2 * Real Time Clock interface for Linux
4 * Copyright (C) 1996 Paul Gortmaker
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call.
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
38 * 1.10 Paul Barton-Davis: add support for async I/O
39 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
44 * 1.11 Takashi Iwai: Kernel access functions
45 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
49 * 1.12ac Alan Cox: Allow read access to the day of week register
52 #define RTC_VERSION "1.12ac"
54 #define RTC_IO_EXTENT 0x8
57 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59 * design of the RTC, we don't want two different things trying to
60 * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
64 #include <linux/config.h>
65 #include <linux/interrupt.h>
66 #include <linux/module.h>
67 #include <linux/kernel.h>
68 #include <linux/types.h>
69 #include <linux/miscdevice.h>
70 #include <linux/ioport.h>
71 #include <linux/fcntl.h>
72 #include <linux/mc146818rtc.h>
73 #include <linux/init.h>
74 #include <linux/poll.h>
75 #include <linux/proc_fs.h>
76 #include <linux/seq_file.h>
77 #include <linux/spinlock.h>
78 #include <linux/sysctl.h>
79 #include <linux/wait.h>
80 #include <linux/bcd.h>
81 #include <linux/delay.h>
83 #include <asm/current.h>
84 #include <asm/uaccess.h>
85 #include <asm/system.h>
92 #include <linux/pci.h>
98 static unsigned long rtc_port
;
99 static int rtc_irq
= PCI_IRQ_NONE
;
102 #ifdef CONFIG_HPET_RTC_IRQ
107 static int rtc_has_irq
= 1;
110 #ifndef CONFIG_HPET_EMULATE_RTC
111 #define is_hpet_enabled() 0
112 #define hpet_set_alarm_time(hrs, min, sec) 0
113 #define hpet_set_periodic_freq(arg) 0
114 #define hpet_mask_rtc_irq_bit(arg) 0
115 #define hpet_set_rtc_irq_bit(arg) 0
116 #define hpet_rtc_timer_init() do { } while (0)
117 #define hpet_rtc_dropped_irq() 0
118 static inline irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
) {return 0;}
120 extern irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
);
124 * We sponge a minor off of the misc major. No need slurping
125 * up another valuable major dev number for this. If you add
126 * an ioctl, make sure you don't conflict with SPARC's RTC
130 static struct fasync_struct
*rtc_async_queue
;
132 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait
);
135 static struct timer_list rtc_irq_timer
;
138 static ssize_t
rtc_read(struct file
*file
, char __user
*buf
,
139 size_t count
, loff_t
*ppos
);
141 static int rtc_ioctl(struct inode
*inode
, struct file
*file
,
142 unsigned int cmd
, unsigned long arg
);
145 static unsigned int rtc_poll(struct file
*file
, poll_table
*wait
);
148 static void get_rtc_alm_time (struct rtc_time
*alm_tm
);
150 static void rtc_dropped_irq(unsigned long data
);
152 static void set_rtc_irq_bit_locked(unsigned char bit
);
153 static void mask_rtc_irq_bit_locked(unsigned char bit
);
155 static inline void set_rtc_irq_bit(unsigned char bit
)
157 spin_lock_irq(&rtc_lock
);
158 set_rtc_irq_bit_locked(bit
);
159 spin_unlock_irq(&rtc_lock
);
162 static void mask_rtc_irq_bit(unsigned char bit
)
164 spin_lock_irq(&rtc_lock
);
165 mask_rtc_irq_bit_locked(bit
);
166 spin_unlock_irq(&rtc_lock
);
170 static int rtc_proc_open(struct inode
*inode
, struct file
*file
);
173 * Bits in rtc_status. (6 bits of room for future expansion)
176 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
177 #define RTC_TIMER_ON 0x02 /* missed irq timer active */
180 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
181 * protected by the big kernel lock. However, ioctl can still disable the timer
182 * in rtc_status and then with del_timer after the interrupt has read
183 * rtc_status but before mod_timer is called, which would then reenable the
184 * timer (but you would need to have an awful timing before you'd trip on it)
186 static unsigned long rtc_status
= 0; /* bitmapped status byte. */
187 static unsigned long rtc_freq
= 0; /* Current periodic IRQ rate */
188 static unsigned long rtc_irq_data
= 0; /* our output to the world */
189 static unsigned long rtc_max_user_freq
= 64; /* > this, need CAP_SYS_RESOURCE */
193 * rtc_task_lock nests inside rtc_lock.
195 static DEFINE_SPINLOCK(rtc_task_lock
);
196 static rtc_task_t
*rtc_callback
= NULL
;
200 * If this driver ever becomes modularised, it will be really nice
201 * to make the epoch retain its value across module reload...
