2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
53 #include <linux/config.h>
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/version.h>
57 #include <linux/types.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/pci.h>
61 #include <linux/dma-mapping.h>
62 #include <linux/kernel.h>
63 #include <linux/netdevice.h>
64 #include <linux/etherdevice.h>
65 #include <linux/skbuff.h>
66 #include <linux/init.h>
67 #include <linux/delay.h>
69 #include <linux/highmem.h>
70 #include <linux/sockios.h>
72 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
73 #include <linux/if_vlan.h>
77 #include <linux/ethtool.h>
83 #include <asm/system.h>
86 #include <asm/byteorder.h>
87 #include <asm/uaccess.h>
90 #define DRV_NAME "acenic"
94 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
95 #define ACE_IS_TIGON_I(ap) 0
96 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
98 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
99 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
102 #ifndef PCI_VENDOR_ID_ALTEON
103 #define PCI_VENDOR_ID_ALTEON 0x12ae
105 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
106 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
107 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
109 #ifndef PCI_DEVICE_ID_3COM_3C985
110 #define PCI_DEVICE_ID_3COM_3C985 0x0001
112 #ifndef PCI_VENDOR_ID_NETGEAR
113 #define PCI_VENDOR_ID_NETGEAR 0x1385
114 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
116 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
117 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
122 * Farallon used the DEC vendor ID by mistake and they seem not
125 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
126 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
128 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
129 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
131 #ifndef PCI_VENDOR_ID_SGI
132 #define PCI_VENDOR_ID_SGI 0x10a9
134 #ifndef PCI_DEVICE_ID_SGI_ACENIC
135 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
138 static struct pci_device_id acenic_pci_tbl
[] = {
139 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
,
140 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
141 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER
,
142 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
143 { PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C985
,
144 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
145 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620
,
146 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
147 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620T
,
148 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
150 * Farallon used the DEC vendor ID on their cards incorrectly,
151 * then later Alteon's ID.
153 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_FARALLON_PN9000SX
,
154 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
155 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_FARALLON_PN9100T
,
156 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
157 { PCI_VENDOR_ID_SGI
, PCI_DEVICE_ID_SGI_ACENIC
,
158 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
161 MODULE_DEVICE_TABLE(pci
, acenic_pci_tbl
);
163 #ifndef SET_NETDEV_DEV
164 #define SET_NETDEV_DEV(net, pdev) do{} while(0)
167 #if LINUX_VERSION_CODE >= 0x2051c
168 #define ace_sync_irq(irq) synchronize_irq(irq)
170 #define ace_sync_irq(irq) synchronize_irq()
173 #ifndef offset_in_page
174 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
177 #define ACE_MAX_MOD_PARMS 8
178 #define BOARD_IDX_STATIC 0
179 #define BOARD_IDX_OVERFLOW -1
181 #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
182 defined(NETIF_F_HW_VLAN_RX)
183 #define ACENIC_DO_VLAN 1
184 #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
186 #define ACENIC_DO_VLAN 0
187 #define ACE_RCB_VLAN_FLAG 0
193 * These must be defined before the firmware is included.
195 #define MAX_TEXT_LEN 96*1024
196 #define MAX_RODATA_LEN 8*1024
197 #define MAX_DATA_LEN 2*1024
199 #include "acenic_firmware.h"
201 #ifndef tigon2FwReleaseLocal
202 #define tigon2FwReleaseLocal 0
206 * This driver currently supports Tigon I and Tigon II based cards
207 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
208 * GA620. The driver should also work on the SGI, DEC and Farallon
209 * versions of the card, however I have not been able to test that
212 * This card is really neat, it supports receive hardware checksumming
213 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
214 * firmware. Also the programming interface is quite neat, except for
215 * the parts dealing with the i2c eeprom on the card ;-)
217 * Using jumbo frames:
219 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
220 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
221 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
222 * interface number and <MTU> being the MTU value.
226 * When compiled as a loadable module, the driver allows for a number
227 * of module parameters to be specified. The driver supports the
228 * following module parameters:
230 * trace=<val> - Firmware trace level. This requires special traced
231 * firmware to replace the firmware supplied with
232 * the driver - for debugging purposes only.
234 * link=<val> - Link state. Normally you want to use the default link
235 * parameters set by the driver. This can be used to
236 * override these in case your switch doesn't negotiate
237 * the link properly. Valid values are:
238 * 0x0001 - Force half duplex link.
239 * 0x0002 - Do not negotiate line speed with the other end.
240 * 0x0010 - 10Mbit/sec link.
241 * 0x0020 - 100Mbit/sec link.
242 * 0x0040 - 1000Mbit/sec link.
243 * 0x0100 - Do not negotiate flow control.
244 * 0x0200 - Enable RX flow control Y
245 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
246 * Default value is 0x0270, ie. enable link+flow
247 * control negotiation. Negotiating the highest
248 * possible link speed with RX flow control enabled.
250 * When disabling link speed negotiation, only one link
251 * speed is allowed to be specified!
253 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
254 * to wait for more packets to arive before
255 * interrupting the host, from the time the first
258 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
259 * to wait for more packets to arive in the transmit ring,
260 * before interrupting the host, after transmitting the
261 * first packet in the ring.
263 * max_tx_desc=<val> - maximum number of transmit descriptors
264 * (packets) transmitted before interrupting the host.
266 * max_rx_desc=<val> - maximum number of receive descriptors
267 * (packets) received before interrupting the host.
269 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
270 * increments of the NIC's on board memory to be used for
271 * transmit and receive buffers. For the 1MB NIC app. 800KB
272 * is available, on the 1/2MB NIC app. 300KB is available.
273 * 68KB will always be available as a minimum for both
274 * directions. The default value is a 50/50 split.
275 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
276 * operations, default (1) is to always disable this as
277 * that is what Alteon does on NT. I have not been able
278 * to measure any real performance differences with
279 * this on my systems. Set <val>=0 if you want to
280 * enable these operations.
282 * If you use more than one NIC, specify the parameters for the
283 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
284 * run tracing on NIC #2 but not on NIC #1 and #3.
288 * - Proper multicast support.
289 * - NIC dump support.
290 * - More tuning parameters.
292 * The mini ring is not used under Linux and I am not sure it makes sense
293 * to actually use it.
295 * New interrupt handler strategy:
297 * The old interrupt handler worked using the traditional method of
298 * replacing an skbuff with a new one when a packet arrives. However
299 * the rx rings do not need to contain a static number of buffer
300 * descriptors, thus it makes sense to move the memory allocation out
301 * of the main interrupt handler and do it in a bottom half handler
302 * and only allocate new buffers when the number of buffers in the
303 * ring is below a certain threshold. In order to avoid starving the
304 * NIC under heavy load it is however necessary to force allocation
305 * when hitting a minimum threshold. The strategy for alloction is as
308 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
309 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
310 * the buffers in the interrupt handler
311 * RX_RING_THRES - maximum number of buffers in the rx ring
312 * RX_MINI_THRES - maximum number of buffers in the mini ring
313 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
315 * One advantagous side effect of this allocation approach is that the
316 * entire rx processing can be done without holding any spin lock
317 * since the rx rings and registers are totally independent of the tx
318 * ring and its registers. This of course includes the kmalloc's of
319 * new skb's. Thus start_xmit can run in parallel with rx processing
320 * and the memory allocation on SMP systems.
322 * Note that running the skb reallocation in a bottom half opens up
323 * another can of races which needs to be handled properly. In
324 * particular it can happen that the interrupt handler tries to run
325 * the reallocation while the bottom half is either running on another
326 * CPU or was interrupted on the same CPU. To get around this the
327 * driver uses bitops to prevent the reallocation routines from being
330 * TX handling can also be done without holding any spin lock, wheee
331 * this is fun! since tx_ret_csm is only written to by the interrupt
332 * handler. The case to be aware of is when shutting down the device
333 * and cleaning up where it is necessary to make sure that
334 * start_xmit() is not running while this is happening. Well DaveM
335 * informs me that this case is already protected against ... bye bye
336 * Mr. Spin Lock, it was nice to know you.
338 * TX interrupts are now partly disabled so the NIC will only generate
339 * TX interrupts for the number of coal ticks, not for the number of
340 * TX packets in the queue. This should reduce the number of TX only,
341 * ie. when no RX processing is done, interrupts seen.
345 * Threshold values for RX buffer allocation - the low water marks for
346 * when to start refilling the rings are set to 75% of the ring
347 * sizes. It seems to make sense to refill the rings entirely from the
348 * intrrupt handler once it gets below the panic threshold, that way
349 * we don't risk that the refilling is moved to another CPU when the
350 * one running the interrupt handler just got the slab code hot in its
353 #define RX_RING_SIZE 72
354 #define RX_MINI_SIZE 64
355 #define RX_JUMBO_SIZE 48
357 #define RX_PANIC_STD_THRES 16
358 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
359 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
360 #define RX_PANIC_MINI_THRES 12
361 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
362 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
363 #define RX_PANIC_JUMBO_THRES 6
364 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
365 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
369 * Size of the mini ring entries, basically these just should be big
370 * enough to take TCP ACKs
372 #define ACE_MINI_SIZE 100
374 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
375 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
376 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
379 * There seems to be a magic difference in the effect between 995 and 996
380 * but little difference between 900 and 995 ... no idea why.
382 * There is now a default set of tuning parameters which is set, depending
383 * on whether or not the user enables Jumbo frames. It's assumed that if
384 * Jumbo frames are enabled, the user wants optimal tuning for that case.
386 #define DEF_TX_COAL 400 /* 996 */
387 #define DEF_TX_MAX_DESC 60 /* was 40 */
388 #define DEF_RX_COAL 120 /* 1000 */
389 #define DEF_RX_MAX_DESC 25
390 #define DEF_TX_RATIO 21 /* 24 */
392 #define DEF_JUMBO_TX_COAL 20
393 #define DEF_JUMBO_TX_MAX_DESC 60
394 #define DEF_JUMBO_RX_COAL 30
395 #define DEF_JUMBO_RX_MAX_DESC 6
396 #define DEF_JUMBO_TX_RATIO 21
398 #if tigon2FwReleaseLocal < 20001118
400 * Standard firmware and early modifications duplicate
401 * IRQ load without this flag (coal timer is never reset).
402 * Note that with this flag tx_coal should be less than
403 * time to xmit full tx ring.
404 * 400usec is not so bad for tx ring size of 128.
406 #define TX_COAL_INTS_ONLY 1 /* worth it */
409 * With modified firmware, this is not necessary, but still useful.
