0) {
690 if (region
->vm_top
> region
->vm_start
)
691 delete_nommu_region(region
);
692 up_write(&nommu_region_sem
);
695 fput(region
->vm_file
);
697 /* IO memory and memory shared directly out of the pagecache
698 * from ramfs/tmpfs mustn't be released here */
699 if (region
->vm_flags
& VM_MAPPED_COPY
) {
700 kdebug("free series");
701 free_page_series(region
->vm_start
, region
->vm_top
);
703 kmem_cache_free(vm_region_jar
, region
);
705 up_write(&nommu_region_sem
);
710 * release a reference to a region
712 static void put_nommu_region(struct vm_region
*region
)
714 down_write(&nommu_region_sem
);
715 __put_nommu_region(region
);
719 * update protection on a vma
721 static void protect_vma(struct vm_area_struct
*vma
, unsigned long flags
)
724 struct mm_struct
*mm
= vma
->vm_mm
;
725 long start
= vma
->vm_start
& PAGE_MASK
;
726 while (start
< vma
->vm_end
) {
727 protect_page(mm
, start
, flags
);
730 update_protections(mm
);
735 * add a VMA into a process's mm_struct in the appropriate place in the list
736 * and tree and add to the address space's page tree also if not an anonymous
738 * - should be called with mm->mmap_sem held writelocked
740 static void add_vma_to_mm(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
742 struct vm_area_struct
*pvma
, *prev
;
743 struct address_space
*mapping
;
744 struct rb_node
**p
, *parent
, *rb_prev
;
748 BUG_ON(!vma
->vm_region
);
753 protect_vma(vma
, vma
->vm_flags
);
755 /* add the VMA to the mapping */
757 mapping
= vma
->vm_file
->f_mapping
;
759 i_mmap_lock_write(mapping
);
760 flush_dcache_mmap_lock(mapping
);
761 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
762 flush_dcache_mmap_unlock(mapping
);
763 i_mmap_unlock_write(mapping
);
766 /* add the VMA to the tree */
767 parent
= rb_prev
= NULL
;
768 p
= &mm
->mm_rb
.rb_node
;
771 pvma
= rb_entry(parent
, struct vm_area_struct
, vm_rb
);
773 /* sort by: start addr, end addr, VMA struct addr in that order
774 * (the latter is necessary as we may get identical VMAs) */
775 if (vma
->vm_start
< pvma
->vm_start
)
777 else if (vma
->vm_start
> pvma
->vm_start
) {
780 } else if (vma
->vm_end
< pvma
->vm_end
)
782 else if (vma
->vm_end
> pvma
->vm_end
) {
785 } else if (vma
< pvma
)
787 else if (vma
> pvma
) {
794 rb_link_node(&vma
->vm_rb
, parent
, p
);
795 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
797 /* add VMA to the VMA list also */
800 prev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
802 __vma_link_list(mm
, vma
, prev
, parent
);
806 * delete a VMA from its owning mm_struct and address space
808 static void delete_vma_from_mm(struct vm_area_struct
*vma
)
811 struct address_space
*mapping
;
812 struct mm_struct
*mm
= vma
->vm_mm
;
813 struct task_struct
*curr
= current
;
820 for (i
= 0; i
< VMACACHE_SIZE
; i
++) {
821 /* if the vma is cached, invalidate the entire cache */
822 if (curr
->vmacache
[i
] == vma
) {
823 vmacache_invalidate(mm
);
828 /* remove the VMA from the mapping */
830 mapping
= vma
->vm_file
->f_mapping
;
832 i_mmap_lock_write(mapping
);
833 flush_dcache_mmap_lock(mapping
);
834 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
835 flush_dcache_mmap_unlock(mapping
);
836 i_mmap_unlock_write(mapping
);
839 /* remove from the MM's tree and list */
840 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
843 vma
->vm_prev
->vm_next
= vma
->vm_next
;
845 mm
->mmap
= vma
->vm_next
;
848 vma
->vm_next
->vm_prev
= vma
->vm_prev
;
852 * destroy a VMA record
854 static void delete_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
857 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
858 vma
->vm_ops
->close(vma
);
861 put_nommu_region(vma
->vm_region
);
862 kmem_cache_free(vm_area_cachep
, vma
);
866 * look up the first VMA in which addr resides, NULL if none
867 * - should be called with mm->mmap_sem at least held readlocked