204 static unsigned long epoch
= 1900; /* year corresponding to 0x00 */
206 static const unsigned char days_in_mo
[] =
207 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
210 * Returns true if a clock update is in progress
212 static inline unsigned char rtc_is_updating(void)
216 spin_lock_irq(&rtc_lock
);
217 uip
= (CMOS_READ(RTC_FREQ_SELECT
) & RTC_UIP
);
218 spin_unlock_irq(&rtc_lock
);
224 * A very tiny interrupt handler. It runs with SA_INTERRUPT set,
225 * but there is possibility of conflicting with the set_rtc_mmss()
226 * call (the rtc irq and the timer irq can easily run at the same
227 * time in two different CPUs). So we need to serialize
228 * accesses to the chip with the rtc_lock spinlock that each
229 * architecture should implement in the timer code.
230 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
233 irqreturn_t
rtc_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
236 * Can be an alarm interrupt, update complete interrupt,
237 * or a periodic interrupt. We store the status in the
238 * low byte and the number of interrupts received since
239 * the last read in the remainder of rtc_irq_data.
242 spin_lock (&rtc_lock
);
243 rtc_irq_data
+= 0x100;
244 rtc_irq_data
&= ~0xff;
245 if (is_hpet_enabled()) {
247 * In this case it is HPET RTC interrupt handler
248 * calling us, with the interrupt information
249 * passed as arg1, instead of irq.
251 rtc_irq_data
|= (unsigned long)irq
& 0xF0;
253 rtc_irq_data
|= (CMOS_READ(RTC_INTR_FLAGS
) & 0xF0);
256 if (rtc_status
& RTC_TIMER_ON
)
257 mod_timer(&rtc_irq_timer
, jiffies
+ HZ
/rtc_freq
+ 2*HZ
/100);
259 spin_unlock (&rtc_lock
);
261 /* Now do the rest of the actions */
262 spin_lock(&rtc_task_lock
);
264 rtc_callback
->func(rtc_callback
->private_data
);
265 spin_unlock(&rtc_task_lock
);
266 wake_up_interruptible(&rtc_wait
);
268 kill_fasync (&rtc_async_queue
, SIGIO
, POLL_IN
);
275 * sysctl-tuning infrastructure.
277 static ctl_table rtc_table
[] = {
280 .procname
= "max-user-freq",
281 .data
= &rtc_max_user_freq
,
282 .maxlen
= sizeof(int),
284 .proc_handler
= &proc_dointvec
,
289 static ctl_table rtc_root
[] = {
300 static ctl_table dev_root
[] = {
311 static struct ctl_table_header
*sysctl_header
;
313 static int __init
init_sysctl(void)
315 sysctl_header
= register_sysctl_table(dev_root
, 0);
319 static void __exit
cleanup_sysctl(void)
321 unregister_sysctl_table(sysctl_header
);
325 * Now all the various file operations that we export.
328 static ssize_t
rtc_read(struct file
*file
, char __user
*buf
,
329 size_t count
, loff_t
*ppos
)
334 DECLARE_WAITQUEUE(wait
, current
);
338 if (rtc_has_irq
== 0)
341 if (count
< sizeof(unsigned))
344 add_wait_queue(&rtc_wait
, &wait
);
347 /* First make it right. Then make it fast. Putting this whole
348 * block within the parentheses of a while would be too
349 * confusing. And no, xchg() is not the answer. */
351 __set_current_state(TASK_INTERRUPTIBLE
);
353 spin_lock_irq (&rtc_lock
);
356 spin_unlock_irq (&rtc_lock
);
361 if (file
->f_flags
& O_NONBLOCK
) {
365 if (signal_pending(current
)) {
366 retval
= -ERESTARTSYS
;
372 if (count
< sizeof(unsigned long))
373 retval
= put_user(data
, (unsigned int __user
*)buf
) ?: sizeof(int);
375 retval
= put_user(data
, (unsigned long __user
*)buf
) ?: sizeof(long);
377 current
->state
= TASK_RUNNING
;
378 remove_wait_queue(&rtc_wait
, &wait
);
384 static int rtc_do_ioctl(unsigned int cmd
, unsigned long arg
, int kernel
)
386 struct rtc_time wtime
;
389 if (rtc_has_irq
== 0) {
406 case RTC_AIE_OFF
: /* Mask alarm int. enab. bit */
408 mask_rtc_irq_bit(RTC_AIE
);
411 case RTC_AIE_ON
: /* Allow alarm interrupts. */
413 set_rtc_irq_bit(RTC_AIE
);
416 case RTC_PIE_OFF
: /* Mask periodic int. enab. bit */
418 unsigned long flags
; /* can be called from isr via rtc_control() */
419 spin_lock_irqsave (&rtc_lock
, flags
);
420 mask_rtc_irq_bit_locked(RTC_PIE
);
421 if (rtc_status
& RTC_TIMER_ON
) {
422 rtc_status
&= ~RTC_TIMER_ON
;
423 del_timer(&rtc_irq_timer
);
425 spin_unlock_irqrestore (&rtc_lock
, flags
);
428 case RTC_PIE_ON
: /* Allow periodic ints */
430 unsigned long flags
; /* can be called from isr via rtc_control() */
432 * We don't really want Joe User enabling more
433 * than 64Hz of interrupts on a multi-user machine.