411 #define TX_COAL_INTS_ONLY 1
415 #define DEF_STAT (2 * TICKS_PER_SEC)
418 static int link
[ACE_MAX_MOD_PARMS
];
419 static int trace
[ACE_MAX_MOD_PARMS
];
420 static int tx_coal_tick
[ACE_MAX_MOD_PARMS
];
421 static int rx_coal_tick
[ACE_MAX_MOD_PARMS
];
422 static int max_tx_desc
[ACE_MAX_MOD_PARMS
];
423 static int max_rx_desc
[ACE_MAX_MOD_PARMS
];
424 static int tx_ratio
[ACE_MAX_MOD_PARMS
];
425 static int dis_pci_mem_inval
[ACE_MAX_MOD_PARMS
] = {1, 1, 1, 1, 1, 1, 1, 1};
427 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
428 MODULE_LICENSE("GPL");
429 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
431 module_param_array(link
, int, NULL
, 0);
432 module_param_array(trace
, int, NULL
, 0);
433 module_param_array(tx_coal_tick
, int, NULL
, 0);
434 module_param_array(max_tx_desc
, int, NULL
, 0);
435 module_param_array(rx_coal_tick
, int, NULL
, 0);
436 module_param_array(max_rx_desc
, int, NULL
, 0);
437 module_param_array(tx_ratio
, int, NULL
, 0);
438 MODULE_PARM_DESC(link
, "AceNIC/3C985/NetGear link state");
439 MODULE_PARM_DESC(trace
, "AceNIC/3C985/NetGear firmware trace level");
440 MODULE_PARM_DESC(tx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
441 MODULE_PARM_DESC(max_tx_desc
, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
442 MODULE_PARM_DESC(rx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
443 MODULE_PARM_DESC(max_rx_desc
, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
444 MODULE_PARM_DESC(tx_ratio
, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
447 static char version
[] __devinitdata
=
448 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
449 " http://home.cern.ch/~jes/gige/acenic.html\n";
451 static int ace_get_settings(struct net_device
*, struct ethtool_cmd
*);
452 static int ace_set_settings(struct net_device
*, struct ethtool_cmd
*);
453 static void ace_get_drvinfo(struct net_device
*, struct ethtool_drvinfo
*);
455 static struct ethtool_ops ace_ethtool_ops
= {
456 .get_settings
= ace_get_settings
,
457 .set_settings
= ace_set_settings
,
458 .get_drvinfo
= ace_get_drvinfo
,
461 static void ace_watchdog(struct net_device
*dev
);
463 static int __devinit
acenic_probe_one(struct pci_dev
*pdev
,
464 const struct pci_device_id
*id
)
466 struct net_device
*dev
;
467 struct ace_private
*ap
;
468 static int boards_found
;
470 dev
= alloc_etherdev(sizeof(struct ace_private
));
472 printk(KERN_ERR
"acenic: Unable to allocate "
473 "net_device structure!\n");
477 SET_MODULE_OWNER(dev
);
478 SET_NETDEV_DEV(dev
, &pdev
->dev
);
482 ap
->name
= pci_name(pdev
);
484 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
486 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
487 dev
->vlan_rx_register
= ace_vlan_rx_register
;
488 dev
->vlan_rx_kill_vid
= ace_vlan_rx_kill_vid
;
491 dev
->tx_timeout
= &ace_watchdog
;
492 dev
->watchdog_timeo
= 5*HZ
;
495 dev
->open
= &ace_open
;
496 dev
->stop
= &ace_close
;
497 dev
->hard_start_xmit
= &ace_start_xmit
;
498 dev
->get_stats
= &ace_get_stats
;
499 dev
->set_multicast_list
= &ace_set_multicast_list
;
500 SET_ETHTOOL_OPS(dev
, &ace_ethtool_ops
);
501 dev
->set_mac_address
= &ace_set_mac_addr
;
502 dev
->change_mtu
= &ace_change_mtu
;
504 /* we only display this string ONCE */
508 if (pci_enable_device(pdev
))
509 goto fail_free_netdev
;
512 * Enable master mode before we start playing with the
513 * pci_command word since pci_set_master() will modify
516 pci_set_master(pdev
);
518 pci_read_config_word(pdev
, PCI_COMMAND
, &ap
->pci_command
);
520 /* OpenFirmware on Mac's does not set this - DOH.. */
521 if (!(ap
->pci_command
& PCI_COMMAND_MEMORY
)) {
522 printk(KERN_INFO
"%s: Enabling PCI Memory Mapped "
523 "access - was not enabled by BIOS/Firmware\n",
525 ap
->pci_command
= ap
->pci_command
| PCI_COMMAND_MEMORY
;
526 pci_write_config_word(ap
->pdev
, PCI_COMMAND
,
531 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &ap
->pci_latency
);
532 if (ap
->pci_latency
<= 0x40) {
533 ap
->pci_latency
= 0x40;
534 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, ap
->pci_latency
);
538 * Remap the regs into kernel space - this is abuse of
539 * dev->base_addr since it was means for I/O port
540 * addresses but who gives a damn.
542 dev
->base_addr
= pci_resource_start(pdev
, 0);
543 ap
->regs
= ioremap(dev
->base_addr
, 0x4000);
545 printk(KERN_ERR
"%s: Unable to map I/O register, "
546 "AceNIC %i will be disabled.\n",
547 ap
->name
, boards_found
);
548 goto fail_free_netdev
;
551 switch(pdev
->vendor
) {
552 case PCI_VENDOR_ID_ALTEON
:
553 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9100T
) {
554 printk(KERN_INFO
"%s: Farallon PN9100-T ",
557 printk(KERN_INFO
"%s: Alteon AceNIC ",
561 case PCI_VENDOR_ID_3COM
:
562 printk(KERN_INFO
"%s: 3Com 3C985 ", ap
->name
);
564 case PCI_VENDOR_ID_NETGEAR
:
565 printk(KERN_INFO
"%s: NetGear GA620 ", ap
->name
);
567 case PCI_VENDOR_ID_DEC
:
568 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9000SX
) {
569 printk(KERN_INFO
"%s: Farallon PN9000-SX ",
573 case PCI_VENDOR_ID_SGI
:
574 printk(KERN_INFO
"%s: SGI AceNIC ", ap
->name
);
577 printk(KERN_INFO
"%s: Unknown AceNIC ", ap
->name
);
581 printk("Gigabit Ethernet at 0x%08lx, ", dev
->base_addr
);
583 printk("irq %s\n", __irq_itoa(pdev
->irq
));
585 printk("irq %i\n", pdev
->irq
);
588 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
589 if ((readl(&ap
->regs
->HostCtrl
) >> 28) == 4) {
590 printk(KERN_ERR
"%s: Driver compiled without Tigon I"
591 " support - NIC disabled\n", dev
->name
);
596 if (ace_allocate_descriptors(dev
))
597 goto fail_free_netdev
;
600 if (boards_found
>= ACE_MAX_MOD_PARMS
)
601 ap
->board_idx
= BOARD_IDX_OVERFLOW
;
603 ap
->board_idx
= boards_found
;
605 ap
->board_idx
= BOARD_IDX_STATIC
;
609 goto fail_free_netdev
;
611 if (register_netdev(dev
)) {
612 printk(KERN_ERR
"acenic: device registration failed\n");
615 ap
->name
= dev
->name
;
617 if (ap
->pci_using_dac
)
618 dev
->features
|= NETIF_F_HIGHDMA
;
620 pci_set_drvdata(pdev
, dev
);
626 ace_init_cleanup(dev
);
632 static void __devexit
acenic_remove_one(struct pci_dev
*pdev
)
634 struct net_device
*dev
= pci_get_drvdata(pdev
);
635 struct ace_private
*ap
= netdev_priv(dev
);
636 struct ace_regs __iomem
*regs
= ap
->regs
;
639 unregister_netdev(dev
);
641 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
642 if (ap
->version
>= 2)
643 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
646 * This clears any pending interrupts
648 writel(1, ®s
->Mb0Lo
);
649 readl(®s
->CpuCtrl
); /* flush */
652 * Make sure no other CPUs are processing interrupts
653 * on the card before the buffers are being released.
654 * Otherwise one might experience some `interesting'
657 * Then release the RX buffers - jumbo buffers were
658 * already released in ace_close().
660 ace_sync_irq(dev
->irq
);
662 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++) {
663 struct sk_buff
*skb
= ap
->skb
->rx_std_skbuff
[i
].skb
;
666 struct ring_info
*ringp
;
669 ringp
= &ap
->skb
->rx_std_skbuff
[i
];
670 mapping
= pci_unmap_addr(ringp
, mapping
);
671 pci_unmap_page(ap
->pdev
, mapping
,
675 ap
->rx_std_ring
[i
].size
= 0;
676 ap
->skb
->rx_std_skbuff
[i
].skb
= NULL
;
681 if (ap
->version
>= 2) {
682 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++) {
683 struct sk_buff
*skb
= ap
->skb
->rx_mini_skbuff
[i
].skb
;
686 struct ring_info
*ringp
;
689 ringp
= &ap
->skb
->rx_mini_skbuff
[i
];
690 mapping
= pci_unmap_addr(ringp
,mapping
);
691 pci_unmap_page(ap
->pdev
, mapping
,
695 ap
->rx_mini_ring
[i
].size
= 0;
696 ap
->skb
->rx_mini_skbuff
[i
].skb
= NULL
;
702 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
703 struct sk_buff
*skb
= ap
->skb
->rx_jumbo_skbuff
[i
].skb
;
705 struct ring_info
*ringp
;
708 ringp
= &ap
->skb
->rx_jumbo_skbuff
[i
];
709 mapping
= pci_unmap_addr(ringp
, mapping
);
710 pci_unmap_page(ap
->pdev
, mapping
,
714 ap
->rx_jumbo_ring
[i
].size
= 0;
715 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
720 ace_init_cleanup(dev
);
724 static struct pci_driver acenic_pci_driver
= {
726 .id_table
= acenic_pci_tbl
,
727 .probe
= acenic_probe_one
,
728 .remove
= __devexit_p(acenic_remove_one
),
731 static int __init
acenic_init(void)
733 return pci_module_init(&acenic_pci_driver
);
736 static void __exit
acenic_exit(void)
738 pci_unregister_driver(&acenic_pci_driver
);
741 module_init(acenic_init
);
742 module_exit(acenic_exit
);
744 static void ace_free_descriptors(struct net_device
*dev
)
746 struct ace_private
*ap
= netdev_priv(dev
);
749 if (ap
->rx_std_ring
!= NULL
) {
750 size
= (sizeof(struct rx_desc
) *
751 (RX_STD_RING_ENTRIES
+
752 RX_JUMBO_RING_ENTRIES
+
753 RX_MINI_RING_ENTRIES
+
754 RX_RETURN_RING_ENTRIES
));
755 pci_free_consistent(ap
->pdev
, size
, ap
->rx_std_ring
,
756 ap
->rx_ring_base_dma
);
757 ap
->rx_std_ring
= NULL
;
758 ap
->rx_jumbo_ring
= NULL
;
759 ap
->rx_mini_ring
= NULL
;
760 ap
->rx_return_ring
= NULL
;
762 if (ap
->evt_ring
!= NULL
) {
763 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
764 pci_free_consistent(ap
->pdev
, size
, ap
->evt_ring
,
768 if (ap
->tx_ring
!= NULL
&& !ACE_IS_TIGON_I(ap
)) {
769 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
770 pci_free_consistent(ap
->pdev
, size
, ap
->tx_ring
,
775 if (ap
->evt_prd
!= NULL
) {
776 pci_free_consistent(ap
->pdev
, sizeof(u32
),
777 (void *)ap
->evt_prd
, ap
->evt_prd_dma
);
780 if (ap
->rx_ret_prd
!= NULL
) {
781 pci_free_consistent(ap
->pdev
, sizeof(u32
),
782 (void *)ap
->rx_ret_prd
,
784 ap
->rx_ret_prd
= NULL
;
786 if (ap
->tx_csm
!= NULL
) {
787 pci_free_consistent(ap
->pdev
, sizeof(u32
),
788 (void *)ap
->tx_csm
, ap
->tx_csm_dma
);
794 static int ace_allocate_descriptors(struct net_device
*dev
)
796 struct ace_private
*ap
= netdev_priv(dev
);
799 size
= (sizeof(struct rx_desc
) *
800 (RX_STD_RING_ENTRIES
+
801 RX_JUMBO_RING_ENTRIES
+
802 RX_MINI_RING_ENTRIES
+
803 RX_RETURN_RING_ENTRIES
));
805 ap
->rx_std_ring
= pci_alloc_consistent(ap
->pdev
, size
,
806 &ap
->rx_ring_base_dma
);
807 if (ap
->rx_std_ring
== NULL
)
810 ap
->rx_jumbo_ring
= ap
->rx_std_ring
+ RX_STD_RING_ENTRIES
;
811 ap
->rx_mini_ring
= ap
->rx_jumbo_ring
+ RX_JUMBO_RING_ENTRIES
;
812 ap
->rx_return_ring
= ap
->rx_mini_ring
+ RX_MINI_RING_ENTRIES
;
814 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
816 ap
->evt_ring
= pci_alloc_consistent(ap
->pdev
, size
, &ap
->evt_ring_dma
);
818 if (ap
->evt_ring
== NULL
)
822 * Only allocate a host TX ring for the Tigon II, the Tigon I
823 * has to use PCI registers for this ;-(
825 if (!ACE_IS_TIGON_I(ap
)) {
826 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
828 ap
->tx_ring
= pci_alloc_consistent(ap
->pdev
, size
,
831 if (ap
->tx_ring
== NULL
)
835 ap
->evt_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
837 if (ap
->evt_prd
== NULL
)
840 ap
->rx_ret_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
841 &ap
->rx_ret_prd_dma
);
842 if (ap
->rx_ret_prd
== NULL
)
845 ap
->tx_csm
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
847 if (ap
->tx_csm
== NULL
)
854 ace_init_cleanup(dev
);
860 * Generic cleanup handling data allocated during init. Used when the
861 * module is unloaded or if an error occurs during initialization
863 static void ace_init_cleanup(struct net_device
*dev
)
865 struct ace_private
*ap
;
867 ap
= netdev_priv(dev
);
869 ace_free_descriptors(dev
);
872 pci_free_consistent(ap
->pdev
, sizeof(struct ace_info
),
873 ap
->info
, ap
->info_dma
);
875 kfree(ap
->trace_buf
);
878 free_irq(dev
->irq
, dev
);
885 * Commands are considered to be slow.