869 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
871 struct vm_area_struct
*vma
;
873 /* check the cache first */
874 vma
= vmacache_find(mm
, addr
);
878 /* trawl the list (there may be multiple mappings in which addr
880 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
881 if (vma
->vm_start
> addr
)
883 if (vma
->vm_end
> addr
) {
884 vmacache_update(addr
, vma
);
891 EXPORT_SYMBOL(find_vma
);
895 * - we don't extend stack VMAs under NOMMU conditions
897 struct vm_area_struct
*find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
899 return find_vma(mm
, addr
);
903 * expand a stack to a given address
904 * - not supported under NOMMU conditions
906 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
912 * look up the first VMA exactly that exactly matches addr
913 * - should be called with mm->mmap_sem at least held readlocked
915 static struct vm_area_struct
*find_vma_exact(struct mm_struct
*mm
,
919 struct vm_area_struct
*vma
;
920 unsigned long end
= addr
+ len
;
922 /* check the cache first */
923 vma
= vmacache_find_exact(mm
, addr
, end
);
927 /* trawl the list (there may be multiple mappings in which addr
929 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
930 if (vma
->vm_start
< addr
)
932 if (vma
->vm_start
> addr
)
934 if (vma
->vm_end
== end
) {
935 vmacache_update(addr
, vma
);
944 * determine whether a mapping should be permitted and, if so, what sort of
945 * mapping we're capable of supporting
947 static int validate_mmap_request(struct file
*file
,
953 unsigned long *_capabilities
)
955 unsigned long capabilities
, rlen
;
958 /* do the simple checks first */
959 if (flags
& MAP_FIXED
) {
961 "%d: Can't do fixed-address/overlay mmap of RAM\n",
966 if ((flags
& MAP_TYPE
) != MAP_PRIVATE
&&
967 (flags
& MAP_TYPE
) != MAP_SHARED
)
973 /* Careful about overflows.. */
974 rlen
= PAGE_ALIGN(len
);
975 if (!rlen
|| rlen
> TASK_SIZE
)
978 /* offset overflow? */
979 if ((pgoff
+ (rlen
>> PAGE_SHIFT
)) < pgoff
)
983 /* files must support mmap */
984 if (!file
->f_op
->mmap
)
987 /* work out if what we've got could possibly be shared
988 * - we support chardevs that provide their own "memory"
989 * - we support files/blockdevs that are memory backed
991 if (file
->f_op
->mmap_capabilities
) {
992 capabilities
= file
->f_op
->mmap_capabilities(file
);
994 /* no explicit capabilities set, so assume some
996 switch (file_inode(file
)->i_mode
& S_IFMT
) {
999 capabilities
= NOMMU_MAP_COPY
;
1014 /* eliminate any capabilities that we can't support on this
1016 if (!file
->f_op
->get_unmapped_area
)
1017 capabilities
&= ~NOMMU_MAP_DIRECT
;
1018 if (!file
->f_op
->read
)
1019 capabilities
&= ~NOMMU_MAP_COPY
;
1021 /* The file shall have been opened with read permission. */
1022 if (!(file
->f_mode
& FMODE_READ
))
1025 if (flags
& MAP_SHARED
) {
1026 /* do checks for writing, appending and locking */
1027 if ((prot
& PROT_WRITE
) &&
1028 !(file
->f_mode
& FMODE_WRITE
))
1031 if (IS_APPEND(file_inode(file
)) &&
1032 (file
->f_mode
& FMODE_WRITE
))
1035 if (locks_verify_locked(file
))
1038 if (!(capabilities
& NOMMU_MAP_DIRECT
))
1041 /* we mustn't privatise shared mappings */
1042 capabilities
&= ~NOMMU_MAP_COPY
;
1044 /* we're going to read the file into private memory we
1046 if (!(capabilities
& NOMMU_MAP_COPY
))
1049 /* we don't permit a private writable mapping to be
1050 * shared with the backing device */
1051 if (prot
& PROT_WRITE
)
1052 capabilities
&= ~NOMMU_MAP_DIRECT
;
1055 if (capabilities
& NOMMU_MAP_DIRECT
) {
1056 if (((prot
& PROT_READ
) && !(capabilities
& NOMMU_MAP_READ
)) ||
1057 ((prot
& PROT_WRITE
) && !(capabilities
& NOMMU_MAP_WRITE
)) ||
1058 ((prot
& PROT_EXEC
) && !(capabilities
& NOMMU_MAP_EXEC
))
1060 capabilities
&= ~NOMMU_MAP_DIRECT
;
1061 if (flags
& MAP_SHARED
) {
1063 "MAP_SHARED not completely supported on !MMU\n");
1069 /* handle executable mappings and implied executable