435 if (!kernel
&& (rtc_freq
> rtc_max_user_freq
) &&
436 (!capable(CAP_SYS_RESOURCE
)))
439 spin_lock_irqsave (&rtc_lock
, flags
);
440 if (!(rtc_status
& RTC_TIMER_ON
)) {
441 rtc_irq_timer
.expires
= jiffies
+ HZ
/rtc_freq
+ 2*HZ
/100;
442 add_timer(&rtc_irq_timer
);
443 rtc_status
|= RTC_TIMER_ON
;
445 set_rtc_irq_bit_locked(RTC_PIE
);
446 spin_unlock_irqrestore (&rtc_lock
, flags
);
449 case RTC_UIE_OFF
: /* Mask ints from RTC updates. */
451 mask_rtc_irq_bit(RTC_UIE
);
454 case RTC_UIE_ON
: /* Allow ints for RTC updates. */
456 set_rtc_irq_bit(RTC_UIE
);
460 case RTC_ALM_READ
: /* Read the present alarm time */
463 * This returns a struct rtc_time. Reading >= 0xc0
464 * means "don't care" or "match all". Only the tm_hour,
465 * tm_min, and tm_sec values are filled in.
467 memset(&wtime
, 0, sizeof(struct rtc_time
));
468 get_rtc_alm_time(&wtime
);
471 case RTC_ALM_SET
: /* Store a time into the alarm */
474 * This expects a struct rtc_time. Writing 0xff means
475 * "don't care" or "match all". Only the tm_hour,
476 * tm_min and tm_sec are used.
478 unsigned char hrs
, min
, sec
;
479 struct rtc_time alm_tm
;
481 if (copy_from_user(&alm_tm
, (struct rtc_time __user
*)arg
,
482 sizeof(struct rtc_time
)))
485 hrs
= alm_tm
.tm_hour
;
489 spin_lock_irq(&rtc_lock
);
490 if (hpet_set_alarm_time(hrs
, min
, sec
)) {
492 * Fallthru and set alarm time in CMOS too,
493 * so that we will get proper value in RTC_ALM_READ
496 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
) ||
499 if (sec
< 60) BIN_TO_BCD(sec
);
502 if (min
< 60) BIN_TO_BCD(min
);
505 if (hrs
< 24) BIN_TO_BCD(hrs
);
508 CMOS_WRITE(hrs
, RTC_HOURS_ALARM
);
509 CMOS_WRITE(min
, RTC_MINUTES_ALARM
);
510 CMOS_WRITE(sec
, RTC_SECONDS_ALARM
);
511 spin_unlock_irq(&rtc_lock
);
515 case RTC_RD_TIME
: /* Read the time/date from RTC */
517 memset(&wtime
, 0, sizeof(struct rtc_time
));
518 rtc_get_rtc_time(&wtime
);
521 case RTC_SET_TIME
: /* Set the RTC */
523 struct rtc_time rtc_tm
;
524 unsigned char mon
, day
, hrs
, min
, sec
, leap_yr
;
525 unsigned char save_control
, save_freq_select
;
527 #ifdef CONFIG_MACH_DECSTATION
528 unsigned int real_yrs
;
531 if (!capable(CAP_SYS_TIME
))
534 if (copy_from_user(&rtc_tm
, (struct rtc_time __user
*)arg
,
535 sizeof(struct rtc_time
)))
538 yrs
= rtc_tm
.tm_year
+ 1900;
539 mon
= rtc_tm
.tm_mon
+ 1; /* tm_mon starts at zero */
540 day
= rtc_tm
.tm_mday
;
541 hrs
= rtc_tm
.tm_hour
;
548 leap_yr
= ((!(yrs
% 4) && (yrs
% 100)) || !(yrs
% 400));
550 if ((mon
> 12) || (day
== 0))
553 if (day
> (days_in_mo
[mon
] + ((mon
== 2) && leap_yr
)))
556 if ((hrs
>= 24) || (min
>= 60) || (sec
>= 60))
559 if ((yrs
-= epoch
) > 255) /* They are unsigned */
562 spin_lock_irq(&rtc_lock
);
563 #ifdef CONFIG_MACH_DECSTATION
568 * We want to keep the year set to 73 until March
569 * for non-leap years, so that Feb, 29th is handled
572 if (!leap_yr
&& mon
< 3) {
577 /* These limits and adjustments are independent of
578 * whether the chip is in binary mode or not.