887 static inline void ace_issue_cmd(struct ace_regs __iomem
*regs
, struct cmd
*cmd
)
891 idx
= readl(®s
->CmdPrd
);
893 writel(*(u32
*)(cmd
), ®s
->CmdRng
[idx
]);
894 idx
= (idx
+ 1) % CMD_RING_ENTRIES
;
896 writel(idx
, ®s
->CmdPrd
);
900 static int __devinit
ace_init(struct net_device
*dev
)
902 struct ace_private
*ap
;
903 struct ace_regs __iomem
*regs
;
904 struct ace_info
*info
= NULL
;
905 struct pci_dev
*pdev
;
908 u32 tig_ver
, mac1
, mac2
, tmp
, pci_state
;
909 int board_idx
, ecode
= 0;
911 unsigned char cache_size
;
913 ap
= netdev_priv(dev
);
916 board_idx
= ap
->board_idx
;
919 * aman@sgi.com - its useful to do a NIC reset here to
920 * address the `Firmware not running' problem subsequent
921 * to any crashes involving the NIC
923 writel(HW_RESET
| (HW_RESET
<< 24), ®s
->HostCtrl
);
924 readl(®s
->HostCtrl
); /* PCI write posting */
928 * Don't access any other registers before this point!
932 * This will most likely need BYTE_SWAP once we switch
933 * to using __raw_writel()
935 writel((WORD_SWAP
| CLR_INT
| ((WORD_SWAP
| CLR_INT
) << 24)),
938 writel((CLR_INT
| WORD_SWAP
| ((CLR_INT
| WORD_SWAP
) << 24)),
941 readl(®s
->HostCtrl
); /* PCI write posting */
944 * Stop the NIC CPU and clear pending interrupts
946 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
947 readl(®s
->CpuCtrl
); /* PCI write posting */
948 writel(0, ®s
->Mb0Lo
);
950 tig_ver
= readl(®s
->HostCtrl
) >> 28;
953 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
956 printk(KERN_INFO
" Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
957 tig_ver
, tigonFwReleaseMajor
, tigonFwReleaseMinor
,
959 writel(0, ®s
->LocalCtrl
);
961 ap
->tx_ring_entries
= TIGON_I_TX_RING_ENTRIES
;
965 printk(KERN_INFO
" Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
966 tig_ver
, tigon2FwReleaseMajor
, tigon2FwReleaseMinor
,
968 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
969 readl(®s
->CpuBCtrl
); /* PCI write posting */
971 * The SRAM bank size does _not_ indicate the amount
972 * of memory on the card, it controls the _bank_ size!
973 * Ie. a 1MB AceNIC will have two banks of 512KB.
975 writel(SRAM_BANK_512K
, ®s
->LocalCtrl
);
976 writel(SYNC_SRAM_TIMING
, ®s
->MiscCfg
);
978 ap
->tx_ring_entries
= MAX_TX_RING_ENTRIES
;
981 printk(KERN_WARNING
" Unsupported Tigon version detected "
988 * ModeStat _must_ be set after the SRAM settings as this change
989 * seems to corrupt the ModeStat and possible other registers.
990 * The SRAM settings survive resets and setting it to the same
991 * value a second time works as well. This is what caused the
992 * `Firmware not running' problem on the Tigon II.
995 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
| ACE_BYTE_SWAP_BD
|
996 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
998 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
|
999 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
1001 readl(®s
->ModeStat
); /* PCI write posting */
1004 for(i
= 0; i
< 4; i
++) {
1008 tmp
= read_eeprom_byte(dev
, 0x8c+i
);
1013 mac1
|= (tmp
& 0xff);
1016 for(i
= 4; i
< 8; i
++) {
1020 tmp
= read_eeprom_byte(dev
, 0x8c+i
);
1025 mac2
|= (tmp
& 0xff);
1028 writel(mac1
, ®s
->MacAddrHi
);
1029 writel(mac2
, ®s
->MacAddrLo
);
1031 printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
1032 (mac1
>> 8) & 0xff, mac1
& 0xff, (mac2
>> 24) &0xff,
1033 (mac2
>> 16) & 0xff, (mac2
>> 8) & 0xff, mac2
& 0xff);
1035 dev
->dev_addr
[0] = (mac1
>> 8) & 0xff;
1036 dev
->dev_addr
[1] = mac1
& 0xff;
1037 dev
->dev_addr
[2] = (mac2
>> 24) & 0xff;
1038 dev
->dev_addr
[3] = (mac2
>> 16) & 0xff;
1039 dev
->dev_addr
[4] = (mac2
>> 8) & 0xff;
1040 dev
->dev_addr
[5] = mac2
& 0xff;
1043 * Looks like this is necessary to deal with on all architectures,
1044 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1045 * Ie. having two NICs in the machine, one will have the cache
1046 * line set at boot time, the other will not.
1049 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, &cache_size
);
1051 if (cache_size
!= SMP_CACHE_BYTES
) {
1052 printk(KERN_INFO
" PCI cache line size set incorrectly "
1053 "(%i bytes) by BIOS/FW, ", cache_size
);
1054 if (cache_size
> SMP_CACHE_BYTES
)
1055 printk("expecting %i\n", SMP_CACHE_BYTES
);
1057 printk("correcting to %i\n", SMP_CACHE_BYTES
);
1058 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
1059 SMP_CACHE_BYTES
>> 2);
1063 pci_state
= readl(®s
->PciState
);
1064 printk(KERN_INFO
" PCI bus width: %i bits, speed: %iMHz, "
1065 "latency: %i clks\n",
1066 (pci_state
& PCI_32BIT
) ? 32 : 64,
1067 (pci_state
& PCI_66MHZ
) ? 66 : 33,
1071 * Set the max DMA transfer size. Seems that for most systems
1072 * the performance is better when no MAX parameter is
1073 * set. However for systems enabling PCI write and invalidate,
1074 * DMA writes must be set to the L1 cache line size to get
1075 * optimal performance.
1077 * The default is now to turn the PCI write and invalidate off
1078 * - that is what Alteon does for NT.
1080 tmp
= READ_CMD_MEM
| WRITE_CMD_MEM
;
1081 if (ap
->version
>= 2) {
1082 tmp
|= (MEM_READ_MULTIPLE
| (pci_state
& PCI_66MHZ
));
1084 * Tuning parameters only supported for 8 cards
1086 if (board_idx
== BOARD_IDX_OVERFLOW
||
1087 dis_pci_mem_inval
[board_idx
]) {
1088 if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1089 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1090 pci_write_config_word(pdev
, PCI_COMMAND
,
1092 printk(KERN_INFO
" Disabling PCI memory "
1093 "write and invalidate\n");
1095 } else if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1096 printk(KERN_INFO
" PCI memory write & invalidate "
1097 "enabled by BIOS, enabling counter measures\n");
1099 switch(SMP_CACHE_BYTES
) {
1101 tmp
|= DMA_WRITE_MAX_16
;
1104 tmp
|= DMA_WRITE_MAX_32
;
1107 tmp
|= DMA_WRITE_MAX_64
;
1110 tmp
|= DMA_WRITE_MAX_128
;
1113 printk(KERN_INFO
" Cache line size %i not "
1114 "supported, PCI write and invalidate "
1115 "disabled\n", SMP_CACHE_BYTES
);
1116 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1117 pci_write_config_word(pdev
, PCI_COMMAND
,
1125 * On this platform, we know what the best dma settings
1126 * are. We use 64-byte maximum bursts, because if we
1127 * burst larger than the cache line size (or even cross
1128 * a 64byte boundary in a single burst) the UltraSparc
1129 * PCI controller will disconnect at 64-byte multiples.
1131 * Read-multiple will be properly enabled above, and when
1132 * set will give the PCI controller proper hints about
1135 tmp
&= ~DMA_READ_WRITE_MASK
;
1136 tmp
|= DMA_READ_MAX_64
;
1137 tmp
|= DMA_WRITE_MAX_64
;
1140 tmp
&= ~DMA_READ_WRITE_MASK
;
1141 tmp
|= DMA_READ_MAX_128
;
1143 * All the docs say MUST NOT. Well, I did.
1144 * Nothing terrible happens, if we load wrong size.
1145 * Bit w&i still works better!
1147 tmp
|= DMA_WRITE_MAX_128
;
1149 writel(tmp
, ®s
->PciState
);
1153 * The Host PCI bus controller driver has to set FBB.
1154 * If all devices on that PCI bus support FBB, then the controller
1155 * can enable FBB support in the Host PCI Bus controller (or on
1156 * the PCI-PCI bridge if that applies).
1160 * I have received reports from people having problems when this
1163 if (!(ap
->pci_command
& PCI_COMMAND_FAST_BACK
)) {
1164 printk(KERN_INFO
" Enabling PCI Fast Back to Back\n");
1165 ap
->pci_command
|= PCI_COMMAND_FAST_BACK
;
1166 pci_write_config_word(pdev
, PCI_COMMAND
, ap
->pci_command
);
1171 * Configure DMA attributes.
1173 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
1174 ap
->pci_using_dac
= 1;
1175 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
1176 ap
->pci_using_dac
= 0;
1183 * Initialize the generic info block and the command+event rings
1184 * and the control blocks for the transmit and receive rings
1185 * as they need to be setup once and for all.
1187 if (!(info
= pci_alloc_consistent(ap
->pdev
, sizeof(struct ace_info
),
1195 * Get the memory for the skb rings.