1071 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1072 if (prot
& PROT_EXEC
)
1074 } else if ((prot
& PROT_READ
) && !(prot
& PROT_EXEC
)) {
1075 /* handle implication of PROT_EXEC by PROT_READ */
1076 if (current
->personality
& READ_IMPLIES_EXEC
) {
1077 if (capabilities
& NOMMU_MAP_EXEC
)
1080 } else if ((prot
& PROT_READ
) &&
1081 (prot
& PROT_EXEC
) &&
1082 !(capabilities
& NOMMU_MAP_EXEC
)
1084 /* backing file is not executable, try to copy */
1085 capabilities
&= ~NOMMU_MAP_DIRECT
;
1088 /* anonymous mappings are always memory backed and can be
1091 capabilities
= NOMMU_MAP_COPY
;
1093 /* handle PROT_EXEC implication by PROT_READ */
1094 if ((prot
& PROT_READ
) &&
1095 (current
->personality
& READ_IMPLIES_EXEC
))
1099 /* allow the security API to have its say */
1100 ret
= security_mmap_addr(addr
);
1105 *_capabilities
= capabilities
;
1110 * we've determined that we can make the mapping, now translate what we
1111 * now know into VMA flags
1113 static unsigned long determine_vm_flags(struct file
*file
,
1115 unsigned long flags
,
1116 unsigned long capabilities
)
1118 unsigned long vm_flags
;
1120 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
);
1121 /* vm_flags |= mm->def_flags; */
1123 if (!(capabilities
& NOMMU_MAP_DIRECT
)) {
1124 /* attempt to share read-only copies of mapped file chunks */
1125 vm_flags
|= VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1126 if (file
&& !(prot
& PROT_WRITE
))
1127 vm_flags
|= VM_MAYSHARE
;
1129 /* overlay a shareable mapping on the backing device or inode
1130 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1132 vm_flags
|= VM_MAYSHARE
| (capabilities
& NOMMU_VMFLAGS
);
1133 if (flags
& MAP_SHARED
)
1134 vm_flags
|= VM_SHARED
;
1137 /* refuse to let anyone share private mappings with this process if
1138 * it's being traced - otherwise breakpoints set in it may interfere
1139 * with another untraced process
1141 if ((flags
& MAP_PRIVATE
) && current
->ptrace
)
1142 vm_flags
&= ~VM_MAYSHARE
;
1148 * set up a shared mapping on a file (the driver or filesystem provides and
1151 static int do_mmap_shared_file(struct vm_area_struct
*vma
)
1155 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1157 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1163 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1164 * opposed to tried but failed) so we can only give a suitable error as
1165 * it's not possible to make a private copy if MAP_SHARED was given */
1170 * set up a private mapping or an anonymous shared mapping
1172 static int do_mmap_private(struct vm_area_struct
*vma
,
1173 struct vm_region
*region
,
1175 unsigned long capabilities
)
1177 unsigned long total
, point
;
1181 /* invoke the file's mapping function so that it can keep track of
1182 * shared mappings on devices or memory
1183 * - VM_MAYSHARE will be set if it may attempt to share
1185 if (capabilities
& NOMMU_MAP_DIRECT
) {
1186 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1188 /* shouldn't return success if we're not sharing */
1189 BUG_ON(!(vma
->vm_flags
& VM_MAYSHARE
));
1190 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1196 /* getting an ENOSYS error indicates that direct mmap isn't
1197 * possible (as opposed to tried but failed) so we'll try to
1198 * make a private copy of the data and map that instead */
1202 /* allocate some memory to hold the mapping
1203 * - note that this may not return a page-aligned address if the object
1204 * we're allocating is smaller than a page
1206 order
= get_order(len
);
1207 kdebug("alloc order %d for %lx", order
, len
);
1210 point
= len
>> PAGE_SHIFT
;
1212 /* we don't want to allocate a power-of-2 sized page set */
1213 if (sysctl_nr_trim_pages
&& total
- point
>= sysctl_nr_trim_pages
) {
1215 kdebug("try to alloc exact %lu pages", total
);
1216 base
= alloc_pages_exact(len
, GFP_KERNEL
);
1218 base