581 spin_unlock_irq(&rtc_lock
);
587 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
)
597 save_control
= CMOS_READ(RTC_CONTROL
);
598 CMOS_WRITE((save_control
|RTC_SET
), RTC_CONTROL
);
599 save_freq_select
= CMOS_READ(RTC_FREQ_SELECT
);
600 CMOS_WRITE((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
602 #ifdef CONFIG_MACH_DECSTATION
603 CMOS_WRITE(real_yrs
, RTC_DEC_YEAR
);
605 CMOS_WRITE(yrs
, RTC_YEAR
);
606 CMOS_WRITE(mon
, RTC_MONTH
);
607 CMOS_WRITE(day
, RTC_DAY_OF_MONTH
);
608 CMOS_WRITE(hrs
, RTC_HOURS
);
609 CMOS_WRITE(min
, RTC_MINUTES
);
610 CMOS_WRITE(sec
, RTC_SECONDS
);
612 CMOS_WRITE(save_control
, RTC_CONTROL
);
613 CMOS_WRITE(save_freq_select
, RTC_FREQ_SELECT
);
615 spin_unlock_irq(&rtc_lock
);
619 case RTC_IRQP_READ
: /* Read the periodic IRQ rate. */
621 return put_user(rtc_freq
, (unsigned long __user
*)arg
);
623 case RTC_IRQP_SET
: /* Set periodic IRQ rate. */
627 unsigned long flags
; /* can be called from isr via rtc_control() */
630 * The max we can do is 8192Hz.
632 if ((arg
< 2) || (arg
> 8192))
635 * We don't really want Joe User generating more
636 * than 64Hz of interrupts on a multi-user machine.
638 if (!kernel
&& (arg
> rtc_max_user_freq
) && (!capable(CAP_SYS_RESOURCE
)))
641 while (arg
> (1<<tmp
))
645 * Check that the input was really a power of 2.
650 spin_lock_irqsave(&rtc_lock
, flags
);
651 if (hpet_set_periodic_freq(arg
)) {
652 spin_unlock_irqrestore(&rtc_lock
, flags
);
657 val
= CMOS_READ(RTC_FREQ_SELECT
) & 0xf0;
659 CMOS_WRITE(val
, RTC_FREQ_SELECT
);
660 spin_unlock_irqrestore(&rtc_lock
, flags
);
664 case RTC_EPOCH_READ
: /* Read the epoch. */
666 return put_user (epoch
, (unsigned long __user
*)arg
);
668 case RTC_EPOCH_SET
: /* Set the epoch. */
671 * There were no RTC clocks before 1900.
676 if (!capable(CAP_SYS_TIME
))
685 return copy_to_user((void __user
*)arg
, &wtime
, sizeof wtime
) ? -EFAULT
: 0;
688 static int rtc_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
,
691 return rtc_do_ioctl(cmd
, arg
, 0);
695 * We enforce only one user at a time here with the open/close.
696 * Also clear the previous interrupt data on an open, and clean
697 * up things on a close.
700 /* We use rtc_lock to protect against concurrent opens. So the BKL is not
701 * needed here. Or anywhere else in this driver. */
702 static int rtc_open(struct inode
*inode
, struct file
*file
)
704 spin_lock_irq (&rtc_lock
);
706 if(rtc_status
& RTC_IS_OPEN
)
709 rtc_status
|= RTC_IS_OPEN
;
712 spin_unlock_irq (&rtc_lock
);
716 spin_unlock_irq (&rtc_lock
);
720 static int rtc_fasync (int fd
, struct file
*filp
, int on
)
723 return fasync_helper (fd
, filp
, on
, &rtc_async_queue
);
726 static int rtc_release(struct inode
*inode
, struct file
*file
)
731 if (rtc_has_irq
== 0)
735 * Turn off all interrupts once the device is no longer
736 * in use, and clear the data.