1197 if (!(ap
->skb
= kmalloc(sizeof(struct ace_skb
), GFP_KERNEL
))) {
1202 ecode
= request_irq(pdev
->irq
, ace_interrupt
, SA_SHIRQ
,
1205 printk(KERN_WARNING
"%s: Requested IRQ %d is busy\n",
1206 DRV_NAME
, pdev
->irq
);
1209 dev
->irq
= pdev
->irq
;
1212 spin_lock_init(&ap
->debug_lock
);
1213 ap
->last_tx
= ACE_TX_RING_ENTRIES(ap
) - 1;
1214 ap
->last_std_rx
= 0;
1215 ap
->last_mini_rx
= 0;
1218 memset(ap
->info
, 0, sizeof(struct ace_info
));
1219 memset(ap
->skb
, 0, sizeof(struct ace_skb
));
1221 ace_load_firmware(dev
);
1224 tmp_ptr
= ap
->info_dma
;
1225 writel(tmp_ptr
>> 32, ®s
->InfoPtrHi
);
1226 writel(tmp_ptr
& 0xffffffff, ®s
->InfoPtrLo
);
1228 memset(ap
->evt_ring
, 0, EVT_RING_ENTRIES
* sizeof(struct event
));
1230 set_aceaddr(&info
->evt_ctrl
.rngptr
, ap
->evt_ring_dma
);
1231 info
->evt_ctrl
.flags
= 0;
1235 set_aceaddr(&info
->evt_prd_ptr
, ap
->evt_prd_dma
);
1236 writel(0, ®s
->EvtCsm
);
1238 set_aceaddr(&info
->cmd_ctrl
.rngptr
, 0x100);
1239 info
->cmd_ctrl
.flags
= 0;
1240 info
->cmd_ctrl
.max_len
= 0;
1242 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
1243 writel(0, ®s
->CmdRng
[i
]);
1245 writel(0, ®s
->CmdPrd
);
1246 writel(0, ®s
->CmdCsm
);
1248 tmp_ptr
= ap
->info_dma
;
1249 tmp_ptr
+= (unsigned long) &(((struct ace_info
*)0)->s
.stats
);
1250 set_aceaddr(&info
->stats2_ptr
, (dma_addr_t
) tmp_ptr
);
1252 set_aceaddr(&info
->rx_std_ctrl
.rngptr
, ap
->rx_ring_base_dma
);
1253 info
->rx_std_ctrl
.max_len
= ACE_STD_BUFSIZE
;
1254 info
->rx_std_ctrl
.flags
=
1255 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1257 memset(ap
->rx_std_ring
, 0,
1258 RX_STD_RING_ENTRIES
* sizeof(struct rx_desc
));
1260 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++)
1261 ap
->rx_std_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
;
1263 ap
->rx_std_skbprd
= 0;
1264 atomic_set(&ap
->cur_rx_bufs
, 0);
1266 set_aceaddr(&info
->rx_jumbo_ctrl
.rngptr
,
1267 (ap
->rx_ring_base_dma
+
1268 (sizeof(struct rx_desc
) * RX_STD_RING_ENTRIES
)));
1269 info
->rx_jumbo_ctrl
.max_len
= 0;
1270 info
->rx_jumbo_ctrl
.flags
=
1271 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1273 memset(ap
->rx_jumbo_ring
, 0,
1274 RX_JUMBO_RING_ENTRIES
* sizeof(struct rx_desc
));
1276 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++)
1277 ap
->rx_jumbo_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
| BD_FLG_JUMBO
;
1279 ap
->rx_jumbo_skbprd
= 0;
1280 atomic_set(&ap
->cur_jumbo_bufs
, 0);
1282 memset(ap
->rx_mini_ring
, 0,
1283 RX_MINI_RING_ENTRIES
* sizeof(struct rx_desc
));
1285 if (ap
->version
>= 2) {
1286 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
,
1287 (ap
->rx_ring_base_dma
+
1288 (sizeof(struct rx_desc
) *
1289 (RX_STD_RING_ENTRIES
+
1290 RX_JUMBO_RING_ENTRIES
))));
1291 info
->rx_mini_ctrl
.max_len
= ACE_MINI_SIZE
;
1292 info
->rx_mini_ctrl
.flags
=
1293 RCB_FLG_TCP_UDP_SUM
|RCB_FLG_NO_PSEUDO_HDR
|ACE_RCB_VLAN_FLAG
;
1295 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++)
1296 ap
->rx_mini_ring
[i
].flags
=
1297 BD_FLG_TCP_UDP_SUM
| BD_FLG_MINI
;
1299 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
, 0);
1300 info
->rx_mini_ctrl
.flags
= RCB_FLG_RNG_DISABLE
;
1301 info
->rx_mini_ctrl
.max_len
= 0;
1304 ap
->rx_mini_skbprd
= 0;
1305 atomic_set(&ap
->cur_mini_bufs
, 0);
1307 set_aceaddr(&info
->rx_return_ctrl
.rngptr
,
1308 (ap
->rx_ring_base_dma
+
1309 (sizeof(struct rx_desc
) *
1310 (RX_STD_RING_ENTRIES
+
1311 RX_JUMBO_RING_ENTRIES
+
1312 RX_MINI_RING_ENTRIES
))));
1313 info
->rx_return_ctrl
.flags
= 0;
1314 info
->rx_return_ctrl
.max_len
= RX_RETURN_RING_ENTRIES
;
1316 memset(ap
->rx_return_ring
, 0,
1317 RX_RETURN_RING_ENTRIES
* sizeof(struct rx_desc
));
1319 set_aceaddr(&info
->rx_ret_prd_ptr
, ap
->rx_ret_prd_dma
);
1320 *(ap
->rx_ret_prd
) = 0;
1322 writel(TX_RING_BASE
, ®s
->WinBase
);
1324 if (ACE_IS_TIGON_I(ap
)) {
1325 ap
->tx_ring
= (struct tx_desc
*) regs
->Window
;
1326 for (i
= 0; i
< (TIGON_I_TX_RING_ENTRIES
1327 * sizeof(struct tx_desc
)) / sizeof(u32
); i
++)
1328 writel(0, (void __iomem
*)ap
->tx_ring
+ i
* 4);
1330 set_aceaddr(&info
->tx_ctrl
.rngptr
, TX_RING_BASE
);
1332 memset(ap
->tx_ring
, 0,
1333 MAX_TX_RING_ENTRIES
* sizeof(struct tx_desc
));
1335 set_aceaddr(&info
->tx_ctrl
.rngptr
, ap
->tx_ring_dma
);
1338 info
->tx_ctrl
.max_len
= ACE_TX_RING_ENTRIES(ap
);
1339 tmp
= RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1342 * The Tigon I does not like having the TX ring in host memory ;-(
1344 if (!ACE_IS_TIGON_I(ap
))
1345 tmp
|= RCB_FLG_TX_HOST_RING
;
1346 #if TX_COAL_INTS_ONLY
1347 tmp
|= RCB_FLG_COAL_INT_ONLY
;
1349 info
->tx_ctrl
.flags
= tmp
;
1351 set_aceaddr(&info
->tx_csm_ptr
, ap
->tx_csm_dma
);
1354 * Potential item for tuning parameter
1357 writel(DMA_THRESH_16W
, ®s
->DmaReadCfg
);
1358 writel(DMA_THRESH_16W
, ®s
->DmaWriteCfg
);
1360 writel(DMA_THRESH_8W
, ®s
->DmaReadCfg
);
1361 writel(DMA_THRESH_8W
, ®s
->DmaWriteCfg
);
1364 writel(0, ®s
->MaskInt
);
1365 writel(1, ®s
->IfIdx
);
1368 * McKinley boxes do not like us fiddling with AssistState
1371 writel(1, ®s
->AssistState
);
1374 writel(DEF_STAT
, ®s
->TuneStatTicks
);
1375 writel(DEF_TRACE
, ®s
->TuneTrace
);
1377 ace_set_rxtx_parms(dev
, 0);
1379 if (board_idx
== BOARD_IDX_OVERFLOW
) {
1380 printk(KERN_WARNING
"%s: more than %i NICs detected, "
1381 "ignoring module parameters!\n",
1382 ap
->name
, ACE_MAX_MOD_PARMS
);
1383 } else if (board_idx
>= 0) {
1384 if (tx_coal_tick
[board_idx
])
1385 writel(tx_coal_tick
[board_idx
],
1386 ®s
->TuneTxCoalTicks
);
1387 if (max_tx_desc
[board_idx
])
1388 writel(max_tx_desc
[board_idx
], ®s
->TuneMaxTxDesc
);
1390 if (rx_coal_tick
[board_idx
])
1391 writel(rx_coal_tick
[board_idx
],
1392 ®s
->TuneRxCoalTicks
);
1393 if (max_rx_desc
[board_idx
])
1394 writel(max_rx_desc
[board_idx
], ®s
->TuneMaxRxDesc
);
1396 if (trace
[board_idx
])
1397 writel(trace
[board_idx
], ®s
->TuneTrace
);
1399 if ((tx_ratio
[board_idx
] > 0) && (tx_ratio
[board_idx
] < 64))
1400 writel(tx_ratio
[board_idx
], ®s
->TxBufRat
);
1404 * Default link parameters
1406 tmp
= LNK_ENABLE
| LNK_FULL_DUPLEX
| LNK_1000MB
| LNK_100MB
|
1407 LNK_10MB
| LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
| LNK_NEGOTIATE
;
1408 if(ap
->version
>= 2)
1409 tmp
|= LNK_TX_FLOW_CTL_Y
;
1412 * Override link default parameters
1414 if ((board_idx
>= 0) && link
[board_idx
]) {
1415 int option
= link
[board_idx
];
1419 if (option
& 0x01) {
1420 printk(KERN_INFO
"%s: Setting half duplex link\n",
1422 tmp
&= ~LNK_FULL_DUPLEX
;
1425 tmp
&= ~LNK_NEGOTIATE
;
1432 if ((option
& 0x70) == 0) {
1433 printk(KERN_WARNING
"%s: No media speed specified, "
1434 "forcing auto negotiation\n", ap
->name
);
1435 tmp
|= LNK_NEGOTIATE
| LNK_1000MB
|
1436 LNK_100MB
| LNK_10MB
;
1438 if ((option
& 0x100) == 0)
1439 tmp
|= LNK_NEG_FCTL
;
1441 printk(KERN_INFO
"%s: Disabling flow control "
1442 "negotiation\n", ap
->name
);
1444 tmp
|= LNK_RX_FLOW_CTL_Y
;
1445 if ((option
& 0x400) && (ap
->version
>= 2)) {
1446 printk(KERN_INFO
"%s: Enabling TX flow control\n",
1448 tmp
|= LNK_TX_FLOW_CTL_Y
;
1453 writel(tmp
, ®s
->TuneLink
);
1454 if (ap
->version
>= 2)
1455 writel(tmp
, ®s
->TuneFastLink
);
1457 if (ACE_IS_TIGON_I(ap
))
1458 writel(tigonFwStartAddr
, ®s
->Pc
);
1459 if (ap
->version
== 2)
1460 writel(tigon2FwStartAddr
, ®s
->Pc
);
1462 writel(0, ®s
->Mb0Lo
);
1465 * Set tx_csm before we start receiving interrupts, otherwise
1466 * the interrupt handler might think it is supposed to process
1467 * tx ints before we are up and running, which may cause a null
1468 * pointer access in the int handler.
1471 ap
->tx_prd
= *(ap
->tx_csm
) = ap
->tx_ret_csm
= 0;
1474 ace_set_txprd(regs
, ap
, 0);
1475 writel(0, ®s
->RxRetCsm
);
1478 * Zero the stats before starting the interface
1480 memset(&ap
->stats
, 0, sizeof(ap
->stats
));
1483 * Enable DMA engine now.
1484 * If we do this sooner, Mckinley box pukes.
1485 * I assume it's because Tigon II DMA engine wants to check
1486 * *something* even before the CPU is started.
1488 writel(1, ®s
->AssistState
); /* enable DMA */
1493 writel(readl(®s
->CpuCtrl
) & ~(CPU_HALT
|CPU_TRACE
), ®s
->CpuCtrl
);
1494 readl(®s
->CpuCtrl
);
1497 * Wait for the firmware to spin up - max 3 seconds.
1499 myjif
= jiffies
+ 3 * HZ
;
1500 while (time_before(jiffies
, myjif
) && !ap
->fw_running
)
1503 if (!ap
->fw_running
) {
1504 printk(KERN_ERR
"%s: Firmware NOT running!\n", ap
->name
);
1507 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
1508 readl(®s
->CpuCtrl
);
1510 /* aman@sgi.com - account for badly behaving firmware/NIC:
1511 * - have observed that the NIC may continue to generate
1512 * interrupts for some reason; attempt to stop it - halt
1513 * second CPU for Tigon II cards, and also clear Mb0
1514 * - if we're a module, we'll fail to load if this was
1515 * the only GbE card in the system => if the kernel does
1516 * see an interrupt from the NIC, code to handle it is
1517 * gone and OOps! - so free_irq also
1519 if (ap
->version
>= 2)
1520 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
,
1522 writel(0, ®s
->Mb0Lo
);
1523 readl(®s
->Mb0Lo
);
1530 * We load the ring here as there seem to be no way to tell the
1531 * firmware to wipe the ring without re-initializing it.
1533 if (!test_and_set_bit(0, &ap
->std_refill_busy
))
1534 ace_load_std_rx_ring(ap
, RX_RING_SIZE
);
1536 printk(KERN_ERR
"%s: Someone is busy refilling the RX ring\n",
1538 if (ap
->version
>= 2) {
1539 if (!test_and_set_bit(0, &ap
->mini_refill_busy
))
1540 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
);
1542 printk(KERN_ERR
"%s: Someone is busy refilling "
1543 "the RX mini ring\n", ap
->name
);
1548 ace_init_cleanup(dev
);
1553 static void ace_set_rxtx_parms(struct net_device
*dev
, int jumbo
)
1555 struct ace_private
*ap
= netdev_priv(dev
);
1556 struct ace_regs __iomem
*regs
= ap
->regs
;
1557 int board_idx
= ap
->board_idx
;
1559 if (board_idx
>= 0) {
1561 if (!tx_coal_tick
[board_idx
])
1562 writel(DEF_TX_COAL
, ®s
->TuneTxCoalTicks
);
1563 if (!max_tx_desc
[board_idx
])
1564 writel(DEF_TX_MAX_DESC
, ®s
->TuneMaxTxDesc
);
1565 if (!rx_coal_tick
[board_idx
])
1566 writel(DEF_RX_COAL
, ®s
->TuneRxCoalTicks
);
1567 if (!max_rx_desc
[board_idx
])
1568 writel(DEF_RX_MAX_DESC
, ®s
->TuneMaxRxDesc
);
1569 if (!tx_ratio
[board_idx
])
1570 writel(DEF_TX_RATIO
, ®s
->TxBufRat
);
1572 if (!tx_coal_tick
[board_idx
])
1573 writel(DEF_JUMBO_TX_COAL
,
1574 ®s
->TuneTxCoalTicks
);
1575 if (!max_tx_desc
[board_idx
])
1576 writel(DEF_JUMBO_TX_MAX_DESC
,
1577 ®s
->TuneMaxTxDesc
);
1578 if (!rx_coal_tick
[board_idx
])
1579 writel(DEF_JUMBO_RX_COAL
,
1580 ®s
->TuneRxCoalTicks
);
1581 if (!max_rx_desc
[board_idx
])
1582 writel(DEF_JUMBO_RX_MAX_DESC
,
1583 ®s
->TuneMaxRxDesc
);
1584 if (!tx_ratio
[board_idx
])
1585 writel(DEF_JUMBO_TX_RATIO
, ®s
->TxBufRat
);
1591 static void ace_watchdog(struct net_device
*data
)
1593 struct net_device
*dev
= data
;
1594 struct ace_private
*ap
= netdev_priv(dev
);
1595 struct ace_regs __iomem
*regs
= ap
->regs
;
1598 * We haven't received a stats update event for more than 2.5
1599 * seconds and there is data in the transmit queue, thus we
1600 * asume the card is stuck.