= (void *)__get_free_pages(GFP_KERNEL
, order
);
1224 atomic_long_add(total
, &mmap_pages_allocated
);
1226 region
->vm_flags
= vma
->vm_flags
|= VM_MAPPED_COPY
;
1227 region
->vm_start
= (unsigned long) base
;
1228 region
->vm_end
= region
->vm_start
+ len
;
1229 region
->vm_top
= region
->vm_start
+ (total
<< PAGE_SHIFT
);
1231 vma
->vm_start
= region
->vm_start
;
1232 vma
->vm_end
= region
->vm_start
+ len
;
1235 /* read the contents of a file into the copy */
1236 mm_segment_t old_fs
;
1239 fpos
= vma
->vm_pgoff
;
1240 fpos
<<= PAGE_SHIFT
;
1244 ret
= vma
->vm_file
->f_op
->read(vma
->vm_file
, base
, len
, &fpos
);
1250 /* clear the last little bit */
1252 memset(base
+ ret
, 0, len
- ret
);
1259 free_page_series(region
->vm_start
, region
->vm_top
);
1260 region
->vm_start
= vma
->vm_start
= 0;
1261 region
->vm_end
= vma
->vm_end
= 0;
1266 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1267 len
, current
->pid
, current
->comm
);
1273 * handle mapping creation for uClinux
1275 unsigned long do_mmap_pgoff(struct file
*file
,
1279 unsigned long flags
,
1280 unsigned long pgoff
,
1281 unsigned long *populate
)
1283 struct vm_area_struct
*vma
;
1284 struct vm_region
*region
;
1286 unsigned long capabilities
, vm_flags
, result
;
1289 kenter(",%lx,%lx,%lx,%lx,%lx", addr
, len
, prot
, flags
, pgoff
);
1293 /* decide whether we should attempt the mapping, and if so what sort of
1295 ret
= validate_mmap_request(file
, addr
, len
, prot
, flags
, pgoff
,
1298 kleave(" = %d [val]", ret
);
1302 /* we ignore the address hint */
1304 len
= PAGE_ALIGN(len
);
1306 /* we've determined that we can make the mapping, now translate what we
1307 * now know into VMA flags */
1308 vm_flags
= determine_vm_flags(file
, prot
, flags
, capabilities
);
1310 /* we're going to need to record the mapping */
1311 region
= kmem_cache_zalloc(vm_region_jar
, GFP_KERNEL
);
1313 goto error_getting_region
;
1315 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1317 goto error_getting_vma
;
1319 region
->vm_usage
= 1;
1320 region
->vm_flags
= vm_flags
;
1321 region
->vm_pgoff
= pgoff
;
1323 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1324 vma
->vm_flags
= vm_flags
;
1325 vma
->vm_pgoff
= pgoff
;
1328 region
->vm_file
= get_file(file
);
1329 vma
->vm_file
= get_file(file
);
1332 down_write(&nommu_region_sem
);
1334 /* if we want to share, we need to check for regions created by other
1335 * mmap() calls that overlap with our proposed mapping
1336 * - we can only share with a superset match on most regular files
1337 * - shared mappings on character devices and memory backed files are
1338 * permitted to overlap inexactly as far as we are concerned for in
1339 * these cases, sharing is handled in the driver or filesystem rather
1342 if (vm_flags
& VM_MAYSHARE
) {
1343 struct vm_region
*pregion
;
1344 unsigned long pglen
, rpglen
, pgend
, rpgend
, start
;
1346 pglen
= (len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1347 pgend
= pgoff
+ pglen
;
1349 for (rb
= rb_first(&nommu_region_tree
); rb
; rb
= rb_next(rb
)) {
1350 pregion
= rb_entry(rb
, struct vm_region
, vm_rb
);
1352 if (!(pregion
->vm_flags
& VM_MAYSHARE
))
1355 /* search for overlapping mappings on the same file */
1356 if (file_inode(pregion
->vm_file
) !=
1360 if (pregion
->vm_pgoff
>= pgend
)
1363 rpglen
= pregion
->vm_end
- pregion
->vm_start
;
1364 rpglen
= (rpglen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1365 rpgend
= pregion
->vm_pgoff
+ rpglen
;
1366 if (pgoff
>= rpgend
)
1369 /* handle inexactly overlapping matches between
1371 if ((pregion
->vm_pgoff
!= pgoff
|| rpglen
!= pglen
) &&
1372 !(pgoff
>= pregion
->vm_pgoff
&& pgend
<= rpgend
)) {
1373 /* new mapping is not a subset of the region */
1374 if (!(capabilities
& NOMMU_MAP_DIRECT
))
1375 goto sharing_violation
;
1379 /* we've found a region we can share */
1380 pregion
->vm_usage