739 spin_lock_irq(&rtc_lock
);
740 if (!hpet_mask_rtc_irq_bit(RTC_PIE
| RTC_AIE
| RTC_UIE
)) {
741 tmp
= CMOS_READ(RTC_CONTROL
);
745 CMOS_WRITE(tmp
, RTC_CONTROL
);
746 CMOS_READ(RTC_INTR_FLAGS
);
748 if (rtc_status
& RTC_TIMER_ON
) {
749 rtc_status
&= ~RTC_TIMER_ON
;
750 del_timer(&rtc_irq_timer
);
752 spin_unlock_irq(&rtc_lock
);
754 if (file
->f_flags
& FASYNC
) {
755 rtc_fasync (-1, file
, 0);
760 spin_lock_irq (&rtc_lock
);
762 rtc_status
&= ~RTC_IS_OPEN
;
763 spin_unlock_irq (&rtc_lock
);
768 /* Called without the kernel lock - fine */
769 static unsigned int rtc_poll(struct file
*file
, poll_table
*wait
)
773 if (rtc_has_irq
== 0)
776 poll_wait(file
, &rtc_wait
, wait
);
778 spin_lock_irq (&rtc_lock
);
780 spin_unlock_irq (&rtc_lock
);
783 return POLLIN
| POLLRDNORM
;
792 EXPORT_SYMBOL(rtc_register
);
793 EXPORT_SYMBOL(rtc_unregister
);
794 EXPORT_SYMBOL(rtc_control
);
796 int rtc_register(rtc_task_t
*task
)
801 if (task
== NULL
|| task
->func
== NULL
)
803 spin_lock_irq(&rtc_lock
);
804 if (rtc_status
& RTC_IS_OPEN
) {
805 spin_unlock_irq(&rtc_lock
);
808 spin_lock(&rtc_task_lock
);
810 spin_unlock(&rtc_task_lock
);
811 spin_unlock_irq(&rtc_lock
);
814 rtc_status
|= RTC_IS_OPEN
;
816 spin_unlock(&rtc_task_lock
);
817 spin_unlock_irq(&rtc_lock
);
822 int rtc_unregister(rtc_task_t
*task
)
829 spin_lock_irq(&rtc_lock
);
830 spin_lock(&rtc_task_lock
);
831 if (rtc_callback
!= task
) {
832 spin_unlock(&rtc_task_lock
);
833 spin_unlock_irq(&rtc_lock
);
838 /* disable controls */
839 if (!hpet_mask_rtc_irq_bit(RTC_PIE
| RTC_AIE
| RTC_UIE
)) {
840 tmp
= CMOS_READ(RTC_CONTROL
);
844 CMOS_WRITE(tmp
, RTC_CONTROL
);
845 CMOS_READ(RTC_INTR_FLAGS
);
847 if (rtc_status
& RTC_TIMER_ON
) {
848 rtc_status
&= ~RTC_TIMER_ON
;
849 del_timer(&rtc_irq_timer
);
851 rtc_status
&= ~RTC_IS_OPEN
;
852 spin_unlock(&rtc_task_lock
);
853 spin_unlock_irq(&rtc_lock
);
858 int rtc_control(rtc_task_t
*task
, unsigned int cmd
, unsigned long arg
)
864 if (cmd
!= RTC_PIE_ON
&& cmd
!= RTC_PIE_OFF
&& cmd
!= RTC_IRQP_SET
)
866 spin_lock_irqsave(&rtc_task_lock
, flags
);
867 if (rtc_callback
!= task
) {
868 spin_unlock_irqrestore(&rtc_task_lock
, flags
);
871 spin_unlock_irqrestore(&rtc_task_lock
, flags
);
872 return rtc_do_ioctl(cmd
, arg
, 1);
878 * The various file operations we support.