1602 if (*ap
->tx_csm
!= ap
->tx_ret_csm
) {
1603 printk(KERN_WARNING
"%s: Transmitter is stuck, %08x\n",
1604 dev
->name
, (unsigned int)readl(®s
->HostCtrl
));
1605 /* This can happen due to ieee flow control. */
1607 printk(KERN_DEBUG
"%s: BUG... transmitter died. Kicking it.\n",
1610 netif_wake_queue(dev
);
1616 static void ace_tasklet(unsigned long dev
)
1618 struct ace_private
*ap
= netdev_priv((struct net_device
*)dev
);
1621 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
1622 if ((cur_size
< RX_LOW_STD_THRES
) &&
1623 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
1625 printk("refilling buffers (current %i)\n", cur_size
);
1627 ace_load_std_rx_ring(ap
, RX_RING_SIZE
- cur_size
);
1630 if (ap
->version
>= 2) {
1631 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
1632 if ((cur_size
< RX_LOW_MINI_THRES
) &&
1633 !test_and_set_bit(0, &ap
->mini_refill_busy
)) {
1635 printk("refilling mini buffers (current %i)\n",
1638 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
- cur_size
);
1642 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
1643 if (ap
->jumbo
&& (cur_size
< RX_LOW_JUMBO_THRES
) &&
1644 !test_and_set_bit(0, &ap
->jumbo_refill_busy
)) {
1646 printk("refilling jumbo buffers (current %i)\n", cur_size
);
1648 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
- cur_size
);
1650 ap
->tasklet_pending
= 0;
1655 * Copy the contents of the NIC's trace buffer to kernel memory.
1657 static void ace_dump_trace(struct ace_private
*ap
)
1661 if (!(ap
->trace_buf
= kmalloc(ACE_TRACE_SIZE
, GFP_KERNEL
)))
1668 * Load the standard rx ring.
1670 * Loading rings is safe without holding the spin lock since this is
1671 * done only before the device is enabled, thus no interrupts are
1672 * generated and by the interrupt handler/tasklet handler.
1674 static void ace_load_std_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1676 struct ace_regs __iomem
*regs
= ap
->regs
;
1680 prefetchw(&ap
->cur_rx_bufs
);
1682 idx
= ap
->rx_std_skbprd
;
1684 for (i
= 0; i
< nr_bufs
; i
++) {
1685 struct sk_buff
*skb
;
1689 skb
= alloc_skb(ACE_STD_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1693 skb_reserve(skb
, NET_IP_ALIGN
);
1694 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1695 offset_in_page(skb
->data
),
1697 PCI_DMA_FROMDEVICE
);
1698 ap
->skb
->rx_std_skbuff
[idx
].skb
= skb
;
1699 pci_unmap_addr_set(&ap
->skb
->rx_std_skbuff
[idx
],
1702 rd
= &ap
->rx_std_ring
[idx
];
1703 set_aceaddr(&rd
->addr
, mapping
);
1704 rd
->size
= ACE_STD_BUFSIZE
;
1706 idx
= (idx
+ 1) % RX_STD_RING_ENTRIES
;
1712 atomic_add(i
, &ap
->cur_rx_bufs
);
1713 ap
->rx_std_skbprd
= idx
;
1715 if (ACE_IS_TIGON_I(ap
)) {
1717 cmd
.evt
= C_SET_RX_PRD_IDX
;
1719 cmd
.idx
= ap
->rx_std_skbprd
;
1720 ace_issue_cmd(regs
, &cmd
);
1722 writel(idx
, ®s
->RxStdPrd
);
1727 clear_bit(0, &ap
->std_refill_busy
);
1731 printk(KERN_INFO
"Out of memory when allocating "
1732 "standard receive buffers\n");
1737 static void ace_load_mini_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1739 struct ace_regs __iomem
*regs
= ap
->regs
;
1742 prefetchw(&ap
->cur_mini_bufs
);
1744 idx
= ap
->rx_mini_skbprd
;
1745 for (i
= 0; i
< nr_bufs
; i
++) {
1746 struct sk_buff
*skb
;
1750 skb
= alloc_skb(ACE_MINI_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1754 skb_reserve(skb
, NET_IP_ALIGN
);
1755 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1756 offset_in_page(skb
->data
),
1758 PCI_DMA_FROMDEVICE
);
1759 ap
->skb
->rx_mini_skbuff
[idx
].skb
= skb
;
1760 pci_unmap_addr_set(&ap
->skb
->rx_mini_skbuff
[idx
],
1763 rd
= &ap
->rx_mini_ring
[idx
];
1764 set_aceaddr(&rd
->addr
, mapping
);
1765 rd
->size
= ACE_MINI_BUFSIZE
;
1767 idx
= (idx
+ 1) % RX_MINI_RING_ENTRIES
;
1773 atomic_add(i
, &ap
->cur_mini_bufs
);
1775 ap
->rx_mini_skbprd
= idx
;
1777 writel(idx
, ®s
->RxMiniPrd
);
1781 clear_bit(0, &ap
->mini_refill_busy
);
1784 printk(KERN_INFO
"Out of memory when allocating "
1785 "mini receive buffers\n");
1791 * Load the jumbo rx ring, this may happen at any time if the MTU
1792 * is changed to a value > 1500.
1794 static void ace_load_jumbo_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1796 struct ace_regs __iomem
*regs
= ap
->regs
;
1799 idx
= ap
->rx_jumbo_skbprd
;
1801 for (i
= 0; i
< nr_bufs
; i
++) {
1802 struct sk_buff
*skb
;
1806 skb
= alloc_skb(ACE_JUMBO_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1810 skb_reserve(skb
, NET_IP_ALIGN
);
1811 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1812 offset_in_page(skb
->data
),
1814 PCI_DMA_FROMDEVICE
);
1815 ap
->skb
->rx_jumbo_skbuff
[idx
].skb
= skb
;
1816 pci_unmap_addr_set(&ap
->skb
->rx_jumbo_skbuff
[idx
],
1819 rd
= &ap
->rx_jumbo_ring
[idx
];
1820 set_aceaddr(&rd
->addr
, mapping
);
1821 rd
->size
= ACE_JUMBO_BUFSIZE
;
1823 idx
= (idx
+ 1) % RX_JUMBO_RING_ENTRIES
;
1829 atomic_add(i
, &ap
->cur_jumbo_bufs
);
1830 ap
->rx_jumbo_skbprd
= idx
;
1832 if (ACE_IS_TIGON_I(ap
)) {
1834 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1836 cmd
.idx
= ap
->rx_jumbo_skbprd
;
1837 ace_issue_cmd(regs
, &cmd
);
1839 writel(idx
, ®s
->RxJumboPrd
);
1844 clear_bit(0, &ap
->jumbo_refill_busy
);
1847 if (net_ratelimit())
1848 printk(KERN_INFO
"Out of memory when allocating "
1849 "jumbo receive buffers\n");
1855 * All events are considered to be slow (RX/TX ints do not generate
1856 * events) and are handled here, outside the main interrupt handler,
1857 * to reduce the size of the handler.
1859 static u32
ace_handle_event(struct net_device
*dev
, u32 evtcsm
, u32 evtprd
)
1861 struct ace_private
*ap
;
1863 ap
= netdev_priv(dev
);
1865 while (evtcsm
!= evtprd
) {
1866 switch (ap
->evt_ring
[evtcsm
].evt
) {
1868 printk(KERN_INFO
"%s: Firmware up and running\n",
1873 case E_STATS_UPDATED
:
1877 u16 code
= ap
->evt_ring
[evtcsm
].code
;
1881 u32 state
= readl(&ap
->regs
->GigLnkState
);
1882 printk(KERN_WARNING
"%s: Optical link UP "
1883 "(%s Duplex, Flow Control: %s%s)\n",
1885 state
& LNK_FULL_DUPLEX
? "Full":"Half",
1886 state
& LNK_TX_FLOW_CTL_Y
? "TX " : "",
1887 state
& LNK_RX_FLOW_CTL_Y
? "RX" : "");
1891 printk(KERN_WARNING
"%s: Optical link DOWN\n",
1894 case E_C_LINK_10_100
:
1895 printk(KERN_WARNING
"%s: 10/100BaseT link "
1899 printk(KERN_ERR
"%s: Unknown optical link "
1900 "state %02x\n", ap
->name
, code
);
1905 switch(ap
->evt_ring
[evtcsm
].code
) {
1906 case E_C_ERR_INVAL_CMD
:
1907 printk(KERN_ERR
"%s: invalid command error\n",
1910 case E_C_ERR_UNIMP_CMD
:
1911 printk(KERN_ERR
"%s: unimplemented command "
1912 "error\n", ap
->name
);
1914 case E_C_ERR_BAD_CFG
:
1915 printk(KERN_ERR
"%s: bad config error\n",
1919 printk(KERN_ERR
"%s: unknown error %02x\n",
1920 ap
->name
, ap
->evt_ring
[evtcsm
].code
);
1923 case E_RESET_JUMBO_RNG
:
1926 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
1927 if (ap
->skb
->rx_jumbo_skbuff
[i
].skb
) {
1928 ap
->rx_jumbo_ring
[i
].size
= 0;
1929 set_aceaddr(&ap
->rx_jumbo_ring
[i
].addr
, 0);
1930 dev_kfree_skb(ap
->skb
->rx_jumbo_skbuff
[i
].skb
);
1931 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
1935 if (ACE_IS_TIGON_I(ap
)) {
1937 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1940 ace_issue_cmd(ap
->regs
, &cmd
);
1942 writel(0, &((ap
->regs
)->RxJumboPrd
));
1947 ap
->rx_jumbo_skbprd
= 0;
1948 printk(KERN_INFO
"%s: Jumbo ring flushed\n",
1950 clear_bit(0, &ap
->jumbo_refill_busy
);
1954 printk(KERN_ERR
"%s: Unhandled event 0x%02x\n",
1955 ap
->name
, ap
->evt_ring
[evtcsm
].evt
);
1957 evtcsm
= (evtcsm
+ 1) % EVT_RING_ENTRIES
;
1964 static void ace_rx_int(struct net_device
*dev
, u32 rxretprd
, u32 rxretcsm
)
1966 struct ace_private
*ap
= netdev_priv(dev
);
1968 int mini_count
= 0, std_count
= 0;
1972 prefetchw(&ap
->cur_rx_bufs
);
1973 prefetchw(&ap
->cur_mini_bufs
);
1975 while (idx
!= rxretprd
) {
1976 struct ring_info
*rip
;
1977 struct sk_buff
*skb
;
1978 struct rx_desc
*rxdesc
, *retdesc
;
1980 int bd_flags
, desc_type
, mapsize
;
1984 /* make sure the rx descriptor isn't read before rxretprd */
1985 if (idx
== rxretcsm
)
1988 retdesc
= &ap
->rx_return_ring
[idx
];
1989 skbidx
= retdesc
->idx
;
1990 bd_flags
= retdesc
->flags
;
1991 desc_type
= bd_flags
& (BD_FLG_JUMBO
| BD_FLG_MINI
);
1995 * Normal frames do not have any flags set
1997 * Mini and normal frames arrive frequently,
1998 * so use a local counter to avoid doing
1999 * atomic operations for each packet arriving.