++;
1381 vma
->vm_region
= pregion
;
1382 start
= pregion
->vm_start
;
1383 start
+= (pgoff
- pregion
->vm_pgoff
) << PAGE_SHIFT
;
1384 vma
->vm_start
= start
;
1385 vma
->vm_end
= start
+ len
;
1387 if (pregion
->vm_flags
& VM_MAPPED_COPY
) {
1388 kdebug("share copy");
1389 vma
->vm_flags
|= VM_MAPPED_COPY
;
1391 kdebug("share mmap");
1392 ret
= do_mmap_shared_file(vma
);
1394 vma
->vm_region
= NULL
;
1397 pregion
->vm_usage
--;
1399 goto error_just_free
;
1402 fput(region
->vm_file
);
1403 kmem_cache_free(vm_region_jar
, region
);
1409 /* obtain the address at which to make a shared mapping
1410 * - this is the hook for quasi-memory character devices to
1411 * tell us the location of a shared mapping
1413 if (capabilities
& NOMMU_MAP_DIRECT
) {
1414 addr
= file
->f_op
->get_unmapped_area(file
, addr
, len
,
1416 if (IS_ERR_VALUE(addr
)) {
1419 goto error_just_free
;
1421 /* the driver refused to tell us where to site
1422 * the mapping so we'll have to attempt to copy
1425 if (!(capabilities
& NOMMU_MAP_COPY
))
1426 goto error_just_free
;
1428 capabilities
&= ~NOMMU_MAP_DIRECT
;
1430 vma
->vm_start
= region
->vm_start
= addr
;
1431 vma
->vm_end
= region
->vm_end
= addr
+ len
;
1436 vma
->vm_region
= region
;
1438 /* set up the mapping
1439 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1441 if (file
&& vma
->vm_flags
& VM_SHARED
)
1442 ret
= do_mmap_shared_file(vma
);
1444 ret
= do_mmap_private(vma
, region
, len
, capabilities
);
1446 goto error_just_free
;
1447 add_nommu_region(region
);
1449 /* clear anonymous mappings that don't ask for uninitialized data */
1450 if (!vma
->vm_file
&& !(flags
& MAP_UNINITIALIZED
))
1451 memset((void *)region
->vm_start
, 0,
1452 region
->vm_end
- region
->vm_start
);
1454 /* okay... we have a mapping; now we have to register it */
1455 result
= vma
->vm_start
;
1457 current
->mm
->total_vm
+= len
>> PAGE_SHIFT
;
1460 add_vma_to_mm(current
->mm
, vma
);
1462 /* we flush the region from the icache only when the first executable
1463 * mapping of it is made */
1464 if (vma
->vm_flags
& VM_EXEC
&& !region
->vm_icache_flushed
) {
1465 flush_icache_range(region
->vm_start
, region
->vm_end
);
1466 region
->vm_icache_flushed
= true;
1469 up_write(&nommu_region_sem
);
1471 kleave(" = %lx", result
);
1475 up_write(&nommu_region_sem
);
1477 if (region
->vm_file
)
1478 fput(region
->vm_file
);
1479 kmem_cache_free(vm_region_jar
, region
);
1482 kmem_cache_free(vm_area_cachep
, vma
);
1483 kleave(" = %d", ret
);
1487 up_write(&nommu_region_sem
);
1488 printk(KERN_WARNING
"Attempt to share mismatched mappings\n");
1493 kmem_cache_free(vm_region_jar
, region
);
1494 printk(KERN_WARNING
"Allocation of vma for %lu byte allocation"
1495 " from process %d failed\n",
1500 error_getting_region
:
1501 printk(KERN_WARNING
"Allocation of vm region for %lu byte allocation"
1502 " from process %d failed\n",
1508 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1509 unsigned long, prot
, unsigned long, flags
,
1510 unsigned long, fd
, unsigned long, pgoff
)
1512 struct file
*file
= NULL
;
1513 unsigned long retval
= -EBADF
;
1515 audit_mmap_fd(fd
, flags
);
1516 if (!(flags
& MAP_ANONYMOUS
)) {
1522 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1524 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1532 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1533 struct mmap_arg_struct
{
1537 unsigned long flags
;
1539 unsigned long offset
;
1542 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1544 struct mmap_arg_struct a
;
1546 if (copy_from_user(&a
, arg
, sizeof(a
)))
1548 if (a
.offset
& ~PAGE_MASK
)
1551 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1552 a
.offset
>> PAGE_SHIFT
);
1554 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1557 * split a vma into two pieces at address 'addr', a new vma is allocated either
1558 * for the first part or the tail.