881 static struct file_operations rtc_fops
= {
882 .owner
= THIS_MODULE
,
890 .release
= rtc_release
,
891 .fasync
= rtc_fasync
,
894 static struct miscdevice rtc_dev
= {
900 static struct file_operations rtc_proc_fops
= {
901 .owner
= THIS_MODULE
,
902 .open
= rtc_proc_open
,
905 .release
= single_release
,
908 #if defined(RTC_IRQ) && !defined(__sparc__)
909 static irqreturn_t (*rtc_int_handler_ptr
)(int irq
, void *dev_id
, struct pt_regs
*regs
);
912 static int __init
rtc_init(void)
914 struct proc_dir_entry
*ent
;
915 #if defined(__alpha__) || defined(__mips__)
916 unsigned int year
, ctrl
;
920 struct linux_ebus
*ebus
;
921 struct linux_ebus_device
*edev
;
923 struct sparc_isa_bridge
*isa_br
;
924 struct sparc_isa_device
*isa_dev
;
929 for_each_ebus(ebus
) {
930 for_each_ebusdev(edev
, ebus
) {
931 if(strcmp(edev
->prom_name
, "rtc") == 0) {
932 rtc_port
= edev
->resource
[0].start
;
933 rtc_irq
= edev
->irqs
[0];
939 for_each_isa(isa_br
) {
940 for_each_isadev(isa_dev
, isa_br
) {
941 if (strcmp(isa_dev
->prom_name
, "rtc") == 0) {
942 rtc_port
= isa_dev
->resource
.start
;
943 rtc_irq
= isa_dev
->irq
;
949 printk(KERN_ERR
"rtc_init: no PC rtc found\n");
953 if (rtc_irq
== PCI_IRQ_NONE
) {
959 * XXX Interrupt pin #7 in Espresso is shared between RTC and
960 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
962 if (request_irq(rtc_irq
, rtc_interrupt
, SA_SHIRQ
, "rtc", (void *)&rtc_port
)) {
964 * Standard way for sparc to print irq's is to use
965 * __irq_itoa(). I think for EBus it's ok to use %d.
967 printk(KERN_ERR
"rtc: cannot register IRQ %d\n", rtc_irq
);
972 if (!request_region(RTC_PORT(0), RTC_IO_EXTENT
, "rtc")) {
973 printk(KERN_ERR
"rtc: I/O port %d is not free.\n", RTC_PORT (0));
978 if (is_hpet_enabled()) {
979 rtc_int_handler_ptr
= hpet_rtc_interrupt
;
981 rtc_int_handler_ptr
= rtc_interrupt
;
984 if(request_irq(RTC_IRQ
, rtc_int_handler_ptr
, SA_INTERRUPT
, "rtc", NULL
)) {
985 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
986 printk(KERN_ERR
"rtc: IRQ %d is not free.\n", RTC_IRQ
);
987 release_region(RTC_PORT(0), RTC_IO_EXTENT
);
990 hpet_rtc_timer_init();
994 #endif /* __sparc__ vs. others */
996 if (misc_register(&rtc_dev
)) {
998 free_irq(RTC_IRQ
, NULL
);
1000 release_region(RTC_PORT(0), RTC_IO_EXTENT
);
1004 ent
= create_proc_entry("driver/rtc", 0, NULL
);
1007 free_irq(RTC_IRQ
, NULL
);
1009 release_region(RTC_PORT(0), RTC_IO_EXTENT
);
1010 misc_deregister(&rtc_dev
);
1013 ent
->proc_fops
= &rtc_proc_fops
;
1015 #if defined(__alpha__) || defined(__mips__)
1018 /* Each operating system on an Alpha uses its own epoch.
1019 Let's try to guess which one we are using now. */
1021 if (rtc_is_updating() != 0)
1024 spin_lock_irq(&rtc_lock
);
1025 year
= CMOS_READ(RTC_YEAR
);
1026 ctrl
= CMOS_READ(RTC_CONTROL
);
1027 spin_unlock_irq(&rtc_lock
);
1029 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
1030 BCD_TO_BIN(year
); /* This should never happen... */
1034 guess
= "SRM (post-2000)";
1035 } else if (year
>= 20 && year
< 48) {
1037 guess
= "ARC console";
1038 } else if (year
>= 48 && year
< 72) {
1040 guess
= "Digital UNIX";
1041 #if defined(__mips__)
1042 } else if (year
>= 72 && year
< 74) {
1044 guess
= "Digital DECstation";
1046 } else if (year
>= 70) {
1048 guess
= "Standard PC (1900)";
1052 printk(KERN_INFO
"rtc: %s epoch (%lu) detected\n", guess
, epoch
);
1055 if (rtc_has_irq
== 0)
1058 init_timer(&rtc_irq_timer
);
1059 rtc_irq_timer
.function
= rtc_dropped_irq
;
1060 spin_lock_irq(&rtc_lock
);
1062 if (!hpet_set_periodic_freq(rtc_freq
)) {
1063 /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
1064 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT
) & 0xF0) | 0x06), RTC_FREQ_SELECT
);
1066 spin_unlock_irq(&rtc_lock
);
1070 (void) init_sysctl();
1072 printk(KERN_INFO
"Real Time Clock Driver v" RTC_VERSION
"\n");
1077 static void __exit
rtc_exit (void)
1080 remove_proc_entry ("driver/rtc", NULL
);
1081 misc_deregister(&rtc_dev
);
1085 free_irq (rtc_irq
, &rtc_port
);
1087 release_region (RTC_PORT (0), RTC_IO_EXTENT
);
1090 free_irq (RTC_IRQ
, NULL
);
1092 #endif /* __sparc__ */
1095 module_init(rtc_init
);
1096 module_exit(rtc_exit
);
1100 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1101 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1102 * Since the interrupt handler doesn't get called, the IRQ status
1103 * byte doesn't get read, and the RTC stops generating interrupts.