2002 rip
= &ap
->skb
->rx_std_skbuff
[skbidx
];
2003 mapsize
= ACE_STD_BUFSIZE
;
2004 rxdesc
= &ap
->rx_std_ring
[skbidx
];
2008 rip
= &ap
->skb
->rx_jumbo_skbuff
[skbidx
];
2009 mapsize
= ACE_JUMBO_BUFSIZE
;
2010 rxdesc
= &ap
->rx_jumbo_ring
[skbidx
];
2011 atomic_dec(&ap
->cur_jumbo_bufs
);
2014 rip
= &ap
->skb
->rx_mini_skbuff
[skbidx
];
2015 mapsize
= ACE_MINI_BUFSIZE
;
2016 rxdesc
= &ap
->rx_mini_ring
[skbidx
];
2020 printk(KERN_INFO
"%s: unknown frame type (0x%02x) "
2021 "returned by NIC\n", dev
->name
,
2028 pci_unmap_page(ap
->pdev
,
2029 pci_unmap_addr(rip
, mapping
),
2031 PCI_DMA_FROMDEVICE
);
2032 skb_put(skb
, retdesc
->size
);
2037 csum
= retdesc
->tcp_udp_csum
;
2040 skb
->protocol
= eth_type_trans(skb
, dev
);
2043 * Instead of forcing the poor tigon mips cpu to calculate
2044 * pseudo hdr checksum, we do this ourselves.
2046 if (bd_flags
& BD_FLG_TCP_UDP_SUM
) {
2047 skb
->csum
= htons(csum
);
2048 skb
->ip_summed
= CHECKSUM_HW
;
2050 skb
->ip_summed
= CHECKSUM_NONE
;
2055 if (ap
->vlgrp
&& (bd_flags
& BD_FLG_VLAN_TAG
)) {
2056 vlan_hwaccel_rx(skb
, ap
->vlgrp
, retdesc
->vlan
);
2061 dev
->last_rx
= jiffies
;
2062 ap
->stats
.rx_packets
++;
2063 ap
->stats
.rx_bytes
+= retdesc
->size
;
2065 idx
= (idx
+ 1) % RX_RETURN_RING_ENTRIES
;
2068 atomic_sub(std_count
, &ap
->cur_rx_bufs
);
2069 if (!ACE_IS_TIGON_I(ap
))
2070 atomic_sub(mini_count
, &ap
->cur_mini_bufs
);
2074 * According to the documentation RxRetCsm is obsolete with
2075 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2077 if (ACE_IS_TIGON_I(ap
)) {
2078 writel(idx
, &ap
->regs
->RxRetCsm
);
2089 static inline void ace_tx_int(struct net_device
*dev
,
2092 struct ace_private
*ap
= netdev_priv(dev
);
2095 struct sk_buff
*skb
;
2097 struct tx_ring_info
*info
;
2099 info
= ap
->skb
->tx_skbuff
+ idx
;
2101 mapping
= pci_unmap_addr(info
, mapping
);
2104 pci_unmap_page(ap
->pdev
, mapping
,
2105 pci_unmap_len(info
, maplen
),
2107 pci_unmap_addr_set(info
, mapping
, 0);
2111 ap
->stats
.tx_packets
++;
2112 ap
->stats
.tx_bytes
+= skb
->len
;
2113 dev_kfree_skb_irq(skb
);
2117 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2118 } while (idx
!= txcsm
);
2120 if (netif_queue_stopped(dev
))
2121 netif_wake_queue(dev
);
2124 ap
->tx_ret_csm
= txcsm
;
2126 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2128 * We could try to make it before. In this case we would get
2129 * the following race condition: hard_start_xmit on other cpu
2130 * enters after we advanced tx_ret_csm and fills space,
2131 * which we have just freed, so that we make illegal device wakeup.
2132 * There is no good way to workaround this (at entry
2133 * to ace_start_xmit detects this condition and prevents
2134 * ring corruption, but it is not a good workaround.)
2136 * When tx_ret_csm is advanced after, we wake up device _only_
2137 * if we really have some space in ring (though the core doing
2138 * hard_start_xmit can see full ring for some period and has to
2139 * synchronize.) Superb.
2140 * BUT! We get another subtle race condition. hard_start_xmit
2141 * may think that ring is full between wakeup and advancing
2142 * tx_ret_csm and will stop device instantly! It is not so bad.
2143 * We are guaranteed that there is something in ring, so that
2144 * the next irq will resume transmission. To speedup this we could
2145 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2146 * (see ace_start_xmit).
2148 * Well, this dilemma exists in all lock-free devices.
2149 * We, following scheme used in drivers by Donald Becker,
2150 * select the least dangerous.
2156 static irqreturn_t
ace_interrupt(int irq
, void *dev_id
, struct pt_regs
*ptregs
)
2158 struct net_device
*dev
= (struct net_device
*)dev_id
;
2159 struct ace_private
*ap
= netdev_priv(dev
);
2160 struct ace_regs __iomem
*regs
= ap
->regs
;
2162 u32 txcsm
, rxretcsm
, rxretprd
;
2166 * In case of PCI shared interrupts or spurious interrupts,
2167 * we want to make sure it is actually our interrupt before
2168 * spending any time in here.
2170 if (!(readl(®s
->HostCtrl
) & IN_INT
))
2174 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2175 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2176 * writel(0, ®s->Mb0Lo).
2178 * "IRQ avoidance" recommended in docs applies to IRQs served
2179 * threads and it is wrong even for that case.
2181 writel(0, ®s
->Mb0Lo
);
2182 readl(®s
->Mb0Lo
);
2185 * There is no conflict between transmit handling in
2186 * start_xmit and receive processing, thus there is no reason
2187 * to take a spin lock for RX handling. Wait until we start
2188 * working on the other stuff - hey we don't need a spin lock
2191 rxretprd
= *ap
->rx_ret_prd
;
2192 rxretcsm
= ap
->cur_rx
;
2194 if (rxretprd
!= rxretcsm
)
2195 ace_rx_int(dev
, rxretprd
, rxretcsm
);
2197 txcsm
= *ap
->tx_csm
;
2198 idx
= ap
->tx_ret_csm
;
2202 * If each skb takes only one descriptor this check degenerates
2203 * to identity, because new space has just been opened.
2204 * But if skbs are fragmented we must check that this index
2205 * update releases enough of space, otherwise we just
2206 * wait for device to make more work.
2208 if (!tx_ring_full(ap
, txcsm
, ap
->tx_prd
))
2209 ace_tx_int(dev
, txcsm
, idx
);
2212 evtcsm
= readl(®s
->EvtCsm
);
2213 evtprd
= *ap
->evt_prd
;
2215 if (evtcsm
!= evtprd
) {
2216 evtcsm
= ace_handle_event(dev
, evtcsm
, evtprd
);
2217 writel(evtcsm
, ®s
->EvtCsm
);
2221 * This has to go last in the interrupt handler and run with
2222 * the spin lock released ... what lock?
2224 if (netif_running(dev
)) {
2226 int run_tasklet
= 0;
2228 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
2229 if (cur_size
< RX_LOW_STD_THRES
) {
2230 if ((cur_size
< RX_PANIC_STD_THRES
) &&
2231 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
2233 printk("low on std buffers %i\n", cur_size
);
2235 ace_load_std_rx_ring(ap
,
2236 RX_RING_SIZE
- cur_size
);
2241 if (!ACE_IS_TIGON_I(ap
)) {
2242 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
2243 if (cur_size
< RX_LOW_MINI_THRES
) {
2244 if ((cur_size
< RX_PANIC_MINI_THRES
) &&
2245 !test_and_set_bit(0,
2246 &ap
->mini_refill_busy
)) {
2248 printk("low on mini buffers %i\n",
2251 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
- cur_size
);
2258 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
2259 if (cur_size
< RX_LOW_JUMBO_THRES
) {
2260 if ((cur_size
< RX_PANIC_JUMBO_THRES
) &&
2261 !test_and_set_bit(0,
2262 &ap
->jumbo_refill_busy
)){
2264 printk("low on jumbo buffers %i\n",
2267 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
- cur_size
);
2272 if (run_tasklet
&& !ap
->tasklet_pending
) {
2273 ap
->tasklet_pending
= 1;
2274 tasklet_schedule(&ap
->ace_tasklet
);
2283 static void ace_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*grp
)
2285 struct ace_private
*ap
= netdev_priv(dev
);
2286 unsigned long flags
;
2288 local_irq_save(flags
);
2293 ace_unmask_irq(dev
);
2294 local_irq_restore(flags
);
2298 static void ace_vlan_rx_kill_vid(struct net_device
*dev
, unsigned short vid
)
2300 struct ace_private
*ap
= netdev_priv(dev
);
2301 unsigned long flags
;
2303 local_irq_save(flags
);
2307 ap
->vlgrp
->vlan_devices
[vid
] = NULL
;
2309 ace_unmask_irq(dev
);
2310 local_irq_restore(flags
);
2312 #endif /* ACENIC_DO_VLAN */
2315 static int ace_open(struct net_device
*dev
)
2317 struct ace_private
*ap
= netdev_priv(dev
);
2318 struct ace_regs __iomem
*regs
= ap
->regs
;
2321 if (!(ap
->fw_running
)) {
2322 printk(KERN_WARNING
"%s: Firmware not running!\n", dev
->name
);
2326 writel(dev
->mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2328 cmd
.evt
= C_CLEAR_STATS
;
2331 ace_issue_cmd(regs
, &cmd
);
2333 cmd
.evt
= C_HOST_STATE
;
2334 cmd
.code
= C_C_STACK_UP
;
2336 ace_issue_cmd(regs
, &cmd
);
2339 !test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2340 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
);
2342 if (dev
->flags
& IFF_PROMISC
) {
2343 cmd
.evt
= C_SET_PROMISC_MODE
;
2344 cmd
.code
= C_C_PROMISC_ENABLE
;
2346 ace_issue_cmd(regs
, &cmd
);
2354 cmd
.evt
= C_LNK_NEGOTIATION
;
2357 ace_issue_cmd(regs
, &cmd
);
2360 netif_start_queue(dev
);
2363 * Setup the bottom half rx ring refill handler
2365 tasklet_init(&ap
->ace_tasklet
, ace_tasklet
, (unsigned long)dev
);
2370 static int ace_close(struct net_device
*dev
)
2372 struct ace_private
*ap
= netdev_priv(dev
);
2373 struct ace_regs __iomem
*regs
= ap
->regs
;
2375 unsigned long flags
;
2379 * Without (or before) releasing irq and stopping hardware, this
2380 * is an absolute non-sense, by the way. It will be reset instantly
2383 netif_stop_queue(dev
);
2387 cmd
.evt
= C_SET_PROMISC_MODE
;
2388 cmd
.code
= C_C_PROMISC_DISABLE
;
2390 ace_issue_cmd(regs
, &cmd
);
2394 cmd
.evt
= C_HOST_STATE
;
2395 cmd
.code
= C_C_STACK_DOWN
;
2397 ace_issue_cmd(regs
, &cmd
);
2399 tasklet_kill(&ap
->ace_tasklet
);
2402 * Make sure one CPU is not processing packets while
2403 * buffers are being released by another.