1560 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1561 unsigned long addr
, int new_below
)
1563 struct vm_area_struct
*new;
1564 struct vm_region
*region
;
1565 unsigned long npages
;
1569 /* we're only permitted to split anonymous regions (these should have
1570 * only a single usage on the region) */
1574 if (mm
->map_count
>= sysctl_max_map_count
)
1577 region
= kmem_cache_alloc(vm_region_jar
, GFP_KERNEL
);
1581 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1583 kmem_cache_free(vm_region_jar
, region
);
1587 /* most fields are the same, copy all, and then fixup */
1589 *region
= *vma
->vm_region
;
1590 new->vm_region
= region
;
1592 npages
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
1595 region
->vm_top
= region
->vm_end
= new->vm_end
= addr
;
1597 region
->vm_start
= new->vm_start
= addr
;
1598 region
->vm_pgoff
= new->vm_pgoff
+= npages
;
1601 if (new->vm_ops
&& new->vm_ops
->open
)
1602 new->vm_ops
->open(new);
1604 delete_vma_from_mm(vma
);
1605 down_write(&nommu_region_sem
);
1606 delete_nommu_region(vma
->vm_region
);
1608 vma
->vm_region
->vm_start
= vma
->vm_start
= addr
;
1609 vma
->vm_region
->vm_pgoff
= vma
->vm_pgoff
+= npages
;
1611 vma
->vm_region
->vm_end
= vma
->vm_end
= addr
;
1612 vma
->vm_region
->vm_top
= addr
;
1614 add_nommu_region(vma
->vm_region
);
1615 add_nommu_region(new->vm_region
);
1616 up_write(&nommu_region_sem
);
1617 add_vma_to_mm(mm
, vma
);
1618 add_vma_to_mm(mm
, new);
1623 * shrink a VMA by removing the specified chunk from either the beginning or
1626 static int shrink_vma(struct mm_struct
*mm
,
1627 struct vm_area_struct
*vma
,
1628 unsigned long from
, unsigned long to
)
1630 struct vm_region
*region
;
1634 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1636 delete_vma_from_mm(vma
);
1637 if (from
> vma
->vm_start
)
1641 add_vma_to_mm(mm
, vma
);
1643 /* cut the backing region down to size */
1644 region
= vma
->vm_region
;
1645 BUG_ON(region
->vm_usage
!= 1);
1647 down_write(&nommu_region_sem
);
1648 delete_nommu_region(region
);
1649 if (from
> region
->vm_start
) {
1650 to
= region
->vm_top
;
1651 region
->vm_top
= region
->vm_end
= from
;
1653 region
->vm_start
= to
;
1655 add_nommu_region(region
);
1656 up_write(&nommu_region_sem
);
1658 free_page_series(from
, to
);
1664 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1665 * VMA, though it need not cover the whole VMA
1667 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1669 struct vm_area_struct
*vma
;
1673 kenter(",%lx,%zx", start
, len
);
1675 len
= PAGE_ALIGN(len
);
1681 /* find the first potentially overlapping VMA */
1682 vma
= find_vma(mm
, start
);
1687 "munmap of memory not mmapped by process %d"
1688 " (%s): 0x%lx-0x%lx\n",
1689 current
->pid
, current
->comm
,
1690 start
, start
+ len
- 1);
1696 /* we're allowed to split an anonymous VMA but not a file-backed one */
1699 if (start
> vma
->vm_start
) {
1700 kleave(" = -EINVAL [miss]");
1703 if (end
== vma
->vm_end
)
1704 goto erase_whole_vma
;
1707 kleave(" = -EINVAL [split file]");
1710 /* the chunk must be a subset of the VMA found */
1711 if (start
== vma
->vm_start
&& end
== vma
->vm_end
)
1712 goto erase_whole_vma
;
1713 if (start
< vma
->vm_start
|| end
> vma
->vm_end
) {
1714 kleave(" = -EINVAL [superset]");
1717 if (start
& ~PAGE_MASK
) {
1718 kleave(" = -EINVAL [unaligned start]");
1721 if (end
!= vma
->vm_end
&& end
& ~PAGE_MASK
) {
1722 kleave(" = -EINVAL [unaligned split]");
1725 if (start
!= vma
->vm_start
&& end
!= vma
->vm_end
) {
1726 ret
= split_vma(mm
, vma
, start
, 1);
1728 kleave(" = %d [split]", ret
);
1732 return shrink_vma(mm
, vma
, start
, end
);
1736 delete_vma_from_mm(vma
);
1737 delete_vma(mm
, vma
);
1741 EXPORT_SYMBOL(do_munmap
);
1743 int vm_munmap(unsigned long addr
, size_t len
)
1745 struct mm_struct
*mm
= current
->mm
;
1748 down_write(&mm
->mmap_sem
);
1749 ret
= do_munmap(mm
, addr
, len
);
1750 up_write(&mm
->mmap_sem
);
1753 EXPORT_SYMBOL(vm_munmap
);
1755 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1757 return vm_munmap(addr
, len
);
1761 * release all the mappings made in a process's VM space
1763 void exit_mmap(struct mm_struct
*mm
)
1765 struct vm_area_struct
*vma
;
1774 while ((vma
= mm
->mmap
)) {
1775 mm
->mmap
= vma
->vm_next
;
1776 delete_vma_from_mm(vma
);
1777 delete_vma(mm
, vma
);
1784 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
1790 * expand (or shrink) an existing mapping, potentially moving it at the same