1104 * A timer is set, and will call this function if/when that happens.
1105 * To get it out of this stalled state, we just read the status.
1106 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1107 * (You *really* shouldn't be trying to use a non-realtime system
1108 * for something that requires a steady > 1KHz signal anyways.)
1111 static void rtc_dropped_irq(unsigned long data
)
1115 spin_lock_irq (&rtc_lock
);
1117 if (hpet_rtc_dropped_irq()) {
1118 spin_unlock_irq(&rtc_lock
);
1122 /* Just in case someone disabled the timer from behind our back... */
1123 if (rtc_status
& RTC_TIMER_ON
)
1124 mod_timer(&rtc_irq_timer
, jiffies
+ HZ
/rtc_freq
+ 2*HZ
/100);
1126 rtc_irq_data
+= ((rtc_freq
/HZ
)<<8);
1127 rtc_irq_data
&= ~0xff;
1128 rtc_irq_data
|= (CMOS_READ(RTC_INTR_FLAGS
) & 0xF0); /* restart */
1132 spin_unlock_irq(&rtc_lock
);
1134 printk(KERN_WARNING
"rtc: lost some interrupts at %ldHz.\n", freq
);
1136 /* Now we have new data */
1137 wake_up_interruptible(&rtc_wait
);
1139 kill_fasync (&rtc_async_queue
, SIGIO
, POLL_IN
);
1144 * Info exported via "/proc/driver/rtc".
1147 static int rtc_proc_show(struct seq_file
*seq
, void *v
)
1149 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1150 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1152 unsigned char batt
, ctrl
;
1155 spin_lock_irq(&rtc_lock
);
1156 batt
= CMOS_READ(RTC_VALID
) & RTC_VRT
;
1157 ctrl
= CMOS_READ(RTC_CONTROL
);
1159 spin_unlock_irq(&rtc_lock
);
1162 rtc_get_rtc_time(&tm
);
1165 * There is no way to tell if the luser has the RTC set for local
1166 * time or for Universal Standard Time (GMT). Probably local though.
1169 "rtc_time\t: %02d:%02d:%02d\n"
1170 "rtc_date\t: %04d-%02d-%02d\n"
1171 "rtc_epoch\t: %04lu\n",
1172 tm
.tm_hour
, tm
.tm_min
, tm
.tm_sec
,
1173 tm
.tm_year
+ 1900, tm
.tm_mon
+ 1, tm
.tm_mday
, epoch
);
1175 get_rtc_alm_time(&tm
);
1178 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1179 * match any value for that particular field. Values that are
1180 * greater than a valid time, but less than 0xc0 shouldn't appear.
1182 seq_puts(seq
, "alarm\t\t: ");
1183 if (tm
.tm_hour
<= 24)
1184 seq_printf(seq
, "%02d:", tm
.tm_hour
);
1186 seq_puts(seq
, "**:");
1188 if (tm
.tm_min
<= 59)
1189 seq_printf(seq
, "%02d:", tm
.tm_min
);
1191 seq_puts(seq
, "**:");
1193 if (tm
.tm_sec
<= 59)
1194 seq_printf(seq
, "%02d\n", tm
.tm_sec
);
1196 seq_puts(seq
, "**\n");
1199 "DST_enable\t: %s\n"
1202 "square_wave\t: %s\n"
1204 "update_IRQ\t: %s\n"
1205 "periodic_IRQ\t: %s\n"
1206 "periodic_freq\t: %ld\n"
1207 "batt_status\t: %s\n",
1216 batt
? "okay" : "dead");
1223 static int rtc_proc_open(struct inode
*inode
, struct file
*file
)
1225 return single_open(file
, rtc_proc_show
, NULL
);
1228 void rtc_get_rtc_time(struct rtc_time
*rtc_tm
)
1230 unsigned long uip_watchdog
= jiffies
;
1232 #ifdef CONFIG_MACH_DECSTATION
1233 unsigned int real_year
;
1237 * read RTC once any update in progress is done. The update
1238 * can take just over 2ms. We wait 20ms. There is no need to
1239 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1240 * If you need to know *exactly* when a second has started, enable
1241 * periodic update complete interrupts, (via ioctl) and then
1242 * immediately read /dev/rtc which will block until you get the IRQ.