2406 local_irq_save(flags
);
2409 for (i
= 0; i
< ACE_TX_RING_ENTRIES(ap
); i
++) {
2410 struct sk_buff
*skb
;
2412 struct tx_ring_info
*info
;
2414 info
= ap
->skb
->tx_skbuff
+ i
;
2416 mapping
= pci_unmap_addr(info
, mapping
);
2419 if (ACE_IS_TIGON_I(ap
)) {
2420 struct tx_desc __iomem
*tx
2421 = (struct tx_desc __iomem
*) &ap
->tx_ring
[i
];
2422 writel(0, &tx
->addr
.addrhi
);
2423 writel(0, &tx
->addr
.addrlo
);
2424 writel(0, &tx
->flagsize
);
2426 memset(ap
->tx_ring
+ i
, 0,
2427 sizeof(struct tx_desc
));
2428 pci_unmap_page(ap
->pdev
, mapping
,
2429 pci_unmap_len(info
, maplen
),
2431 pci_unmap_addr_set(info
, mapping
, 0);
2440 cmd
.evt
= C_RESET_JUMBO_RNG
;
2443 ace_issue_cmd(regs
, &cmd
);
2446 ace_unmask_irq(dev
);
2447 local_irq_restore(flags
);
2453 static inline dma_addr_t
2454 ace_map_tx_skb(struct ace_private
*ap
, struct sk_buff
*skb
,
2455 struct sk_buff
*tail
, u32 idx
)
2458 struct tx_ring_info
*info
;
2460 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
2461 offset_in_page(skb
->data
),
2462 skb
->len
, PCI_DMA_TODEVICE
);
2464 info
= ap
->skb
->tx_skbuff
+ idx
;
2466 pci_unmap_addr_set(info
, mapping
, mapping
);
2467 pci_unmap_len_set(info
, maplen
, skb
->len
);
2473 ace_load_tx_bd(struct ace_private
*ap
, struct tx_desc
*desc
, u64 addr
,
2474 u32 flagsize
, u32 vlan_tag
)
2476 #if !USE_TX_COAL_NOW
2477 flagsize
&= ~BD_FLG_COAL_NOW
;
2480 if (ACE_IS_TIGON_I(ap
)) {
2481 struct tx_desc __iomem
*io
= (struct tx_desc __iomem
*) desc
;
2482 writel(addr
>> 32, &io
->addr
.addrhi
);
2483 writel(addr
& 0xffffffff, &io
->addr
.addrlo
);
2484 writel(flagsize
, &io
->flagsize
);
2486 writel(vlan_tag
, &io
->vlanres
);
2489 desc
->addr
.addrhi
= addr
>> 32;
2490 desc
->addr
.addrlo
= addr
;
2491 desc
->flagsize
= flagsize
;
2493 desc
->vlanres
= vlan_tag
;
2499 static int ace_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2501 struct ace_private
*ap
= netdev_priv(dev
);
2502 struct ace_regs __iomem
*regs
= ap
->regs
;
2503 struct tx_desc
*desc
;
2505 unsigned long maxjiff
= jiffies
+ 3*HZ
;
2510 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2513 if (!skb_shinfo(skb
)->nr_frags
) {
2517 mapping
= ace_map_tx_skb(ap
, skb
, skb
, idx
);
2518 flagsize
= (skb
->len
<< 16) | (BD_FLG_END
);
2519 if (skb
->ip_summed
== CHECKSUM_HW
)
2520 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2522 if (vlan_tx_tag_present(skb
)) {
2523 flagsize
|= BD_FLG_VLAN_TAG
;
2524 vlan_tag
= vlan_tx_tag_get(skb
);
2527 desc
= ap
->tx_ring
+ idx
;
2528 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2530 /* Look at ace_tx_int for explanations. */
2531 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2532 flagsize
|= BD_FLG_COAL_NOW
;
2534 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2540 mapping
= ace_map_tx_skb(ap
, skb
, NULL
, idx
);
2541 flagsize
= (skb_headlen(skb
) << 16);
2542 if (skb
->ip_summed
== CHECKSUM_HW
)
2543 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2545 if (vlan_tx_tag_present(skb
)) {
2546 flagsize
|= BD_FLG_VLAN_TAG
;
2547 vlan_tag
= vlan_tx_tag_get(skb
);
2551 ace_load_tx_bd(ap
, ap
->tx_ring
+ idx
, mapping
, flagsize
, vlan_tag
);
2553 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2555 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2556 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2557 struct tx_ring_info
*info
;
2560 info
= ap
->skb
->tx_skbuff
+ idx
;
2561 desc
= ap
->tx_ring
+ idx
;
2563 mapping
= pci_map_page(ap
->pdev
, frag
->page
,
2564 frag
->page_offset
, frag
->size
,
2567 flagsize
= (frag
->size
<< 16);
2568 if (skb
->ip_summed
== CHECKSUM_HW
)
2569 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2570 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2572 if (i
== skb_shinfo(skb
)->nr_frags
- 1) {
2573 flagsize
|= BD_FLG_END
;
2574 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2575 flagsize
|= BD_FLG_COAL_NOW
;
2578 * Only the last fragment frees
2585 pci_unmap_addr_set(info
, mapping
, mapping
);
2586 pci_unmap_len_set(info
, maplen
, frag
->size
);
2587 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2593 ace_set_txprd(regs
, ap
, idx
);
2595 if (flagsize
& BD_FLG_COAL_NOW
) {
2596 netif_stop_queue(dev
);
2599 * A TX-descriptor producer (an IRQ) might have gotten
2600 * inbetween, making the ring free again. Since xmit is
2601 * serialized, this is the only situation we have to
2604 if (!tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2605 netif_wake_queue(dev
);
2608 dev
->trans_start
= jiffies
;
2609 return NETDEV_TX_OK
;
2613 * This race condition is unavoidable with lock-free drivers.
2614 * We wake up the queue _before_ tx_prd is advanced, so that we can
2615 * enter hard_start_xmit too early, while tx ring still looks closed.
2616 * This happens ~1-4 times per 100000 packets, so that we can allow
2617 * to loop syncing to other CPU. Probably, we need an additional
2618 * wmb() in ace_tx_intr as well.
2620 * Note that this race is relieved by reserving one more entry
2621 * in tx ring than it is necessary (see original non-SG driver).
2622 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2623 * is already overkill.
2625 * Alternative is to return with 1 not throttling queue. In this
2626 * case loop becomes longer, no more useful effects.
2628 if (time_before(jiffies
, maxjiff
)) {
2634 /* The ring is stuck full. */
2635 printk(KERN_WARNING
"%s: Transmit ring stuck full\n", dev
->name
);
2636 return NETDEV_TX_BUSY
;
2640 static int ace_change_mtu(struct net_device
*dev
, int new_mtu
)
2642 struct ace_private
*ap
= netdev_priv(dev
);
2643 struct ace_regs __iomem
*regs
= ap
->regs
;
2645 if (new_mtu
> ACE_JUMBO_MTU
)
2648 writel(new_mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2651 if (new_mtu
> ACE_STD_MTU
) {
2653 printk(KERN_INFO
"%s: Enabling Jumbo frame "
2654 "support\n", dev
->name
);
2656 if (!test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2657 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
);
2658 ace_set_rxtx_parms(dev
, 1);
2661 while (test_and_set_bit(0, &ap
->jumbo_refill_busy
));
2662 ace_sync_irq(dev
->irq
);
2663 ace_set_rxtx_parms(dev
, 0);
2667 cmd
.evt
= C_RESET_JUMBO_RNG
;
2670 ace_issue_cmd(regs
, &cmd
);
2677 static int ace_get_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2679 struct ace_private
*ap
= netdev_priv(dev
);
2680 struct ace_regs __iomem
*regs
= ap
->regs
;
2683 memset(ecmd
, 0, sizeof(struct ethtool_cmd
));
2685 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2686 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2687 SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
|
2688 SUPPORTED_Autoneg
| SUPPORTED_FIBRE
);
2690 ecmd
->port
= PORT_FIBRE
;
2691 ecmd
->transceiver
= XCVR_INTERNAL
;
2693 link
= readl(®s
->GigLnkState
);
2694 if (link
& LNK_1000MB
)
2695 ecmd
->speed
= SPEED_1000
;
2697 link
= readl(®s
->FastLnkState
);
2698 if (link
& LNK_100MB
)
2699 ecmd
->speed
= SPEED_100
;
2700 else if (link
& LNK_10MB
)
2701 ecmd
->speed
= SPEED_10
;
2705 if (link
& LNK_FULL_DUPLEX
)
2706 ecmd
->duplex
= DUPLEX_FULL
;
2708 ecmd
->duplex
= DUPLEX_HALF
;
2710 if (link
& LNK_NEGOTIATE
)
2711 ecmd
->autoneg
= AUTONEG_ENABLE
;
2713 ecmd
->autoneg
= AUTONEG_DISABLE
;
2717 * Current struct ethtool_cmd is insufficient
2719 ecmd
->trace
= readl(®s
->TuneTrace
);
2721 ecmd
->txcoal
= readl(®s
->TuneTxCoalTicks
);
2722 ecmd
->rxcoal
= readl(®s
->TuneRxCoalTicks
);
2724 ecmd
->maxtxpkt
= readl(®s
->TuneMaxTxDesc
);
2725 ecmd
->maxrxpkt
= readl(®s
->TuneMaxRxDesc
);
2730 static int ace_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2732 struct ace_private
*ap
= netdev_priv(dev
);
2733 struct ace_regs __iomem
*regs
= ap
->regs
;
2736 link
= readl(®s
->GigLnkState
);
2737 if (link
& LNK_1000MB
)
2740 link
= readl(®s
->FastLnkState
);
2741 if (link
& LNK_100MB
)
2743 else if (link
& LNK_10MB
)
2749 link
= LNK_ENABLE
| LNK_1000MB
| LNK_100MB
| LNK_10MB
|
2750 LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
;
2751 if (!ACE_IS_TIGON_I(ap
))
2752 link
|= LNK_TX_FLOW_CTL_Y
;
2753 if (ecmd
->autoneg
== AUTONEG_ENABLE
)
2754 link
|= LNK_NEGOTIATE
;
2755 if (ecmd
->speed
!= speed
) {
2756 link
&= ~(LNK_1000MB
| LNK_100MB
| LNK_10MB
);
2770 if (ecmd
->duplex
== DUPLEX_FULL
)
2771 link
|= LNK_FULL_DUPLEX
;
2773 if (link
!= ap
->link
) {
2775 printk(KERN_INFO
"%s: Renegotiating link state\n",
2779 writel(link
, ®s
->TuneLink
);
2780 if (!ACE_IS_TIGON_I(ap
))
2781 writel(link
, ®s
->TuneFastLink
);
2784 cmd
.evt
= C_LNK_NEGOTIATION
;
2787 ace_issue_cmd(regs
, &cmd
);
2792 static void ace_get_drvinfo(struct net_device
*dev
,
2793 struct ethtool_drvinfo
*info
)
2795 struct ace_private
*ap
= netdev_priv(dev
);
2797 strlcpy(info
->driver
, "acenic", sizeof(info
->driver
));
2798 snprintf(info
->version
, sizeof(info
->version
), "%i.%i.%i",
2799 tigonFwReleaseMajor
, tigonFwReleaseMinor
,
2803 strlcpy(info
->bus_info
, pci_name(ap
->pdev
),
2804 sizeof(info
->bus_info
));
2809 * Set the hardware MAC address.
2811 static int ace_set_mac_addr(struct net_device
*dev
, void *p
)
2813 struct ace_private
*ap
= netdev_priv(dev
);
2814 struct ace_regs __iomem
*regs
= ap
->regs
;
2815 struct sockaddr
*addr
=p
;
2819 if(netif_running(dev
))
2822 memcpy(dev
->dev_addr
, addr
->sa_data
,dev
->addr_len
);
2824 da
= (u8
*)dev
->dev_addr
;
2826 writel(da
[0] << 8 | da
[1], ®s
->MacAddrHi
);
2827 writel((da
[2] << 24) | (da
[3] << 16) | (da
[4] << 8) | da
[5],
2830 cmd
.evt
= C_SET_MAC_ADDR
;
2833 ace_issue_cmd(regs
, &cmd
);
2839 static void ace_set_multicast_list(struct net_device
*dev
)
2841 struct ace_private
*ap
= netdev_priv(dev
);
2842 struct ace_regs __iomem
*regs
= ap
->regs
;
2845 if ((dev
->flags
& IFF_ALLMULTI
) && !(ap
->mcast_all
)) {
2846 cmd
.evt
= C_SET_MULTICAST_MODE
;
2847 cmd
.code
= C_C_MCAST_ENABLE
;
2849 ace_issue_cmd(regs
, &cmd
);
2851 } else if (ap
->mcast_all
) {
2852 cmd
.evt
= C_SET_MULTICAST_MODE
;
2853 cmd
.code
= C_C_MCAST_DISABLE
;
2855 ace_issue_cmd(regs
, &cmd
);
2859 if ((dev
->flags
& IFF_PROMISC
) && !(ap
->promisc
)) {
2860 cmd
.evt
= C_SET_PROMISC_MODE
;
2861 cmd
.code
= C_C_PROMISC_ENABLE
;
2863 ace_issue_cmd(regs
, &cmd
);
2865 }else if (!(dev
->flags
& IFF_PROMISC
) && (ap
->promisc
)) {
2866 cmd
.evt
= C_SET_PROMISC_MODE
;
2867 cmd
.code
= C_C_PROMISC_DISABLE
;
2869 ace_issue_cmd(regs
, &cmd
);
2874 * For the time being multicast relies on the upper layers
2875 * filtering it properly. The Firmware does not allow one to
2876 * set the entire multicast list at a time and keeping track of
2877 * it here is going to be messy.