1791 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1793 * under NOMMU conditions, we only permit changing a mapping's size, and only
1794 * as long as it stays within the region allocated by do_mmap_private() and the
1795 * block is not shareable
1797 * MREMAP_FIXED is not supported under NOMMU conditions
1799 static unsigned long do_mremap(unsigned long addr
,
1800 unsigned long old_len
, unsigned long new_len
,
1801 unsigned long flags
, unsigned long new_addr
)
1803 struct vm_area_struct
*vma
;
1805 /* insanity checks first */
1806 old_len
= PAGE_ALIGN(old_len
);
1807 new_len
= PAGE_ALIGN(new_len
);
1808 if (old_len
== 0 || new_len
== 0)
1809 return (unsigned long) -EINVAL
;
1811 if (addr
& ~PAGE_MASK
)
1814 if (flags
& MREMAP_FIXED
&& new_addr
!= addr
)
1815 return (unsigned long) -EINVAL
;
1817 vma
= find_vma_exact(current
->mm
, addr
, old_len
);
1819 return (unsigned long) -EINVAL
;
1821 if (vma
->vm_end
!= vma
->vm_start
+ old_len
)
1822 return (unsigned long) -EFAULT
;
1824 if (vma
->vm_flags
& VM_MAYSHARE
)
1825 return (unsigned long) -EPERM
;
1827 if (new_len
> vma
->vm_region
->vm_end
- vma
->vm_region
->vm_start
)
1828 return (unsigned long) -ENOMEM
;
1830 /* all checks complete - do it */
1831 vma
->vm_end
= vma
->vm_start
+ new_len
;
1832 return vma
->vm_start
;
1835 SYSCALL_DEFINE5(mremap
, unsigned long, addr
, unsigned long, old_len
,
1836 unsigned long, new_len
, unsigned long, flags
,
1837 unsigned long, new_addr
)
1841 down_write(¤t
->mm
->mmap_sem
);
1842 ret
= do_mremap(addr
, old_len
, new_len
, flags
, new_addr
);
1843 up_write(¤t
->mm
->mmap_sem
);
1847 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1848 unsigned long address
, unsigned int flags
,
1849 unsigned int *page_mask
)
1855 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1856 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1858 if (addr
!= (pfn
<< PAGE_SHIFT
))
1861 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1864 EXPORT_SYMBOL(remap_pfn_range
);
1866 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1868 unsigned long pfn
= start
>> PAGE_SHIFT
;
1869 unsigned long vm_len
= vma
->vm_end
- vma
->vm_start
;
1871 pfn
+= vma
->vm_pgoff
;
1872 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1874 EXPORT_SYMBOL(vm_iomap_memory
);
1876 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1877 unsigned long pgoff
)
1879 unsigned int size
= vma
->vm_end
- vma
->vm_start
;
1881 if (!(vma
->vm_flags
& VM_USERMAP
))
1884 vma
->vm_start
= (unsigned long)(addr
+ (pgoff
<< PAGE_SHIFT
));
1885 vma
->vm_end
= vma
->vm_start
+ size
;
1889 EXPORT_SYMBOL(remap_vmalloc_range
);
1891 unsigned long arch_get_unmapped_area(struct file
*file
, unsigned long addr
,
1892 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1897 void unmap_mapping_range(struct address_space
*mapping
,
1898 loff_t
const holebegin
, loff_t
const holelen
,
1902 EXPORT_SYMBOL(unmap_mapping_range
);
1905 * Check that a process has enough memory to allocate a new virtual
1906 * mapping. 0 means there is enough memory for the allocation to
1907 * succeed and -ENOMEM implies there is not.
1909 * We currently support three overcommit policies, which are set via the
1910 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1912 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1913 * Additional code 2002 Jul 20 by Robert Love.
1915 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1917 * Note this is a helper function intended to be used by LSMs which
1918 * wish to use this logic.
1920 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
1922 long free
, allowed
, reserve
;
1924 vm_acct_memory(pages
);
1927 * Sometimes we want to use more memory than we have
1929 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
1932 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
1933 free
= global_page_state(NR_FREE_PAGES
);
1934 free
+= global_page_state(NR_FILE_PAGES
);
1937 * shmem pages shouldn't be counted as free in this
1938 * case, they can't be purged, only swapped out, and
1939 * that won't affect the overall amount of available
1940 * memory in the system.
1942 free
-= global_page_state(NR_SHMEM
);
1944 free
+= get_nr_swap_pages();
1947 * Any slabs which are created with the
1948 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1949 * which are reclaimable, under pressure. The dentry
1950 * cache and most inode caches should fall into this
1952 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
1955 * Leave reserved pages. The pages are not for anonymous pages.