1243 * Once the read clears, read the RTC time (again via ioctl). Easy.
1246 while (rtc_is_updating() != 0 && jiffies
- uip_watchdog
< 2*HZ
/100) {
1252 * Only the values that we read from the RTC are set. We leave
1253 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1254 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1255 * only updated by the RTC when initially set to a non-zero value.
1257 spin_lock_irq(&rtc_lock
);
1258 rtc_tm
->tm_sec
= CMOS_READ(RTC_SECONDS
);
1259 rtc_tm
->tm_min
= CMOS_READ(RTC_MINUTES
);
1260 rtc_tm
->tm_hour
= CMOS_READ(RTC_HOURS
);
1261 rtc_tm
->tm_mday
= CMOS_READ(RTC_DAY_OF_MONTH
);
1262 rtc_tm
->tm_mon
= CMOS_READ(RTC_MONTH
);
1263 rtc_tm
->tm_year
= CMOS_READ(RTC_YEAR
);
1264 /* Only set from 2.6.16 onwards */
1265 rtc_tm
->tm_wday
= CMOS_READ(RTC_DAY_OF_WEEK
);
1267 #ifdef CONFIG_MACH_DECSTATION
1268 real_year
= CMOS_READ(RTC_DEC_YEAR
);
1270 ctrl
= CMOS_READ(RTC_CONTROL
);
1271 spin_unlock_irq(&rtc_lock
);
1273 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
1275 BCD_TO_BIN(rtc_tm
->tm_sec
);
1276 BCD_TO_BIN(rtc_tm
->tm_min
);
1277 BCD_TO_BIN(rtc_tm
->tm_hour
);
1278 BCD_TO_BIN(rtc_tm
->tm_mday
);
1279 BCD_TO_BIN(rtc_tm
->tm_mon
);
1280 BCD_TO_BIN(rtc_tm
->tm_year
);
1281 BCD_TO_BIN(rtc_tm
->tm_wday
);
1284 #ifdef CONFIG_MACH_DECSTATION
1285 rtc_tm
->tm_year
+= real_year
- 72;
1289 * Account for differences between how the RTC uses the values
1290 * and how they are defined in a struct rtc_time;
1292 if ((rtc_tm
->tm_year
+= (epoch
- 1900)) <= 69)
1293 rtc_tm
->tm_year
+= 100;
1298 static void get_rtc_alm_time(struct rtc_time
*alm_tm
)
1303 * Only the values that we read from the RTC are set. That
1304 * means only tm_hour, tm_min, and tm_sec.
1306 spin_lock_irq(&rtc_lock
);
1307 alm_tm
->tm_sec
= CMOS_READ(RTC_SECONDS_ALARM
);
1308 alm_tm
->tm_min
= CMOS_READ(RTC_MINUTES_ALARM
);
1309 alm_tm
->tm_hour
= CMOS_READ(RTC_HOURS_ALARM
);
1310 ctrl
= CMOS_READ(RTC_CONTROL
);
1311 spin_unlock_irq(&rtc_lock
);
1313 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
1315 BCD_TO_BIN(alm_tm
->tm_sec
);
1316 BCD_TO_BIN(alm_tm
->tm_min
);
1317 BCD_TO_BIN(alm_tm
->tm_hour
);
1323 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1324 * Rumour has it that if you frob the interrupt enable/disable
1325 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1326 * ensure you actually start getting interrupts. Probably for
1327 * compatibility with older/broken chipset RTC implementations.
1328 * We also clear out any old irq data after an ioctl() that
1329 * meddles with the interrupt enable/disable bits.
1332 static void mask_rtc_irq_bit_locked(unsigned char bit
)
1336 if (hpet_mask_rtc_irq_bit(bit
))
1338 val
= CMOS_READ(RTC_CONTROL
);
1340 CMOS_WRITE(val
, RTC_CONTROL
);
1341 CMOS_READ(RTC_INTR_FLAGS
);
1346 static void set_rtc_irq_bit_locked(unsigned char bit
)
1350 if (hpet_set_rtc_irq_bit(bit
))
1352 val
= CMOS_READ(RTC_CONTROL
);
1354 CMOS_WRITE(val
, RTC_CONTROL
);
1355 CMOS_READ(RTC_INTR_FLAGS
);
1361 MODULE_AUTHOR("Paul Gortmaker");
1362 MODULE_LICENSE("GPL");
1363 MODULE_ALIAS_MISCDEV(RTC_MINOR
);