2879 if ((dev
->mc_count
) && !(ap
->mcast_all
)) {
2880 cmd
.evt
= C_SET_MULTICAST_MODE
;
2881 cmd
.code
= C_C_MCAST_ENABLE
;
2883 ace_issue_cmd(regs
, &cmd
);
2884 }else if (!ap
->mcast_all
) {
2885 cmd
.evt
= C_SET_MULTICAST_MODE
;
2886 cmd
.code
= C_C_MCAST_DISABLE
;
2888 ace_issue_cmd(regs
, &cmd
);
2893 static struct net_device_stats
*ace_get_stats(struct net_device
*dev
)
2895 struct ace_private
*ap
= netdev_priv(dev
);
2896 struct ace_mac_stats __iomem
*mac_stats
=
2897 (struct ace_mac_stats __iomem
*)ap
->regs
->Stats
;
2899 ap
->stats
.rx_missed_errors
= readl(&mac_stats
->drop_space
);
2900 ap
->stats
.multicast
= readl(&mac_stats
->kept_mc
);
2901 ap
->stats
.collisions
= readl(&mac_stats
->coll
);
2907 static void __devinit
ace_copy(struct ace_regs __iomem
*regs
, void *src
,
2910 void __iomem
*tdest
;
2918 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2919 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2920 tdest
= (void __iomem
*) ®s
->Window
+
2921 (dest
& (ACE_WINDOW_SIZE
- 1));
2922 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2924 * This requires byte swapping on big endian, however
2925 * writel does that for us
2928 for (i
= 0; i
< (tsize
/ 4); i
++) {
2929 writel(wsrc
[i
], tdest
+ i
*4);
2940 static void __devinit
ace_clear(struct ace_regs __iomem
*regs
, u32 dest
, int size
)
2942 void __iomem
*tdest
;
2949 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2950 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2951 tdest
= (void __iomem
*) ®s
->Window
+
2952 (dest
& (ACE_WINDOW_SIZE
- 1));
2953 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2955 for (i
= 0; i
< (tsize
/ 4); i
++) {
2956 writel(0, tdest
+ i
*4);
2968 * Download the firmware into the SRAM on the NIC
2970 * This operation requires the NIC to be halted and is performed with
2971 * interrupts disabled and with the spinlock hold.
2973 int __devinit
ace_load_firmware(struct net_device
*dev
)
2975 struct ace_private
*ap
= netdev_priv(dev
);
2976 struct ace_regs __iomem
*regs
= ap
->regs
;
2978 if (!(readl(®s
->CpuCtrl
) & CPU_HALTED
)) {
2979 printk(KERN_ERR
"%s: trying to download firmware while the "
2980 "CPU is running!\n", ap
->name
);
2985 * Do not try to clear more than 512KB or we end up seeing
2986 * funny things on NICs with only 512KB SRAM
2988 ace_clear(regs
, 0x2000, 0x80000-0x2000);
2989 if (ACE_IS_TIGON_I(ap
)) {
2990 ace_copy(regs
, tigonFwText
, tigonFwTextAddr
, tigonFwTextLen
);
2991 ace_copy(regs
, tigonFwData
, tigonFwDataAddr
, tigonFwDataLen
);
2992 ace_copy(regs
, tigonFwRodata
, tigonFwRodataAddr
,
2994 ace_clear(regs
, tigonFwBssAddr
, tigonFwBssLen
);
2995 ace_clear(regs
, tigonFwSbssAddr
, tigonFwSbssLen
);
2996 }else if (ap
->version
== 2) {
2997 ace_clear(regs
, tigon2FwBssAddr
, tigon2FwBssLen
);
2998 ace_clear(regs
, tigon2FwSbssAddr
, tigon2FwSbssLen
);
2999 ace_copy(regs
, tigon2FwText
, tigon2FwTextAddr
,tigon2FwTextLen
);
3000 ace_copy(regs
, tigon2FwRodata
, tigon2FwRodataAddr
,
3002 ace_copy(regs
, tigon2FwData
, tigon2FwDataAddr
,tigon2FwDataLen
);
3010 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
3012 * Accessing the EEPROM is `interesting' to say the least - don't read
3013 * this code right after dinner.
3015 * This is all about black magic and bit-banging the device .... I
3016 * wonder in what hospital they have put the guy who designed the i2c
3019 * Oh yes, this is only the beginning!
3021 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
3022 * code i2c readout code by beta testing all my hacks.
3024 static void __devinit
eeprom_start(struct ace_regs __iomem
*regs
)
3028 readl(®s
->LocalCtrl
);
3029 udelay(ACE_SHORT_DELAY
);
3030 local
= readl(®s
->LocalCtrl
);
3031 local
|= EEPROM_DATA_OUT
| EEPROM_WRITE_ENABLE
;
3032 writel(local
, ®s
->LocalCtrl
);
3033 readl(®s
->LocalCtrl
);
3035 udelay(ACE_SHORT_DELAY
);
3036 local
|= EEPROM_CLK_OUT
;
3037 writel(local
, ®s
->LocalCtrl
);
3038 readl(®s
->LocalCtrl
);
3040 udelay(ACE_SHORT_DELAY
);
3041 local
&= ~EEPROM_DATA_OUT
;
3042 writel(local
, ®s
->LocalCtrl
);
3043 readl(®s
->LocalCtrl
);
3045 udelay(ACE_SHORT_DELAY
);
3046 local
&= ~EEPROM_CLK_OUT
;
3047 writel(local
, ®s
->LocalCtrl
);
3048 readl(®s
->LocalCtrl
);
3053 static void __devinit
eeprom_prep(struct ace_regs __iomem
*regs
, u8 magic
)
3058 udelay(ACE_SHORT_DELAY
);
3059 local
= readl(®s
->LocalCtrl
);
3060 local
&= ~EEPROM_DATA_OUT
;
3061 local
|= EEPROM_WRITE_ENABLE
;
3062 writel(local
, ®s
->LocalCtrl
);
3063 readl(®s
->LocalCtrl
);
3066 for (i
= 0; i
< 8; i
++, magic
<<= 1) {
3067 udelay(ACE_SHORT_DELAY
);
3069 local
|= EEPROM_DATA_OUT
;
3071 local
&= ~EEPROM_DATA_OUT
;
3072 writel(local
, ®s
->LocalCtrl
);
3073 readl(®s
->LocalCtrl
);
3076 udelay(ACE_SHORT_DELAY
);
3077 local
|= EEPROM_CLK_OUT
;
3078 writel(local
, ®s
->LocalCtrl
);
3079 readl(®s
->LocalCtrl
);
3081 udelay(ACE_SHORT_DELAY
);
3082 local
&= ~(EEPROM_CLK_OUT
| EEPROM_DATA_OUT
);
3083 writel(local
, ®s
->LocalCtrl
);
3084 readl(®s
->LocalCtrl
);
3090 static int __devinit
eeprom_check_ack(struct ace_regs __iomem
*regs
)
3095 local
= readl(®s
->LocalCtrl
);
3096 local
&= ~EEPROM_WRITE_ENABLE
;
3097 writel(local
, ®s
->LocalCtrl
);
3098 readl(®s
->LocalCtrl
);
3100 udelay(ACE_LONG_DELAY
);
3101 local
|= EEPROM_CLK_OUT
;
3102 writel(local
, ®s
->LocalCtrl
);
3103 readl(®s
->LocalCtrl
);
3105 udelay(ACE_SHORT_DELAY
);
3106 /* sample data in middle of high clk */
3107 state
= (readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0;
3108 udelay(ACE_SHORT_DELAY
);
3110 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3111 readl(®s
->LocalCtrl
);
3118 static void __devinit
eeprom_stop(struct ace_regs __iomem
*regs
)
3122 udelay(ACE_SHORT_DELAY
);
3123 local
= readl(®s
->LocalCtrl
);
3124 local
|= EEPROM_WRITE_ENABLE
;
3125 writel(local
, ®s
->LocalCtrl
);
3126 readl(®s
->LocalCtrl
);
3128 udelay(ACE_SHORT_DELAY
);
3129 local
&= ~EEPROM_DATA_OUT
;
3130 writel(local
, ®s
->LocalCtrl
);
3131 readl(®s
->LocalCtrl
);
3133 udelay(ACE_SHORT_DELAY
);
3134 local
|= EEPROM_CLK_OUT
;
3135 writel(local
, ®s
->LocalCtrl
);
3136 readl(®s
->LocalCtrl
);
3138 udelay(ACE_SHORT_DELAY
);
3139 local
|= EEPROM_DATA_OUT
;
3140 writel(local
, ®s
->LocalCtrl
);
3141 readl(®s
->LocalCtrl
);
3143 udelay(ACE_LONG_DELAY
);
3144 local
&= ~EEPROM_CLK_OUT
;
3145 writel(local
, ®s
->LocalCtrl
);
3151 * Read a whole byte from the EEPROM.
3153 static int __devinit
read_eeprom_byte(struct net_device
*dev
,
3154 unsigned long offset
)
3156 struct ace_private
*ap
= netdev_priv(dev
);
3157 struct ace_regs __iomem
*regs
= ap
->regs
;
3158 unsigned long flags
;
3164 printk(KERN_ERR
"No device!\n");
3170 * Don't take interrupts on this CPU will bit banging
3171 * the %#%#@$ I2C device
3173 local_irq_save(flags
);
3177 eeprom_prep(regs
, EEPROM_WRITE_SELECT
);
3178 if (eeprom_check_ack(regs
)) {
3179 local_irq_restore(flags
);
3180 printk(KERN_ERR
"%s: Unable to sync eeprom\n", ap
->name
);
3182 goto eeprom_read_error
;
3185 eeprom_prep(regs
, (offset
>> 8) & 0xff);
3186 if (eeprom_check_ack(regs
)) {
3187 local_irq_restore(flags
);
3188 printk(KERN_ERR
"%s: Unable to set address byte 0\n",
3191 goto eeprom_read_error
;
3194 eeprom_prep(regs
, offset
& 0xff);
3195 if (eeprom_check_ack(regs
)) {
3196 local_irq_restore(flags
);
3197 printk(KERN_ERR
"%s: Unable to set address byte 1\n",
3200 goto eeprom_read_error
;
3204 eeprom_prep(regs
, EEPROM_READ_SELECT
);
3205 if (eeprom_check_ack(regs
)) {
3206 local_irq_restore(flags
);
3207 printk(KERN_ERR
"%s: Unable to set READ_SELECT\n",
3210 goto eeprom_read_error
;
3213 for (i
= 0; i
< 8; i
++) {
3214 local
= readl(®s
->LocalCtrl
);
3215 local
&= ~EEPROM_WRITE_ENABLE
;
3216 writel(local
, ®s
->LocalCtrl
);
3217 readl(®s
->LocalCtrl
);
3218 udelay(ACE_LONG_DELAY
);
3220 local
|= EEPROM_CLK_OUT
;
3221 writel(local
, ®s
->LocalCtrl
);
3222 readl(®s
->LocalCtrl
);
3224 udelay(ACE_SHORT_DELAY
);
3225 /* sample data mid high clk */
3226 result
= (result
<< 1) |
3227 ((readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0);
3228 udelay(ACE_SHORT_DELAY
);
3230 local
= readl(®s
->LocalCtrl
);
3231 local
&= ~EEPROM_CLK_OUT
;
3232 writel(local
, ®s
->LocalCtrl
);
3233 readl(®s
->LocalCtrl
);
3234 udelay(ACE_SHORT_DELAY
);
3237 local
|= EEPROM_WRITE_ENABLE
;
3238 writel(local
, ®s
->LocalCtrl
);
3239 readl(®s
->LocalCtrl
);
3241 udelay(ACE_SHORT_DELAY
);
3245 local
|= EEPROM_DATA_OUT
;
3246 writel(local
, ®s
->LocalCtrl
);
3247 readl(®s
->LocalCtrl
);
3249 udelay(ACE_SHORT_DELAY
);
3250 writel(readl(®s
->LocalCtrl
) | EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3251 readl(®s
->LocalCtrl
);
3252 udelay(ACE_LONG_DELAY
);
3253 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3254 readl(®s
->LocalCtrl
);
3256 udelay(ACE_SHORT_DELAY
);
3259 local_irq_restore(flags
);
3264 printk(KERN_ERR
"%s: Unable to read eeprom byte 0x%02lx\n",
3272 * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c"