1957 if (free
<= totalreserve_pages
)
1960 free
-= totalreserve_pages
;
1963 * Reserve some for root
1966 free
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1974 allowed
= vm_commit_limit();
1976 * Reserve some 3% for root
1979 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1982 * Don't let a single process grow so big a user can't recover
1985 reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1986 allowed
-= min_t(long, mm
->total_vm
/ 32, reserve
);
1989 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
1993 vm_unacct_memory(pages
);
1998 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2003 EXPORT_SYMBOL(filemap_fault
);
2005 void filemap_map_pages(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2009 EXPORT_SYMBOL(filemap_map_pages
);
2011 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
2012 unsigned long addr
, void *buf
, int len
, int write
)
2014 struct vm_area_struct
*vma
;
2016 down_read(&mm
->mmap_sem
);
2018 /* the access must start within one of the target process's mappings */
2019 vma
= find_vma(mm
, addr
);
2021 /* don't overrun this mapping */
2022 if (addr
+ len
>= vma
->vm_end
)
2023 len
= vma
->vm_end
- addr
;
2025 /* only read or write mappings where it is permitted */
2026 if (write
&& vma
->vm_flags
& VM_MAYWRITE
)
2027 copy_to_user_page(vma
, NULL
, addr
,
2028 (void *) addr
, buf
, len
);
2029 else if (!write
&& vma
->vm_flags
& VM_MAYREAD
)
2030 copy_from_user_page(vma
, NULL
, addr
,
2031 buf
, (void *) addr
, len
);
2038 up_read(&mm
->mmap_sem
);
2044 * @access_remote_vm - access another process' address space
2045 * @mm: the mm_struct of the target address space
2046 * @addr: start address to access
2047 * @buf: source or destination buffer
2048 * @len: number of bytes to transfer
2049 * @write: whether the access is a write
2051 * The caller must hold a reference on @mm.
2053 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
2054 void *buf
, int len
, int write
)
2056 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
2060 * Access another process' address space.
2061 * - source/target buffer must be kernel space
2063 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
2065 struct mm_struct
*mm
;
2067 if (addr
+ len
< addr
)
2070 mm
= get_task_mm(tsk
);
2074 len
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
2081 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2082 * @inode: The inode to check
2083 * @size: The current filesize of the inode
2084 * @newsize: The proposed filesize of the inode
2086 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2087 * make sure that that any outstanding VMAs aren't broken and then shrink the
2088 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2089 * automatically grant mappings that are too large.
2091 int nommu_shrink_inode_mappings(struct inode
*inode
, size_t size
,
2094 struct vm_area_struct
*vma
;
2095 struct vm_region
*region
;
2097 size_t r_size
, r_top
;
2099 low
= newsize
>> PAGE_SHIFT
;
2100 high
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2102 down_write(&nommu_region_sem
);
2103 i_mmap_lock_read(inode
->i_mapping
);
2105 /* search for VMAs that fall within the dead zone */
2106 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
, low
, high
) {
2107 /* found one - only interested if it's shared out of the page
2109 if (vma
->vm_flags
& VM_SHARED
) {
2110 i_mmap_unlock_read(inode
->i_mapping
);
2111 up_write(&nommu_region_sem
);
2112 return -ETXTBSY
; /* not quite true, but near enough */
2116 /* reduce any regions that overlap the dead zone - if in existence,
2117 * these will be pointed to by VMAs that don't overlap the dead zone
2119 * we don't check for any regions that start beyond the EOF as there
2122 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
, 0, ULONG_MAX
) {
2123 if (!(vma
->vm_flags
& VM_SHARED
))
2126 region
= vma
->vm_region
;
2127 r_size
= region
->vm_top
- region
->vm_start
;
2128 r_top
= (region
->vm_pgoff
<< PAGE_SHIFT
) + r_size
;
2130 if (r_top
> newsize
) {
2131 region
->vm_top
-= r_top
- newsize
;
2132 if (region
->vm_end
> region
->vm_top
)
2133 region
->vm_end
= region
->vm_top
;
2137 i_mmap_unlock_read(inode
->i_mapping
);
2138 up_write(&nommu_region_sem
);
2143 * Initialise sysctl_user_reserve_kbytes.
2145 * This is intended to prevent a user from starting a single memory hogging
2146 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2149 * The default value is min(3% of free memory, 128MB)
2150 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2152 static int __meminit
init_user_reserve(void)
2154 unsigned long free_kbytes
;
2156 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
2158 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
2161 module_init(init_user_reserve
)
2164 * Initialise sysctl_admin_reserve_kbytes.
2166 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2167 * to log in and kill a memory hogging process.
2169 * Systems with more than 256MB will reserve 8MB, enough to recover
2170 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2171 * only reserve 3% of free pages by default.
2173 static int __meminit
init_admin_reserve(void)
2175 unsigned long free_kbytes
;
2177 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
2179 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
2182 module_init(init_admin_reserve
)